bonanza-ruby-opencv 0.0.13.20140330211753
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +28 -0
- data/.yardopts +3 -0
- data/DEVELOPERS_NOTE.md +137 -0
- data/Gemfile +9 -0
- data/History.txt +5 -0
- data/License.txt +30 -0
- data/Manifest.txt +239 -0
- data/README.md +98 -0
- data/Rakefile +99 -0
- data/config.yml +7 -0
- data/examples/alpha_blend.rb +21 -0
- data/examples/contours/bitmap-contours-with-labels.png +0 -0
- data/examples/contours/bitmap-contours.png +0 -0
- data/examples/contours/bounding-box-detect-canny.rb +62 -0
- data/examples/contours/contour_retrieval_modes.rb +139 -0
- data/examples/contours/rotated-boxes.jpg +0 -0
- data/examples/convexhull.rb +47 -0
- data/examples/face_detect.rb +20 -0
- data/examples/facerec/create_csv.rb +43 -0
- data/examples/facerec/facerec_eigenfaces.rb +132 -0
- data/examples/facerec/facerec_fisherfaces.rb +131 -0
- data/examples/facerec/facerec_lbph.rb +116 -0
- data/examples/facerec/readme.md +111 -0
- data/examples/find_obj.rb +169 -0
- data/examples/houghcircle.rb +22 -0
- data/examples/images/box.png +0 -0
- data/examples/images/box_in_scene.png +0 -0
- data/examples/images/inpaint.png +0 -0
- data/examples/images/lena-256x256.jpg +0 -0
- data/examples/images/lena-eyes.jpg +0 -0
- data/examples/images/lenna-rotated.jpg +0 -0
- data/examples/images/lenna.jpg +0 -0
- data/examples/images/stuff.jpg +0 -0
- data/examples/images/tiffany.jpg +0 -0
- data/examples/inpaint.rb +57 -0
- data/examples/match_kdtree.rb +88 -0
- data/examples/match_template.rb +26 -0
- data/examples/paint.rb +70 -0
- data/examples/snake.rb +43 -0
- data/ext/opencv/algorithm.cpp +291 -0
- data/ext/opencv/algorithm.h +38 -0
- data/ext/opencv/curve.cpp +127 -0
- data/ext/opencv/curve.h +34 -0
- data/ext/opencv/cvavgcomp.cpp +64 -0
- data/ext/opencv/cvavgcomp.h +39 -0
- data/ext/opencv/cvbox2d.cpp +195 -0
- data/ext/opencv/cvbox2d.h +61 -0
- data/ext/opencv/cvcapture.cpp +607 -0
- data/ext/opencv/cvcapture.h +72 -0
- data/ext/opencv/cvchain.cpp +233 -0
- data/ext/opencv/cvchain.h +46 -0
- data/ext/opencv/cvcircle32f.cpp +126 -0
- data/ext/opencv/cvcircle32f.h +52 -0
- data/ext/opencv/cvconnectedcomp.cpp +156 -0
- data/ext/opencv/cvconnectedcomp.h +49 -0
- data/ext/opencv/cvcontour.cpp +332 -0
- data/ext/opencv/cvcontour.h +48 -0
- data/ext/opencv/cvcontourtree.cpp +96 -0
- data/ext/opencv/cvcontourtree.h +41 -0
- data/ext/opencv/cvconvexitydefect.cpp +92 -0
- data/ext/opencv/cvconvexitydefect.h +42 -0
- data/ext/opencv/cverror.cpp +115 -0
- data/ext/opencv/cverror.h +28 -0
- data/ext/opencv/cvfeaturetree.cpp +123 -0
- data/ext/opencv/cvfeaturetree.h +55 -0
- data/ext/opencv/cvfont.cpp +228 -0
- data/ext/opencv/cvfont.h +64 -0
- data/ext/opencv/cvhaarclassifiercascade.cpp +148 -0
- data/ext/opencv/cvhaarclassifiercascade.h +39 -0
- data/ext/opencv/cvhistogram.cpp +715 -0
- data/ext/opencv/cvhistogram.h +73 -0
- data/ext/opencv/cvhumoments.cpp +178 -0
- data/ext/opencv/cvhumoments.h +51 -0
- data/ext/opencv/cvline.cpp +159 -0
- data/ext/opencv/cvline.h +54 -0
- data/ext/opencv/cvmat.cpp +6829 -0
- data/ext/opencv/cvmat.h +323 -0
- data/ext/opencv/cvmemstorage.cpp +73 -0
- data/ext/opencv/cvmemstorage.h +53 -0
- data/ext/opencv/cvmoments.cpp +293 -0
- data/ext/opencv/cvmoments.h +75 -0
- data/ext/opencv/cvpoint.cpp +265 -0
- data/ext/opencv/cvpoint.h +67 -0
- data/ext/opencv/cvpoint2d32f.cpp +216 -0
- data/ext/opencv/cvpoint2d32f.h +63 -0
- data/ext/opencv/cvpoint3d32f.cpp +252 -0
- data/ext/opencv/cvpoint3d32f.h +66 -0
- data/ext/opencv/cvrect.cpp +441 -0
- data/ext/opencv/cvrect.h +88 -0
- data/ext/opencv/cvscalar.cpp +301 -0
- data/ext/opencv/cvscalar.h +76 -0
- data/ext/opencv/cvseq.cpp +605 -0
- data/ext/opencv/cvseq.h +74 -0
- data/ext/opencv/cvsize.cpp +227 -0
- data/ext/opencv/cvsize.h +65 -0
- data/ext/opencv/cvsize2d32f.cpp +215 -0
- data/ext/opencv/cvsize2d32f.h +64 -0
- data/ext/opencv/cvslice.cpp +126 -0
- data/ext/opencv/cvslice.h +61 -0
- data/ext/opencv/cvsurfparams.cpp +208 -0
- data/ext/opencv/cvsurfparams.h +58 -0
- data/ext/opencv/cvsurfpoint.cpp +279 -0
- data/ext/opencv/cvsurfpoint.h +54 -0
- data/ext/opencv/cvtermcriteria.cpp +198 -0
- data/ext/opencv/cvtermcriteria.h +71 -0
- data/ext/opencv/cvtwopoints.cpp +122 -0
- data/ext/opencv/cvtwopoints.h +51 -0
- data/ext/opencv/cvutils.cpp +221 -0
- data/ext/opencv/cvutils.h +31 -0
- data/ext/opencv/cvvideowriter.cpp +142 -0
- data/ext/opencv/cvvideowriter.h +43 -0
- data/ext/opencv/eigenfaces.cpp +75 -0
- data/ext/opencv/eigenfaces.h +30 -0
- data/ext/opencv/extconf.rb +82 -0
- data/ext/opencv/facerecognizer.cpp +181 -0
- data/ext/opencv/facerecognizer.h +46 -0
- data/ext/opencv/fisherfaces.cpp +75 -0
- data/ext/opencv/fisherfaces.h +30 -0
- data/ext/opencv/gui.cpp +71 -0
- data/ext/opencv/gui.h +30 -0
- data/ext/opencv/iplconvkernel.cpp +198 -0
- data/ext/opencv/iplconvkernel.h +71 -0
- data/ext/opencv/iplimage.cpp +666 -0
- data/ext/opencv/iplimage.h +75 -0
- data/ext/opencv/lbph.cpp +78 -0
- data/ext/opencv/lbph.h +30 -0
- data/ext/opencv/mouseevent.cpp +186 -0
- data/ext/opencv/mouseevent.h +56 -0
- data/ext/opencv/opencv.cpp +833 -0
- data/ext/opencv/opencv.h +405 -0
- data/ext/opencv/pointset.cpp +280 -0
- data/ext/opencv/pointset.h +68 -0
- data/ext/opencv/trackbar.cpp +127 -0
- data/ext/opencv/trackbar.h +69 -0
- data/ext/opencv/window.cpp +377 -0
- data/ext/opencv/window.h +66 -0
- data/images/CvMat_sobel.png +0 -0
- data/images/CvMat_sub_rect.png +0 -0
- data/images/CvSeq_relationmap.png +0 -0
- data/lib/opencv.rb +12 -0
- data/lib/opencv/psyched_yaml.rb +22 -0
- data/lib/opencv/version.rb +4 -0
- data/test/eigenfaces_save.xml +7524 -0
- data/test/fisherfaces_save.xml +7530 -0
- data/test/helper.rb +166 -0
- data/test/lbph_save.xml +4304 -0
- data/test/runner.rb +30 -0
- data/test/samples/airplane.jpg +0 -0
- data/test/samples/baboon.jpg +0 -0
- data/test/samples/baboon200.jpg +0 -0
- data/test/samples/baboon200_rotated.jpg +0 -0
- data/test/samples/blank0.jpg +0 -0
- data/test/samples/blank1.jpg +0 -0
- data/test/samples/blank2.jpg +0 -0
- data/test/samples/blank3.jpg +0 -0
- data/test/samples/blank4.jpg +0 -0
- data/test/samples/blank5.jpg +0 -0
- data/test/samples/blank6.jpg +0 -0
- data/test/samples/blank7.jpg +0 -0
- data/test/samples/blank8.jpg +0 -0
- data/test/samples/blank9.jpg +0 -0
- data/test/samples/cat.jpg +0 -0
- data/test/samples/chessboard.jpg +0 -0
- data/test/samples/contours.jpg +0 -0
- data/test/samples/fruits.jpg +0 -0
- data/test/samples/haarcascade_frontalface_alt.xml.gz +0 -0
- data/test/samples/inpaint-mask.bmp +0 -0
- data/test/samples/lena-256x256.jpg +0 -0
- data/test/samples/lena-32x32.jpg +0 -0
- data/test/samples/lena-eyes.jpg +0 -0
- data/test/samples/lena-inpaint.jpg +0 -0
- data/test/samples/lena.jpg +0 -0
- data/test/samples/lines.jpg +0 -0
- data/test/samples/messy0.jpg +0 -0
- data/test/samples/messy1.jpg +0 -0
- data/test/samples/movie_sample.avi +0 -0
- data/test/samples/one_way_train_0000.jpg +0 -0
- data/test/samples/one_way_train_0001.jpg +0 -0
- data/test/samples/partially_blank0.jpg +0 -0
- data/test/samples/partially_blank1.jpg +0 -0
- data/test/samples/smooth0.jpg +0 -0
- data/test/samples/smooth1.jpg +0 -0
- data/test/samples/smooth2.jpg +0 -0
- data/test/samples/smooth3.jpg +0 -0
- data/test/samples/smooth4.jpg +0 -0
- data/test/samples/smooth5.jpg +0 -0
- data/test/samples/smooth6.jpg +0 -0
- data/test/samples/str-cv-rotated.jpg +0 -0
- data/test/samples/str-cv.jpg +0 -0
- data/test/samples/str-ov.jpg +0 -0
- data/test/samples/stuff.jpg +0 -0
- data/test/test_curve.rb +43 -0
- data/test/test_cvavgcomp.rb +24 -0
- data/test/test_cvbox2d.rb +76 -0
- data/test/test_cvcapture.rb +183 -0
- data/test/test_cvchain.rb +108 -0
- data/test/test_cvcircle32f.rb +41 -0
- data/test/test_cvconnectedcomp.rb +61 -0
- data/test/test_cvcontour.rb +150 -0
- data/test/test_cvcontourtree.rb +43 -0
- data/test/test_cverror.rb +50 -0
- data/test/test_cvfeaturetree.rb +65 -0
- data/test/test_cvfont.rb +58 -0
- data/test/test_cvhaarclassifiercascade.rb +63 -0
- data/test/test_cvhistogram.rb +271 -0
- data/test/test_cvhumoments.rb +83 -0
- data/test/test_cvline.rb +50 -0
- data/test/test_cvmat.rb +3003 -0
- data/test/test_cvmat_drawing.rb +349 -0
- data/test/test_cvmat_dxt.rb +150 -0
- data/test/test_cvmat_imageprocessing.rb +2085 -0
- data/test/test_cvmoments.rb +180 -0
- data/test/test_cvpoint.rb +75 -0
- data/test/test_cvpoint2d32f.rb +75 -0
- data/test/test_cvpoint3d32f.rb +93 -0
- data/test/test_cvrect.rb +144 -0
- data/test/test_cvscalar.rb +113 -0
- data/test/test_cvseq.rb +295 -0
- data/test/test_cvsize.rb +75 -0
- data/test/test_cvsize2d32f.rb +75 -0
- data/test/test_cvslice.rb +31 -0
- data/test/test_cvsurfparams.rb +57 -0
- data/test/test_cvsurfpoint.rb +66 -0
- data/test/test_cvtermcriteria.rb +56 -0
- data/test/test_cvtwopoints.rb +40 -0
- data/test/test_cvvideowriter.rb +58 -0
- data/test/test_eigenfaces.rb +93 -0
- data/test/test_fisherfaces.rb +93 -0
- data/test/test_iplconvkernel.rb +54 -0
- data/test/test_iplimage.rb +232 -0
- data/test/test_lbph.rb +152 -0
- data/test/test_mouseevent.rb +17 -0
- data/test/test_opencv.rb +360 -0
- data/test/test_pointset.rb +128 -0
- data/test/test_preliminary.rb +130 -0
- data/test/test_trackbar.rb +47 -0
- data/test/test_window.rb +115 -0
- data/yard_extension.rb +5 -0
- metadata +399 -0
@@ -0,0 +1,2085 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# -*- mode: ruby; coding: utf-8 -*-
|
3
|
+
require 'test/unit'
|
4
|
+
require 'opencv'
|
5
|
+
require File.expand_path(File.dirname(__FILE__)) + '/helper'
|
6
|
+
|
7
|
+
include OpenCV
|
8
|
+
|
9
|
+
# Tests for image processing functions of OpenCV::CvMat
|
10
|
+
class TestCvMat_imageprocessing < OpenCVTestCase
|
11
|
+
FILENAME_LENA256x256 = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-256x256.jpg'
|
12
|
+
FILENAME_LENA_INPAINT = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-inpaint.jpg'
|
13
|
+
FILENAME_INPAINT_MASK = File.expand_path(File.dirname(__FILE__)) + '/samples/inpaint-mask.bmp'
|
14
|
+
FILENAME_LENA32x32 = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-32x32.jpg'
|
15
|
+
FILENAME_LINES = File.expand_path(File.dirname(__FILE__)) + '/samples/lines.jpg'
|
16
|
+
FILENAME_LENA_EYES = File.expand_path(File.dirname(__FILE__)) + '/samples/lena-eyes.jpg'
|
17
|
+
FILENAME_STR_CV = File.expand_path(File.dirname(__FILE__)) + '/samples/str-cv.jpg'
|
18
|
+
FILENAME_STR_OV = File.expand_path(File.dirname(__FILE__)) + '/samples/str-ov.jpg'
|
19
|
+
FILENAME_STR_CV_ROTATED = File.expand_path(File.dirname(__FILE__)) + '/samples/str-cv-rotated.jpg'
|
20
|
+
|
21
|
+
def test_sobel
|
22
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
23
|
+
|
24
|
+
mat1 = mat0.sobel(1, 0).convert_scale_abs(scale: 1, shift: 0)
|
25
|
+
mat2 = mat0.sobel(0, 1).convert_scale_abs(scale: 1, shift: 0)
|
26
|
+
mat3 = mat0.sobel(1, 1).convert_scale_abs(scale: 1, shift: 0)
|
27
|
+
mat4 = mat0.sobel(1, 1, 3).convert_scale_abs(scale: 1, shift: 0)
|
28
|
+
mat5 = mat0.sobel(1, 1, 5).convert_scale_abs(scale: 1, shift: 0)
|
29
|
+
|
30
|
+
assert_equal('30a26b7287fac75bb697bc7eef6bb53a', hash_img(mat1))
|
31
|
+
assert_equal('b740afb13b556d55280fa785190ac902', hash_img(mat2))
|
32
|
+
assert_equal('36c29ca64a599e0f5633f4f3948ed858', hash_img(mat3))
|
33
|
+
assert_equal('36c29ca64a599e0f5633f4f3948ed858', hash_img(mat4))
|
34
|
+
assert_equal('30b9e8fd64e7f86c50fb67d8703628e3', hash_img(mat5))
|
35
|
+
|
36
|
+
assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).sobel(1, 1).depth)
|
37
|
+
assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).sobel(1, 1).depth)
|
38
|
+
|
39
|
+
(DEPTH.keys - [:cv8u, :cv32f]).each { |depth|
|
40
|
+
assert_raise(ArgumentError) {
|
41
|
+
CvMat.new(3, 3, depth).sobel(1, 1)
|
42
|
+
}
|
43
|
+
}
|
44
|
+
|
45
|
+
