brains 0.1.1-java → 0.2.0-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
 - data/CHANGELOG.md +4 -0
 - data/README.md +12 -0
 - data/brains.gemspec +1 -1
 - data/example/colors.rb +67 -15
 - data/example/iris.data +150 -0
 - data/example/sine_function.rb +53 -0
 - data/lib/brains/brains.jar +0 -0
 - data/lib/brains/net.rb +66 -3
 - data/lib/brains/version.rb +1 -1
 - metadata +20 -16
 
    
        checksums.yaml
    CHANGED
    
    | 
         @@ -1,7 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            ---
         
     | 
| 
       2 
2 
     | 
    
         
             
            SHA1:
         
     | 
| 
       3 
     | 
    
         
            -
              metadata.gz:  
     | 
| 
       4 
     | 
    
         
            -
              data.tar.gz:  
     | 
| 
      
 3 
     | 
    
         
            +
              metadata.gz: 1b6deee0363d18d2c2d4a7ea8b4047681776566a
         
     | 
| 
      
 4 
     | 
    
         
            +
              data.tar.gz: 88dd27bf0f07c4895f0871e80dba2f7909ab02bd
         
     | 
| 
       5 
5 
     | 
    
         
             
            SHA512:
         
     | 
| 
       6 
     | 
    
         
            -
              metadata.gz:  
     | 
| 
       7 
     | 
    
         
            -
              data.tar.gz:  
     | 
| 
      
 6 
     | 
    
         
            +
              metadata.gz: 0cef015a95f1237f286606cbb439e8370920e3fc6bd9eebf2f68d03471c20383cb930495740a34dc51d5543e6560c3f739ccb61ceabeb1eed1e3d649fd60a64d
         
     | 
| 
      
 7 
     | 
    
         
            +
              data.tar.gz: 690b8de89fd2dfe1f98f9bbe9594c5af7bf28b1abb2940589433a0e304d7dd3e95dbc2420b3c68768f8a4f1fd5e72d35d1bb266e9a838edf0d4aa309a138036a
         
     | 
    
        data/CHANGELOG.md
    ADDED
    
    
    
        data/README.md
    CHANGED
    
    | 
         @@ -154,12 +154,24 @@ https://github.com/jedld/brains 
     | 
|
| 
       154 
154 
     | 
    
         | 
| 
       155 
155 
     | 
    
         
             
            You can compile the java source code as brains.jar and use it directly with this gem.
         
     | 
| 
       156 
156 
     | 
    
         | 
| 
      
 157 
     | 
    
         
            +
            ## RNNs (Recurrent Neural Networks)
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
            For recurrent neural networks (Look at the sine function in the examples). Only
         
     | 
| 
      
 160 
     | 
    
         
            +
            the backpropagation through time (BPTT) training algorithm is
         
     | 
| 
      
 161 
     | 
    
         
            +
            supported for now.
         
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
       157 
163 
     | 
    
         
             
            ## Development
         
     | 
| 
       158 
164 
     | 
    
         | 
| 
       159 
165 
     | 
    
         
             
            After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
         
     | 
| 
       160 
166 
     | 
    
         | 
| 
       161 
167 
     | 
    
         
             
            To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
         
     | 
| 
       162 
168 
     | 
    
         | 
| 
      
 169 
     | 
    
         
            +
            ## Resources
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
            Machine learning is still a rapidly evolving field and research is ongoing on various aspects of it. This is just the tip of the iceberg, the field of machine learning is extremely complex, below are various resources for the average developer to get started:
         
     | 
| 
      
 172 
     | 
    
         
            +
             
     | 
| 
      
 173 
     | 
    
         
            +
            ftp://ftp.sas.com/pub/neural/FAQ.html#questions
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
       163 
175 
     | 
    
         
             
            ## Contributing
         
     | 
| 
       164 
176 
     | 
    
         | 
| 
       165 
177 
     | 
    
         
             
            Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/brains. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
         
     | 
    
        data/brains.gemspec
    CHANGED
    
    | 
         @@ -10,7 +10,7 @@ Gem::Specification.new do |spec| 
     | 
|
| 
       10 
10 
     | 
    
         
             
              spec.email         = ["joseph.dayo@gmail.com"]
         
     | 
| 
       11 
11 
     | 
    
         | 
| 
       12 
12 
     | 
    
         
             
              spec.summary       = %q{A feedforward neural network library for JRuby}
         
     | 
| 
       13 
     | 
    
         
            -
              spec.description   = %q{A feedforward neural network library for JRuby}
         
     | 
| 
      
 13 
     | 
    
         
            +
              spec.description   = %q{A feedforward neural network library for JRuby. Aims to provide a quick way to get started on machine learning with ruby }
         
     | 
| 
       14 
14 
     | 
    
         
             
              spec.homepage      = "https://github.com/jedld/brains-jruby"
         
     | 
| 
       15 
15 
     | 
    
         
             
              spec.license       = "MIT"
         
     | 
| 
       16 
16 
     | 
    
         
             
              spec.platform      = "java"
         
     | 
    
        data/example/colors.rb
    CHANGED
    
    | 
         @@ -3,43 +3,95 @@ 
     | 
|
| 
       3 
3 
     | 
    
         
             
            require 'brains'
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            #This neural network will identify the main color name based on rgb values
         
     | 
| 
      
 6 
     | 
    
         
            +
            RED = [0,0,1]
         
     | 
| 
      
 7 
     | 
    
         
            +
            GREEN = [0,1,0]
         
     | 
| 
      
 8 
     | 
    
         
            +
            BLUE = [1,0,0]
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            def color_value(color_value)
         
     | 
| 
      
 11 
     | 
    
         
            +
               [
         
     | 
| 
      
 12 
     | 
    
         
            +
                 Integer(color_value[0..1], 16).to_f / 0xff.to_f,
         
     | 
| 
      
 13 
     | 
    
         
            +
                 Integer(color_value[2..3], 16).to_f / 0xff.to_f,
         
     | 
| 
      
 14 
     | 
    
         
            +
                 Integer(color_value[4..5], 16).to_f / 0xff.to_f,
         
     | 
| 
      
 15 
     | 
    
         
            +
               ]
         
     | 
| 
      
 16 
     | 
    
         
            +
            end
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            def color_desc(result)
         
     | 
| 
      
 19 
     | 
    
         
            +
              return "blue" if (result[0] > result[1] && result[0] > result[2])
         
     | 
| 
      
 20 
     | 
    
         
            +
              return "green" if (result[1] > result[0] && result[1] > result[2])
         
     | 
| 
      
 21 
     | 
    
         
            +
              return "red" if (result[2] > result[0] && result[2] > result[1])
         
     | 
| 
      
 22 
     | 
    
         
            +
            end
         
     | 
| 
       6 
23 
     | 
    
         | 
| 
       7 
24 
     | 
    
         
             
            label_encodings = {
         
     | 
| 
       8 
     | 
    
         
            -
              " 
     | 
| 
      
 25 
     | 
    
         
            +
              "Blue"   => [1, 0, 0],
         
     | 
| 
       9 
26 
     | 
    
         
             
