brains 0.1.0-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +10 -0
- data/.rspec +2 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +49 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +159 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/brains.gemspec +34 -0
- data/example/iris.rb +100 -0
- data/example/xor.rb +64 -0
- data/iris.data +150 -0
- data/lib/brains.rb +13 -0
- data/lib/brains/brains.jar +0 -0
- data/lib/brains/commons-cli.jar +0 -0
- data/lib/brains/commons-lang3.jar +0 -0
- data/lib/brains/gson.jar +0 -0
- data/lib/brains/net.rb +105 -0
- data/lib/brains/version.rb +3 -0
- metadata +108 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
---
|
|
2
|
+
SHA1:
|
|
3
|
+
metadata.gz: 0d640546a10c8984b876f7f95feeab5cddc10f39
|
|
4
|
+
data.tar.gz: ed2c32d65a0cd4cda1ca00667f821b95e5cc70c7
|
|
5
|
+
SHA512:
|
|
6
|
+
metadata.gz: 95bb48840ee28b6d10f527b0b2efc876db9da382669e5e66027305bd92651846ec9343a217dba1fef4a9d95366cb240d1aeb08a8c73aa98062e58785b81291ec
|
|
7
|
+
data.tar.gz: 77f3df827145cd2314238a5eb0c09f9f52bbf016dd3a6cc9786c472fe5298f7d2e014edd3642bdc1155f15c0bf630176b6317ac45779d16e5cbf52a07c03b222
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.travis.yml
ADDED
data/CODE_OF_CONDUCT.md
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
# Contributor Code of Conduct
|
|
2
|
+
|
|
3
|
+
As contributors and maintainers of this project, and in the interest of
|
|
4
|
+
fostering an open and welcoming community, we pledge to respect all people who
|
|
5
|
+
contribute through reporting issues, posting feature requests, updating
|
|
6
|
+
documentation, submitting pull requests or patches, and other activities.
|
|
7
|
+
|
|
8
|
+
We are committed to making participation in this project a harassment-free
|
|
9
|
+
experience for everyone, regardless of level of experience, gender, gender
|
|
10
|
+
identity and expression, sexual orientation, disability, personal appearance,
|
|
11
|
+
body size, race, ethnicity, age, religion, or nationality.
|
|
12
|
+
|
|
13
|
+
Examples of unacceptable behavior by participants include:
|
|
14
|
+
|
|
15
|
+
* The use of sexualized language or imagery
|
|
16
|
+
* Personal attacks
|
|
17
|
+
* Trolling or insulting/derogatory comments
|
|
18
|
+
* Public or private harassment
|
|
19
|
+
* Publishing other's private information, such as physical or electronic
|
|
20
|
+
addresses, without explicit permission
|
|
21
|
+
* Other unethical or unprofessional conduct
|
|
22
|
+
|
|
23
|
+
Project maintainers have the right and responsibility to remove, edit, or
|
|
24
|
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
|
25
|
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
|
26
|
+
permanently any contributor for other behaviors that they deem inappropriate,
|
|
27
|
+
threatening, offensive, or harmful.
|
|
28
|
+
|
|
29
|
+
By adopting this Code of Conduct, project maintainers commit themselves to
|
|
30
|
+
fairly and consistently applying these principles to every aspect of managing
|
|
31
|
+
this project. Project maintainers who do not follow or enforce the Code of
|
|
32
|
+
Conduct may be permanently removed from the project team.
|
|
33
|
+
|
|
34
|
+
This code of conduct applies both within project spaces and in public spaces
|
|
35
|
+
when an individual is representing the project or its community.
|
|
36
|
+
|
|
37
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
|
38
|
+
reported by contacting a project maintainer at joseph.dayo@gmail.com. All
|
|
39
|
+
complaints will be reviewed and investigated and will result in a response that
|
|
40
|
+
is deemed necessary and appropriate to the circumstances. Maintainers are
|
|
41
|
+
obligated to maintain confidentiality with regard to the reporter of an
|
|
42
|
+
incident.
|
|
43
|
+
|
|
44
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
|
45
|
+
version 1.3.0, available at
|
|
46
|
+
[http://contributor-covenant.org/version/1/3/0/][version]
|
|
47
|
+
|
|
48
|
+
[homepage]: http://contributor-covenant.org
|
|
49
|
+
[version]: http://contributor-covenant.org/version/1/3/0/
|
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
The MIT License (MIT)
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2016 Joseph Emmanuel Dayo
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
|
13
|
+
all copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
# Brains
|
|
2
|
+
|
|
3
|
+
A Feedforward neural network toolkit for JRuby. Easily add machine learning features
|
|
4
|
+
to your ruby application using this Gem. Though there are faster native C implementations
|
|
5
|
+
this java backend provides a balance of performance and ease of use.
|
|
6
|
+
|
|
7
|
+
## Installation
|
|
8
|
+
|
|
9
|
+
Do note that this gem requires JRuby as it uses a java backend to run the neural network
|
|
10
|
+
computations.
