cacheable_kdtree 1.1.0 → 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
---
|
2
2
|
!binary "U0hBMQ==":
|
3
3
|
metadata.gz: !binary |-
|
4
|
-
|
4
|
+
ODNiNGI4ZTY3NmQ2ZDNkZTNlYTlmNzBlY2Y2ZWE5ZjI4ZmIzOWZiMg==
|
5
5
|
data.tar.gz: !binary |-
|
6
|
-
|
6
|
+
M2JhZGZkODZiYzMwZDk2ZjVlMDNhMmIxYzFhMzc3Yzc3MjBhNmMwYg==
|
7
7
|
SHA512:
|
8
8
|
metadata.gz: !binary |-
|
9
|
-
|
10
|
-
|
11
|
-
|
9
|
+
MTllMDlkYzJiNjU4NzNjNzQxMzNiMWU0ZmQxZDQ3YzYwMWU1MzMwNzAyMDlk
|
10
|
+
YmU0YmVlODE2YTJhODc3Y2RlYzAxOTk3NDNkY2Q2YWZjMjhmOTk1NTQxZjcz
|
11
|
+
NjM1NDFiOTE5NmEzNmQ4ZDczMDJkOWRmNzRlZmNkYzlmODU4YTA=
|
12
12
|
data.tar.gz: !binary |-
|
13
|
-
|
14
|
-
|
15
|
-
|
13
|
+
YTFmOTAxNTc0NjQyNDYyZjUxOTk1ZGM2MmFhZTNhNDVhYzlkYmU3ODEyODEz
|
14
|
+
ZmQ3YzVkMWRhMmE2OWM0YmY5MGZhNmM5MzJmMWRlOWU1ODc1MTJkMGU4MTJm
|
15
|
+
NThhMzI5Y2JkNWE5Zjg3MDMzYTdkNzc2NzEyNzhkMmY0YWZjMzU=
|
data/README.md
CHANGED
@@ -32,6 +32,10 @@ You can query your tree and return the closest nodes:
|
|
32
32
|
```ruby
|
33
33
|
# The 4th parameter may be :miles or :kilometers
|
34
34
|
all_my_nodes = my_tree.closest(my_lat, my_long, distance, :kilometers)
|
35
|
+
# You may then sort the nodes by their distance to a point (using the Law of Cosines)
|
36
|
+
sorted_nodes = CacheableKdtree::LatitudeLongitudeNode.sort_by_distance_between(my_lat, my_long, all_my_nodes)
|
37
|
+
# To get your filtered, sorted data, you may run:
|
38
|
+
my_data_list = sorted_nodes.map(:&data)
|
35
39
|
```
|
36
40
|
|
37
41
|
## Contributing
|
@@ -11,6 +11,12 @@ class CacheableKdtree::LatitudeLongitudeNode
|
|
11
11
|
"region: #{region ? region.to_s : region}"
|
12
12
|
end
|
13
13
|
|
14
|
+
def self.sort_by_distance_between(lat, long, node_list)
|
15
|
+
node_list.sort_by do |node|
|
16
|
+
CacheableKdtree::Util.distance_miles(lat, long, node.latitude, node.longitude)
|
17
|
+
end
|
18
|
+
end
|
19
|
+
|
14
20
|
def self.create_or_merge_regions(n1, n2)
|
15
21
|
return CacheableKdtree::LatitudeLongitudeRegion.new(n1.latitude, n1.longitude, n2.latitude, n2.longitude) if n1.region.nil? && n2.region.nil?
|
16
22
|
return n1.region.merge_point(n2.latitude, n2.longitude) if n1.region && n2.region.nil?
|
@@ -21,7 +21,7 @@ class CacheableKdtree::LatitudeLongitudeTree
|
|
21
21
|
|
22
22
|
def nearest_nodes(bounding_box, node = @root, result = [])
|
23
23
|
return result if node.nil?