              "Green" => [0, 1, 0],
         
     | 
| 
       10 
     | 
    
         
            -
              " 
     | 
| 
      
 27 
     | 
    
         
            +
              "Red"  => [0, 0 ,1]
         
     | 
| 
       11 
28 
     | 
    
         
             
            }
         
     | 
| 
       12 
29 
     | 
    
         
             
            #0000ff
         
     | 
| 
       13 
30 
     | 
    
         
             
            training_data = [
         
     | 
| 
       14 
     | 
    
         
            -
               
     | 
| 
       15 
     | 
    
         
            -
              [ 
     | 
| 
       16 
     | 
    
         
            -
              [ 
     | 
| 
      
 31 
     | 
    
         
            +
              # red
         
     | 
| 
      
 32 
     | 
    
         
            +
              [color_value('E32636'), RED],
         
     | 
| 
      
 33 
     | 
    
         
            +
              [color_value('8B0000'), RED],
         
     | 
| 
      
 34 
     | 
    
         
            +
              [color_value('800000'), RED],
         
     | 
| 
      
 35 
     | 
    
         
            +
              [color_value('65000B'), RED],
         
     | 
| 
      
 36 
     | 
    
         
            +
              [color_value('674846'), RED],
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
              #green
         
     | 
| 
      
 39 
     | 
    
         
            +
              [color_value('8F9779'), GREEN],
         
     | 
| 
      
 40 
     | 
    
         
            +
              [color_value('568203'), GREEN],
         
     | 
| 
      
 41 
     | 
    
         
            +
              [color_value('013220'), GREEN],
         
     | 
| 
      
 42 
     | 
    
         
            +
              [color_value('00FF00'), GREEN],
         
     | 
| 
      
 43 
     | 
    
         
            +
              [color_value('006400'), GREEN],
         
     | 
| 
      
 44 
     | 
    
         
            +
              [color_value('00A877'), GREEN],
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
              #blue
         
     | 
| 
      
 47 
     | 
    
         
            +
              [color_value('89CFF0'), BLUE],
         
     | 
| 
      
 48 
     | 
    
         
            +
              [color_value('ADD8E6'), BLUE],
         
     | 
| 
      
 49 
     | 
    
         
            +
              [color_value('0000FF'), BLUE],
         
     | 
| 
      
 50 
     | 
    
         
            +
              [color_value('0070BB'), BLUE],
         
     | 
| 
      
 51 
     | 
    
         
            +
              [color_value('545AA7'), BLUE],
         
     | 
| 
      
 52 
     | 
    
         
            +
              [color_value('4C516D'), BLUE],
         
     | 
| 
       17 
53 
     | 
    
         
             
            ]
         
     | 
| 
       18 
54 
     | 
    
         | 
| 
       19 
     | 
    
         
            -
            nn = Brains::Net.create( 
     | 
| 
      
 55 
     | 
    
         
            +
            nn = Brains::Net.create(3, 3, 2, { neurons_per_layer: 5 })
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
            # randomize weights before training
         
     | 
| 
       20 
58 
     | 
    
         
             
            nn.randomize_weights
         
     | 
| 
       21 
59 
     | 
    
         | 
| 
       22 
60 
     | 
    
         | 
| 
       23 
61 
     | 
    
         
             
            # test on untrained data
         
     | 
| 
       24 
     | 
    
         
            -
            #0000ee
         
     | 
| 
      
 62 
     | 
    
         
            +
            #0000ee 	#C41E3A
         
     | 
| 
       25 
63 
     | 
    
         
             
            test_data = [
         
     | 
| 
       26 
     | 
    
         
            -
              [ 
     | 
| 
      
 64 
     | 
    
         
            +
              [color_value('0087BD') , 'blue'], # blue
         
     | 
| 
      
 65 
     | 
    
         
            +
              [color_value('C80815') , 'red'], # venetian red
         
     | 
| 
      
 66 
     | 
    
         
            +
              [color_value('009E60') , 'green'], # Shamrock green
         
     | 
| 
      
 67 
     | 
    
         
            +
              [color_value('00FF00') , 'green'], # green
         
     | 
| 
      
 68 
     | 
    
         
            +
              [color_value('333399') , 'blue'], # blue
         
     | 
| 
       27 
69 
     | 
    
         
             
            ]
         
     | 
| 
       28 
70 
     | 
    
         | 
| 
       29 
     | 
    
         
            -
             
     | 
| 
       30 
     | 
    
         
            -
             
     | 
| 
      
 71 
     | 
    
         
            +
            correct = 0
         
     | 
| 
      
 72 
     | 
    
         
            +
            test_data.each_with_index { |item , index|
         
     | 
| 
      
 73 
     | 
    
         
            +
              c = color_desc(nn.feed(item[0]))
         
     | 
| 
      
 74 
     | 
    
         
            +
              correct +=1 if (c == item[1])
         
     | 
| 
      
 75 
     | 
    
         
            +
              puts c
         
     | 
| 
       31 
76 
     | 
    
         
             
            }
         
     | 
| 
       32 
77 
     | 
    
         | 
| 
       33 
     | 
    
         
            -
             
     | 
| 
      
 78 
     | 
    
         
            +
            puts "#{correct}/#{test_data.length}"
         
     | 
| 
       34 
79 
     | 
    
         | 
| 
       35 
     | 
    
         
            -
            result = nn.optimize(training_data, 0. 
     | 
| 
      
 80 
     | 
    
         
            +
            result = nn.optimize(training_data, 0.005, 1_000_000, 100 ) { |i, error|
         
     | 
| 
       36 
81 
     | 
    
         
             
              puts "#{i} #{error}"
         
     | 
| 
       37 
82 
     | 
    
         
             
            }
         
     | 
| 
       38 
83 
     | 
    
         | 
| 
      
 84 
     | 
    
         
            +
            p result
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
       39 
86 
     | 
    