|
|
11
|
+
|
|
12
|
+
Add this line to your application's Gemfile:
|
|
13
|
+
|
|
14
|
+
```ruby
|
|
15
|
+
gem 'brains'
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
And then execute:
|
|
19
|
+
|
|
20
|
+
$ bundle
|
|
21
|
+
|
|
22
|
+
Or install it yourself as:
|
|
23
|
+
|
|
24
|
+
$ gem install brains
|
|
25
|
+
|
|
26
|
+
## Usage
|
|
27
|
+
|
|
28
|
+
The brains gem contains facilities for training and using the feedforward neural network
|
|
29
|
+
|
|
30
|
+
Training (XOR example)
|
|
31
|
+
--------
|
|
32
|
+
|
|
33
|
+
Initialize the neural net backend
|
|
34
|
+
|
|
35
|
+
```ruby
|
|
36
|
+
require 'brains'
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# Build a 3 layer network: 4 input neurons, 4 hidden neurons, 3 output neurons
|
|
40
|
+
# Bias neurons are automatically added to input + hidden layers; no need to specify these
|
|
41
|
+
# 5 = 4 in one hidden layer + 1 output neuron (input neurons not counted)
|
|
42
|
+
|
|
43
|
+
nn = Brains::Net.create(2, 1, 5, { neurons_per_layer: 4 })
|
|
44
|
+
nn.randomize_weights
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
Consider that we want to train the neural network to handle XOR computations
|
|
48
|
+
|
|
49
|
+
```
|
|
50
|
+
A B A XOR B
|
|
51
|
+
1 1 0
|
|
52
|
+
1 0 1
|
|
53
|
+
0 1 1
|
|
54
|
+
0 0 0
|
|
55
|
+
```
|
|
56
|
+
|
|
57
|
+
First we build the training data. This is an array of arrays with each item
|
|
58
|
+
in the following format:
|
|
59
|
+
|
|
60
|
+
```
|
|
61
|
+
[
|
|
62
|
+
[[input1, input2, input3....], [expected1, expected2, expected3 ...]]
|
|
63
|
+
[[input1, input2, input3....], [expected1, expected2, expected3 ...]]
|
|
64
|
+
]
|
|
65
|
+
```
|
|
66
|
+
|
|
67
|
+
```ruby
|
|
68
|
+
training_data = [
|
|
69
|
+
[[0.9, 0.9], [0.1]],
|
|
70
|
+
[[0.9, 0.1], [0.9]],
|
|
71
|
+
[[0.1, 0.9], [0.9]],
|
|
72
|
+
[[0.1, 0.1], [0.1]],
|
|
73
|
+
]
|
|
74
|
+
```
|
|
75
|
+
Note that we map 1 = 0.9 and 0 = 0.1 since using absolute 1 and 0s might cause
|
|
76
|
+
issues with certain neural networks. There are other techniques to "normalize"
|
|
77
|
+
input, but this is beyond the scope of this example.
|
|
78
|
+
|
|
79
|
+
Start training on the data by calling optimize. Here we use 0.01 as the expected
|
|
80
|
+
MSE error before terminating and 1000 as the max epochs.
|
|
81
|
+
|
|
82
|
+
```ruby
|
|
83
|
+
result = nn.optimize(training_data, 0.01, 1_000 ) { |i, error|
|
|
84
|
+
puts "#{i} #{error}"
|
|
85
|
+
}
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
To test the neural network you can call the feed method.
|
|
89
|
+
|
|
90
|
+
nn.feed( [test_input1, test_input2, .....]) => [output1, output2, ...]
|
|
91
|
+
|
|
92
|
+
Check if the network is trained. There are more advanced and proper techniques to check if
|
|
93
|
+
a network is sufficiently trained, but this is beyond the scope of this example.
|
|
94
|
+
|
|
95
|
+
```ruby
|
|
96
|
+
# test on untrained data
|
|
97
|
+
test_data = [
|
|
98
|
+
[0.9, 0.9],
|
|
99
|
+
[0.9, 0.1],
|
|
100
|
+
[0.1, 0.9],
|
|
101
|
+
[0.1, 0.1]
|
|
102
|
+
]
|
|
103
|
+
|
|
104
|
+
results = test_data.collect { |item|
|
|
105
|
+
nn.feed(item)
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
p results
|
|
109
|
+
|
|
110
|
+
[[0.19717958808009528], [0.7983320405281495], [0.8386219299757574], [0.16609147896733775]]
|
|
111
|
+
```
|
|
112
|
+
|
|
113
|
+
Using the test data we can see the correlation and the neural network function now approximates
|
|
114
|
+
the xor function with the desired error:
|
|
115
|
+
|
|
116
|
+
```
|
|
117
|
+
[0.9, 0.9] => [0.19717958808009528]
|
|
118
|
+
[0.9, 0.1] => [0.7983320405281495]
|
|
119
|
+
[0.1, 0.9] => [0.8386219299757574]
|
|
120
|
+
[0.1, 0.1] => [0.16609147896733775]
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
Saving brain state
|
|
124
|
+
==================
|
|
125
|
+
|
|
126
|
+
Save the neuron state at any time to a string using to_json
|
|
127
|
+
|
|
128
|
+
```ruby
|
|
129
|
+
saved_state = nn.to_json
|
|
130
|
+
```
|
|
131
|
+
|
|
132
|
+
You can then save it to a file. You can then load it back using load()
|
|
133
|
+
|
|
134
|
+
```ruby
|
|
135
|
+
nn = Brains::Net.load(saved_state)
|
|
136
|
+
```
|
|
137
|
+
|
|
138
|
+
For other samples please take a look at the example folder.