# Uncomment the following lines to view the images
|
46
|
+
# snap(['original', mat0], ['sobel(1,0)', mat1], ['sobel(0,1)', mat2],
|
47
|
+
# ['sobel(1,1)', mat3], ['sobel(1,1,3)', mat4], ['sobel(1,1,5)', mat5])
|
48
|
+
|
49
|
+
assert_raise(TypeError) {
|
50
|
+
mat0.sobel(DUMMY_OBJ, 0)
|
51
|
+
}
|
52
|
+
assert_raise(TypeError) {
|
53
|
+
mat0.sobel(1, DUMMY_OBJ)
|
54
|
+
}
|
55
|
+
assert_raise(TypeError) {
|
56
|
+
mat0.sobel(1, 0, DUMMY_OBJ)
|
57
|
+
}
|
58
|
+
end
|
59
|
+
|
60
|
+
def test_laplace
|
61
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
62
|
+
|
63
|
+
mat1 = mat0.laplace.convert_scale_abs(scale: 1, shift: 0)
|
64
|
+
mat2 = mat0.laplace(3).convert_scale_abs(scale: 1, shift: 0)
|
65
|
+
mat3 = mat0.laplace(5).convert_scale_abs(scale: 1, shift: 0)
|
66
|
+
|
67
|
+
assert_equal('824f8de75bfead5d83c4226f3948ce69', hash_img(mat1))
|
68
|
+
assert_equal('824f8de75bfead5d83c4226f3948ce69', hash_img(mat2))
|
69
|
+
assert_equal('23850bb8cfe9fd1b82cd73b7b4659369', hash_img(mat3))
|
70
|
+
|
71
|
+
assert_equal(:cv16s, CvMat.new(16, 16, :cv8u, 1).laplace.depth)
|
72
|
+
assert_equal(:cv32f, CvMat.new(16, 16, :cv32f, 1).laplace.depth)
|
73
|
+
|
74
|
+
(DEPTH.keys - [:cv8u, :cv32f]).each { |depth|
|
75
|
+
assert_raise(ArgumentError) {
|
76
|
+
CvMat.new(3, 3, depth).laplace
|
77
|
+
}
|
78
|
+
}
|
79
|
+
|
80
|
+
# Uncomment the following line to view the images
|
81
|
+
# snap(['original', mat0], ['laplace', mat1], ['laplace(3)', mat2], ['laplace(5)', mat3])
|
82
|
+
|
83
|
+
assert_raise(TypeError) {
|
84
|
+
mat0.laplace(DUMMY_OBJ)
|
85
|
+
}
|
86
|
+
end
|
87
|
+
|
88
|
+
def test_canny
|
89
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
90
|
+
mat1 = mat0.canny(50, 200)
|
91
|
+
mat2 = mat0.canny(50, 200, 3)
|
92
|
+
mat3 = mat0.canny(50, 200, 5)
|
93
|
+
|
94
|
+
assert_equal('ec3e88035bb98b5c5f1a08c8e07ab0a8', hash_img(mat1))
|
95
|
+
assert_equal('ec3e88035bb98b5c5f1a08c8e07ab0a8', hash_img(mat2))
|
96
|
+
assert_equal('1983a6d325d11eea3261462103b0dae1', hash_img(mat3))
|
97
|
+
|
98
|
+
# Uncomment the following line to view the images
|
99
|
+
# snap(['canny(50,200)', mat1], ['canny(50,200,3)', mat2], ['canny(50,200,5)', mat3])
|
100
|
+
|
101
|
+
assert_raise(TypeError) {
|
102
|
+
mat0.canny(DUMMY_OBJ, 200)
|
103
|
+
}
|
104
|
+
assert_raise(TypeError) {
|
105
|
+
mat0.canny(50, DUMMY_OBJ)
|
106
|
+
}
|
107
|
+
assert_raise(TypeError) {
|
108
|
+
mat0.canny(50, 200, DUMMY_OBJ)
|
109
|
+
}
|
110
|
+
end
|
111
|
+
|
112
|
+
def test_pre_corner_detect
|
113
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
114
|
+
mat1 = mat0.pre_corner_detect
|
115
|
+
mat2 = mat0.pre_corner_detect(3)
|
116
|
+
mat3 = mat0.pre_corner_detect(5)
|
117
|
+
|
118
|
+
assert_in_delta(0, count_threshold(mat1, 0.1), 30)
|
119
|
+
assert_in_delta(0, count_threshold(mat2, 0.1), 30)
|
120
|
+
assert_in_delta(380, count_threshold(mat3, 0.1), 30)
|
121
|
+
|
122
|
+
# Uncomment the following lines to show the images
|
123
|
+
# snap(['original', mat0], ['pre_coner_detect', mat1],
|
124
|
+
# ['pre_coner_detect(3)', mat2], ['pre_coner_detect(5)', mat3])
|
125
|
+
|
126
|
+
assert_raise(TypeError) {
|
127
|
+
mat0.pre_corner_detect(DUMMY_OBJ)
|
128
|
+
}
|
129
|
+
end
|
130
|
+
|
131
|
+
def test_corner_eigenvv
|
132
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
133
|
+
mat1 = mat0.corner_eigenvv(3)
|
134
|
+
mat2 = mat0.corner_eigenvv(3, 3)
|
135
|
+
|
136
|
+
assert_raise(TypeError) {
|
137
|
+
mat0.corner_eigenvv(DUMMY_OBJ)
|
138
|
+
}
|
139
|
+
assert_raise(TypeError) {
|
140
|
+
mat0.corner_eigenvv(3, DUMMY_OBJ)
|
141
|
+
}
|
142
|
+
|
143
|
+
flunk('FIXME: CvMat#corner_eigenvv is not tested yet.')
|
144
|
+
end
|
145
|
+
|
146
|
+
def test_corner_min_eigen_val
|
147
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
148
|
+
mat1 = mat0.corner_min_eigen_val(3)
|
149
|
+
mat2 = mat0.corner_min_eigen_val(3, 3)
|
150
|
+
|
151
|
+
assert_raise(TypeError) {
|
152
|
+
mat0.corner_min_eigen_val(DUMMY_OBJ)
|
153
|
+
}
|
154
|
+
assert_raise(TypeError) {
|
155
|
+
mat0.corner_min_eigen_val(3, DUMMY_OBJ)
|
156
|
+
}
|
157
|
+
|
158
|
+
flunk('FIXME: CvMat#corner_min_eigen_val is not tested yet.')
|
159
|
+
end
|
160
|
+
|
161
|
+
def test_corner_harris
|
162
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
163
|
+
mat1 = mat0.corner_harris(3)
|
164
|
+
mat2 = mat0.corner_harris(3, 3)
|
165
|
+
mat3 = mat0.corner_harris(3, 3, 0.04)
|
166
|
+
mat4 = mat0.corner_harris(3, 7, 0.01)
|
167
|
+
|
168
|
+
[mat1, mat2, mat3].each { |mat|
|
169
|
+
assert_equal(mat0.rows, mat.rows)
|
170
|
+
assert_equal(mat0.cols, mat.cols)
|
171
|
+
assert_in_delta(0, count_threshold(mat, 10), 10)
|
172
|
+
}
|
173
|
+
assert_equal(mat0.rows, mat4.rows)
|
174
|
+
assert_equal(mat0.cols, mat4.cols)
|
175
|
+
assert_in_delta(90, count_threshold(mat4, 10), 10)
|
176
|
+
|
177
|
+
# Uncomment the following lines to show the images
|
178
|
+
# snap(['original', mat0], ['corner_harris(3)', mat1], ['corner_harris(3,3)', mat2],
|
179
|
+
# ['corner_harris(3,3,0.04)', mat3], ['corner_harris(3,7,0.01)', mat4])
|
180
|
+
|
181
|
+
assert_raise(TypeError) {
|
182
|
+
mat0.corner_harris(DUMMY_OBJ)
|
183
|
+
}
|
184
|
+
assert_raise(TypeError) {
|
185
|
+
mat0.corner_harris(3, DUMMY_OBJ)
|
186
|
+
}
|
187
|
+
assert_raise(TypeError) {
|
188
|
+
mat0.corner_harris(3, 3, DUMMY_OBJ)
|
189
|
+
}
|
190
|
+
end
|
191
|
+
|
192
|
+
def test_find_chessboard_corners
|
193
|
+
mat = CvMat.load(FILENAME_CHESSBOARD, CV_LOAD_IMAGE_GRAYSCALE)
|
194
|
+
pattern_size = CvSize.new(4, 4)
|
195
|
+
corners1, found1 = mat.find_chessboard_corners(pattern_size)
|
196
|
+
corners2, found2 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_ADAPTIVE_THRESH)
|
197
|
+
corners3, found3 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_NORMALIZE_IMAGE)
|
198
|
+
corners4, found4 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_FILTER_QUADS)
|
199
|
+
corners5, found5 = mat.find_chessboard_corners(pattern_size, CV_CALIB_CB_FAST_CHECK)
|
200
|
+
|
201
|
+
expected = [[39, 39], [79, 39], [119, 39], [159, 39], [39, 79], [79, 79],
|
202
|
+
[119, 79], [159, 78], [38, 119], [79, 119], [119, 119], [158, 118],
|
203
|
+
[39, 159], [79, 159], [119, 159], [159, 159]]
|
204
|
+
[corners1, corners2, corners3, corners4, corners5].each { |corners|
|
205
|
+
assert_equal(expected.size, corners.size)
|
206
|
+
expected.zip(corners).each { |e, a|
|
207
|
+
assert_in_delta(e[0], a.x, 3.0)
|
208
|
+
assert_in_delta(e[1], a.y, 3.0)
|
209
|
+
}
|
210
|
+
}
|
211
|
+
[found1, found2, found3, found4, found5].each { |found|
|
212
|
+
assert(found)
|
213
|
+
}
|
214
|
+
|
215
|
+
assert_raise(TypeError) {
|
216
|
+
mat.find_chessboard_corners(DUMMY_OBJ)
|
217
|
+
}
|
218
|
+
assert_raise(TypeError) {
|
219
|
+
mat.find_chessboard_corners(pattern_size, DUMMY_OBJ)
|
220
|
+
}
|
221
|
+
end
|
222
|
+
|
223
|
+
def test_find_corner_sub_pix
|
224
|
+
mat = CvMat.load(FILENAME_CHESSBOARD, CV_LOAD_IMAGE_GRAYSCALE)
|
225
|
+
pattern_size = CvSize.new(4, 4)
|
226
|
+
corners, found = mat.find_chessboard_corners(pattern_size)
|
227
|
+
expected = [[39, 39], [79, 39], [119, 39], [159, 39], [39, 79], [79, 79],
|
228
|
+
[119, 79], [159, 78], [38, 119], [79, 119], [119, 119], [158, 118],
|
229
|
+
[39, 159], [79, 159], [119, 159], [159, 159]]
|
230
|
+
|
231
|
+
refined_corners = mat.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1),
|
232
|
+
CvTermCriteria.new(20, 0.03));
|
233
|
+
assert_equal(expected.size, refined_corners.size)
|
234
|
+
assert(found)
|
235
|
+
expected.zip(refined_corners).each { |e, a|
|
236
|
+
assert_in_delta(e[0], a.x, 3.0)
|
237
|
+
assert_in_delta(e[1], a.y, 3.0)
|
238
|
+
}
|
239
|
+
|
240
|
+
assert_raise(TypeError) {
|
241
|
+
mat.find_corner_sub_pix(DUMMY_OBJ, CvSize.new(3, 3), CvSize.new(-1, -1),
|
242
|
+
CvTermCriteria.new(20, 0.03));
|
243
|
+
}
|
244
|
+
assert_raise(TypeError) {
|
245
|
+
mat.find_corner_sub_pix(corners, DUMMY_OBJ, CvSize.new(-1, -1),
|
246
|
+
CvTermCriteria.new(20, 0.03));
|
247
|
+
}
|
248
|
+
assert_raise(TypeError) {
|
249
|
+
mat.find_corner_sub_pix(corners, CvSize.new(3, 3), DUMMY_OBJ,
|
250
|
+
CvTermCriteria.new(20, 0.03));
|
251
|
+
}
|
252
|
+
assert_raise(TypeError) {
|
253
|
+
mat.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1), DUMMY_OBJ);
|
254
|
+
}
|
255
|
+
end
|
256
|
+
|
257
|
+
def test_good_features_to_track
|
258
|
+
mat0 = CvMat.load(FILENAME_LENA32x32, CV_LOAD_IMAGE_GRAYSCALE)
|
259
|
+
mask = create_cvmat(mat0.rows, mat0.cols, :cv8u, 1) { |j, i, c|
|
260
|
+
if (i > 8 and i < 18) and (j > 8 and j < 18)
|
261
|
+
CvScalar.new(1)
|
262
|
+
else
|
263
|
+
CvScalar.new(0)
|
264
|
+
end
|
265
|
+
}
|
266
|
+
|
267
|
+
corners1 = mat0.good_features_to_track(0.2, 5)
|
268
|
+
corners2 = mat0.good_features_to_track(0.2, 5, mask: mask)
|
269
|
+
corners3 = mat0.good_features_to_track(0.2, 5, block_size: 7)
|
270
|
+
corners4 = mat0.good_features_to_track(0.2, 5, use_harris: true)
|
271
|
+
corners5 = mat0.good_features_to_track(0.2, 5, k: 0.01)
|
272
|
+
corners6 = mat0.good_features_to_track(0.2, 5, max: 1)
|
273
|
+
|
274
|
+
expected1 = [[24, 7], [20, 23], [17, 11], [26, 29], [30, 24],
|
275
|
+
[19, 16], [28, 2], [13, 18], [14, 4]]
|
276
|
+
assert_equal(expected1.size, corners1.size)
|
277
|
+
expected1.each_with_index { |e, i|
|
278
|
+
assert_equal(e[0], corners1[i].x.to_i)
|
279
|
+
assert_equal(e[1], corners1[i].y.to_i)
|
280
|
+
}
|
281
|
+
expected2 = [[17, 11], [17, 16]]
|
282
|
+
assert_equal(expected2.size, corners2.size)
|
283
|
+
expected2.each_with_index { |e, i|
|
284
|
+
assert_equal(e[0], corners2[i].x.to_i)
|
285
|
+
assert_equal(e[1], corners2[i].y.to_i)
|
286
|
+
}
|
287
|
+
|
288
|
+
expected3 = [[21, 7], [22, 23], [18, 12], [28, 4], [28, 26],
|
289
|
+
[17, 27], [13, 20], [10, 11], [14, 5]]
|
290
|
+
assert_equal(expected3.size, corners3.size)
|
291
|
+
expected3.each_with_index { |e, i|
|
292
|
+
assert_equal(e[0], corners3[i].x.to_i)
|
293
|
+
assert_equal(e[1], corners3[i].y.to_i)
|
294
|
+
}
|
295
|
+
|
296
|
+
expected4 = [[24, 8], [20, 23], [16, 11],
|
297
|
+
[20, 16],[27, 28], [28, 2]]
|
298
|
+
assert_equal(expected4.size, corners4.size)
|
299
|
+
expected4.each_with_index { |e, i|
|
300
|
+
assert_equal(e[0], corners4[i].x.to_i)
|
301
|
+
assert_equal(e[1], corners4[i].y.to_i)
|
302
|
+
}
|
303
|
+
|
304
|
+
expected5 = [[24, 7], [20, 23], [17, 11], [26, 29], [30, 24],
|
305
|
+
[19, 16], [28, 2], [13, 18], [14, 4]]
|
306
|
+
assert_equal(expected5.size, corners5.size)
|
307
|
+
expected5.each_with_index { |e, i|
|
308
|
+
assert_equal(e[0], corners5[i].x.to_i)
|
309
|
+
assert_equal(e[1], corners5[i].y.to_i)
|
310
|
+
}
|
311
|
+
|
312
|
+
assert_equal(1, corners6.size)
|
313
|
+
assert_equal(24, corners6[0].x.to_i)
|
314
|
+
assert_equal(7, corners6[0].y.to_i)
|
315
|
+
|
316
|
+
assert_raise(ArgumentError) {
|
317
|
+
mat0.good_features_to_track(0.2, 5, max: 0)
|
318
|
+
}
|
319
|
+
|
320
|
+
assert_raise(TypeError) {
|
321
|
+
mat0.good_features_to_track(DUMMY_OBJ, 5)
|
322
|
+
}
|
323
|
+
assert_raise(TypeError) {
|
324
|
+
mat0.good_features_to_track(0.2, DUMMY_OBJ)
|
325
|
+
}
|
326
|
+
assert_raise(TypeError) {
|
327
|
+
mat0.good_features_to_track(0.2, 5, mask: DUMMY_OBJ)
|
328
|
+
}
|
329
|
+
assert_raise(TypeError) {
|
330
|
+
mat0.good_features_to_track(0.2, 5, block_size: DUMMY_OBJ)
|
331
|
+
}
|
332
|
+
assert_raise(TypeError) {
|
333
|
+
mat0.good_features_to_track(0.2, 5, k: DUMMY_OBJ)
|
334
|
+
}
|
335
|
+
assert_raise(TypeError) {
|
336
|
+
mat0.good_features_to_track(0.2, 5, max: DUMMY_OBJ)
|
337
|
+
}
|
338
|
+
mat0.good_features_to_track(0.2, 5, use_harris: DUMMY_OBJ)
|
339
|
+
end
|
340
|
+
|
341
|
+
def test_rect_sub_pix
|
342
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
343
|
+