         
             
            puts "after training"
         
     | 
| 
       40 
87 
     | 
    
         | 
| 
       41 
     | 
    
         
            -
             
     | 
| 
       42 
     | 
    
         
            -
             
     | 
| 
      
 88 
     | 
    
         
            +
            correct = 0
         
     | 
| 
      
 89 
     | 
    
         
            +
            test_data.each_with_index { |item , index|
         
     | 
| 
      
 90 
     | 
    
         
            +
              c = color_desc(nn.feed(item[0]))
         
     | 
| 
      
 91 
     | 
    
         
            +
              correct +=1 if (c == item[1])
         
     | 
| 
      
 92 
     | 
    
         
            +
              puts c
         
     | 
| 
       43 
93 
     | 
    
         
             
            }
         
     | 
| 
       44 
94 
     | 
    
         | 
| 
       45 
     | 
    
         
            -
             
     | 
| 
      
 95 
     | 
    
         
            +
            puts "#{correct}/#{test_data.length}"
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
            puts nn.to_json
         
     | 
    
        data/example/iris.data
    ADDED
    
    | 
         @@ -0,0 +1,150 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            5.1,3.5,1.4,0.2,Iris-setosa
         
     | 
| 
      
 2 
     | 
    
         
            +
            4.9,3.0,1.4,0.2,Iris-setosa
         
     | 
| 
      
 3 
     | 
    
         
            +
            4.7,3.2,1.3,0.2,Iris-setosa
         
     | 
| 
      
 4 
     | 
    
         
            +
            4.6,3.1,1.5,0.2,Iris-setosa
         
     | 
| 
      
 5 
     | 
    
         
            +
            5.0,3.6,1.4,0.2,Iris-setosa
         
     | 
| 
      
 6 
     | 
    
         
            +
            5.4,3.9,1.7,0.4,Iris-setosa
         
     | 
| 
      
 7 
     | 
    
         
            +
            4.6,3.4,1.4,0.3,Iris-setosa
         
     | 
| 
      
 8 
     | 
    
         
            +
            5.0,3.4,1.5,0.2,Iris-setosa
         
     | 
| 
      
 9 
     | 
    
         
            +
            4.4,2.9,1.4,0.2,Iris-setosa
         
     | 
| 
      
 10 
     | 
    
         
            +
            4.9,3.1,1.5,0.1,Iris-setosa
         
     | 
| 
      
 11 
     | 
    
         
            +
            5.4,3.7,1.5,0.2,Iris-setosa
         
     | 
| 
      
 12 
     | 
    
         
            +
            4.8,3.4,1.6,0.2,Iris-setosa
         
     | 
| 
      
 13 
     | 
    
         
            +
            4.8,3.0,1.4,0.1,Iris-setosa
         
     | 
| 
      
 14 
     | 
    
         
            +
            4.3,3.0,1.1,0.1,Iris-setosa
         
     | 
| 
      
 15 
     | 
    
         
            +
            5.8,4.0,1.2,0.2,Iris-setosa
         
     | 
| 
      
 16 
     | 
    
         
            +
            5.7,4.4,1.5,0.4,Iris-setosa
         
     | 
| 
      
 17 
     | 
    
         
            +
            5.4,3.9,1.3,0.4,Iris-setosa
         
     | 
| 
      
 18 
     | 
    
         
            +
            5.1,3.5,1.4,0.3,Iris-setosa
         
     | 
| 
      
 19 
     | 
    
         
            +
            5.7,3.8,1.7,0.3,Iris-setosa
         
     | 
| 
      
 20 
     | 
    
         
            +
            5.1,3.8,1.5,0.3,Iris-setosa
         
     | 
| 
      
 21 
     | 
    
         
            +
            5.4,3.4,1.7,0.2,Iris-setosa
         
     | 
| 
      
 22 
     | 
    
         
            +
            5.1,3.7,1.5,0.4,Iris-setosa
         
     | 
| 
      
 23 
     | 
    
         
            +
            4.6,3.6,1.0,0.2,Iris-setosa
         
     | 
| 
      
 24 
     | 
    
         
            +
            5.1,3.3,1.7,0.5,Iris-setosa
         
     | 
| 
      
 25 
     | 
    
         
            +
            4.8,3.4,1.9,0.2,Iris-setosa
         
     | 
| 
      
 26 
     | 
    
         
            +
            5.0,3.0,1.6,0.2,Iris-setosa
         
     | 
| 
      
 27 
     | 
    
         
            +
            5.0,3.4,1.6,0.4,Iris-setosa
         
     | 
| 
      
 28 
     | 
    
         
            +
            5.2,3.5,1.5,0.2,Iris-setosa
         
     | 
| 
      
 29 
     | 
    
         
            +
            5.2,3.4,1.4,0.2,Iris-setosa
         
     | 
| 
      
 30 
     | 
    
         
            +
            4.7,3.2,1.6,0.2,Iris-setosa
         
     | 
| 
      
 31 
     | 
    
         
            +
            4.8,3.1,1.6,0.2,Iris-setosa
         
     | 
| 
      
 32 
     | 
    
         
            +
            5.4,3.4,1.5,0.4,Iris-setosa
         
     | 
| 
      
 33 
     | 
    
         
            +
            5.2,4.1,1.5,0.1,Iris-setosa
         
     | 
| 
      
 34 
     | 
    
         
            +
            5.5,4.2,1.4,0.2,Iris-setosa
         
     | 
| 
      
 35 
     | 
    
         
            +
            4.9,3.1,1.5,0.1,Iris-setosa
         
     | 
| 
      
 36 
     | 
    
         
            +
            5.0,3.2,1.2,0.2,Iris-setosa
         
     | 
| 
      
 37 
     | 
    
         
            +
            5.5,3.5,1.3,0.2,Iris-setosa
         
     | 
| 
      
 38 
     | 
    
         
            +
            4.9,3.1,1.5,0.1,Iris-setosa
         
     | 
| 
      
 39 
     | 
    
         
            +
            4.4,3.0,1.3,0.2,Iris-setosa
         
     | 
| 
      
 40 
     | 
    
         
            +
            5.1,3.4,1.5,0.2,Iris-setosa
         
     | 
| 
      
 41 
     | 
    
         
            +
            5.0,3.5,1.3,0.3,Iris-setosa
         
     | 
| 
      
 42 
     | 
    
         
            +
            4.5,2.3,1.3,0.3,Iris-setosa
         
     | 
| 
      
 43 
     | 
    
         
            +
            4.4,3.2,1.3,0.2,Iris-setosa
         
     | 
| 
      
 44 
     | 
    
         
            +
            5.0,3.5,1.6,0.6,Iris-setosa
         
     | 
| 
      
 45 
     | 
    
         
            +
            5.1,3.8,1.9,0.4,Iris-setosa
         