|
|
139
|
+
|
|
140
|
+
Java Neural Network backend is based on:
|
|
141
|
+
|
|
142
|
+
https://github.com/jedld/brains
|
|
143
|
+
|
|
144
|
+
You can compile the java source code as brains.jar and use it directly with this gem.
|
|
145
|
+
|
|
146
|
+
## Development
|
|
147
|
+
|
|
148
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
|
149
|
+
|
|
150
|
+
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
|
151
|
+
|
|
152
|
+
## Contributing
|
|
153
|
+
|
|
154
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/brains. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
## License
|
|
158
|
+
|
|
159
|
+
The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
|
data/Rakefile
ADDED
data/bin/console
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
#!/usr/bin/env ruby
|
|
2
|
+
|
|
3
|
+
require "bundler/setup"
|
|
4
|
+
require "brains"
|
|
5
|
+
|
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
|
8
|
+
|
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
|
10
|
+
# require "pry"
|
|
11
|
+
# Pry.start
|
|
12
|
+
|
|
13
|
+
require "irb"
|
|
14
|
+
IRB.start
|
data/bin/setup
ADDED
data/brains.gemspec
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
lib = File.expand_path('../lib', __FILE__)
|
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
|
4
|
+
require 'brains/version'
|
|
5
|
+
|
|
6
|
+
Gem::Specification.new do |spec|
|
|
7
|
+
spec.name = "brains"
|
|
8
|
+
spec.version = Brains::VERSION
|
|
9
|
+
spec.authors = ["Joseph Emmanuel Dayo"]
|
|
10
|
+
spec.email = ["joseph.dayo@gmail.com"]
|
|
11
|
+
|
|
12
|
+
spec.summary = %q{A feedforward neural network library for JRuby}
|
|
13
|
+
spec.description = %q{A feedforward neural network library for JRuby}
|
|
14
|
+
spec.homepage = "https://github.com/jedld/brains-jruby"
|
|
15
|
+
spec.license = "MIT"
|
|
16
|
+
spec.platform = "java"
|
|
17
|
+
|
|
18
|
+
# Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
|
|
19
|
+
# to allow pushing to a single host or delete this section to allow pushing to any host.
|
|
20
|
+
if spec.respond_to?(:metadata)
|
|
21
|
+
spec.metadata['allowed_push_host'] = "https://rubygems.org"
|
|
22
|
+
else
|
|
23
|
+
raise "RubyGems 2.0 or newer is required to protect against public gem pushes."
|
|
24
|
+
end
|
|
25
|
+
|
|
26
|
+
spec.files = `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
|
27
|
+
spec.bindir = "exe"
|
|
28
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
|
29
|
+
spec.require_paths = ["lib"]
|
|
30
|
+
|
|
31
|
+
spec.add_development_dependency "bundler", "~> 1.12"
|
|
32
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
|
33
|
+
spec.add_development_dependency "rspec", "~> 3.0"
|
|
34
|
+
end
|
data/example/iris.rb
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
#!/usr/bin/env ruby
|
|
2
|
+
|
|
3
|
+
require 'brains'
|
|
4
|
+
|
|
5
|
+
# This neural network will predict the species of an iris based on sepal and petal size
|
|
6
|
+
# Dataset: http://en.wikipedia.org/wiki/Iris_flower_data_set
|
|
7
|
+
|
|
8
|
+
rows = File.readlines("iris.data").map {|l| l.chomp.split(',') }
|
|
9
|
+
|
|
10
|
+
rows.shuffle!
|
|
11
|
+
|
|
12
|
+
label_encodings = {
|
|
13
|
+
"Iris-setosa" => [1, 0, 0],
|
|
14
|
+
"Iris-versicolor" => [0, 1, 0],
|
|
15
|
+
"Iris-virginica" => [0, 0 ,1]
|
|
16
|
+
}
|
|
17
|
+
|
|
18
|
+
x_data = rows.map {|row| row[0,4].map(&:to_f) }
|
|
19
|
+
y_data = rows.map {|row| label_encodings[row[4]] }
|
|
20
|
+
|
|
21
|
+
# Normalize data values before feeding into network
|
|
22
|
+
normalize = -> (val, high, low) { (val - low) / (high - low) } # maps input to float between 0 and 1
|
|
23
|
+
|
|
24
|
+
columns = (0..3).map do |i|
|
|
25
|
+
x_data.map {|row| row[i] }
|
|
26
|
+
end
|
|
27
|
+
|
|
28
|
+
x_data.map! do |row|
|
|
29
|
+
row.map.with_index do |val, j|
|
|
30
|
+
max, min = columns[j].max, columns[j].min
|
|
31
|
+
normalize.(val, max, min)
|
|
32
|
+
end
|
|
33
|
+
end
|
|
34
|
+
|
|
35
|
+
x_train = x_data.slice(0, 100)
|
|
36
|
+
y_train = y_data.slice(0, 100)
|
|
37
|
+
|
|
38
|
+
x_test = x_data.slice(100, 50)
|
|
39
|
+
y_test = y_data.slice(100, 50)
|
|
40
|
+
|
|
41
|
+
test_cases = []
|
|
42
|
+
x_train.each_with_index do |x, index|
|
|
43
|
+
test_cases << [x, y_train[index] ]
|
|
44
|
+
end
|
|
45
|
+
|
|
46
|
+
validation_cases = []
|
|
47
|
+
x_test.each_with_index do |x, index|
|
|
48
|
+
test_cases << [x, y_test[index] ]
|
|
49
|
+
end
|
|
50
|
+
|
|
51
|
+
# Build a 3 layer network: 4 input neurons, 4 hidden neurons, 3 output neurons
|
|
52
|
+
# Bias neurons are automatically added to input + hidden layers; no need to specify these
|
|
53
|
+
nn = Brains::Net.create(4, 3, 7, { neurons_per_layer: 4 })
|
|
54
|
+
nn.randomize_weights
|
|
55
|
+
|
|
56
|
+
prediction_success = -> (actual, ideal) {
|
|
57
|
+
predicted = (0..2).max_by {|i| actual[i] }
|
|
58
|
+
ideal[predicted] == 1
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
mse = -> (actual, ideal) {
|
|
62
|
+
errors = actual.zip(ideal).map {|a, i| a - i }
|
|
63
|
+
(errors.inject(0) {|sum, err| sum += err**2}) / errors.length.to_f
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
error_rate = -> (errors, total) { ((errors / total.to_f) * 100).round }
|
|
67
|
+
|
|
68
|
+
run_test = -> (nn, inputs, expected_outputs) {
|
|
69
|
+
success, failure, errsum = 0,0,0
|
|
70
|
+
inputs.each.with_index do |input, i|
|
|
71
|
+
output = nn.feed input
|
|
72
|
+
prediction_success.(output, expected_outputs[i]) ? success += 1 : failure += 1
|
|
73
|
+
errsum += mse.(output, expected_outputs[i])
|
|
74
|
+
end
|
|
75
|
+
[success, failure, errsum / inputs.length.to_f]
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
puts "Testing the untrained network..."