|
24
|
-
result << node
|
24
|
+
result << node if bounding_box.point_in_region?(node.latitude, node.longitude)
|
25
25
|
nearest_nodes(bounding_box, node.left, result) if search_child?(node.left, bounding_box)
|
26
26
|
nearest_nodes(bounding_box, node.right, result) if search_child?(node.right, bounding_box)
|
27
27
|
result
|
@@ -1,16 +1,16 @@
|
|
1
1
|
class CacheableKdtree::Util
|
2
|
-
|
2
|
+
KILOMETERS_IN_A_MILE = 0.621371192
|
3
3
|
EARTH_KILOMETERS = 6371.0
|
4
4
|
|
5
5
|
# I pulled the algorithm for the bounding_box calculation from here:
|
6
6
|
# http://stackoverflow.com/questions/1689096/calculating-bounding-box-a-certain-distance-away-from-a-lat-long-coordinate-in-j
|
7
7
|
|
8
8
|
def self.bounding_box_miles(lat, long, distance_in_miles)
|
9
|
-
bounding_box(lat, long, distance_in_miles,
|
9
|
+
bounding_box(lat, long, distance_in_miles, earth_miles)
|
10
10
|
end
|
11
11
|
|
12
|
-
def self.bounding_box_kilometers(lat, long,
|
13
|
-
bounding_box(lat, long,
|
12
|
+
def self.bounding_box_kilometers(lat, long, distance_in_kilometers)
|
13
|
+
bounding_box(lat, long, distance_in_kilometers, EARTH_KILOMETERS)
|
14
14
|
end
|
15
15
|
|
16
16
|
def self.bounding_box(lat, long, radius_distance, sphere_radius)
|
@@ -23,11 +23,33 @@ class CacheableKdtree::Util
|
|
23
23
|
CacheableKdtree::LatitudeLongitudeRegion.new(lat1, long1, lat2, long2)
|
24
24
|
end
|
25
25
|
|
26
|
+
def self.distance_kilometers(p1_lat, p1_long, p2_lat, p2_long)
|
27
|
+
distance_law_of_cosines(p1_lat, p1_long, p2_lat, p2_long, EARTH_KILOMETERS)
|
28
|
+
end
|
29
|
+
|
30
|
+
def self.distance_miles(p1_lat, p1_long, p2_lat, p2_long)
|
31
|
+
distance_law_of_cosines(p1_lat, p1_long, p2_lat, p2_long, earth_miles)
|
32
|
+
end
|
33
|
+
|
34
|
+
# I am using the law of cosines because it is faster than Haversine...
|
35
|
+
def self.distance_law_of_cosines(p1_lat, p1_long, p2_lat, p2_long, sphere_radius)
|
36
|
+
p1_lat = degrees_to_radians(p1_lat)
|
37
|
+
p1_long = degrees_to_radians(p1_long)
|
38
|
+
p2_lat = degrees_to_radians(p2_lat)
|
39
|
+
p2_long = degrees_to_radians(p2_long)
|
40
|
+
Math.acos(Math.sin(p1_lat) * Math.sin(p2_lat) +
|
41
|
+
Math.cos(p1_lat) * Math.cos(p2_lat) * Math.cos(p2_long - p1_long)) * sphere_radius
|
42
|
+
end
|
43
|
+
|
26
44
|
def self.degrees_to_radians(degrees)
|
27
|
-
degrees *
|
45
|
+
degrees * Math::PI / 180
|
28
46
|
end
|
29
47
|
|
30
48
|
def self.radians_to_degrees(radians)
|
31
|
-
radians * 180 /
|
49
|
+
radians * 180 / Math::PI
|
50
|
+
end
|
51
|
+
|
52
|
+
def self.earth_miles
|
53
|
+
KILOMETERS_IN_A_MILE * EARTH_KILOMETERS
|
32
54
|
end
|
33
55
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: cacheable_kdtree
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 2.0.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Aaron Franssell
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2016-
|
11
|
+
date: 2016-07-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|