     | 
| 
      
 46 
     | 
    
         
            +
            4.8,3.0,1.4,0.3,Iris-setosa
         
     | 
| 
      
 47 
     | 
    
         
            +
            5.1,3.8,1.6,0.2,Iris-setosa
         
     | 
| 
      
 48 
     | 
    
         
            +
            4.6,3.2,1.4,0.2,Iris-setosa
         
     | 
| 
      
 49 
     | 
    
         
            +
            5.3,3.7,1.5,0.2,Iris-setosa
         
     | 
| 
      
 50 
     | 
    
         
            +
            5.0,3.3,1.4,0.2,Iris-setosa
         
     | 
| 
      
 51 
     | 
    
         
            +
            7.0,3.2,4.7,1.4,Iris-versicolor
         
     | 
| 
      
 52 
     | 
    
         
            +
            6.4,3.2,4.5,1.5,Iris-versicolor
         
     | 
| 
      
 53 
     | 
    
         
            +
            6.9,3.1,4.9,1.5,Iris-versicolor
         
     | 
| 
      
 54 
     | 
    
         
            +
            5.5,2.3,4.0,1.3,Iris-versicolor
         
     | 
| 
      
 55 
     | 
    
         
            +
            6.5,2.8,4.6,1.5,Iris-versicolor
         
     | 
| 
      
 56 
     | 
    
         
            +
            5.7,2.8,4.5,1.3,Iris-versicolor
         
     | 
| 
      
 57 
     | 
    
         
            +
            6.3,3.3,4.7,1.6,Iris-versicolor
         
     | 
| 
      
 58 
     | 
    
         
            +
            4.9,2.4,3.3,1.0,Iris-versicolor
         
     | 
| 
      
 59 
     | 
    
         
            +
            6.6,2.9,4.6,1.3,Iris-versicolor
         
     | 
| 
      
 60 
     | 
    
         
            +
            5.2,2.7,3.9,1.4,Iris-versicolor
         
     | 
| 
      
 61 
     | 
    
         
            +
            5.0,2.0,3.5,1.0,Iris-versicolor
         
     | 
| 
      
 62 
     | 
    
         
            +
            5.9,3.0,4.2,1.5,Iris-versicolor
         
     | 
| 
      
 63 
     | 
    
         
            +
            6.0,2.2,4.0,1.0,Iris-versicolor
         
     | 
| 
      
 64 
     | 
    
         
            +
            6.1,2.9,4.7,1.4,Iris-versicolor
         
     | 
| 
      
 65 
     | 
    
         
            +
            5.6,2.9,3.6,1.3,Iris-versicolor
         
     | 
| 
      
 66 
     | 
    
         
            +
            6.7,3.1,4.4,1.4,Iris-versicolor
         
     | 
| 
      
 67 
     | 
    
         
            +
            5.6,3.0,4.5,1.5,Iris-versicolor
         
     | 
| 
      
 68 
     | 
    
         
            +
            5.8,2.7,4.1,1.0,Iris-versicolor
         
     | 
| 
      
 69 
     | 
    
         
            +
            6.2,2.2,4.5,1.5,Iris-versicolor
         
     | 
| 
      
 70 
     | 
    
         
            +
            5.6,2.5,3.9,1.1,Iris-versicolor
         
     | 
| 
      
 71 
     | 
    
         
            +
            5.9,3.2,4.8,1.8,Iris-versicolor
         
     | 
| 
      
 72 
     | 
    
         
            +
            6.1,2.8,4.0,1.3,Iris-versicolor
         
     | 
| 
      
 73 
     | 
    
         
            +
            6.3,2.5,4.9,1.5,Iris-versicolor
         
     | 
| 
      
 74 
     | 
    
         
            +
            6.1,2.8,4.7,1.2,Iris-versicolor
         
     | 
| 
      
 75 
     | 
    
         
            +
            6.4,2.9,4.3,1.3,Iris-versicolor
         
     | 
| 
      
 76 
     | 
    
         
            +
            6.6,3.0,4.4,1.4,Iris-versicolor
         
     | 
| 
      
 77 
     | 
    
         
            +
            6.8,2.8,4.8,1.4,Iris-versicolor
         
     | 
| 
      
 78 
     | 
    
         
            +
            6.7,3.0,5.0,1.7,Iris-versicolor
         
     | 
| 
      
 79 
     | 
    
         
            +
            6.0,2.9,4.5,1.5,Iris-versicolor
         
     | 
| 
      
 80 
     | 
    
         
            +
            5.7,2.6,3.5,1.0,Iris-versicolor
         
     | 
| 
      
 81 
     | 
    
         
            +
            5.5,2.4,3.8,1.1,Iris-versicolor
         
     | 
| 
      
 82 
     | 
    
         
            +
            5.5,2.4,3.7,1.0,Iris-versicolor
         
     | 
| 
      
 83 
     | 
    
         
            +
            5.8,2.7,3.9,1.2,Iris-versicolor
         
     | 
| 
      
 84 
     | 
    
         
            +
            6.0,2.7,5.1,1.6,Iris-versicolor
         
     | 
| 
      
 85 
     | 
    
         
            +
            5.4,3.0,4.5,1.5,Iris-versicolor
         
     | 
| 
      
 86 
     | 
    
         
            +
            6.0,3.4,4.5,1.6,Iris-versicolor
         
     | 
| 
      
 87 
     | 
    
         
            +
            6.7,3.1,4.7,1.5,Iris-versicolor
         
     | 
| 
      
 88 
     | 
    
         
            +
            6.3,2.3,4.4,1.3,Iris-versicolor
         
     | 
| 
      
 89 
     | 
    
         
            +
            5.6,3.0,4.1,1.3,Iris-versicolor
         
     | 
| 
      
 90 
     | 
    
         
            +
            5.5,2.5,4.0,1.3,Iris-versicolor
         
     | 
| 
      
 91 
     | 
    
         
            +
            5.5,2.6,4.4,1.2,Iris-versicolor
         
     | 
| 
      
 92 
     | 
    
         
            +
            6.1,3.0,4.6,1.4,Iris-versicolor
         
     | 
| 
      
 93 
     | 
    
         
            +
            5.8,2.6,4.0,1.2,Iris-versicolor
         
     | 
| 
      
 94 
     | 
    
         
            +
            5.0,2.3,3.3,1.0,Iris-versicolor
         
     | 
| 
      
 95 
     | 
    
         
            +
            5.6,2.7,4.2,1.3,Iris-versicolor
         
     | 
| 
      
 96 
     | 
    
         
            +
            5.7,3.0,4.2,1.2,Iris-versicolor
         
     | 
| 
      
 97 
     | 
    
         
            +
            5.7,2.9,4.2,1.3,Iris-versicolor
         
     | 
| 
      
 98 
     | 
    
         
            +
            6.2,2.9,4.3,1.3,Iris-versicolor
         
     | 
| 
      
 99 
     | 
    
         
            +
            5.1,2.5,3.0,1.1,Iris-versicolor
         
     | 
| 
      
 100 
     | 
    
         