|
|
79
|
+
|
|
80
|
+
success, failure, avg_mse = run_test.(nn, x_test, y_test)
|
|
81
|
+
|
|
82
|
+
puts "Untrained classification success: #{success}, failure: #{failure} (classification error: #{error_rate.(failure, x_test.length)}%, mse: #{(avg_mse * 100).round(2)}%)"
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
puts "\nTraining the network...\n\n"
|
|
86
|
+
|
|
87
|
+
t1 = Time.now
|
|
88
|
+
result = nn.optimize(test_cases, 0.01, 1_000 ) { |i, error|
|
|
89
|
+
puts "#{i} #{error}"
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
# puts result
|
|
93
|
+
puts "\nDone training the network: #{result[:iterations]} iterations, #{(result[:error] * 100).round(2)}% mse, #{(Time.now - t1).round(1)}s"
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
puts "\nTesting the trained network..."
|
|
97
|
+
|
|
98
|
+
success, failure, avg_mse = run_test.(nn, x_test, y_test)
|
|
99
|
+
|
|
100
|
+
puts "Trained classification success: #{success}, failure: #{failure} (classification error: #{error_rate.(failure, x_test.length)}%, mse: #{(avg_mse * 100).round(2)}%)"
|
data/example/xor.rb
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
#!/usr/bin/env ruby
|
|
2
|
+
|
|
3
|
+
require 'brains'
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
# Build a 3 layer network: 4 input neurons, 4 hidden neurons, 3 output neurons
|
|
7
|
+
# Bias neurons are automatically added to input + hidden layers; no need to specify these
|
|
8
|
+
# 5 = 4 in one hidden layer + 1 output neuron (input neurons not counted)
|
|
9
|
+
|
|
10
|
+
nn = Brains::Net.create(2, 1, 5, { neurons_per_layer: 4 })
|
|
11
|
+
nn.randomize_weights
|
|
12
|
+
|
|
13
|
+
# A B A XOR B
|
|
14
|
+
# 1 1 0
|
|
15
|
+
# 1 0 1
|
|
16
|
+
# 0 1 1
|
|
17
|
+
# 0 0 0
|
|
18
|
+
|
|
19
|
+
training_data = [
|
|
20
|
+
[[0.9, 0.9], [0.1]],
|
|
21
|
+
[[0.9, 0.1], [0.9]],
|
|
22
|
+
[[0.1, 0.9], [0.9]],
|
|
23
|
+
[[0.1, 0.1], [0.1]],
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
# test on untrained data
|
|
27
|
+
test_data = [
|
|
28
|
+
[0.9, 0.9],
|
|
29
|
+
[0.9, 0.1],
|
|
30
|
+
[0.1, 0.9],
|
|
31
|
+
[0.1, 0.1]
|
|
32
|
+
]
|
|
33
|
+
|
|
34
|
+
results = test_data.collect { |item|
|
|
35
|
+
nn.feed(item)
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
p results
|
|
39
|
+
|
|
40
|
+
result = nn.optimize(training_data, 0.01, 1_000 ) { |i, error|
|
|
41
|
+
puts "#{i} #{error}"
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
puts "after training"
|
|
45
|
+
|
|
46
|
+
results = test_data.collect { |item|
|
|
47
|
+
nn.feed(item)
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
p results
|
|
52
|
+
|
|
53
|
+
state = nn.to_json
|
|
54
|
+
puts state
|
|
55
|
+
|
|
56
|
+
nn2 = Brains::Net.load(state)
|
|
57
|
+
|
|
58
|
+
results2 = test_data.collect { |item|
|
|
59
|
+
nn2.feed(item)
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
puts "use saved state"
|
|
63
|
+
|
|
64
|
+
p results2
|
data/iris.data
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
5.1,3.5,1.4,0.2,Iris-setosa
|
|
2
|
+
4.9,3.0,1.4,0.2,Iris-setosa
|
|
3
|
+
4.7,3.2,1.3,0.2,Iris-setosa
|
|
4
|
+
4.6,3.1,1.5,0.2,Iris-setosa
|
|
5
|
+
5.0,3.6,1.4,0.2,Iris-setosa
|
|
6
|
+
5.4,3.9,1.7,0.4,Iris-setosa
|
|
7
|
+
4.6,3.4,1.4,0.3,Iris-setosa
|
|
8
|
+
5.0,3.4,1.5,0.2,Iris-setosa
|
|
9
|
+
4.4,2.9,1.4,0.2,Iris-setosa
|
|
10
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
11
|
+
5.4,3.7,1.5,0.2,Iris-setosa
|
|
12
|
+
4.8,3.4,1.6,0.2,Iris-setosa
|
|
13