center = CvPoint2D32f.new(mat0.width / 2, mat0.height / 2)
|
344
|
+
mat1 = mat0.rect_sub_pix(center)
|
345
|
+
mat2 = mat0.rect_sub_pix(center, mat0.size)
|
346
|
+
mat3 = mat0.rect_sub_pix(center, CvSize.new(512, 512))
|
347
|
+
|
348
|
+
assert_equal('b3dc0e31260dd42b5341471e23e825d3', hash_img(mat1))
|
349
|
+
assert_equal('b3dc0e31260dd42b5341471e23e825d3', hash_img(mat2))
|
350
|
+
assert_equal('cc27ce8f4068efedcd31c4c782c3825c', hash_img(mat3))
|
351
|
+
|
352
|
+
assert_raise(TypeError) {
|
353
|
+
mat0.rect_sub_pix(DUMMY_OBJ)
|
354
|
+
}
|
355
|
+
assert_raise(TypeError) {
|
356
|
+
mat0.rect_sub_pix(center, DUMMY_OBJ)
|
357
|
+
}
|
358
|
+
end
|
359
|
+
|
360
|
+
def test_quadrangle_sub_pix
|
361
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
362
|
+
angle = 60 * Math::PI / 180
|
363
|
+
map_matrix = CvMat.new(2, 3, :cv32f, 1)
|
364
|
+
map_matrix[0] = CvScalar.new(Math.cos(angle))
|
365
|
+
map_matrix[1] = CvScalar.new(-Math.sin(angle))
|
366
|
+
map_matrix[2] = CvScalar.new(mat0.width * 0.5)
|
367
|
+
map_matrix[3] = CvScalar.new(-map_matrix[1][0])
|
368
|
+
map_matrix[4] = map_matrix[0]
|
369
|
+
map_matrix[5] = CvScalar.new(mat0.height * 0.5)
|
370
|
+
|
371
|
+
mat1 = mat0.quadrangle_sub_pix(map_matrix)
|
372
|
+
mat2 = mat0.quadrangle_sub_pix(map_matrix, mat0.size)
|
373
|
+
mat3 = mat0.quadrangle_sub_pix(map_matrix, CvSize.new(512, 512))
|
374
|
+
|
375
|
+
assert_equal('f170c05fa50c3ac2a762d7b3f5c4ae2f', hash_img(mat1))
|
376
|
+
assert_equal('f170c05fa50c3ac2a762d7b3f5c4ae2f', hash_img(mat2))
|
377
|
+
assert_equal('4d949d5083405381ad9ea09dcd95e5a2', hash_img(mat3))
|
378
|
+
|
379
|
+
assert_raise(TypeError) {
|
380
|
+
mat0.quadrangle_sub_pix(DUMMY_OBJ)
|
381
|
+
}
|
382
|
+
assert_raise(TypeError) {
|
383
|
+
mat0.quadrangle_sub_pix(map_matrix, DUMMY_OBJ)
|
384
|
+
}
|
385
|
+
# assert_raise(CvError) {
|
386
|
+
# mat0.quadrangle_sub_pix(CvMat.new(3, 3))
|
387
|
+
# }
|
388
|
+
end
|
389
|
+
|
390
|
+
def test_resize
|
391
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
392
|
+
size = CvSize.new(384, 384)
|
393
|
+
mat1 = mat0.resize(size)
|
394
|
+
mat2 = mat0.resize(size, CV_INTER_LINEAR)
|
395
|
+
mat3 = mat0.resize(size, CV_INTER_NN)
|
396
|
+
mat4 = mat0.resize(size, CV_INTER_AREA)
|
397
|
+
mat5 = mat0.resize(size, CV_INTER_CUBIC)
|
398
|
+
mat6 = mat0.resize(size, CV_INTER_LANCZOS4)
|
399
|
+
|
400
|
+
[mat1, mat2, mat3, mat4, mat5, mat6].each { |m|
|
401
|
+
assert_equal(size.width, m.cols)
|
402
|
+
assert_equal(size.height, m.rows)
|
403
|
+
assert_equal(mat0.depth, m.depth)
|
404
|
+
assert_equal(mat0.channel, m.channel)
|
405
|
+
}
|
406
|
+
|
407
|
+
assert_raise(TypeError) {
|
408
|
+
mat0.resize(DUMMY_OBJ)
|
409
|
+
}
|
410
|
+
assert_raise(TypeError) {
|
411
|
+
mat0.resize(size, DUMMY_OBJ)
|
412
|
+
}
|
413
|
+
|
414
|
+
# Uncomment the following lines to show the results
|
415
|
+
# snap(['original', mat0], ['default(linear)', mat1], ['linear', mat2],
|
416
|
+
# ['nn', mat3], ['area', mat4], ['cubic', mat5] , ['lanczos4', mat6])
|
417
|
+
end
|
418
|
+
|
419
|
+
def test_warp_affine
|
420
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
421
|
+
map_matrix = CvMat.new(2, 3, :cv32f, 1)
|
422
|
+
# center: (128, 128), angle: 25 deg., scale: 1.0
|
423
|
+
map_matrix[0] = CvScalar.new(0.90631)
|
424
|
+
map_matrix[1] = CvScalar.new(0.42262)
|
425
|
+
map_matrix[2] = CvScalar.new(-42.10254)
|
426
|
+
map_matrix[3] = CvScalar.new(-0.42262)
|
427
|
+
map_matrix[4] = CvScalar.new(0.90631)
|
428
|
+
map_matrix[5] = CvScalar.new(66.08774)
|
429
|
+
|
430
|
+
mat1 = mat0.warp_affine(map_matrix)
|
431
|
+
mat2 = mat0.warp_affine(map_matrix, CV_INTER_NN | CV_WARP_FILL_OUTLIERS)
|
432
|
+
mat3 = mat0.warp_affine(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow)
|
433
|
+
mat4 = mat0.warp_affine(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS | CV_WARP_INVERSE_MAP)
|
434
|
+
|
435
|
+
[mat1, mat2, mat3, mat4].each { |m|
|
436
|
+
assert_equal(mat0.cols, m.cols)
|
437
|
+
assert_equal(mat0.rows, m.rows)
|
438
|
+
assert_equal(mat0.depth, m.depth)
|
439
|
+
assert_equal(mat0.channel, m.channel)
|
440
|
+
}
|
441
|
+
|
442
|
+
assert_raise(TypeError) {
|
443
|
+
mat0.warp_affine(DUMMY_OBJ)
|
444
|
+
}
|
445
|
+
assert_raise(TypeError) {
|
446
|
+
mat0.warp_affine(map_matrix, DUMMY_OBJ)
|
447
|
+
}
|
448
|
+
|
449
|
+
# Uncomment the following lines to show the results
|
450
|
+
# snap mat0, mat1, mat2, mat3, mat4
|
451
|
+
end
|
452
|
+
|
453
|
+
def test_get_perspective_transform
|
454
|
+
from = [
|
455
|
+
OpenCV::CvPoint2D32f.new(540, 382),
|
456
|
+
OpenCV::CvPoint2D32f.new(802, 400),
|
457
|
+
OpenCV::CvPoint2D32f.new(850, 731),
|
458
|
+
OpenCV::CvPoint2D32f.new(540, 731),
|
459
|
+
]
|
460
|
+
to = [
|
461
|
+
OpenCV::CvPoint2D32f.new(0, 0),
|
462
|
+
OpenCV::CvPoint2D32f.new(233, 0),
|
463
|
+
OpenCV::CvPoint2D32f.new(233, 310),
|
464
|
+
OpenCV::CvPoint2D32f.new(0, 310),
|
465
|
+
]
|
466
|
+
transform = OpenCV::CvMat.get_perspective_transform(from, to)
|
467
|
+
assert_equal 3, transform.rows
|
468
|
+
assert_equal 3, transform.columns
|
469
|
+
expected = [
|
470
|
+
0.923332154750824,
|
471
|
+
0.0,
|
472
|
+
0.0,
|
473
|
+
1.4432899320127035e-15,
|
474
|
+
0.0,
|
475
|
+
0.0,
|
476
|
+
-498.599365234375,
|
477
|
+
0.0,
|
478
|
+
0.0,
|
479
|
+
]
|
480
|
+
3.times do |i|
|
481
|
+
3.times do |j|
|
482
|
+
assert_in_delta(expected.shift, transform[i][j], 0.001)
|
483
|
+
end
|
484
|
+
end
|
485
|
+
end
|
486
|
+
|
487
|
+
def test_rotation_matrix2D
|
488
|
+
mat1 = CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), 60, 2.0)
|
489
|
+
expected = [1.0, 1.73205, -34.64102,
|
490
|
+
-1.73205, 1.0, 17.32051]
|
491
|
+
assert_equal(2, mat1.rows)
|
492
|
+
assert_equal(3, mat1.cols)
|
493
|
+
assert_equal(:cv32f, mat1.depth)
|
494
|
+
assert_equal(1, mat1.channel)
|
495
|
+
expected.each_with_index { |x, i|
|
496
|
+
assert_in_delta(x, mat1[i][0], 0.001)
|
497
|
+
}
|
498
|
+
|
499
|
+
assert_raise(TypeError) {
|
500
|
+
CvMat.rotation_matrix2D(DUMMY_OBJ, 60, 2.0)
|
501
|
+
}
|
502
|
+
assert_raise(TypeError) {
|
503
|
+
CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), DUMMY_OBJ, 2.0)
|
504
|
+
}
|
505
|
+
assert_raise(TypeError) {
|
506
|
+
CvMat.rotation_matrix2D(CvPoint2D32f.new(10, 20), 60, DUMMY_OBJ)
|
507
|
+
}
|
508
|
+
end
|
509
|
+
|
510
|
+
def test_warp_perspective
|
511
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
512
|
+
# Homography
|
513
|
+
# <src> => <dst>
|
514
|
+
# (0, 0) => (50, 0)
|
515
|
+
# (255, 0) => (205, 0)
|
516
|
+
# (255, 255) => (255, 220)
|
517
|
+
# (0, 255) => (0, 275)
|
518
|
+
map_matrix = CvMat.new(3, 3, :cv32f, 1)
|
519
|
+
map_matrix[0] = CvScalar.new(0.72430)
|
520
|
+
map_matrix[1] = CvScalar.new(-0.19608)
|
521
|
+
map_matrix[2] = CvScalar.new(50.00000)
|
522
|
+
map_matrix[3] = CvScalar.new(0.0)
|
523
|
+
map_matrix[4] = CvScalar.new(0.62489)
|
524
|
+
map_matrix[5] = CvScalar.new(0.0)
|
525
|
+
map_matrix[6] = CvScalar.new(0.00057)
|
526
|
+
map_matrix[7] = CvScalar.new(-0.00165)
|
527
|
+
map_matrix[8] = CvScalar.new(1.00000)
|
528
|
+
|
529
|
+
mat1 = mat0.warp_perspective(map_matrix)
|
530
|
+
mat2 = mat0.warp_perspective(map_matrix, CV_INTER_NN)
|
531
|
+
mat3 = mat0.warp_perspective(map_matrix, CV_INTER_LINEAR | CV_WARP_INVERSE_MAP)
|
532
|
+
mat4 = mat0.warp_perspective(map_matrix, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow)
|
533
|
+
|
534
|
+
[mat1, mat2, mat3, mat4].each { |m|
|
535
|
+
assert_equal(mat0.cols, m.cols)
|
536
|
+
assert_equal(mat0.rows, m.rows)
|
537
|
+
assert_equal(mat0.depth, m.depth)
|
538
|
+
assert_equal(mat0.channel, m.channel)
|
539
|
+
}
|
540
|
+
|
541
|
+
assert_raise(TypeError) {
|
542
|
+
mat0.warp_perspective(DUMMY_OBJ)
|
543
|
+
}
|
544
|
+
assert_raise(TypeError) {
|
545
|
+
mat0.warp_perspective(map_matrix, DUMMY_OBJ)
|
546
|
+
}
|
547
|
+
|
548
|
+
# Uncomment the following line to show the results
|
549
|
+
# snap mat0, mat1, mat2, mat3, mat4
|
550
|
+
end
|
551
|
+
|
552
|
+
def test_remap
|
553
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
554
|
+
matx = CvMat.new(mat0.height, mat0.width, :cv32f, 1).clear
|
555
|
+
maty = CvMat.new(mat0.height, mat0.width, :cv32f, 1).clear
|
556
|
+
|
557
|
+
cos30, sin30 = Math.cos(30 * Math::PI / 180), Math.sin(30 * Math::PI / 180)
|
558
|
+
half_width, half_height = mat0.width / 2, mat0.height / 2
|
559
|
+
mat0.height.times { |j|
|
560
|
+
mat0.width.times { |i|
|
561
|
+
x0 = i - half_width
|
562
|
+
y0 = j - half_height
|
563
|
+
x = x0 * cos30 - y0 * sin30 + half_width
|
564
|
+
y = x0 * sin30 + y0 * cos30 + half_height
|
565
|
+
matx[j, i] = CvScalar.new(x)
|
566
|
+
maty[j, i] = CvScalar.new(y)
|
567
|
+
}
|
568
|
+
}
|
569
|
+
|
570
|
+
mat1 = mat0.remap(matx, maty)
|
571
|
+
mat2 = mat0.remap(matx, maty, CV_INTER_NN)
|
572
|
+
mat3 = mat0.remap(matx, maty, CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, CvColor::Yellow)
|
573
|
+
|
574
|
+
[mat1, mat2, mat3].each { |m|
|
575
|
+
assert_equal(mat0.cols, m.cols)
|
576
|
+
assert_equal(mat0.rows, m.rows)
|
577
|
+
assert_equal(mat0.depth, m.depth)
|
578
|
+
assert_equal(mat0.channel, m.channel)
|
579
|
+
}
|
580
|
+
|
581
|
+
assert_raise(TypeError) {
|
582
|
+
mat0.remap(DUMMY_OBJ, maty)
|
583
|
+
}
|
584
|
+
assert_raise(TypeError) {
|
585
|
+
mat0.remap(matx, DUMMY_OBJ)
|
586
|
+
}
|
587
|
+
assert_raise(TypeError) {
|
588
|
+
mat0.remap(matx, maty, DUMMY_OBJ)
|
589
|
+
}
|
590
|
+
|
591
|
+
# Uncomment the following line to show the results
|
592
|
+
# snap mat0, mat1, mat2, mat3
|
593
|
+
end
|
594
|
+
|
595
|
+
def test_log_polar
|
596
|
+
mat0 = CvMat.load(FILENAME_FRUITS, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
597
|
+
|
598
|
+
mat1 = mat0.log_polar(CvSize.new(255, 255), CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40)
|
599
|
+
mat2 = mat0.log_polar(CvSize.new(255, 255), CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40,
|
600
|
+
CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS)
|
601
|
+
mat3 = mat1.log_polar(mat0.size, CvPoint2D32f.new(mat0.width / 2, mat0.height / 2), 40,
|
602
|
+
CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS | CV_WARP_INVERSE_MAP)
|
603
|
+
|
604
|
+
[mat1, mat2].each { |mat|
|
605
|
+
assert_equal(mat0.depth, mat.depth)
|
606
|
+
assert_equal(mat0.channel, mat.channel)
|
607
|
+
b, g, r = color_hists(mat)
|
608
|
+
assert_in_delta(4000000, b, 100000)
|
609
|
+
assert_in_delta(5860000, g, 100000)
|
610
|
+
assert_in_delta(7700000, r, 100000)
|
611
|
+
}
|
612
|
+
|
613
|
+
b, g, r = color_hists(mat3)
|
614
|
+
assert_equal(mat0.depth, mat3.depth)
|
615
|
+
assert_equal(mat0.channel, mat3.channel)
|
616
|
+
assert_in_delta(11200000, b, 1000000)
|
617
|
+
assert_in_delta(20800000, g, 1000000)
|
618
|
+
assert_in_delta(26900000, r, 1000000)
|
619
|
+
|
620
|
+
# Uncomment the following line to show the results
|
621
|
+
# snap mat0, mat1, mat2
|
622
|
+
end
|
623
|
+
|
624
|
+
def test_erode
|
625
|
+
mat0 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c|
|
626
|
+
if i >= 3 and i < 6 and j >= 3 and j < 6
|
627
|
+
CvScalar.new(255)
|
628
|
+
else
|
629
|
+
CvScalar.new(0)
|
630
|
+
end
|
631
|
+
}
|
632
|
+
|
633
|
+
mat1 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c|
|
634
|
+
if i >= 1 and i < 8 and j >= 1 and j < 8
|
635
|
+
CvScalar.new(255)
|
636
|
+
else
|
637
|
+
CvScalar.new(0)
|
638
|
+
end
|
639
|
+
}
|
640
|
+
|
641
|
+
mat2 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c|
|
642
|
+
if i == 2 or j == 2
|
643
|
+
CvScalar.new(255)
|
644
|
+
else
|
645
|
+
CvScalar.new(0)
|
646
|
+
end
|
647
|
+
}
|
648
|
+
|
649
|
+
mat3 = mat0.erode
|
650
|
+
mat4 = mat0.erode(nil, 1)
|
651
|
+
mat5 = mat1.erode(nil, 2)
|
652
|
+
mat6 = mat1.erode(IplConvKernel.new(5, 5, 2, 2, :cross))
|
653
|
+
mat7 = mat0.clone
|
654
|
+
mat7.erode!