            +
            5.7,2.8,4.1,1.3,Iris-versicolor
         
     | 
| 
      
 101 
     | 
    
         
            +
            6.3,3.3,6.0,2.5,Iris-virginica
         
     | 
| 
      
 102 
     | 
    
         
            +
            5.8,2.7,5.1,1.9,Iris-virginica
         
     | 
| 
      
 103 
     | 
    
         
            +
            7.1,3.0,5.9,2.1,Iris-virginica
         
     | 
| 
      
 104 
     | 
    
         
            +
            6.3,2.9,5.6,1.8,Iris-virginica
         
     | 
| 
      
 105 
     | 
    
         
            +
            6.5,3.0,5.8,2.2,Iris-virginica
         
     | 
| 
      
 106 
     | 
    
         
            +
            7.6,3.0,6.6,2.1,Iris-virginica
         
     | 
| 
      
 107 
     | 
    
         
            +
            4.9,2.5,4.5,1.7,Iris-virginica
         
     | 
| 
      
 108 
     | 
    
         
            +
            7.3,2.9,6.3,1.8,Iris-virginica
         
     | 
| 
      
 109 
     | 
    
         
            +
            6.7,2.5,5.8,1.8,Iris-virginica
         
     | 
| 
      
 110 
     | 
    
         
            +
            7.2,3.6,6.1,2.5,Iris-virginica
         
     | 
| 
      
 111 
     | 
    
         
            +
            6.5,3.2,5.1,2.0,Iris-virginica
         
     | 
| 
      
 112 
     | 
    
         
            +
            6.4,2.7,5.3,1.9,Iris-virginica
         
     | 
| 
      
 113 
     | 
    
         
            +
            6.8,3.0,5.5,2.1,Iris-virginica
         
     | 
| 
      
 114 
     | 
    
         
            +
            5.7,2.5,5.0,2.0,Iris-virginica
         
     | 
| 
      
 115 
     | 
    
         
            +
            5.8,2.8,5.1,2.4,Iris-virginica
         
     | 
| 
      
 116 
     | 
    
         
            +
            6.4,3.2,5.3,2.3,Iris-virginica
         
     | 
| 
      
 117 
     | 
    
         
            +
            6.5,3.0,5.5,1.8,Iris-virginica
         
     | 
| 
      
 118 
     | 
    
         
            +
            7.7,3.8,6.7,2.2,Iris-virginica
         
     | 
| 
      
 119 
     | 
    
         
            +
            7.7,2.6,6.9,2.3,Iris-virginica
         
     | 
| 
      
 120 
     | 
    
         
            +
            6.0,2.2,5.0,1.5,Iris-virginica
         
     | 
| 
      
 121 
     | 
    
         
            +
            6.9,3.2,5.7,2.3,Iris-virginica
         
     | 
| 
      
 122 
     | 
    
         
            +
            5.6,2.8,4.9,2.0,Iris-virginica
         
     | 
| 
      
 123 
     | 
    
         
            +
            7.7,2.8,6.7,2.0,Iris-virginica
         
     | 
| 
      
 124 
     | 
    
         
            +
            6.3,2.7,4.9,1.8,Iris-virginica
         
     | 
| 
      
 125 
     | 
    
         
            +
            6.7,3.3,5.7,2.1,Iris-virginica
         
     | 
| 
      
 126 
     | 
    
         
            +
            7.2,3.2,6.0,1.8,Iris-virginica
         
     | 
| 
      
 127 
     | 
    
         
            +
            6.2,2.8,4.8,1.8,Iris-virginica
         
     | 
| 
      
 128 
     | 
    
         
            +
            6.1,3.0,4.9,1.8,Iris-virginica
         
     | 
| 
      
 129 
     | 
    
         
            +
            6.4,2.8,5.6,2.1,Iris-virginica
         
     | 
| 
      
 130 
     | 
    
         
            +
            7.2,3.0,5.8,1.6,Iris-virginica
         
     | 
| 
      
 131 
     | 
    
         
            +
            7.4,2.8,6.1,1.9,Iris-virginica
         
     | 
| 
      
 132 
     | 
    
         
            +
            7.9,3.8,6.4,2.0,Iris-virginica
         
     | 
| 
      
 133 
     | 
    
         
            +
            6.4,2.8,5.6,2.2,Iris-virginica
         
     | 
| 
      
 134 
     | 
    
         
            +
            6.3,2.8,5.1,1.5,Iris-virginica
         
     | 
| 
      
 135 
     | 
    
         
            +
            6.1,2.6,5.6,1.4,Iris-virginica
         
     | 
| 
      
 136 
     | 
    
         
            +
            7.7,3.0,6.1,2.3,Iris-virginica
         
     | 
| 
      
 137 
     | 
    
         
            +
            6.3,3.4,5.6,2.4,Iris-virginica
         
     | 
| 
      
 138 
     | 
    
         
            +
            6.4,3.1,5.5,1.8,Iris-virginica
         
     | 
| 
      
 139 
     | 
    
         
            +
            6.0,3.0,4.8,1.8,Iris-virginica
         
     | 
| 
      
 140 
     | 
    
         
            +
            6.9,3.1,5.4,2.1,Iris-virginica
         
     | 
| 
      
 141 
     | 
    
         
            +
            6.7,3.1,5.6,2.4,Iris-virginica
         
     | 
| 
      
 142 
     | 
    
         
            +
            6.9,3.1,5.1,2.3,Iris-virginica
         
     | 
| 
      
 143 
     | 
    
         
            +
            5.8,2.7,5.1,1.9,Iris-virginica
         
     | 
| 
      
 144 
     | 
    
         
            +
            6.8,3.2,5.9,2.3,Iris-virginica
         
     | 
| 
      
 145 
     | 
    
         
            +
            6.7,3.3,5.7,2.5,Iris-virginica
         
     | 
| 
      
 146 
     | 
    
         
            +
            6.7,3.0,5.2,2.3,Iris-virginica
         
     | 
| 
      
 147 
     | 
    
         
            +
            6.3,2.5,5.0,1.9,Iris-virginica
         
     | 
| 
      
 148 
     | 
    
         
            +
            6.5,3.0,5.2,2.0,Iris-virginica
         
     | 
| 
      
 149 
     | 
    
         
            +
            6.2,3.4,5.4,2.3,Iris-virginica
         
     | 
| 
      
 150 
     | 
    
         
            +
            5.9,3.0,5.1,1.8,Iris-virginica
         
     | 
| 
         @@ -0,0 +1,53 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            #!/usr/bin/env ruby
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            require 'brains'
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            # RNN to approximate a sine function sequence
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            def generate_sine_test_data(start_t, end_t)
         