|
+
4.8,3.0,1.4,0.1,Iris-setosa
|
|
14
|
+
4.3,3.0,1.1,0.1,Iris-setosa
|
|
15
|
+
5.8,4.0,1.2,0.2,Iris-setosa
|
|
16
|
+
5.7,4.4,1.5,0.4,Iris-setosa
|
|
17
|
+
5.4,3.9,1.3,0.4,Iris-setosa
|
|
18
|
+
5.1,3.5,1.4,0.3,Iris-setosa
|
|
19
|
+
5.7,3.8,1.7,0.3,Iris-setosa
|
|
20
|
+
5.1,3.8,1.5,0.3,Iris-setosa
|
|
21
|
+
5.4,3.4,1.7,0.2,Iris-setosa
|
|
22
|
+
5.1,3.7,1.5,0.4,Iris-setosa
|
|
23
|
+
4.6,3.6,1.0,0.2,Iris-setosa
|
|
24
|
+
5.1,3.3,1.7,0.5,Iris-setosa
|
|
25
|
+
4.8,3.4,1.9,0.2,Iris-setosa
|
|
26
|
+
5.0,3.0,1.6,0.2,Iris-setosa
|
|
27
|
+
5.0,3.4,1.6,0.4,Iris-setosa
|
|
28
|
+
5.2,3.5,1.5,0.2,Iris-setosa
|
|
29
|
+
5.2,3.4,1.4,0.2,Iris-setosa
|
|
30
|
+
4.7,3.2,1.6,0.2,Iris-setosa
|
|
31
|
+
4.8,3.1,1.6,0.2,Iris-setosa
|
|
32
|
+
5.4,3.4,1.5,0.4,Iris-setosa
|
|
33
|
+
5.2,4.1,1.5,0.1,Iris-setosa
|
|
34
|
+
5.5,4.2,1.4,0.2,Iris-setosa
|
|
35
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
36
|
+
5.0,3.2,1.2,0.2,Iris-setosa
|
|
37
|
+
5.5,3.5,1.3,0.2,Iris-setosa
|
|
38
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
39
|
+
4.4,3.0,1.3,0.2,Iris-setosa
|
|
40
|
+
5.1,3.4,1.5,0.2,Iris-setosa
|
|
41
|
+
5.0,3.5,1.3,0.3,Iris-setosa
|
|
42
|
+
4.5,2.3,1.3,0.3,Iris-setosa
|
|
43
|
+
4.4,3.2,1.3,0.2,Iris-setosa
|
|
44
|
+
5.0,3.5,1.6,0.6,Iris-setosa
|
|
45
|
+
5.1,3.8,1.9,0.4,Iris-setosa
|
|
46
|
+
4.8,3.0,1.4,0.3,Iris-setosa
|
|
47
|
+
5.1,3.8,1.6,0.2,Iris-setosa
|
|
48
|
+
4.6,3.2,1.4,0.2,Iris-setosa
|
|
49
|
+
5.3,3.7,1.5,0.2,Iris-setosa
|
|
50
|
+
5.0,3.3,1.4,0.2,Iris-setosa
|
|
51
|
+
7.0,3.2,4.7,1.4,Iris-versicolor
|
|
52
|
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
|
53
|
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
|
54
|
+
5.5,2.3,4.0,1.3,Iris-versicolor
|
|
55
|
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
|
56
|
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
|
57
|
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
|
58
|
+
4.9,2.4,3.3,1.0,Iris-versicolor
|
|
59
|
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
|
60
|
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
|
61
|
+
5.0,2.0,3.5,1.0,Iris-versicolor
|
|
62
|
+
5.9,3.0,4.2,1.5,Iris-versicolor
|
|
63
|
+
6.0,2.2,4.0,1.0,Iris-versicolor
|
|
64
|
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
|
65
|
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
|
66
|
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
|
67
|
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
|
68
|
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
|
69
|
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
|
70
|
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
|
71
|
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
|
72
|
+
6.1,2.8,4.0,1.3,Iris-versicolor
|
|
73
|
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
|
74
|
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
|
75
|
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
|
76
|
+
6.6,3.0,4.4,1.4,Iris-versicolor
|
|
77
|
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
|
78
|
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
|
79
|
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
|
80
|
+
5.7,2.6,3.5,1.0,Iris-versicolor
|
|
81
|
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
|
82
|
+
5.5,2.4,3.7,1.0,Iris-versicolor
|
|
83
|
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
|
84
|
+
6.0,2.7,5.1,1.6,Iris-versicolor
|
|
85
|
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
|
86
|
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