|
655
|
+
|
656
|
+
assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat3))
|
657
|
+
assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat4))
|
658
|
+
assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat5))
|
659
|
+
assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat6))
|
660
|
+
assert_equal('075eb0e281328f768eb862735d16979d', hash_img(mat7))
|
661
|
+
|
662
|
+
assert_raise(TypeError) {
|
663
|
+
mat0.erode(DUMMY_OBJ)
|
664
|
+
}
|
665
|
+
assert_raise(TypeError) {
|
666
|
+
mat0.erode(nil, DUMMY_OBJ)
|
667
|
+
}
|
668
|
+
end
|
669
|
+
|
670
|
+
def test_dilate
|
671
|
+
mat0 = create_cvmat(9, 9, :cv8u, 1) { |j, i, c|
|
672
|
+
if i == 4 and j == 4
|
673
|
+
CvScalar.new(255)
|
674
|
+
else
|
675
|
+
CvScalar.new(0)
|
676
|
+
end
|
677
|
+
}
|
678
|
+
|
679
|
+
mat1 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c|
|
680
|
+
if i == 2 or j == 2
|
681
|
+
CvScalar.new(255)
|
682
|
+
else
|
683
|
+
CvScalar.new(0)
|
684
|
+
end
|
685
|
+
}
|
686
|
+
|
687
|
+
mat2 = mat0.dilate
|
688
|
+
mat3 = mat0.dilate(nil, 1)
|
689
|
+
mat4 = mat0.dilate(nil, 2)
|
690
|
+
mat5 = mat1.dilate(IplConvKernel.new(5, 5, 2, 2, :cross))
|
691
|
+
mat6 = mat0.clone
|
692
|
+
mat6.dilate!
|
693
|
+
|
694
|
+
assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat2))
|
695
|
+
assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat3))
|
696
|
+
assert_equal('ebf07f2a0edd2fd0fe26ff5921c6871b', hash_img(mat4))
|
697
|
+
assert_equal('2841937c35c311e947bee49864b9d295', hash_img(mat5))
|
698
|
+
assert_equal('9f02fc4438b1d69fea75a10dfd2b66b0', hash_img(mat6))
|
699
|
+
|
700
|
+
assert_raise(TypeError) {
|
701
|
+
mat0.dilate(DUMMY_OBJ)
|
702
|
+
}
|
703
|
+
assert_raise(TypeError) {
|
704
|
+
mat0.dilate(nil, DUMMY_OBJ)
|
705
|
+
}
|
706
|
+
end
|
707
|
+
|
708
|
+
def test_morphology
|
709
|
+
mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c|
|
710
|
+
if i >= 8 and i < 56 and j >= 8 and j < 56 and (i + j) % 15 != 0
|
711
|
+
CvScalar.new(255)
|
712
|
+
else
|
713
|
+
CvScalar.new(0)
|
714
|
+
end
|
715
|
+
}
|
716
|
+
|
717
|
+
# Open
|
718
|
+
kernel = IplConvKernel.new(5, 5, 2, 2, :cross)
|
719
|
+
mat1 = mat0.morphology(CV_MOP_OPEN, kernel)
|
720
|
+
mat2 = mat0.morphology(:open, kernel)
|
721
|
+
assert_equal('63ccb07cb93efb1563657f51e3d89252', hash_img(mat1))
|
722
|
+
assert_equal('63ccb07cb93efb1563657f51e3d89252', hash_img(mat2))
|
723
|
+
|
724
|
+
# Close
|
725
|
+
mat1 = mat0.morphology(CV_MOP_CLOSE, kernel)
|
726
|
+
mat2 = mat0.morphology(:close, kernel)
|
727
|
+
assert_equal('831c513d6ed86bce3f15c697de4a72f8', hash_img(mat1))
|
728
|
+
assert_equal('831c513d6ed86bce3f15c697de4a72f8', hash_img(mat2))
|
729
|
+
|
730
|
+
# Gradient
|
731
|
+
mat1 = mat0.morphology(CV_MOP_GRADIENT, kernel)
|
732
|
+
mat2 = mat0.morphology(:gradient, kernel)
|
733
|
+
assert_equal('1e8007c211d6f464cf8584e8e83b3c35', hash_img(mat1))
|
734
|
+
assert_equal('1e8007c211d6f464cf8584e8e83b3c35', hash_img(mat2))
|
735
|
+
|
736
|
+
# Top hat
|
737
|
+
mat1 = mat0.morphology(CV_MOP_TOPHAT, kernel)
|
738
|
+
mat2 = mat0.morphology(:tophat, kernel)
|
739
|
+
assert_equal('1760c5b63a52df37069164fe3e901aa4', hash_img(mat1))
|
740
|
+
assert_equal('1760c5b63a52df37069164fe3e901aa4', hash_img(mat2))
|
741
|
+
|
742
|
+
# Black hat
|
743
|
+
mat1 = mat0.morphology(CV_MOP_BLACKHAT, kernel)
|
744
|
+
mat2 = mat0.morphology(:blackhat, kernel)
|
745
|
+
assert_equal('18b1d51637b912a38133341ee006c6ff', hash_img(mat1))
|
746
|
+
assert_equal('18b1d51637b912a38133341ee006c6ff', hash_img(mat2))
|
747
|
+
|
748
|
+
[:open, :close, :gradient, :tophat, :blackhat].each { |type|
|
749
|
+
assert_raise(TypeError) {
|
750
|
+
mat0.morphology(type, DUMMY_OBJ)
|
751
|
+
}
|
752
|
+
}
|
753
|
+
end
|
754
|
+
|
755
|
+
def test_smooth
|
756
|
+
mat0 = CvMat.load(FILENAME_LENA32x32, CV_LOAD_IMAGE_GRAYSCALE)
|
757
|
+
|
758
|
+
assert_raise(TypeError) {
|
759
|
+
mat0.smooth(DUMMY_OBJ)
|
760
|
+
}
|
761
|
+
|
762
|
+
# Blur no scale
|
763
|
+
mat1 = mat0.smooth(CV_BLUR_NO_SCALE)
|
764
|
+
mat2 = mat0.smooth(:blur_no_scale, 3, 3)
|
765
|
+
mat3 = mat0.smooth(CV_BLUR_NO_SCALE, 7, 7)
|
766
|
+
mat4 = CvMat.new(32, 32, :cv32f, 1).smooth(:blur_no_scale)
|
767
|
+
|
768
|
+
[mat1, mat2, mat3].each { |m|
|
769
|
+
assert_equal(1, m.channel)
|
770
|
+
assert_equal(:cv16u, m.depth)
|
771
|
+
}
|
772
|
+
assert_equal(1, mat4.channel)
|
773
|
+
assert_equal(:cv32f, mat4.depth)
|
774
|
+
|
775
|
+
assert_equal('3c9074c87b65117798f48e41a17b2f30', hash_img(mat1))
|
776
|
+
assert_equal('3c9074c87b65117798f48e41a17b2f30', hash_img(mat2))
|
777
|
+
assert_equal('9c549aa406a425a65b036c2f9a2689e0', hash_img(mat3))
|
778
|
+
|
779
|
+
assert_raise(TypeError) {
|
780
|
+
mat0.smooth(CV_BLUR_NO_SCALE, DUMMY_OBJ, 0, 0, 0)
|
781
|
+
}
|
782
|
+
assert_raise(TypeError) {
|
783
|
+
mat0.smooth(CV_BLUR_NO_SCALE, 3, DUMMY_OBJ, 0, 0)
|
784
|
+
}
|
785
|
+
|
786
|
+
# Blur
|
787
|
+
mat1 = mat0.smooth(CV_BLUR)
|
788
|
+
mat2 = mat0.smooth(:blur, 3, 3)
|
789
|
+
mat3 = mat0.smooth(CV_BLUR, 7, 7)
|
790
|
+
mat4 = CvMat.new(32, 32, :cv16u, 1).smooth(:blur)
|
791
|
+
mat5 = CvMat.new(32, 32, :cv32f, 1).smooth(CV_BLUR)
|
792
|
+
mat6 = CvMat.new(32, 32, :cv8u, 3).smooth(:blur)
|
793
|
+
|
794
|
+
[mat1, mat2, mat3].each { |m|
|
795
|
+
assert_equal(1, m.channel)
|
796
|
+
assert_equal(:cv8u, m.depth)
|
797
|
+
}
|
798
|
+
assert_equal(1, mat4.channel)
|
799
|
+
assert_equal(:cv16u, mat4.depth)
|
800
|
+
assert_equal(1, mat5.channel)
|
801
|
+
assert_equal(:cv32f, mat5.depth)
|
802
|
+
assert_equal(3, mat6.channel)
|
803
|
+
assert_equal(:cv8u, mat6.depth)
|
804
|
+
|
805
|
+
assert_equal('f2473b5b964ae8950f6a7fa5cde4c67a', hash_img(mat1))
|
806
|
+
assert_equal('f2473b5b964ae8950f6a7fa5cde4c67a', hash_img(mat2))
|
807
|
+
assert_equal('d7bb344fc0f6ec0da4b9754d319e4e4a', hash_img(mat3))
|
808
|
+
|
809
|
+
assert_raise(TypeError) {
|
810
|
+
mat0.smooth(CV_BLUR, DUMMY_OBJ, 0, 0, 0)
|
811
|
+
}
|
812
|
+
assert_raise(TypeError) {
|
813
|
+
mat0.smooth(CV_BLUR, 3, DUMMY_OBJ, 0, 0)
|
814
|
+
}
|
815
|
+
|
816
|
+
# Gaussian
|
817
|
+
mat1 = mat0.smooth(CV_GAUSSIAN)
|
818
|
+
mat2 = mat0.smooth(:gaussian, 3, 3)
|
819
|
+
mat3 = mat0.smooth(CV_GAUSSIAN, 3, 3, 3)
|
820
|
+
mat4 = mat0.smooth(:gaussian, 3, 3, 3, 3)
|
821
|
+
mat5 = mat0.smooth(CV_GAUSSIAN, 7, 7, 5, 3)
|
822
|
+
|
823
|
+
mat6 = CvMat.new(32, 32, :cv16u, 1).smooth(CV_GAUSSIAN)
|
824
|
+
mat7 = CvMat.new(32, 32, :cv32f, 1).smooth(CV_GAUSSIAN)
|
825
|
+
mat8 = CvMat.new(32, 32, :cv8u, 3).smooth(CV_GAUSSIAN)
|
826
|
+
|
827
|
+
[mat1, mat2, mat3, mat4, mat5].each { |m|
|
828
|
+
assert_equal(1, m.channel)
|
829
|
+
assert_equal(:cv8u, m.depth)
|
830
|
+
}
|
831
|
+
assert_equal(1, mat6.channel)
|
832
|
+
assert_equal(:cv16u, mat6.depth)
|
833
|
+
assert_equal(1, mat7.channel)
|
834
|
+
assert_equal(:cv32f, mat7.depth)
|
835
|
+
assert_equal(3, mat8.channel)
|
836
|
+
assert_equal(:cv8u, mat8.depth)
|
837
|
+
|
838
|
+
assert_equal('580c88f3e0e317a5770be3f28f31eda2', hash_img(mat1))
|
839
|
+
assert_equal('580c88f3e0e317a5770be3f28f31eda2', hash_img(mat2))
|
840
|
+
assert_equal('a1ffaa14522719e37d75eec18ff8b309', hash_img(mat3))
|
841
|
+
assert_equal('a1ffaa14522719e37d75eec18ff8b309', hash_img(mat4))
|
842
|
+
assert_equal('f7f8b4eff3240ffc8f259ce975936d92', hash_img(mat5))
|
843
|
+
|
844
|
+
assert_raise(TypeError) {
|
845
|
+
mat0.smooth(CV_GAUSSIAN, DUMMY_OBJ, 0, 0, 0)
|
846
|
+
}
|
847
|
+
assert_raise(TypeError) {
|
848
|
+
mat0.smooth(CV_GAUSSIAN, 3, DUMMY_OBJ, 0, 0)
|
849
|
+
}
|
850
|
+
assert_raise(TypeError) {
|
851
|
+
mat0.smooth(CV_GAUSSIAN, 3, 0, DUMMY_OBJ, 0)
|
852
|
+
}
|
853
|
+
assert_raise(TypeError) {
|
854
|
+
mat0.smooth(CV_GAUSSIAN, 3, 0, 0, DUMMY_OBJ)
|
855
|
+
}
|
856
|
+
|
857
|
+
# Median
|
858
|
+
mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c|
|
859
|
+
if (i + j) % 15 != 0
|
860
|
+
CvScalar.new(255)
|
861
|
+
else
|
862
|
+
CvScalar.new(0)
|
863
|
+
end
|
864
|
+
}
|
865
|
+
(-1..1).each { |dy|
|
866
|
+
(-1..1).each { |dx|
|
867
|
+
mat0[32 + dy, 32 + dx] = CvScalar.new(0)
|
868
|
+
}
|
869
|
+
}
|
870
|
+
|
871
|
+
mat1 = mat0.smooth(CV_MEDIAN)
|
872
|
+
mat2 = mat0.smooth(:median, 3)
|
873
|
+
mat3 = mat0.smooth(CV_MEDIAN, 7)
|
874
|
+
mat4 = CvMat.new(64, 64, :cv8u, 3).smooth(CV_MEDIAN)
|
875
|
+
|
876
|
+
assert_equal('7343a41c542e034db356636c06134961', hash_img(mat1))
|
877
|
+
assert_equal('7343a41c542e034db356636c06134961', hash_img(mat2))
|
878
|
+
assert_equal('6ae59e64850377ee5470c854761551ea', hash_img(mat3))
|
879
|
+
|
880
|
+
assert_raise(TypeError) {
|
881
|
+
mat0.smooth(CV_MEDIAN, DUMMY_OBJ, 0, 0, 0)
|
882
|
+
}
|
883
|
+
|
884
|
+
# Bilateral
|
885
|
+
mat0 = create_cvmat(64, 64, :cv8u, 1) { |j, i, c|
|
886
|
+
if i > 32
|
887
|
+
(i + j) % 15 != 0 ? CvScalar.new(32) : CvScalar.new(224)
|
888
|
+
else
|
889
|
+
(i + j) % 15 != 0 ? CvScalar.new(224) : CvScalar.new(32)
|
890
|
+
end
|
891
|
+
}
|
892
|
+
|
893
|
+
mat1 = mat0.smooth(CV_BILATERAL)
|
894
|
+
mat2 = mat0.smooth(:bilateral, 3, 3)
|
895
|
+
mat3 = mat0.smooth(CV_BILATERAL, 7, 7)
|
896
|
+
mat4 = CvMat.new(64, 64, :cv8u, 3).smooth(CV_BILATERAL)
|
897
|
+
|
898
|
+
assert_raise(TypeError) {
|
899
|
+
mat0.smooth(CV_BILATERAL, DUMMY_OBJ, 0, 0, 0)
|
900
|
+
}
|
901
|
+
assert_raise(TypeError) {
|
902
|
+
mat0.smooth(CV_BILATERAL, 3, DUMMY_OBJ, 0, 0)
|
903
|
+
}
|
904
|
+
|
905
|
+
flunk('FIXME: Cases of CvMat#smooth(CV_BILATERAL) are not tested yet.')