     | 
| 
      
 8 
     | 
    
         
            +
              inputs = []
         
     | 
| 
      
 9 
     | 
    
         
            +
              outputs = []
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
              (start_t...end_t).each do |t|
         
     | 
| 
      
 12 
     | 
    
         
            +
                inputs << [Math.sin(t)]
         
     | 
| 
      
 13 
     | 
    
         
            +
                outputs << [Math.sin(t + 1)]
         
     | 
| 
      
 14 
     | 
    
         
            +
              end
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
              [[inputs, outputs]]
         
     | 
| 
      
 17 
     | 
    
         
            +
            end
         
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            training_data = generate_sine_test_data(0, 10)
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
            testing_data = generate_sine_test_data(11, 20)
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            # input sequence
         
     | 
| 
      
 26 
     | 
    
         
            +
            input_sequence = training_data[0][0].map { |a| a[0] }
         
     | 
| 
      
 27 
     | 
    
         
            +
            test_input_sequence = testing_data[0][0].map { |a| a[0] }
         
     | 
| 
      
 28 
     | 
    
         
            +
            test_output_sequence = testing_data[0][1].map { |a| a[0] }
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            nn = Brains::Net.create(1, 1, 1, { neurons_per_layer: 3,
         
     | 
| 
      
 31 
     | 
    
         
            +
                  learning_rate: 0.01,
         
     | 
| 
      
 32 
     | 
    
         
            +
                  recurrent: true,
         
     | 
| 
      
 33 
     | 
    
         
            +
                  output_function: :htan,
         
     | 
| 
      
 34 
     | 
    
         
            +
                 })
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
            # randomize weights before training
         
     | 
| 
      
 37 
     | 
    
         
            +
            nn.randomize_weights
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
            results = nn.feed(testing_data[0][0])
         
     | 
| 
      
 40 
     | 
    
         
            +
            results.each_with_index do |a, index|
         
     | 
| 
      
 41 
     | 
    
         
            +
              puts "#{test_input_sequence[index]} => #{a[0]}"
         
     | 
| 
      
 42 
     | 
    
         
            +
            end
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
            result = nn.optimize_recurrent(training_data, 0.001, 100_000, 10_000 ) { |i, error|
         
     | 
| 
      
 45 
     | 
    
         
            +
              puts "#{i} #{error}"
         
     | 
| 
      
 46 
     | 
    
         
            +
            }
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
            results = nn.feed(testing_data[0][0])
         
     | 
| 
      
 49 
     | 
    
         
            +
            results.each_with_index do |a, index|
         
     | 
| 
      
 50 
     | 
    
         
            +
              puts "#{test_input_sequence[index]} => #{a[0]} (#{test_output_sequence[index]})"
         
     | 
| 
      
 51 
     | 
    
         
            +
            end
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
      
 53 
     | 
    
         
            +
            puts nn.to_json
         
     | 
    
        data/lib/brains/brains.jar
    CHANGED
    
    | 
         Binary file 
     | 
    
        data/lib/brains/net.rb
    CHANGED
    
    | 
         @@ -13,10 +13,11 @@ module Brains 
     | 
|
| 
       13 
13 
     | 
    
         
             
                  config.learningRate = opts[:learning_rate] || 0.1
         
     | 
| 
       14 
14 
     | 
    
         
             
                  config.neuronsPerLayer = neurons_per_layer
         
     | 
| 
       15 
15 
     | 
    
         
             
                  config.momentumFactor = opts[:momentum_factor] || 0.5
         
     | 
| 
      
 16 
     | 
    
         
            +
                  config.isRecurrent = opts[:recurrent] || false
         
     | 
| 
       16 
17 
     | 
    
         
             
                  config.backPropagationAlgorithm = opt_t_back_alg(opts[:train_method] || :standard)
         
     | 
| 
       17 
18 
     | 
    
         
             
                  config.activationFunctionType = opt_to_func(opts[:activation_function] || :htan)
         
     | 
| 
       18 
     | 
    
         
            -
                  config.outputActivationFunctionType = opt_to_func(opts[: 
     | 
| 
       19 
     | 
    
         
            -
                  config.errorFormula = opt_to_error_func(opts[: 
     | 
| 
      
 19 
     | 
    
         
            +
                  config.outputActivationFunctionType = opt_to_func(opts[:output_function] || :sigmoid)
         
     | 
| 
      
 20 
     | 
    
         
            +
                  config.errorFormula = opt_to_error_func(opts[:error] || :mean_squared)
         
     | 
| 
       20 
21 
     | 
    
         
             
                  nn = com.dayosoft.nn.NeuralNet.new(config);
         
     | 
| 
       21 
22 
     | 
    
         | 
| 
       22 
23 
     | 
    
         
             
                  Brains::Net.new.set_nn(nn).set_config(config)
         
     | 
| 
         @@ -55,8 +56,68 @@ module Brains 
     | 
|
| 
       55 
56 
     | 
    
         
             
                  { iterations: result.first, error: result.second }
         
     | 
| 
       56 
57 
     | 
    
         
             
                end
         
     | 
| 
       57 
58 
     | 
    
         | 
| 
      
 59 
     | 
    
         
            +
                def optimize_recurrent(test_cases, target_error = 0.01, max_epoch = 1_000_000_000,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    callback_interval = 1000, max_layers = 0, &callback)
         
     | 
| 
      
 61 
     | 
    
         
            +
                  inputs = []
         
     | 
| 
      
 62 
     | 
    
         
            +
                  outputs = []
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                  input_set = java.util.ArrayList.new
         
     | 
| 
      
 65 
     | 
    
         
            +
                  output_set = java.util.ArrayList.new
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
                  test_cases.each do |item|
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
                    inputs = java.util.ArrayList.new
         
     | 
| 
      
 70 
     | 
    
         
            +
                    outputs = java.util.ArrayList.new
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                    item[0].each do |item|
         
     | 
| 
      
 73 
     | 
    
         
            +
                      inputs.add(item.to_java(Java::double))
         
     | 
| 
      
 74 
     | 
    
         
            +
                    end
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                    item[1].each do |item|
         
     | 
| 
      
 77 
     | 
    
         
            +
                      outputs.add(item.to_java(Java::double))
         
     | 
| 
      
 78 
     | 
    
         
            +
                    end
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                    input_set.add(inputs)
         
     | 
| 
      
 81 
     | 
    
         
            +
                    output_set.add(outputs)
         
     | 
| 
      
 82 
     | 
    
         
            +
                  end
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                  result = @nn.optimizeRecurrent(input_set, output_set, target_error, max_layers, max_epoch,
         
     | 
| 
      
 85 
     | 
    
         
            +
                    callback_interval, callback)
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
                  { iterations: result.first, error: result.second }
         
     | 
| 
      
 88 
     | 
    
         
            +
                end
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
       58 
90 
     | 
    