|
87
|
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
|
88
|
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
|
89
|
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
|
90
|
+
5.5,2.5,4.0,1.3,Iris-versicolor
|
|
91
|
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
|
92
|
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
|
93
|
+
5.8,2.6,4.0,1.2,Iris-versicolor
|
|
94
|
+
5.0,2.3,3.3,1.0,Iris-versicolor
|
|
95
|
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
|
96
|
+
5.7,3.0,4.2,1.2,Iris-versicolor
|
|
97
|
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
|
98
|
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
|
99
|
+
5.1,2.5,3.0,1.1,Iris-versicolor
|
|
100
|
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
|
101
|
+
6.3,3.3,6.0,2.5,Iris-virginica
|
|
102
|
+
5.8,2.7,5.1,1.9,Iris-virginica
|
|
103
|
+
7.1,3.0,5.9,2.1,Iris-virginica
|
|
104
|
+
6.3,2.9,5.6,1.8,Iris-virginica
|
|
105
|
+
6.5,3.0,5.8,2.2,Iris-virginica
|
|
106
|
+
7.6,3.0,6.6,2.1,Iris-virginica
|
|
107
|
+
4.9,2.5,4.5,1.7,Iris-virginica
|
|
108
|
+
7.3,2.9,6.3,1.8,Iris-virginica
|
|
109
|
+
6.7,2.5,5.8,1.8,Iris-virginica
|
|
110
|
+
7.2,3.6,6.1,2.5,Iris-virginica
|
|
111
|
+
6.5,3.2,5.1,2.0,Iris-virginica
|
|
112
|
+
6.4,2.7,5.3,1.9,Iris-virginica
|
|
113
|
+
6.8,3.0,5.5,2.1,Iris-virginica
|
|
114
|
+
5.7,2.5,5.0,2.0,Iris-virginica
|
|
115
|
+
5.8,2.8,5.1,2.4,Iris-virginica
|
|
116
|
+
6.4,3.2,5.3,2.3,Iris-virginica
|
|
117
|
+
6.5,3.0,5.5,1.8,Iris-virginica
|
|
118
|
+
7.7,3.8,6.7,2.2,Iris-virginica
|
|
119
|
+
7.7,2.6,6.9,2.3,Iris-virginica
|
|
120
|
+
6.0,2.2,5.0,1.5,Iris-virginica
|
|
121
|
+
6.9,3.2,5.7,2.3,Iris-virginica
|
|
122
|
+
5.6,2.8,4.9,2.0,Iris-virginica
|
|
123
|
+
7.7,2.8,6.7,2.0,Iris-virginica
|
|
124
|
+
6.3,2.7,4.9,1.8,Iris-virginica
|
|
125
|
+
6.7,3.3,5.7,2.1,Iris-virginica
|
|
126
|
+
7.2,3.2,6.0,1.8,Iris-virginica
|
|
127
|
+
6.2,2.8,4.8,1.8,Iris-virginica
|
|
128
|
+
6.1,3.0,4.9,1.8,Iris-virginica
|
|
129
|
+
6.4,2.8,5.6,2.1,Iris-virginica
|
|
130
|
+
7.2,3.0,5.8,1.6,Iris-virginica
|
|
131
|
+
7.4,2.8,6.1,1.9,Iris-virginica
|
|
132
|
+
7.9,3.8,6.4,2.0,Iris-virginica
|
|
133
|
+
6.4,2.8,5.6,2.2,Iris-virginica
|
|
134
|
+
6.3,2.8,5.1,1.5,Iris-virginica
|
|
135
|
+
6.1,2.6,5.6,1.4,Iris-virginica
|
|
136
|
+
7.7,3.0,6.1,2.3,Iris-virginica
|
|
137
|
+
6.3,3.4,5.6,2.4,Iris-virginica
|
|
138
|
+
6.4,3.1,5.5,1.8,Iris-virginica
|
|
139
|
+
6.0,3.0,4.8,1.8,Iris-virginica
|
|
140
|
+
6.9,3.1,5.4,2.1,Iris-virginica
|
|
141
|
+
6.7,3.1,5.6,2.4,Iris-virginica
|
|
142
|
+
6.9,3.1,5.1,2.3,Iris-virginica
|
|
143
|
+
5.8,2.7,5.1,1.9,Iris-virginica
|
|
144
|
+
6.8,3.2,5.9,2.3,Iris-virginica
|
|
145
|
+
6.7,3.3,5.7,2.5,Iris-virginica
|
|
146
|
+
6.7,3.0,5.2,2.3,Iris-virginica
|
|
147
|
+
6.3,2.5,5.0,1.9,Iris-virginica
|
|
148
|
+
6.5,3.0,5.2,2.0,Iris-virginica
|
|
149
|
+
6.2,3.4,5.4,2.3,Iris-virginica
|
|
150
|
+
5.9,3.0,5.1,1.8,Iris-virginica
|
data/lib/brains.rb
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
require "brains/version"
|
|
2
|
+
require "brains/brains.jar"
|
|
3
|
+
require "brains/gson.jar"
|
|
4
|
+
require "brains/commons-lang3.jar"
|
|
5
|
+
require "brains/commons-cli.jar"
|
|
6
|
+
require "brains/net"
|
|
7
|
+
require "json"
|
|
8
|
+
|
|
9
|
+
module Brains
|
|
10
|
+
class Config
|
|
11
|
+
attr_accessor :neurons_per_layer, :input_neurons, :output_neurons
|
|
12
|
+
end
|
|
13
|
+
end
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