|
906
|
+
end
|
907
|
+
|
908
|
+
def test_filter2d
|
909
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
910
|
+
kernel = CvMat.new(3, 3, :cv32f, 1)
|
911
|
+
|
912
|
+
# Laplacian filter kernel
|
913
|
+
laplace4 = [0, 1, 0,
|
914
|
+
1, -4, 1,
|
915
|
+
0, 1, 0]
|
916
|
+
laplace4.each_with_index { |x, i| kernel[i] = CvScalar.new(x) }
|
917
|
+
|
918
|
+
mat1 = mat0.filter2d(kernel)
|
919
|
+
mat2 = mat0.filter2d(kernel, CvPoint.new(-1, -1))
|
920
|
+
mat3 = mat0.filter2d(kernel, CvPoint.new(0, 0))
|
921
|
+
|
922
|
+
assert_equal('14a01cc47078e8f8fe4f0fd510d5521b', hash_img(mat1))
|
923
|
+
assert_equal('14a01cc47078e8f8fe4f0fd510d5521b', hash_img(mat2))
|
924
|
+
assert_equal('30e04de43f9240df6aadbaea6467b8fe', hash_img(mat3))
|
925
|
+
|
926
|
+
assert_raise(TypeError) {
|
927
|
+
mat0.filter2d(DUMMY_OBJ)
|
928
|
+
}
|
929
|
+
assert_raise(TypeError) {
|
930
|
+
mat0.filter2d(kernel, DUMMY_OBJ)
|
931
|
+
}
|
932
|
+
end
|
933
|
+
|
934
|
+
def test_copy_make_border
|
935
|
+
mat0 = create_cvmat(32, 32, :cv8u, 1) { CvScalar.new(128) }
|
936
|
+
|
937
|
+
[IPL_BORDER_CONSTANT, :constant].each { |type|
|
938
|
+
mat1 = mat0.copy_make_border(type, CvSize.new(64, 48), CvPoint.new(16, 8), 255)
|
939
|
+
assert_equal('5e231f8ca051b8f93e4aaa42d193d095', hash_img(mat1))
|
940
|
+
}
|
941
|
+
|
942
|
+
[IPL_BORDER_REPLICATE, :replicate].each { |type|
|
943
|
+
mat2 = mat0.copy_make_border(type, CvSize.new(300, 300), CvPoint.new(30, 30))
|
944
|
+
assert_equal('96940dc9e3abb6e2556ea51af1468031', hash_img(mat2))
|
945
|
+
}
|
946
|
+
|
947
|
+
assert_raise(TypeError) {
|
948
|
+
mat0.copy_make_border(DUMMY_OBJ, CvSize.new(64, 48), CvPoint.new(16, 8))
|
949
|
+
}
|
950
|
+
assert_raise(TypeError) {
|
951
|
+
mat0.copy_make_border(IPL_BORDER_CONSTANT, CvSize.new(64, 48), DUMMY_OBJ)
|
952
|
+
}
|
953
|
+
assert_raise(TypeError) {
|
954
|
+
mat0.copy_make_border(IPL_BORDER_CONSTANT, CvSize.new(64, 48), CvPoint.new(16, 8), DUMMY_OBJ)
|
955
|
+
}
|
956
|
+
assert_raise(ArgumentError) {
|
957
|
+
mat0.copy_make_border(:dummy, CvSize.new(64, 48), CvPoint.new(16, 8), DUMMY_OBJ)
|
958
|
+
}
|
959
|
+
end
|
960
|
+
|
961
|
+
def test_integral
|
962
|
+
mat0 = create_cvmat(3, 3, :cv8u, 1) { |j, i, n| CvScalar.new(n) }
|
963
|
+
|
964
|
+
result_sum = []
|
965
|
+
result_sqsum = []
|
966
|
+
result_tiled_sum = []
|
967
|
+
|
968
|
+
result1 = mat0.integral
|
969
|
+
assert_equal(CvMat, result1.class)
|
970
|
+
result_sum << result1
|
971
|
+
|
972
|
+
result2 = mat0.integral(true)
|
973
|
+
assert_equal(Array, result2.class)
|
974
|
+
assert_equal(2, result2.size)
|
975
|
+
assert(result2.all? {|a| a.class == CvMat})
|
976
|
+
result_sum << result2[0]
|
977
|
+
result_sqsum << result2[1]
|
978
|
+
|
979
|
+
result3 = mat0.integral(true, true)
|
980
|
+
assert_equal(Array, result3.class)
|
981
|
+
assert_equal(3, result3.size)
|
982
|
+
assert(result3.all? {|a| a.class == CvMat})
|
983
|
+
result_sum << result3[0]
|
984
|
+
result_sqsum << result3[1]
|
985
|
+
result_tiled_sum << result3[2]
|
986
|
+
|
987
|
+
result4 = mat0.integral(true, false)
|
988
|
+
assert_equal(Array, result4.class)
|
989
|
+
assert_equal(2, result4.size)
|
990
|
+
assert(result4.all? {|a| a.class == CvMat})
|
991
|
+
result_sum << result4[0]
|
992
|
+
result_sqsum << result4[1]
|
993
|
+
|
994
|
+
result5 = mat0.integral(false, true)
|
995
|
+
assert_equal(Array, result5.class)
|
996
|
+
assert_equal(2, result5.size)
|
997
|
+
assert(result5.all? {|a| a.class == CvMat})
|
998
|
+
result_sum << result5[0]
|
999
|
+
result_tiled_sum << result5[1]
|
1000
|
+
|
1001
|
+
(result_sum + result_sqsum + result_tiled_sum).each { |s|
|
1002
|
+
assert_equal(mat0.height + 1, s.height)
|
1003
|
+
assert_equal(mat0.width + 1, s.width)
|
1004
|
+
assert_equal(:cv64f, s.depth)
|
1005
|
+
assert_equal(1, s.channel)
|
1006
|
+
}
|
1007
|
+
|
1008
|
+
expected_sum = [0, 0, 0, 0,
|
1009
|
+
0, 0, 1, 3,
|
1010
|
+
0, 3, 8, 15,
|
1011
|
+
0, 9, 21, 36]
|
1012
|
+
result_sum.each { |sum|
|
1013
|
+
expected_sum.each_with_index { |x, i|
|
1014
|
+
assert_in_delta(x, sum[i][0], 0.001)
|
1015
|
+
}
|
1016
|
+
}
|
1017
|
+
|
1018
|
+
expected_sqsum = [0, 0, 0, 0,
|
1019
|
+
0, 0, 1, 5,
|
1020
|
+
0, 9, 26, 55,
|
1021
|
+
0, 45, 111, 204]
|
1022
|
+
result_sqsum.each { |sqsum|
|
1023
|
+
expected_sqsum.each_with_index { |x, i|
|
1024
|
+
assert_in_delta(x, sqsum[i][0], 0.001)
|
1025
|
+
}
|
1026
|
+
}
|
1027
|
+
|
1028
|
+
expected_tilted_sum = [0, 0, 0, 0,
|
1029
|
+
0, 0, 1, 2,
|
1030
|
+
0, 4, 7, 8,
|
1031
|
+
4, 16, 22, 20]
|
1032
|
+
result_tiled_sum.each { |tiled_sum|
|
1033
|
+
expected_tilted_sum.each_with_index { |x, i|
|
1034
|
+
assert_in_delta(x, tiled_sum[i][0], 0.001)
|
1035
|
+
}
|
1036
|
+
}
|
1037
|
+
|
1038
|
+
mat0.integral(DUMMY_OBJ, DUMMY_OBJ)
|
1039
|
+
end
|
1040
|
+
|
1041
|
+
def test_threshold
|
1042
|
+
mat0 = create_cvmat(3, 3, :cv8u, 1) { |j, i, n| CvScalar.new(n) }
|
1043
|
+
test_proc = lambda { |type, type_sym, expected_mat, expected_threshold|
|
1044
|
+
mat1 = mat0.threshold(expected_threshold, 7, type)
|
1045
|
+
mat2 = mat0.threshold(expected_threshold, 7, type_sym)
|
1046
|
+
[mat1, mat2].each { |m|
|
1047
|
+
expected_mat.each_with_index { |x, i|
|
1048
|
+
assert_equal(x, m[i][0])
|
1049
|
+
}
|
1050
|
+
}
|
1051
|
+
}
|
1052
|
+
|
1053
|
+
test_proc_with_otsu = lambda { |type, type_sym, expected_mat, expected_threshold|
|
1054
|
+
mat3, th3 = mat0.threshold(5, 7, type | CV_THRESH_OTSU)
|
1055
|
+
mat4, th4 = mat0.threshold(3, 7, type_sym, true)
|
1056
|
+
mat5, th5 = mat0.threshold(5, 7, type | CV_THRESH_OTSU, true)
|
1057
|
+
[mat3, mat4, mat5].each { |m|
|
1058
|
+
expected_mat.each_with_index { |x, i|
|
1059
|
+
assert_equal(x, m[i][0])
|
1060
|
+
}
|
1061
|
+
}
|
1062
|
+
[th3, th4, th5].each { |th|
|
1063
|
+
assert_in_delta(expected_threshold, th, 0.001)
|
1064
|
+
}
|
1065
|
+
}
|
1066
|
+
|
1067
|
+
# Binary
|
1068
|
+
expected = [0, 0, 0,
|
1069
|
+
0, 0, 7,
|
1070
|
+
7, 7, 7]
|
1071
|
+
test_proc.call(CV_THRESH_BINARY, :binary, expected, 4)
|
1072
|
+
|
1073
|
+
expected = [0, 0, 0,
|
1074
|
+
0, 7, 7,
|
1075
|
+
7, 7, 7]
|
1076
|
+
test_proc_with_otsu.call(CV_THRESH_BINARY, :binary, expected, 3)
|
1077
|
+
|
1078
|
+
# Binary inverse
|
1079
|
+
expected = [7, 7, 7,
|
1080
|
+
7, 7, 0,
|
1081
|
+
0, 0, 0]
|
1082
|
+
test_proc.call(CV_THRESH_BINARY_INV, :binary_inv, expected, 4)
|
1083
|
+
|
1084
|
+
expected = [7, 7, 7,
|
1085
|
+
7, 0, 0,
|
1086
|
+
0, 0, 0]
|
1087
|
+
test_proc_with_otsu.call(CV_THRESH_BINARY_INV, :binary_inv, expected, 3)
|
1088
|
+
|
1089
|
+
# Trunc
|
1090
|
+
expected = [0, 1, 2,
|
1091
|
+
3, 4, 4,
|
1092
|
+
4, 4, 4]
|
1093
|
+
test_proc.call(CV_THRESH_TRUNC, :trunc, expected, 4)
|
1094
|
+
|
1095
|
+
expected = [0, 1, 2,
|
1096
|
+
3, 3, 3,
|
1097
|
+
3, 3, 3]
|
1098
|
+
test_proc_with_otsu.call(CV_THRESH_TRUNC, :trunc, expected, 3)
|
1099
|
+
|
1100
|
+
# To zero
|
1101
|
+
expected = [0, 0, 0,
|
1102
|
+
0, 0, 5,
|
1103
|
+
6, 7, 8]
|
1104
|
+
test_proc.call(CV_THRESH_TOZERO, :tozero, expected, 4)
|
1105
|
+
|
1106
|
+
expected = [0, 0, 0,
|
1107
|
+
0, 4, 5,
|
1108
|
+
6, 7, 8]
|
1109
|
+
test_proc_with_otsu.call(CV_THRESH_TOZERO, :tozero, expected, 3)
|
1110
|
+
|
1111
|
+
# To zero inverse
|
1112
|
+
expected = [0, 1, 2,
|
1113
|
+
3, 4, 0,
|
1114
|
+
0, 0, 0]
|
1115
|
+
test_proc.call(CV_THRESH_TOZERO_INV, :tozero_inv, expected, 4)
|
1116
|
+
|
1117
|
+
expected = [0, 1, 2,
|
1118
|
+
3, 0, 0,
|
1119
|
+
0, 0, 0]
|
1120
|
+
test_proc_with_otsu.call(CV_THRESH_TOZERO_INV, :tozero_inv, expected, 3)
|
1121
|
+
|
1122
|
+
assert_raise(TypeError) {
|
1123
|
+
mat0.threshold(DUMMY_OBJ, 2, :binary)
|
1124
|
+
}
|
1125
|
+
assert_raise(TypeError) {
|
1126
|
+
mat0.threshold(1, DUMMY_OBJ, :binary)
|
1127
|
+
}
|
1128
|
+
assert_raise(TypeError) {
|
1129
|
+
mat0.threshold(1, 2, DUMMY_OBJ)
|
1130
|
+
}
|
1131
|
+
assert_raise(ArgumentError) {
|
1132
|
+
mat0.threshold(1, 2, :dummy)
|
1133
|
+
}
|
1134
|
+
mat0.threshold(1, 2, :binary, DUMMY_OBJ)
|
1135
|
+
end
|
1136
|
+
|
1137
|
+
def test_adaptive_threshold
|
1138
|
+
mat0 = create_cvmat(5, 5, :cv8u, 1) { |j, i, c| (c + 1) * 10 }
|
1139
|
+
|
1140
|
+
mat1 = mat0.adaptive_threshold(128)
|
1141
|
+
expected1 = [0, 0, 0, 0, 0, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128]
|
1142
|
+
expected1.each_with_index { |expected, i|
|
1143
|
+
assert_equal(expected, mat1[i][0])
|
1144
|
+
}
|
1145
|
+
|
1146
|
+
mat2a = mat0.adaptive_threshold(255, adaptive_method: :mean_c,
|
1147
|
+
threshold_type: :binary, block_size: 5,
|
1148
|
+
param1: 10)
|
1149
|
+
mat2b = mat0.adaptive_threshold(255, adaptive_method: CV_THRESH_BINARY,
|
1150
|
+
threshold_type: CV_ADAPTIVE_THRESH_MEAN_C, block_size: 5,
|
1151
|
+
param1: 10)
|
1152
|
+
expected2 = [0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255]
|
1153
|
+
[mat2a, mat2b].each { |mat2|
|
1154
|
+
assert_equal(CvMat, mat2.class)
|
1155
|
+
assert_equal(mat0.rows, mat2.rows)
|
1156
|
+
assert_equal(mat0.cols, mat2.cols)
|
1157
|
+
assert_equal(mat0.depth, mat2.depth)
|
1158
|
+
assert_equal(mat0.channel, mat2.channel)
|
1159
|
+
expected2.each_with_index { |expected, i|
|
1160
|
+
assert_equal(expected, mat2[i][0])
|
1161
|
+
}
|
1162
|
+
}
|
1163
|
+
|
1164
|
+
|
1165
|
+
mat3a = mat0.adaptive_threshold(255, adaptive_method: :gaussian_c,
|
1166
|
+
threshold_type: :binary_inv, block_size: 5,
|
1167
|
+
param1: 10)
|
1168
|
+
mat3b = mat0.adaptive_threshold(255, adaptive_method: CV_ADAPTIVE_THRESH_GAUSSIAN_C,
|
1169
|
+
threshold_type: CV_THRESH_BINARY_INV, block_size: 5,
|
1170
|
+
param1: 10)
|
1171
|
+
expected3 = [255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
1172
|
+
[mat3a, mat3b].each { |mat3|
|
1173
|
+
assert_equal(CvMat, mat3.class)
|
1174
|
+
assert_equal(mat0.rows, mat3.rows)
|
1175
|
+
assert_equal(mat0.cols, mat3.cols)
|
1176
|
+
assert_equal(mat0.depth, mat3.depth)
|
1177
|
+
assert_equal(mat0.channel, mat3.channel)
|
1178
|
+
expected3.each_with_index { |expected, i|
|
1179
|
+
assert_equal(expected, mat3[i][0])
|
1180
|
+
}
|
1181
|
+
}
|
1182
|
+
|
1183
|
+
assert_raise(TypeError) {
|
1184
|
+
mat0.adaptive_threshold(DUMMY_OBJ)
|
1185
|
+
}
|
1186
|
+
assert_raise(TypeError) {
|
1187
|
+
mat0.adaptive_threshold(0, DUMMY_OBJ)
|
1188
|
+
}
|
1189
|
+
assert_raise(TypeError) {
|
1190
|
+
mat0.adaptive_threshold(0, adaptive_method: DUMMY_OBJ)
|
1191
|
+
}
|
1192
|
+
assert_raise(TypeError) {
|
1193
|
+
mat0.adaptive_threshold(0, threshold_type: DUMMY_OBJ)
|
1194
|
+
}
|
1195
|
+
assert_raise(TypeError) {
|
1196
|
+
mat0.adaptive_threshold(0, block_size: DUMMY_OBJ)
|
1197
|
+
}
|
1198
|
+
assert_raise(TypeError) {
|
1199
|
+
mat0.adaptive_threshold(0, param1: DUMMY_OBJ)
|
1200
|
+
}
|
1201
|
+
end
|
1202
|
+
|
1203
|
+
def test_pyr_down
|
1204
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1205
|
+
mat1 = mat0.pyr_down
|
1206
|
+
mat2 = mat0.pyr_down(:gaussian_5x5)
|
1207
|
+
|
1208
|
+
assert_equal('de9ff2ffcf8e43f28564a201cf90b7f4', hash_img(mat1))
|
1209
|
+
assert_equal('de9ff2ffcf8e43f28564a201cf90b7f4', hash_img(mat2))
|
1210
|
+
|
1211
|
+
assert_raise(TypeError) {
|
1212
|
+
mat0.pyr_down(DUMMY_OBJ)
|
1213
|
+
}
|
1214
|
+
end
|
1215
|
+
|
1216
|
+
def test_pyr_up
|
1217
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1218
|
+
mat1 = mat0.pyr_up
|
1219
|
+
mat2 = mat0.pyr_up(:gaussian_5x5)
|
1220
|
+
|
1221
|
+
[mat1, mat2].each { |mat|
|
1222
|
+
assert_equal(mat0.cols * 2, mat.cols)
|
1223
|
+
assert_equal(mat0.rows * 2, mat.rows)
|
1224
|
+
assert_equal(mat0.depth, mat.depth)
|
1225
|
+
assert_equal(mat0.channel, mat.channel)
|
1226
|
+
b, g, r = color_hists(mat)
|
1227
|
+