         
             
                def feed(input)
         
     | 
| 
       59 
     | 
    
         
            -
                   
     | 
| 
      
 91 
     | 
    
         
            +
                  # recurrent mode when array of array is passed.
         
     | 
| 
      
 92 
     | 
    
         
            +
                  if input && input.size > 0 && input[0].kind_of?(Array)
         
     | 
| 
      
 93 
     | 
    
         
            +
                    feed_recurrent(input)
         
     | 
| 
      
 94 
     | 
    
         
            +
                  else
         
     | 
| 
      
 95 
     | 
    
         
            +
                    result = @nn.feed(input.to_java(Java::double)).to_a
         
     | 
| 
      
 96 
     | 
    
         
            +
                    @nn.updatePreviousOutputs if config.isRecurrent
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                    result
         
     | 
| 
      
 99 
     | 
    
         
            +
                  end
         
     | 
| 
      
 100 
     | 
    
         
            +
                end
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
                # For a recurrent network, this resets hidden states back to zero
         
     | 
| 
      
 103 
     | 
    
         
            +
                def reset
         
     | 
| 
      
 104 
     | 
    
         
            +
                  if config.isRecurrent
         
     | 
| 
      
 105 
     | 
    
         
            +
                    @nn.resetRecurrentStates
         
     | 
| 
      
 106 
     | 
    
         
            +
                  else
         
     | 
| 
      
 107 
     | 
    
         
            +
                    puts "Warning not a recurrent network. This does nothing"
         
     | 
| 
      
 108 
     | 
    
         
            +
                  end
         
     | 
| 
      
 109 
     | 
    
         
            +
                end
         
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
      
 111 
     | 
    
         
            +
                def feed_recurrent(inputs)
         
     | 
| 
      
 112 
     | 
    
         
            +
                  inputset = java.util.ArrayList.new
         
     | 
| 
      
 113 
     | 
    
         
            +
                  inputs.each do |input|
         
     | 
| 
      
 114 
     | 
    
         
            +
                    inputset.add(input.to_java(Java::double))
         
     | 
| 
      
 115 
     | 
    
         
            +
                  end
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                  output_set = @nn.feed(inputset).to_a
         
     | 
| 
      
 118 
     | 
    
         
            +
                  output_set.collect do |output|
         
     | 
| 
      
 119 
     | 
    
         
            +
                    output.to_a
         
     | 
| 
      
 120 
     | 
    
         
            +
                  end
         
     | 
| 
       60 
121 
     | 
    
         
             
                end
         
     | 
| 
       61 
122 
     | 
    
         | 
| 
       62 
123 
     | 
    
         
             
                def to_json
         
     | 
| 
         @@ -101,6 +162,8 @@ module Brains 
     | 
|
| 
       101 
162 
     | 
    
         
             
                    com.dayosoft.nn.NeuralNet::Config::STANDARD_BACKPROPAGATION
         
     | 
| 
       102 
163 
     | 
    
         
             
                  when :rprop
         
     | 
| 
       103 
164 
     | 
    
         
             
                    com.dayosoft.nn.NeuralNet::Config::RPROP_BACKPROPAGATION
         
     | 
| 
      
 165 
     | 
    
         
            +
                  else
         
     | 
| 
      
 166 
     | 
    
         
            +
                    raise "Invalid backpropagation method #{func}"
         
     | 
| 
       104 
167 
     | 
    
         
             
                  end
         
     | 
| 
       105 
168 
     | 
    
         
             
                end
         
     | 
| 
       106 
169 
     | 
    
         | 
    
        data/lib/brains/version.rb
    CHANGED
    
    
    
        metadata
    CHANGED
    
    | 
         @@ -1,58 +1,59 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            --- !ruby/object:Gem::Specification
         
     | 
| 
       2 
2 
     | 
    
         
             
            name: brains
         
     | 
| 
       3 
3 
     | 
    
         
             
            version: !ruby/object:Gem::Version
         
     | 
| 
       4 
     | 
    
         
            -
              version: 0. 
     | 
| 
      
 4 
     | 
    
         
            +
              version: 0.2.0
         
     | 
| 
       5 
5 
     | 
    
         
             
            platform: java
         
     | 
| 
       6 
6 
     | 
    
         
             
            authors:
         
     | 
| 
       7 
7 
     | 
    
         
             
            - Joseph Emmanuel Dayo
         
     | 
| 
       8 
8 
     | 
    
         
             
            autorequire:
         
     | 
| 
       9 
9 
     | 
    
         
             
            bindir: exe
         
     | 
| 
       10 
10 
     | 
    
         
             
            cert_chain: []
         
     | 
| 
       11 
     | 
    
         
            -
            date: 2017- 
     | 
| 
      
 11 
     | 
    
         
            +
            date: 2017-03-12 00:00:00.000000000 Z
         
     | 
| 
       12 
12 
     | 
    
         
             
            dependencies:
         
     | 
| 
       13 
13 
     | 
    
         
             
            - !ruby/object:Gem::Dependency
         
     | 
| 
       14 
     | 
    
         
            -
              name: bundler
         
     | 
| 
       15 
     | 
    
         
            -
              version_requirements: !ruby/object:Gem::Requirement
         
     | 
| 
       16 
     | 
    
         
            -
                requirements:
         
     | 
| 
       17 
     | 
    
         
            -
                - - "~>"
         
     | 
| 
       18 
     | 
    
         
            -
                  - !ruby/object:Gem::Version
         
     | 
| 
       19 
     | 
    
         
            -
                    version: '1.12'
         
     | 
| 
       20 
14 
     | 
    
         
             
              requirement: !ruby/object:Gem::Requirement
         
     | 
| 
       21 
15 
     | 
    
         
             
                requirements:
         
     | 
| 
       22 
16 
     | 
    
         
             
                - - "~>"
         
     | 
| 
       23 
17 
     | 
    
         
             