data/lib/brains/gson.jar
ADDED
|
Binary file
|
data/lib/brains/net.rb
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
require 'java'
|
|
2
|
+
|
|
3
|
+
module Brains
|
|
4
|
+
class Net
|
|
5
|
+
attr_accessor :nn, :config
|
|
6
|
+
|
|
7
|
+
def self.create(input, output, total, opts = {})
|
|
8
|
+
config = com.dayosoft.nn.NeuralNet::Config.new(input, output, total)
|
|
9
|
+
config.bias = opts[:bias] || 1.0
|
|
10
|
+
config.outputBias = opts[:output_bias] || 1.0
|
|
11
|
+
config.learningRate = opts[:learning_rate] || 0.1
|
|
12
|
+
config.neuronsPerLayer = opts[:neurons_per_layer] || 5
|
|
13
|
+
config.momentumFactor = opts[:momentum_factor] || 0.5
|
|
14
|
+
config.activationFunctionType = opt_to_func(opts[:activation_function] || :htan)
|
|
15
|
+
config.outputActivationFunctionType = opt_to_func(opts[:activation_function] || :sigmoid)
|
|
16
|
+
config.errorFormula = opt_to_error_func(opts[:activation_function] || :mean_squared)
|
|
17
|
+
nn = com.dayosoft.nn.NeuralNet.new(config);
|
|
18
|
+
|
|
19
|
+
Brains::Net.new.set_nn(nn).set_config(config)
|
|
20
|
+
end
|
|
21
|
+
|
|
22
|
+
def self.load(json_string)
|
|
23
|
+
nn = com.dayosoft.nn.NeuralNet::loadStateFromJsonString(nil, json_string)
|
|
24
|
+
config = nn.getConfig
|
|
25
|
+
|
|
26
|
+
Brains::Net.new.set_nn(nn).set_config(config)
|
|
27
|
+
end
|
|
28
|
+
|
|
29
|
+
def randomize_weights(min = -1, max = 1)
|
|
30
|
+
@nn.randomizeWeights(min, max)
|
|
31
|
+
end
|
|
32
|
+
|
|
33
|
+
def dump_weights
|
|
34
|
+
@nn.dumpWeights.to_a.map(&:to_a)
|
|
35
|
+
end
|
|
36
|
+
|
|
37
|
+
def dump_biases
|
|
38
|
+
@nn.dumpWeights.to_a.map(&:to_a)
|
|
39
|
+
end
|
|
40
|
+
|
|
41
|
+
def optimize(test_cases, target_error = 0.01, max_epoch = 1_000_000_000, is_batch = false, &callback)
|
|
42
|
+
inputs = []
|
|
43
|
+
outputs = []
|
|
44
|
+
|
|
45
|
+
test_cases.each do |item|
|
|
46
|
+
inputs << item[0].to_java(Java::double)
|
|
47
|
+
outputs << item[1].to_java(Java::double)
|
|
48
|
+
end
|
|
49
|
+
|
|
50
|
+
result = @nn.optimize(java.util.ArrayList.new(inputs), java.util.ArrayList.new(outputs), target_error, max_epoch, is_batch, callback)
|
|
51
|
+
{ iterations: result.first, error: result.second }
|
|
52
|
+
end
|
|
53
|
+
|
|
54
|
+
def feed(input)
|
|
55
|
+
output = @nn.feed(input.to_java(Java::double)).to_a
|
|
56
|
+
end
|
|
57
|
+
|
|
58
|
+
def to_json
|
|
59
|
+
@nn.saveStateToJson
|
|
60
|
+
end
|
|
61
|
+
|
|
62
|
+
def set_nn(nn)
|
|
63
|
+
@nn = nn
|
|
64
|
+
self
|
|
65
|
+
end
|
|
66
|
+
|
|
67
|
+
def set_config(config)
|
|
68
|
+
@config = config
|
|
69
|
+
self
|
|
70
|
+
end
|
|
71
|
+
|
|
72
|
+
protected
|
|
73
|
+
|
|
74
|
+
def initialize
|
|
75
|
+
end
|
|
76
|
+
|
|
77
|
+
private
|
|
78
|
+
|
|
79
|
+
def self.opt_to_func(func)
|
|
80
|
+
case func
|
|
81
|
+
when :htan
|
|
82
|
+
com.dayosoft.nn.Neuron::HTAN
|
|
83
|
+
when :sigmoid
|
|
84
|
+
com.dayosoft.nn.Neuron::SIGMOID
|
|
85
|
+
when :softmax
|
|
86
|
+
com.dayosoft.nn.Neuron::SOFTMAX
|
|
87
|
+
when :rectifier
|
|
88
|
+
com.dayosoft.nn.Neuron::RECTIFIER
|
|
89
|
+
else
|
|
90
|
+
raise "invalid activation function #{func}"
|
|
91
|
+
end
|
|
92
|
+
end
|
|
93
|
+
|
|
94
|
+
def self.opt_to_error_func(func)
|
|
95
|
+
case func
|
|
96
|
+
when :mean_squared
|
|
97
|
+
com.dayosoft.nn.NeuralNet::Config::MEAN_SQUARED
|
|
98
|
+
when :cross_entropy
|
|
99
|
+
com.dayosoft.nn.NeuralNet::Config::CROSS_ENTROPY
|
|
100
|
+
else
|
|
101
|
+
raise "Invalid Error Function #{func}"