assert_in_delta(27500000, b, 1000000)
|
1228
|
+
assert_in_delta(26000000, g, 1000000)
|
1229
|
+
assert_in_delta(47000000, r, 1000000)
|
1230
|
+
}
|
1231
|
+
# Uncomment the following lines to show the result
|
1232
|
+
# snap mat0, mat1, mat2
|
1233
|
+
|
1234
|
+
assert_raise(TypeError) {
|
1235
|
+
mat0.pyr_up(DUMMY_OBJ)
|
1236
|
+
}
|
1237
|
+
end
|
1238
|
+
|
1239
|
+
def test_flood_fill
|
1240
|
+
mat0 = create_cvmat(128, 256, :cv8u, 1) { |j, i, c|
|
1241
|
+
if (i >= 32 and i < 224) and (j >= 32 and j < 96)
|
1242
|
+
CvScalar.new(255)
|
1243
|
+
elsif (i >= 16 and i < 240) and (j >= 16 and j < 112)
|
1244
|
+
CvScalar.new(192)
|
1245
|
+
else
|
1246
|
+
CvScalar.new(128)
|
1247
|
+
end
|
1248
|
+
}
|
1249
|
+
|
1250
|
+
point = CvPoint.new(20, 20)
|
1251
|
+
mat1, comp1, mask1 = mat0.flood_fill(point, 0)
|
1252
|
+
mat2, comp2, mask2 = mat0.flood_fill(point, 0, CvScalar.new(64))
|
1253
|
+
mat3, comp3, mask3 = mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64))
|
1254
|
+
mat4, comp4, mask4 = mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64),
|
1255
|
+
{connectivity: 8, fixed_range: true, mask_only: true})
|
1256
|
+
mat05 = mat0.clone
|
1257
|
+
mat5, comp5, mask5 = mat05.flood_fill!(point, 0, CvScalar.new(0), CvScalar.new(64),
|
1258
|
+
{connectivity: 8, fixed_range: true, mask_only: true})
|
1259
|
+
|
1260
|
+
assert_equal(9216.0, comp1.area)
|
1261
|
+
assert_equal(16, comp1.rect.x)
|
1262
|
+
assert_equal(16, comp1.rect.y)
|
1263
|
+
assert_equal(224, comp1.rect.width)
|
1264
|
+
assert_equal(96, comp1.rect.height)
|
1265
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp1.value)
|
1266
|
+
|
1267
|
+
assert_equal(20480.0, comp2.area)
|
1268
|
+
assert_equal(0, comp2.rect.x)
|
1269
|
+
assert_equal(0, comp2.rect.y)
|
1270
|
+
assert_equal(256, comp2.rect.width)
|
1271
|
+
assert_equal(128, comp2.rect.height)
|
1272
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp2.value)
|
1273
|
+
|
1274
|
+
assert_equal(21504.0, comp3.area)
|
1275
|
+
assert_equal(16, comp3.rect.x)
|
1276
|
+
assert_equal(16, comp3.rect.y)
|
1277
|
+
assert_equal(224, comp3.rect.width)
|
1278
|
+
assert_equal(96, comp3.rect.height)
|
1279
|
+
assert_cvscalar_equal(CvScalar.new(0, 0, 0, 0), comp3.value)
|
1280
|
+
|
1281
|
+
assert_equal(21504.0, comp4.area)
|
1282
|
+
assert_equal(16, comp4.rect.x)
|
1283
|
+
assert_equal(16, comp4.rect.y)
|
1284
|
+
assert_equal(224, comp4.rect.width)
|
1285
|
+
assert_equal(96, comp4.rect.height)
|
1286
|
+
assert_cvscalar_equal(CvScalar.new(228, 0, 0, 0), comp4.value)
|
1287
|
+
|
1288
|
+
assert_equal(21504.0, comp5.area)
|
1289
|
+
assert_equal(16, comp5.rect.x)
|
1290
|
+
assert_equal(16, comp5.rect.y)
|
1291
|
+
assert_equal(224, comp5.rect.width)
|
1292
|
+
assert_equal(96, comp5.rect.height)
|
1293
|
+
assert_cvscalar_equal(CvScalar.new(228, 0, 0, 0), comp5.value)
|
1294
|
+
|
1295
|
+
assert_raise(TypeError) {
|
1296
|
+
mat0.flood_fill(DUMMY_OBJ, 0)
|
1297
|
+
}
|
1298
|
+
assert_raise(TypeError) {
|
1299
|
+
mat0.flood_fill(point, DUMMY_OBJ)
|
1300
|
+
}
|
1301
|
+
assert_raise(TypeError) {
|
1302
|
+
mat0.flood_fill(point, 0, DUMMY_OBJ)
|
1303
|
+
}
|
1304
|
+
assert_raise(TypeError) {
|
1305
|
+
mat0.flood_fill(point, 0, CvScalar.new(0), DUMMY_OBJ)
|
1306
|
+
}
|
1307
|
+
assert_raise(TypeError) {
|
1308
|
+
mat0.flood_fill(point, 0, CvScalar.new(0), CvScalar.new(64), DUMMY_OBJ)
|
1309
|
+
}
|
1310
|
+
end
|
1311
|
+
|
1312
|
+
def test_find_contours
|
1313
|
+
mat0 = CvMat.load(FILENAME_CONTOURS, CV_LOAD_IMAGE_GRAYSCALE)
|
1314
|
+
|
1315
|
+
# Make binary image
|
1316
|
+
mat0.height.times { |j|
|
1317
|
+
mat0.width.times { |i|
|
1318
|
+
mat0[j, i] = (mat0[j, i][0] < 128) ? CvColor::Black : CvColor::White
|
1319
|
+
}
|
1320
|
+
}
|
1321
|
+
|
1322
|
+
[mat0.find_contours, mat0.find_contours(mode: CV_RETR_LIST),
|
1323
|
+
mat0.find_contours(method: CV_CHAIN_APPROX_SIMPLE),
|
1324
|
+
mat0.find_contours(mode: CV_RETR_LIST, method: CV_CHAIN_APPROX_SIMPLE)].each { |contours|
|
1325
|
+
assert_not_nil(contours)
|
1326
|
+
assert_equal(8, contours.total)
|
1327
|
+
assert_not_nil(contours.h_next)
|
1328
|
+
assert_equal(4, contours.h_next.total)
|
1329
|
+
assert_not_nil(contours.h_next.h_next)
|
1330
|
+
assert_equal(8, contours.h_next.h_next.total)
|
1331
|
+
assert_not_nil(contours.h_next.h_next.h_next)
|
1332
|
+
assert_equal(4, contours.h_next.h_next.h_next.total)
|
1333
|
+
assert_nil(contours.v_next)
|
1334
|
+
assert_nil(contours.h_next.v_next)
|
1335
|
+
assert_nil(contours.h_next.h_next.v_next)
|
1336
|
+
assert_nil(contours.h_next.h_next.h_next.v_next)
|
1337
|
+
}
|
1338
|
+
|
1339
|
+
contours = mat0.find_contours(mode: CV_RETR_TREE)
|
1340
|
+
assert_not_nil(contours)
|
1341
|
+
assert_equal(4, contours.total)
|
1342
|
+
assert_not_nil(contours.v_next)
|
1343
|
+
assert_equal(8, contours.v_next.total)
|
1344
|
+
assert_nil(contours.v_next.v_next)
|
1345
|
+
assert_not_nil(contours.h_next)
|
1346
|
+
assert_equal(4, contours.h_next.total)
|
1347
|
+
assert_not_nil(contours.h_next.v_next)
|
1348
|
+
assert_equal(8, contours.h_next.v_next.total)
|
1349
|
+
assert_nil(contours.h_next.v_next.v_next)
|
1350
|
+
|
1351
|
+
contours = mat0.find_contours(mode: CV_RETR_CCOMP)
|
1352
|
+
assert_not_nil(contours)
|
1353
|
+
assert_equal(4, contours.total)
|
1354
|
+
assert_not_nil(contours.v_next)
|
1355
|
+
assert_equal(8, contours.v_next.total)
|
1356
|
+
assert_nil(contours.v_next.v_next)
|
1357
|
+
assert_not_nil(contours.h_next)
|
1358
|
+
assert_equal(4, contours.h_next.total)
|
1359
|
+
assert_not_nil(contours.h_next.v_next)
|
1360
|
+
assert_equal(8, contours.h_next.v_next.total)
|
1361
|
+
assert_nil(contours.h_next.v_next.v_next)
|
1362
|
+
|
1363
|
+
contours = mat0.find_contours(mode: CV_RETR_EXTERNAL)
|
1364
|
+
assert_not_nil(contours)
|
1365
|
+
assert_equal(4, contours.total)
|
1366
|
+
assert_nil(contours.v_next)
|
1367
|
+
assert_not_nil(contours.h_next)
|
1368
|
+
assert_equal(4, contours.h_next.total)
|
1369
|
+
assert_nil(contours.h_next.v_next)
|
1370
|
+
|
1371
|
+
contours = mat0.find_contours(mode: CV_RETR_TREE, method: CV_CHAIN_APPROX_NONE)
|
1372
|
+
assert_not_nil(contours)
|
1373
|
+
assert_equal(474, contours.total)
|
1374
|
+
assert_not_nil(contours.v_next)
|
1375
|
+
assert_equal(318, contours.v_next.total)
|
1376
|
+
assert_nil(contours.v_next.v_next)
|
1377
|
+
assert_not_nil(contours.h_next)
|
1378
|
+
assert_equal(396, contours.h_next.total)
|
1379
|
+
assert_not_nil(contours.h_next.v_next)
|
1380
|
+
assert_equal(240, contours.h_next.v_next.total)
|
1381
|
+
assert_nil(contours.h_next.v_next.v_next)
|
1382
|
+
|
1383
|
+
contours = mat0.find_contours(mode: CV_RETR_EXTERNAL, method: CV_CHAIN_CODE)
|
1384
|
+
assert_equal(474, contours.total)
|
1385
|
+
assert_equal(396, contours.h_next.total)
|
1386
|
+
|
1387
|
+
contours = mat0.find_contours(mode: CV_RETR_EXTERNAL, method: CV_CHAIN_APPROX_TC89_L1)
|
1388
|
+
assert_equal(4, contours.total)
|
1389
|
+
assert_equal(4, contours.h_next.total)
|
1390
|
+
|
1391
|
+
contours = mat0.find_contours(mode: CV_RETR_EXTERNAL, method: CV_CHAIN_APPROX_TC89_KCOS)
|
1392
|
+
assert_equal(4, contours.total)
|
1393
|
+
assert_equal(4, contours.h_next.total)
|
1394
|
+
|
1395
|
+
assert_raise(TypeError) {
|
1396
|
+
mat0.find_contours(DUMMY_OBJ)
|
1397
|
+
}
|
1398
|
+
assert_raise(CvStsUnsupportedFormat) {
|
1399
|
+
CvMat.new(10, 10, :cv32f, 3).find_contours
|
1400
|
+
}
|
1401
|
+
end
|
1402
|
+
|
1403
|
+
def test_pyr_mean_shift_filtering
|
1404
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1405
|
+
mat1 = mat0.pyr_mean_shift_filtering(30, 30)
|
1406
|
+
mat2 = mat0.pyr_mean_shift_filtering(30, 30, 2)
|
1407
|
+
mat3 = mat0.pyr_mean_shift_filtering(30, 30, nil, CvTermCriteria.new(3, 0.01))
|
1408
|
+
|
1409
|
+
[mat1, mat2, mat3].each { |mat|
|
1410
|
+
b, g, r = color_hists(mat)
|
1411
|
+
assert_in_delta(6900000, b, 100000)
|
1412
|
+
assert_in_delta(6500000, g, 100000)
|
1413
|
+
assert_in_delta(11800000, r, 100000)
|
1414
|
+
}
|
1415
|
+
|
1416
|
+
assert_raise(TypeError) {
|
1417
|
+
mat0.pyr_mean_shift_filtering(DUMMY_OBJ, 30)
|
1418
|
+
}
|
1419
|
+
assert_raise(TypeError) {
|
1420
|
+
mat0.pyr_mean_shift_filtering(30, DUMMY_OBJ)
|
1421
|
+
}
|
1422
|
+
assert_raise(TypeError) {
|
1423
|
+
mat0.pyr_mean_shift_filtering(30, 30, 2, DUMMY_OBJ)
|
1424
|
+
}
|
1425
|
+
end
|
1426
|
+
|
1427
|
+
def test_watershed
|
1428
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1429
|
+
marker = CvMat.new(mat0.cols, mat0.rows, :cv32s, 1).set_zero
|
1430
|
+
marker[150, 150] = CvScalar.new(1, 1, 1, 1)
|
1431
|
+
marker[210, 210] = CvScalar.new(2, 2, 2, 2)
|
1432
|
+
marker[40, 90] = CvScalar.new(3, 3, 3, 3)
|
1433
|
+
|
1434
|
+
mat1 = mat0.watershed(marker)
|
1435
|
+
assert_equal('ee6bec03296039c8df1899d3edc4684e', hash_img(mat1))
|
1436
|
+
|
1437
|
+
assert_raise(TypeError) {
|
1438
|
+
mat0.watershed(DUMMY_OBJ)
|
1439
|
+
}
|
1440
|
+
end
|
1441
|
+
|
1442
|
+
def test_moments
|
1443
|
+
mat = create_cvmat(128, 128, :cv8u, 1) { |j, i|
|
1444
|
+
if j >= 32 and j < 96 and i >= 16 and i < 112
|
1445
|
+
CvScalar.new(0)
|
1446
|
+
elsif j >= 16 and j < 112 and i >= 16 and i < 112
|
1447
|
+
CvScalar.new(128)
|
1448
|
+
else
|
1449
|
+
CvScalar.new(255)
|
1450
|
+
end
|
1451
|
+
}
|
1452
|
+
|
1453
|
+
moments1 = mat.moments
|
1454
|
+
moments2 = mat.moments(false)
|
1455
|
+
moments3 = mat.moments(true)
|
1456
|
+
|
1457
|
+
[moments1, moments2].each { |m|
|
1458
|
+
assert_in_delta(2221056, m.spatial(0, 0), 0.1)
|
1459
|
+
assert_in_delta(2221056, m.central(0, 0), 0.1)
|
1460
|
+
assert_in_delta(1, m.normalized_central(0, 0), 0.1)
|
1461
|
+
|
1462
|
+
hu_moments = m.hu
|
1463
|
+
assert_equal(CvHuMoments, hu_moments.class)
|
1464
|
+
assert_in_delta(0.001771, hu_moments.hu1, 0.000001)
|
1465
|
+
hu_moments.to_a[1..7].each { |hu|
|
1466
|
+
assert_in_delta(0.0, hu, 0.000001)
|
1467
|
+
}
|
1468
|
+
|
1469
|
+
center = m.gravity_center
|
1470
|
+
assert_equal(CvPoint2D32f, center.class)
|
1471
|
+
assert_in_delta(63.5, center.x, 0.001)
|
1472
|
+
assert_in_delta(63.5, center.y, 0.001)
|
1473
|
+
|
1474
|
+
assert_in_delta(0, m.angle, 0.001)
|
1475
|
+
|
1476
|
+
assert_in_delta(2221056, m.m00, 0.001)
|
1477
|
+
assert_in_delta(141037056, m.m10, 0.001)
|
1478
|
+
assert_in_delta(141037056, m.m01, 0.001)
|
1479
|
+
assert_in_delta(13157049856, m.m20, 0.001)
|
1480
|
+
assert_in_delta(8955853056, m.m11, 0.001)
|
1481
|
+
assert_in_delta(13492594176, m.m02, 0.001)
|
1482
|
+
assert_in_delta(1369024659456, m.m30, 0.001)
|
1483
|
+
assert_in_delta(835472665856, m.m21, 0.001)
|
1484
|
+
assert_in_delta(856779730176, m.m12, 0.001)
|
1485
|
+
assert_in_delta(1432945852416, m.m03, 0.001)
|
1486
|
+
assert_in_delta(4201196800, m.mu20, 0.001)
|
1487
|
+
assert_in_delta(0, m.mu11, 0.001)
|
1488
|
+
assert_in_delta(4536741120, m.mu02, 0.001)
|
1489
|
+
assert_in_delta(0, m.mu30, 0.001)
|
1490
|
+
assert_in_delta(0, m.mu21, 0.001)
|
1491
|
+
assert_in_delta(0, m.mu12, 0.001)
|
1492
|
+
assert_in_delta(0, m.mu03, 0.001)
|
1493
|
+
assert_in_delta(0.000671, m.inv_sqrt_m00, 0.000001)
|
1494
|
+
}
|
1495
|
+
|
1496
|
+
m = moments3
|
1497
|
+
assert_in_delta(10240, m.spatial(0, 0), 0.1)
|
1498
|
+
assert_in_delta(10240, m.central(0, 0), 0.1)
|
1499
|
+
assert_in_delta(1, m.normalized_central(0, 0), 0.1)
|
1500
|
+
|
1501
|
+
hu_moments = m.hu
|
1502
|
+
assert_equal(CvHuMoments, hu_moments.class)
|
1503
|
+
assert_in_delta(0.361650, hu_moments.hu1, 0.000001)
|
1504
|
+
assert_in_delta(0.000625, hu_moments.hu2, 0.000001)
|
1505
|
+
hu_moments.to_a[2..7].each { |hu|
|
1506
|
+
assert_in_delta(0.0, hu, 0.000001)
|
1507
|
+
}