                  - !ruby/object:Gem::Version
         
     | 
| 
       24 
18 
     | 
    
         
             
                    version: '1.12'
         
     | 
| 
      
 19 
     | 
    
         
            +
              name: bundler
         
     | 
| 
       25 
20 
     | 
    
         
             
              prerelease: false
         
     | 
| 
       26 
21 
     | 
    
         
             
              type: :development
         
     | 
| 
       27 
     | 
    
         
            -
            - !ruby/object:Gem::Dependency
         
     | 
| 
       28 
     | 
    
         
            -
              name: rake
         
     | 
| 
       29 
22 
     | 
    
         
             
              version_requirements: !ruby/object:Gem::Requirement
         
     | 
| 
       30 
23 
     | 
    
         
             
                requirements:
         
     | 
| 
       31 
24 
     | 
    
         
             
                - - "~>"
         
     | 
| 
       32 
25 
     | 
    
         
             
                  - !ruby/object:Gem::Version
         
     | 
| 
       33 
     | 
    
         
            -
                    version: ' 
     | 
| 
      
 26 
     | 
    
         
            +
                    version: '1.12'
         
     | 
| 
      
 27 
     | 
    
         
            +
            - !ruby/object:Gem::Dependency
         
     | 
| 
       34 
28 
     | 
    
         
             
              requirement: !ruby/object:Gem::Requirement
         
     | 
| 
       35 
29 
     | 
    
         
             
                requirements:
         
     | 
| 
       36 
30 
     | 
    
         
             
                - - "~>"
         
     | 
| 
       37 
31 
     | 
    
         
             
                  - !ruby/object:Gem::Version
         
     | 
| 
       38 
32 
     | 
    
         
             
                    version: '10.0'
         
     | 
| 
      
 33 
     | 
    
         
            +
              name: rake
         
     | 
| 
       39 
34 
     | 
    
         
             
              prerelease: false
         
     | 
| 
       40 
35 
     | 
    
         
             
              type: :development
         
     | 
| 
       41 
     | 
    
         
            -
            - !ruby/object:Gem::Dependency
         
     | 
| 
       42 
     | 
    
         
            -
              name: rspec
         
     | 
| 
       43 
36 
     | 
    
         
             
              version_requirements: !ruby/object:Gem::Requirement
         
     | 
| 
       44 
37 
     | 
    
         
             
                requirements:
         
     | 
| 
       45 
38 
     | 
    
         
             
                - - "~>"
         
     | 
| 
       46 
39 
     | 
    
         
             
                  - !ruby/object:Gem::Version
         
     | 
| 
       47 
     | 
    
         
            -
                    version: ' 
     | 
| 
      
 40 
     | 
    
         
            +
                    version: '10.0'
         
     | 
| 
      
 41 
     | 
    
         
            +
            - !ruby/object:Gem::Dependency
         
     | 
| 
       48 
42 
     | 
    
         
             
              requirement: !ruby/object:Gem::Requirement
         
     | 
| 
       49 
43 
     | 
    
         
             
                requirements:
         
     | 
| 
       50 
44 
     | 
    
         
             
                - - "~>"
         
     | 
| 
       51 
45 
     | 
    
         
             
                  - !ruby/object:Gem::Version
         
     | 
| 
       52 
46 
     | 
    
         
             
                    version: '3.0'
         
     | 
| 
      
 47 
     | 
    
         
            +
              name: rspec
         
     | 
| 
       53 
48 
     | 
    
         
             
              prerelease: false
         
     | 
| 
       54 
49 
     | 
    
         
             
              type: :development
         
     | 
| 
       55 
     | 
    
         
            -
             
     | 
| 
      
 50 
     | 
    
         
            +
              version_requirements: !ruby/object:Gem::Requirement
         
     | 
| 
      
 51 
     | 
    
         
            +
                requirements:
         
     | 
| 
      
 52 
     | 
    
         
            +
                - - "~>"
         
     | 
| 
      
 53 
     | 
    
         
            +
                  - !ruby/object:Gem::Version
         
     | 
| 
      
 54 
     | 
    
         
            +
                    version: '3.0'
         
     | 
| 
      
 55 
     | 
    
         
            +
            description: 'A feedforward neural network library for JRuby. Aims to provide a quick
         
     | 
| 
      
 56 
     | 
    
         
            +
              way to get started on machine learning with ruby '
         
     | 
| 
       56 
57 
     | 
    
         
             
            email:
         
     | 
| 
       57 
58 
     | 
    
         
             
            - joseph.dayo@gmail.com
         
     | 
| 
       58 
59 
     | 
    
         
             
            executables: []
         
     | 
| 
         @@ -62,6 +63,7 @@ files: 
     | 
|
| 
       62 
63 
     | 
    
         
             
            - ".gitignore"
         
     | 
| 
       63 
64 
     | 
    
         
             
            - ".rspec"
         
     | 
| 
       64 
65 
     | 
    
         
             
            - ".travis.yml"
         
     | 
| 
      
 66 
     | 
    
         
            +
            - CHANGELOG.md
         
     | 
| 
       65 
67 
     | 
    
         
             
            - CODE_OF_CONDUCT.md
         
     | 
| 
       66 
68 
     | 
    
         
             
            - Gemfile
         
     | 
| 
       67 
69 
     | 
    
         
             
            - LICENSE.txt
         
     | 
| 
         @@ -71,7 +73,9 @@ files: 
     | 
|
| 
       71 
73 
     | 
    
         
             
            - bin/setup
         
     | 
| 
       72 
74 
     | 
    
         
             
            - brains.gemspec
         
     | 
| 
       73 
75 
     | 
    
         
             
            - example/colors.rb
         
     | 
| 
      
 76 
     | 
    
         
            +
            - example/iris.data
         
     | 
| 
       74 
77 
     | 
    
         
             
            - example/iris.rb
         
     | 
| 
      
 78 
     | 
    
         
            +
            - example/sine_function.rb
         
     | 
| 
       75 
79 
     | 
    
         
             
            - example/xor.rb
         
     | 
| 
       76 
80 
     | 
    
         
             
            - iris.data
         
     | 
| 
       77 
81 
     | 
    
         
             
            - lib/brains.rb
         
     | 
| 
         @@ -102,7 +106,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement 
     | 
|
| 
       102 
106 
     | 
    
         
             
                  version: '0'
         
     | 
| 
       103 
107 
     | 
    
         
             
            requirements: []
         
     | 
| 
       104 
108 
     | 
    
         
             
            rubyforge_project:
         
     | 
| 
       105 
     | 
    
         
            -
            rubygems_version: 2. 
     | 
| 
      
 109 
     | 
    
         
            +
            rubygems_version: 2.6.8
         
     | 
| 
       106 
110 
     | 
    
         
             
            signing_key:
         
     | 
| 
       107 
111 
     | 
    
         
             
            specification_version: 4
         
     | 
| 
       108 
112 
     | 
    
         
             
            summary: A feedforward neural network library for JRuby
         
     |