|
|
102
|
+
end
|
|
103
|
+
end
|
|
104
|
+
end
|
|
105
|
+
end
|
metadata
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
|
2
|
+
name: brains
|
|
3
|
+
version: !ruby/object:Gem::Version
|
|
4
|
+
version: 0.1.0
|
|
5
|
+
platform: java
|
|
6
|
+
authors:
|
|
7
|
+
- Joseph Emmanuel Dayo
|
|
8
|
+
autorequire:
|
|
9
|
+
bindir: exe
|
|
10
|
+
cert_chain: []
|
|
11
|
+
date: 2017-02-23 00:00:00.000000000 Z
|
|
12
|
+
dependencies:
|
|
13
|
+
- !ruby/object:Gem::Dependency
|
|
14
|
+
requirement: !ruby/object:Gem::Requirement
|
|
15
|
+
requirements:
|
|
16
|
+
- - "~>"
|
|
17
|
+
- !ruby/object:Gem::Version
|
|
18
|
+
version: '1.12'
|
|
19
|
+
name: bundler
|
|
20
|
+
prerelease: false
|
|
21
|
+
type: :development
|
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
23
|
+
requirements:
|
|
24
|
+
- - "~>"
|
|
25
|
+
- !ruby/object:Gem::Version
|
|
26
|
+
version: '1.12'
|
|
27
|
+
- !ruby/object:Gem::Dependency
|
|
28
|
+
requirement: !ruby/object:Gem::Requirement
|
|
29
|
+
requirements:
|
|
30
|
+
- - "~>"
|
|
31
|
+
- !ruby/object:Gem::Version
|
|
32
|
+
version: '10.0'
|
|
33
|
+
name: rake
|
|
34
|
+
prerelease: false
|
|
35
|
+
type: :development
|
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
37
|
+
requirements:
|
|
38
|
+
- - "~>"
|
|
39
|
+
- !ruby/object:Gem::Version
|
|
40
|
+
version: '10.0'
|
|
41
|
+
- !ruby/object:Gem::Dependency
|
|
42
|
+
requirement: !ruby/object:Gem::Requirement
|
|
43
|
+
requirements:
|
|
44
|
+
- - "~>"
|
|
45
|
+
- !ruby/object:Gem::Version
|
|
46
|
+
version: '3.0'
|
|
47
|
+
name: rspec
|
|
48
|
+
prerelease: false
|
|
49
|
+
type: :development
|
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
|
51
|
+
requirements:
|
|
52
|
+
- - "~>"
|
|
53
|
+
- !ruby/object:Gem::Version
|
|
54
|
+
version: '3.0'
|
|
55
|
+
description: A feedforward neural network library for JRuby
|
|
56
|
+
email:
|
|
57
|
+
- joseph.dayo@gmail.com
|
|
58
|
+
executables: []
|
|
59
|
+
extensions: []
|
|
60
|
+
extra_rdoc_files: []
|
|
61
|
+
files:
|
|
62
|
+
- ".gitignore"
|
|
63
|
+
- ".rspec"
|
|
64
|
+
- ".travis.yml"
|
|
65
|
+
- CODE_OF_CONDUCT.md
|
|
66
|
+
- Gemfile
|
|
67
|
+
- LICENSE.txt
|
|
68
|
+
- README.md
|
|
69
|
+
- Rakefile
|
|
70
|
+
- bin/console
|
|
71
|
+
- bin/setup
|
|
72
|
+
- brains.gemspec
|
|
73
|
+
- example/iris.rb
|
|
74
|
+
- example/xor.rb
|
|
75
|
+
- iris.data
|
|
76
|
+
- lib/brains.rb
|
|
77
|
+
- lib/brains/brains.jar
|
|
78
|
+
- lib/brains/commons-cli.jar
|
|
79
|
+
- lib/brains/commons-lang3.jar
|
|
80
|
+
- lib/brains/gson.jar
|
|
81
|
+
- lib/brains/net.rb
|
|
82
|
+
- lib/brains/version.rb
|
|
83
|
+
homepage: https://github.com/jedld/brains-jruby
|
|
84
|
+
licenses:
|
|
85
|
+
- MIT
|
|
86
|
+
metadata:
|
|
87
|
+
allowed_push_host: https://rubygems.org
|
|
88
|
+
post_install_message:
|
|
89
|
+
rdoc_options: []
|
|
90
|
+
require_paths:
|
|
91
|
+
- lib
|
|
92
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
|
93
|
+
requirements:
|
|
94
|
+
- - ">="
|
|
95
|
+
- !ruby/object:Gem::Version
|
|
96
|
+
version: '0'
|
|
97
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
|
98
|
+
requirements:
|
|
99
|
+
- - ">="
|
|
100
|
+
- !ruby/object:Gem::Version
|
|
101
|
+
version: '0'
|
|
102
|
+
requirements: []
|
|
103
|
+
rubyforge_project:
|
|
104
|
+
rubygems_version: 2.4.8
|
|
105
|
+
signing_key:
|
|
106
|
+
specification_version: 4
|
|
107
|
+
summary: A feedforward neural network library for JRuby
|
|
108
|
+
test_files: []
|