|
1508
|
+
|
1509
|
+
center = m.gravity_center
|
1510
|
+
assert_equal(CvPoint2D32f, center.class)
|
1511
|
+
assert_in_delta(63.5, center.x, 0.001)
|
1512
|
+
assert_in_delta(63.5, center.y, 0.001)
|
1513
|
+
|
1514
|
+
assert_in_delta(0, m.angle, 0.001)
|
1515
|
+
|
1516
|
+
assert_in_delta(10240, m.m00, 0.001)
|
1517
|
+
assert_in_delta(650240, m.m10, 0.001)
|
1518
|
+
assert_in_delta(650240, m.m01, 0.001)
|
1519
|
+
assert_in_delta(58940416, m.m20, 0.001)
|
1520
|
+
assert_in_delta(41290240, m.m11, 0.001)
|
1521
|
+
assert_in_delta(61561856, m.m02, 0.001)
|
1522
|
+
assert_in_delta(5984288768, m.m30, 0.001)
|
1523
|
+
assert_in_delta(3742716416, m.m21, 0.001)
|
1524
|
+
assert_in_delta(3909177856, m.m12, 0.001)
|
1525
|
+
assert_in_delta(6483673088, m.m03, 0.001)
|
1526
|
+
assert_in_delta(17650176, m.mu20, 0.001)
|
1527
|
+
assert_in_delta(0, m.mu11, 0.001)
|
1528
|
+
assert_in_delta(20271616, m.mu02, 0.001)
|
1529
|
+
assert_in_delta(0, m.mu30, 0.001)
|
1530
|
+
assert_in_delta(0, m.mu21, 0.001)
|
1531
|
+
assert_in_delta(0, m.mu12, 0.001)
|
1532
|
+
assert_in_delta(0, m.mu03, 0.001)
|
1533
|
+
assert_in_delta(0.009882, m.inv_sqrt_m00, 0.000001)
|
1534
|
+
end
|
1535
|
+
|
1536
|
+
def test_hough_lines
|
1537
|
+
mat0 = CvMat.load(FILENAME_LINES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1538
|
+
# make a binary image
|
1539
|
+
mat = CvMat.new(mat0.rows, mat0.cols, :cv8u, 1)
|
1540
|
+
(mat0.rows * mat0.cols).times { |i|
|
1541
|
+
mat[i] = (mat0[i][0] <= 100) ? CvScalar.new(0) : CvScalar.new(255);
|
1542
|
+
}
|
1543
|
+
|
1544
|
+
[CV_HOUGH_STANDARD, :standard].each { |method|
|
1545
|
+
seq = mat.hough_lines(method, 1, Math::PI / 180, 65)
|
1546
|
+
assert_equal(4, seq.size)
|
1547
|
+
}
|
1548
|
+
|
1549
|
+
[CV_HOUGH_PROBABILISTIC, :probabilistic].each { |method|
|
1550
|
+
seq = mat.hough_lines(method, 1, Math::PI / 180, 40, 30, 10)
|
1551
|
+
assert_equal(4, seq.size)
|
1552
|
+
}
|
1553
|
+
|
1554
|
+
# [CV_HOUGH_MULTI_SCALE, :multi_scale].each { |method|
|
1555
|
+
# seq = mat.hough_lines(method, 1, Math::PI / 180, 40, 2, 3)
|
1556
|
+
# assert_equal(9, seq.size)
|
1557
|
+
# }
|
1558
|
+
|
1559
|
+
assert_raise(TypeError) {
|
1560
|
+
mat.hough_lines(DUMMY_OBJ, 1, Math::PI / 180, 40, 2, 3)
|
1561
|
+
}
|
1562
|
+
assert_raise(TypeError) {
|
1563
|
+
mat.hough_lines(CV_HOUGH_STANDARD, DUMMY_OBJ, Math::PI / 180, 40, 2, 3)
|
1564
|
+
}
|
1565
|
+
assert_raise(TypeError) {
|
1566
|
+
mat.hough_lines(CV_HOUGH_STANDARD, 1, DUMMY_OBJ, 40, 2, 3)
|
1567
|
+
}
|
1568
|
+
assert_raise(TypeError) {
|
1569
|
+
mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, DUMMY_OBJ, 2, 3)
|
1570
|
+
}
|
1571
|
+
assert_raise(TypeError) {
|
1572
|
+
mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, 40, DUMMY_OBJ, 3)
|
1573
|
+
}
|
1574
|
+
assert_raise(TypeError) {
|
1575
|
+
mat.hough_lines(CV_HOUGH_STANDARD, 1, Math::PI / 180, 40, 2, DUMMY_OBJ)
|
1576
|
+
}
|
1577
|
+
assert_raise(ArgumentError) {
|
1578
|
+
mat.hough_lines(:dummy, 1, Math::PI / 180, 40, 2, DUMMY_OBJ)
|
1579
|
+
}
|
1580
|
+
assert_raise(CvStsBadArg) {
|
1581
|
+
CvMat.new(10, 10, :cv32f, 3).hough_lines(:standard, 1, Math::PI / 180, 65)
|
1582
|
+
}
|
1583
|
+
end
|
1584
|
+
|
1585
|
+
def test_hough_circles
|
1586
|
+
mat0 = CvMat.load(FILENAME_LINES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1587
|
+
# make a binary image
|
1588
|
+
mat = CvMat.new(mat0.rows, mat0.cols, :cv8u, 1)
|
1589
|
+
(mat0.rows * mat0.cols).times { |i|
|
1590
|
+
mat[i] = (mat0[i][0] <= 100) ? CvScalar.new(0) : CvScalar.new(255);
|
1591
|
+
}
|
1592
|
+
|
1593
|
+
[mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 40, 10, 50),
|
1594
|
+
mat.hough_circles(:gradient, 1.5, 40, 100, 40, 10, 50),
|
1595
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 40),
|
1596
|
+
mat.hough_circles(:gradient, 1.5, 40, 100, 40)].each { |seq|
|
1597
|
+
assert_equal(2, seq.size)
|
1598
|
+
}
|
1599
|
+
|
1600
|
+
# Uncomment the following lines to show the result
|
1601
|
+
# seq = mat.hough_circles(:gradient, 1.5, 40, 100, 40, 10, 50)
|
1602
|
+
# seq.each { |circle|
|
1603
|
+
# mat0.circle!(circle.center, circle.radius, color: CvColor::Red, thickness: 2)
|
1604
|
+
# }
|
1605
|
+
# snap mat0
|
1606
|
+
|
1607
|
+
assert_raise(TypeError) {
|
1608
|
+
mat.hough_circles(DUMMY_OBJ, 1.5, 40, 100, 50, 10, 50)
|
1609
|
+
}
|
1610
|
+
assert_raise(TypeError) {
|
1611
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, DUMMY_OBJ, 40, 100, 50, 10, 50)
|
1612
|
+
}
|
1613
|
+
assert_raise(TypeError) {
|
1614
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, DUMMY_OBJ, 100, 50, 10, 50)
|
1615
|
+
}
|
1616
|
+
assert_raise(TypeError) {
|
1617
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, DUMMY_OBJ, 50, 10, 50)
|
1618
|
+
}
|
1619
|
+
assert_raise(TypeError) {
|
1620
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, DUMMY_OBJ, 10, 50)
|
1621
|
+
}
|
1622
|
+
assert_raise(TypeError) {
|
1623
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 50, DUMMY_OBJ, 50)
|
1624
|
+
}
|
1625
|
+
assert_raise(TypeError) {
|
1626
|
+
mat.hough_circles(CV_HOUGH_GRADIENT, 1.5, 40, 100, 50, 10, DUMMY_OBJ)
|
1627
|
+
}
|
1628
|
+
assert_raise(ArgumentError) {
|
1629
|
+
mat.hough_circles(:dummy, 1.5, 40, 100, 50, 10, DUMMY_OBJ)
|
1630
|
+
}
|
1631
|
+
assert_raise(CvStsBadArg) {
|
1632
|
+
CvMat.new(10, 10, :cv32f, 3).hough_circles(:gradient, 1.5, 40, 100, 50, 10, 50)
|
1633
|
+
}
|
1634
|
+
end
|
1635
|
+
|
1636
|
+
def test_inpaint
|
1637
|
+
mat = CvMat.load(FILENAME_LENA_INPAINT, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1638
|
+
mask = CvMat.load(FILENAME_INPAINT_MASK, CV_LOAD_IMAGE_GRAYSCALE)
|
1639
|
+
|
1640
|
+
[CV_INPAINT_NS, :ns].each { |method|
|
1641
|
+
result_ns = mat.inpaint(method, mask, 10)
|
1642
|
+
assert_in_delta(14000, count_threshold(result_ns, 128), 1000)
|
1643
|
+
}
|
1644
|
+
[CV_INPAINT_TELEA, :telea].each { |method|
|
1645
|
+
result_telea = mat.inpaint(method, mask, 10)
|
1646
|
+
assert_in_delta(13500, count_threshold(result_telea, 128), 1000)
|
1647
|
+
}
|
1648
|
+
|
1649
|
+
# Uncomment the following lines to show the results
|
1650
|
+
# result_ns = mat.inpaint(:ns, mask, 10)
|
1651
|
+
# result_telea = mat.inpaint(:telea, mask, 10)
|
1652
|
+
# snap mat, result_ns, result_telea
|
1653
|
+
|
1654
|
+
assert_raise(TypeError) {
|
1655
|
+
mat.inpaint(DUMMY_OBJ, mask, 10)
|
1656
|
+
}
|
1657
|
+
assert_raise(TypeError) {
|
1658
|
+
mat.inpaint(:ns, DUMMY_OBJ, 10)
|
1659
|
+
}
|
1660
|
+
assert_raise(TypeError) {
|
1661
|
+
mat.inpaint(:ns, mask, DUMMY_OBJ)
|
1662
|
+
}
|
1663
|
+
assert_raise(ArgumentError) {
|
1664
|
+
mat.inpaint(:dummy, mask, 10)
|
1665
|
+
}
|
1666
|
+
assert_raise(CvStsUnsupportedFormat) {
|
1667
|
+
CvMat.new(10, 10, :cv32f, 3).inpaint(:ns, CvMat.new(10, 10, :cv8u, 1), 10)
|
1668
|
+
}
|
1669
|
+
end
|
1670
|
+
|
1671
|
+
def test_equalize_hist
|
1672
|
+
mat = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
1673
|
+
result = mat.equalize_hist
|
1674
|
+
assert_equal(CvMat, result.class)
|
1675
|
+
assert_equal(mat.rows, result.rows)
|
1676
|
+
assert_equal(mat.cols, result.cols)
|
1677
|
+
|
1678
|
+
assert_raise(CvStsAssert) {
|
1679
|
+
CvMat.new(10, 10, :cv32f, 3).equalize_hist
|
1680
|
+
}
|
1681
|
+
|
1682
|
+
# Uncomment the following lines to show the result
|
1683
|
+
# snap mat, result
|
1684
|
+
end
|
1685
|
+
|
1686
|
+
def test_match_template
|
1687
|
+
mat = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1688
|
+
templ = CvMat.load(FILENAME_LENA_EYES, CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
|
1689
|
+
|
1690
|
+
expected_pt = CvPoint.new(100, 120)
|
1691
|
+
|
1692
|
+
# sqdiff
|
1693
|
+
result = mat.match_template(templ)
|
1694
|
+
pt = result.min_max_loc[2]
|
1695
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1696
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1697
|
+
|
1698
|
+
[CV_TM_SQDIFF, :sqdiff].each { |method|
|
1699
|
+
result = mat.match_template(templ, method)
|
1700
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1701
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1702
|
+
}
|
1703
|
+
|
1704
|
+
# sqdiff_normed
|
1705
|
+
[CV_TM_SQDIFF_NORMED, :sqdiff_normed].each { |method|
|
1706
|
+
result = mat.match_template(templ, method)
|
1707
|
+
pt = result.min_max_loc[2]
|
1708
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1709
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1710
|
+
}
|
1711
|
+
|
1712
|
+
# ccorr
|
1713
|
+
[CV_TM_CCORR, :ccorr].each { |method|
|
1714
|
+
result = mat.match_template(templ, method)
|
1715
|
+
pt = result.min_max_loc[3]
|
1716
|
+
assert_in_delta(110, pt.x, 20)
|
1717
|
+
assert_in_delta(60, pt.y, 20)
|
1718
|
+
}
|
1719
|
+
|
1720
|
+
# ccorr_normed
|
1721
|
+
[CV_TM_CCORR_NORMED, :ccorr_normed].each { |method|
|
1722
|
+
result = mat.match_template(templ, method)
|
1723
|
+
pt = result.min_max_loc[3]
|
1724
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1725
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1726
|
+
}
|
1727
|
+
|
1728
|
+
# ccoeff
|
1729
|
+
[CV_TM_CCOEFF, :ccoeff].each { |method|
|
1730
|
+
result = mat.match_template(templ, method)
|
1731
|
+
pt = result.min_max_loc[3]
|
1732
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1733
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1734
|
+
}
|
1735
|
+
|
1736
|
+
# ccoeff_normed
|
1737
|
+
[CV_TM_CCOEFF_NORMED, :ccoeff_normed].each { |method|
|
1738
|
+
result = mat.match_template(templ, method)
|
1739
|
+
pt = result.min_max_loc[3]
|
1740
|
+
assert_in_delta(expected_pt.x, pt.x, 20)
|
1741
|
+
assert_in_delta(expected_pt.y, pt.y, 20)
|
1742
|
+
}
|
1743
|
+
|
1744
|
+
# Uncomment the following lines to show the result
|
1745
|
+
# result = mat.match_template(templ)
|
1746
|
+
# pt1 = result.min_max_loc[2] # minimum location
|
1747
|
+
# pt2 = CvPoint.new(pt1.x + templ.width, pt1.y + templ.height)
|
1748
|
+
# mat.rectangle!(pt1, pt2, color: CvColor::Black, thickness: 3)
|
1749
|
+
# snap mat, templ, result
|
1750
|
+
|
1751
|
+
assert_raise(TypeError) {
|
1752
|
+
mat.match_template(DUMMY_OBJ)
|
1753
|
+
}
|
1754
|
+
assert_raise(TypeError) {
|
1755
|
+
mat.match_template(templ, DUMMY_OBJ)
|
1756
|
+
}
|
1757
|
+
end
|
1758
|
+
|
1759
|
+
def test_match_shapes
|
1760
|
+
mat_cv = CvMat.load(FILENAME_STR_CV, CV_LOAD_IMAGE_GRAYSCALE)
|
1761
|
+
mat_ov = CvMat.load(FILENAME_STR_OV, CV_LOAD_IMAGE_GRAYSCALE)
|
1762
|
+
mat_cv_rotated = CvMat.load(FILENAME_STR_CV_ROTATED, CV_LOAD_IMAGE_GRAYSCALE)
|
1763
|
+
|
1764
|
+
[CV_CONTOURS_MATCH_I1, :i1].each { |method|
|
1765
|
+
assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001)
|
1766
|
+
assert_in_delta(0.0010649, mat_cv.match_shapes(mat_ov, method), 0.00001)
|
1767
|
+
}
|
1768
|
+
|
1769
|
+
[CV_CONTOURS_MATCH_I2, :i2].each { |method|
|
1770
|
+
assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001)
|
1771
|
+
assert_in_delta(0.0104650, mat_cv.match_shapes(mat_ov, method), 0.00001)
|
1772
|
+
}
|
1773
|
+
|
1774
|
+
[CV_CONTOURS_MATCH_I3, :i3].each { |method|
|
1775
|
+
assert_in_delta(0, mat_cv.match_shapes(mat_cv_rotated, method), 0.00001)
|
1776
|
+
assert_in_delta(0.0033327, mat_cv.match_shapes(mat_ov, method), 0.00001)
|
1777
|
+
}
|
1778
|
+
end
|
1779
|
+
|
1780
|
+
def test_mean_shift
|
1781
|
+
flunk('FIXME: CvMat#mean_shift is not tested yet.')
|
1782
|
+
end
|
1783
|
+
|
1784
|
+
def test_cam_shift
|
1785
|
+
flunk('FIXME: CvMat#cam_shift is not tested yet.')
|
1786
|
+
end
|
1787
|
+
|
1788
|
+
def test_snake_image
|
1789
|
+
radius = 40
|
1790
|
+
center = CvPoint.new(128, 128)
|
1791
|
+
mat = CvMat.new(center.y * 2, center.x * 2, :cv8u, 1).zero!
|
1792
|
+
mat.circle!(center, radius, color: CvColor::White, thickness: -1)
|
1793
|
+
|
1794
|
+
num_points = 10
|
1795
|
+
alpha = 0.05
|
1796
|
+
beta = 0.05
|
1797
|
+
gamma = 0.9
|
1798
|
+
|
1799
|
+
arr_alpha = [alpha] * num_points
|
1800
|
+
arr_beta = [beta] * num_points
|
1801
|
+
arr_gamma = [gamma] * num_points
|
1802
|
+
size = CvSize.new(3, 3)
|
1803
|
+
term_criteria = CvTermCriteria.new(100, num_points / 2)
|
1804
|
+
|
1805
|
+
# initialize contours
|
1806
|
+
points = []
|
1807
|
+
num_points.times { |i|
|
1808
|
+
x = center.x * Math.cos(2 * Math::PI * i / num_points) + center.x
|
1809
|
+
y = center.y * Math.sin(2 * Math::PI * i / num_points) + center.y
|
1810
|
+
points << CvPoint.new(x, y)
|
1811
|
+
}
|
1812
|
+
|
1813
|
+
acceptable_error = 50
|
1814
|
+
|
1815
|
+
# test snake_image
|
1816
|
+
# calc_gradient = true
|
1817
|
+
[mat.snake_image(points, alpha, beta, gamma, size, term_criteria),
|
1818
|
+
mat.snake_image(points, alpha, beta, gamma, size, term_criteria, true),
|
1819
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria),
|
1820
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, true)].each { |result|
|
1821
|
+
assert_equal(num_points, result.size)
|
1822
|
+
result.each { |pt|
|
1823
|
+
x = pt.x - center.x
|
1824
|
+
y = pt.y - center.y
|
1825
|
+
error = Math.sqrt((x * x + y * y - radius * radius).abs)
|
1826
|
+
assert(error < acceptable_error)
|
1827
|
+
}
|
1828
|
+
}
|
1829
|
+
|
1830
|
+
# calc_gradient = false
|
1831
|
+
[mat.snake_image(points, alpha, beta, gamma, size, term_criteria, false),
|
1832
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, false)].each { |result|
|
1833
|
+
expected_points = [[149, 102], [139, 144], [95, 144], [56, 124], [17, 105],
|
1834
|
+
[25, 61], [63, 39], [101, 17], [145, 17], [158, 59]]
|
1835
|
+
assert_equal(num_points, result.size)
|
1836
|
+
result.each { |pt|
|
1837
|
+
x = pt.x - center.x
|
1838
|
+
y = pt.y - center.y
|
1839
|
+
error = Math.sqrt((x * x + y * y - radius * radius).abs)
|
1840
|
+
assert(error < acceptable_error)
|
1841
|
+
}
|
1842
|
+
}
|
1843
|
+
|
1844
|
+
# raise error
|
1845
|
+
assert_raise(TypeError) {
|
1846
|
+
mat.snake_image(DUMMY_OBJ, arr_alpha, arr_beta, arr_gamma, size, term_criteria)
|
1847
|
+
}
|
1848
|
+
assert_raise(TypeError) {
|
1849
|
+
mat.snake_image(points, DUMMY_OBJ, arr_beta, arr_gamma, size, term_criteria)
|
1850
|
+
}
|
1851
|
+
assert_raise(TypeError) {
|
1852
|
+
mat.snake_image(points, arr_alpha, DUMMY_OBJ, arr_gamma, size, term_criteria)
|
1853
|
+
}
|
1854
|
+
assert_raise(TypeError) {
|
1855
|
+
mat.snake_image(points, arr_alpha, arr_beta, DUMMY_OBJ, size, term_criteria)
|
1856
|
+
}
|
1857
|
+
assert_raise(TypeError) {
|
1858
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, DUMMY_OBJ, term_criteria)
|
1859
|
+
}
|
1860
|
+
assert_raise(TypeError) {
|
1861
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, DUMMY_OBJ)
|
1862
|
+
}
|
1863
|
+
mat.snake_image(points, arr_alpha, arr_beta, arr_gamma, size, term_criteria, DUMMY_OBJ)
|
1864
|
+
|
1865
|
+
assert_raise(ArgumentError) {
|
1866
|
+
mat.snake_image(points, arr_alpha[0 .. num_points / 2], arr_beta, arr_gamma, size, term_criteria)
|
1867
|
+
}
|
1868
|
+
assert_raise(CvBadNumChannels) {
|
1869
|
+
CvMat.new(10, 10, :cv8u, 3).snake_image(points, alpha, beta, gamma, size, term_criteria)
|
1870
|
+
}
|
1871
|
+
|
1872
|
+
# Uncomment the following lines to show the result
|
1873
|
+
# result = mat.clone.GRAY2BGR
|
1874
|
+
# pts = mat.snake_image(points, alpha, beta, gamma, size, term_criteria)
|
1875
|
+
# w = GUI::Window.new('HoughCircle')
|
1876
|
+
# result.poly_line!([pts], color: CvColor::Red, is_closed: true, thickness: 2)
|
1877
|
+
# result.poly_line!([points], color: CvColor::Yellow, is_closed: true, thickness: 2)
|
1878
|
+
# w.show result
|
1879
|
+
# GUI::wait_key
|
1880
|
+
end
|
1881
|
+
|
1882
|
+
def test_optical_flow_hs
|
1883
|
+
size = 128
|
1884
|
+
prev = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1885
|
+
if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size
|
1886
|
+
CvColor::Black
|
1887
|
+
else
|
1888
|
+
CvColor::White
|
1889
|
+
end
|
1890
|
+
}
|
1891
|
+
curr = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1892
|
+
if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size
|
1893
|
+
CvColor::Black
|
1894
|
+
else
|
1895
|
+
CvColor::White
|
1896
|
+
end
|
1897
|
+
}
|
1898
|
+
|
1899
|
+
[curr.optical_flow_hs(prev, nil, nil, lambda: 0.0005, criteria: CvTermCriteria.new(1, 0.001)),
|
1900
|
+
curr.optical_flow_hs(prev)].each { |velx, vely|
|
1901
|
+
assert_in_delta(60, count_threshold(velx, 1), 20)
|
1902
|
+
assert_in_delta(50, count_threshold(vely, 1), 20)
|
1903
|
+
}
|
1904
|
+
|
1905
|
+
velx, vely = curr.optical_flow_hs(prev, nil, nil, lambda: 0.001)
|
1906
|
+
assert_in_delta(60, count_threshold(velx, 1), 20)
|
1907
|
+
assert_in_delta(50, count_threshold(vely, 1), 20)
|
1908
|
+
|
1909
|
+
velx, vely = curr.optical_flow_hs(prev, nil, nil, criteria: CvTermCriteria.new(10, 0.01))
|
1910
|
+
assert_in_delta(130, count_threshold(velx, 1), 20)
|
1911
|
+
assert_in_delta(110, count_threshold(vely, 1), 20)
|
1912
|
+
|
1913
|
+
prev_velx, prev_vely = curr.optical_flow_hs(prev)
|
1914
|
+
velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely)
|
1915
|
+
assert_in_delta(70, count_threshold(velx, 1), 20)
|
1916
|
+
assert_in_delta(60, count_threshold(vely, 1), 20)
|
1917
|
+
|
1918
|
+
velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely, lambda: 0.001)
|
1919
|
+
assert_in_delta(80, count_threshold(velx, 1), 20)
|
1920
|
+
assert_in_delta(70, count_threshold(vely, 1), 20)
|
1921
|
+
|
1922
|
+
velx, vely = curr.optical_flow_hs(prev, prev_velx, prev_vely, criteria: CvTermCriteria.new(10, 0.01))
|
1923
|
+
assert_in_delta(150, count_threshold(velx, 1), 20)
|
1924
|
+
assert_in_delta(130, count_threshold(vely, 1), 20)
|
1925
|
+
|
1926
|
+
assert_raise(TypeError) {
|
1927
|
+
curr.optical_flow_hs(DUMMY_OBJ)
|
1928
|
+
}
|
1929
|
+
assert_raise(TypeError) {
|
1930
|
+
curr.optical_flow_hs(prev, DUMMY_OBJ, prev_vely)
|
1931
|
+
}
|
1932
|
+
assert_raise(TypeError) {
|
1933
|
+
curr.optical_flow_hs(prev, prev_velx, DUMMY_OBJ)
|
1934
|
+
}
|
1935
|
+
assert_raise(TypeError) {
|
1936
|
+
curr.optical_flow_hs(prev, prev_velx, prev_vely, DUMMY_OBJ)
|
1937
|
+
}
|
1938
|
+
assert_raise(CvStsUnmatchedFormats) {
|
1939
|
+
CvMat.new(10, 10, :cv8u, 3).optical_flow_hs(prev)
|
1940
|
+
}
|
1941
|
+
end
|
1942
|
+
|
1943
|
+
def test_optical_flow_lk
|
1944
|
+
size = 128
|
1945
|
+
prev = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1946
|
+
if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size
|
1947
|
+
CvColor::Black
|
1948
|
+
else
|
1949
|
+
CvColor::White
|
1950
|
+
end
|
1951
|
+
}
|
1952
|
+
curr = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1953
|
+
if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size
|
1954
|
+
CvColor::Black
|
1955
|
+
else
|
1956
|
+
CvColor::White
|
1957
|
+
end
|
1958
|
+
}
|
1959
|
+
|
1960
|
+
velx, vely = curr.optical_flow_lk(prev, CvSize.new(3, 3))
|
1961
|
+
assert_in_delta(100, count_threshold(velx, 1), 20)
|
1962
|
+
assert_in_delta(90, count_threshold(vely, 1), 20)
|
1963
|
+
|
1964
|
+
velx, vely = curr.optical_flow_lk(prev, CvSize.new(5, 5))
|
1965
|
+
assert_in_delta(180, count_threshold(velx, 1), 20)
|
1966
|
+
assert_in_delta(150, count_threshold(vely, 1), 20)
|
1967
|
+
|
1968
|
+
assert_raise(TypeError) {
|
1969
|
+
curr.optical_flow_lk(DUMMY_OBJ, CvSize.new(3, 3))
|
1970
|
+
}
|
1971
|
+
assert_raise(TypeError) {
|
1972
|
+
curr.optical_flow_lk(prev, DUMMY_OBJ)
|
1973
|
+
}
|
1974
|
+
assert_raise(CvStsUnmatchedFormats) {
|
1975
|
+
CvMat.new(10, 10, :cv8u, 3).optical_flow_lk(prev, CvSize.new(3, 3))
|
1976
|
+
}
|
1977
|
+
end
|
1978
|
+
|
1979
|
+
def test_optical_flow_bm
|
1980
|
+
size = 128
|
1981
|
+
prev = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1982
|
+
if ((i - (size / 2)) ** 2 ) + ((j - (size / 2)) ** 2 ) < size
|
1983
|
+
CvColor::Black
|
1984
|
+
else
|
1985
|
+
CvColor::White
|
1986
|
+
end
|
1987
|
+
}
|
1988
|
+
curr = create_cvmat(size, size, :cv8u, 1) { |j, i|
|
1989
|
+
if ((i - (size / 2) - 10) ** 2) + ((j - (size / 2) - 7) ** 2 ) < size
|
1990
|
+
CvColor::Black
|
1991
|
+
else
|
1992
|
+
CvColor::White
|
1993
|
+
end
|
1994
|
+
}
|
1995
|
+
|
1996
|
+
[curr.optical_flow_bm(prev, nil, nil, block_size: CvSize.new(4, 4),
|
1997
|
+
shift_size: CvSize.new(1, 1), max_range: CvSize.new(4, 4)),
|
1998
|
+
curr.optical_flow_bm(prev)].each { |velx, vely|
|
1999
|
+
assert_in_delta(350, count_threshold(velx, 1), 30)
|
2000
|
+
assert_in_delta(250, count_threshold(vely, 1), 30)
|
2001
|
+
}
|
2002
|
+
|
2003
|
+
velx, vely = curr.optical_flow_bm(prev, nil, nil, block_size: CvSize.new(3, 3))
|
2004
|
+
assert_in_delta(280, count_threshold(velx, 1), 30)
|
2005
|
+
assert_in_delta(200, count_threshold(vely, 1), 30)
|
2006
|
+
|
2007
|
+
velx, vely = curr.optical_flow_bm(prev, nil, nil, shift_size: CvSize.new(2, 2))
|
2008
|
+
assert_in_delta(80, count_threshold(velx, 1), 30)
|
2009
|
+
assert_in_delta(60, count_threshold(vely, 1), 30)
|
2010
|
+
|
2011
|
+
velx, vely = curr.optical_flow_bm(prev, nil, nil, max_range: CvSize.new(5, 5))
|
2012
|
+
assert_in_delta(400, count_threshold(velx, 1), 30)
|
2013
|
+
assert_in_delta(300, count_threshold(vely, 1), 30)
|
2014
|
+
|
2015
|
+
prev_velx, prev_vely = curr.optical_flow_bm(prev)
|
2016
|
+
velx, vely = curr.optical_flow_bm(prev, prev_velx, prev_vely)
|
2017
|
+
assert_in_delta(350, count_threshold(velx, 1), 30)
|
2018
|
+
assert_in_delta(270, count_threshold(vely, 1), 30)
|
2019
|
+
|
2020
|
+
assert_raise(TypeError) {
|
2021
|
+
curr.optical_flow_bm(DUMMY_OBJ)
|
2022
|
+
}
|
2023
|
+
assert_raise(TypeError) {
|
2024
|
+
curr.optical_flow_bm(prev, DUMMY_OBJ, prev_vely)
|
2025
|
+
}
|
2026
|
+
assert_raise(TypeError) {
|
2027
|
+
curr.optical_flow_bm(prev, prev_velx, DUMMY_OBJ)
|
2028
|
+
}
|
2029
|
+
assert_raise(TypeError) {
|
2030
|
+
curr.optical_flow_bm(prev, prev_velx, prev_vely, DUMMY_OBJ)
|
2031
|
+
}
|
2032
|
+
assert_raise(CvStsUnmatchedFormats) {
|
2033
|
+
CvMat.new(10, 10, :cv8u, 3).optical_flow_bm(prev)
|
2034
|
+
}
|
2035
|
+
end
|
2036
|
+
|
2037
|
+
def test_extract_surf
|
2038
|
+
mat0 = CvMat.load(FILENAME_LENA256x256, CV_LOAD_IMAGE_GRAYSCALE)
|
2039
|
+
|
2040
|
+
# simple
|
2041
|
+
keypoints1, descriptors1 = mat0.extract_surf(CvSURFParams.new(500, true, 2, 3))
|
2042
|
+
assert_equal(CvSeq, keypoints1.class)
|
2043
|
+
assert_equal(254, keypoints1.size)
|
2044
|
+
assert_equal(Array, descriptors1.class)
|
2045
|
+
assert_equal(254, descriptors1.size)
|
2046
|
+
assert_equal(Array, descriptors1[0].class)
|
2047
|
+
assert_equal(128, descriptors1[0].size)
|
2048
|
+
|
2049
|
+
# use mask
|
2050
|
+
mask = create_cvmat(mat0.rows, mat0.cols, :cv8u, 1) { |j, i|
|
2051
|
+
if i < mat0.cols / 2
|
2052
|
+
CvScalar.new(1)
|
2053
|
+
else
|
2054
|
+
CvScalar.new(0)
|
2055
|
+
end
|
2056
|
+
}
|
2057
|
+
keypoints2, descriptors2 = mat0.extract_surf(CvSURFParams.new(500, false), mask)
|
2058
|
+
assert_equal(CvSeq, keypoints2.class)
|
2059
|
+
assert_equal(170, keypoints2.size)
|
2060
|
+
assert_equal(Array, descriptors2.class)
|
2061
|
+
assert_equal(170, descriptors2.size)
|
2062
|
+
assert_equal(Array, descriptors2[0].class)
|
2063
|
+
assert_equal(64, descriptors2[0].size)
|
2064
|
+
|
2065
|
+
# raise exceptions because of invalid arguments
|
2066
|
+
assert_raise(TypeError) {
|
2067
|
+
mat0.extract_surf(DUMMY_OBJ)
|
2068
|
+
}
|
2069
|
+
assert_raise(TypeError) {
|
2070
|
+
mat0.extract_surf(CvSURFParams.new(500), DUMMY_OBJ)
|
2071
|
+
}
|
2072
|
+
|
2073
|
+
# Uncomment the following lines to show the result
|
2074
|
+
# results = []
|
2075
|
+
# [keypoints1, keypoints2].each { |kpts|
|
2076
|
+
# tmp = mat0.GRAY2BGR
|
2077
|
+
# kpts.each { |kp|
|
2078
|
+
# tmp.circle!(kp.pt, 3, color: CvColor::Red, thickness: 1, line_type: :aa)
|
2079
|
+
# }
|
2080
|
+
# results << tmp
|
2081
|
+
# }
|
2082
|
+
# snap mat0, *results
|
2083
|
+
end
|
2084
|
+
end
|
2085
|
+
|