bls12-381 0.2.2 → 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +5 -3
- data/bls12-381.gemspec +1 -1
- data/lib/bls/field.rb +163 -136
- data/lib/bls/h2c.rb +114 -0
- data/lib/bls/math.rb +4 -61
- data/lib/bls/pairing.rb +1 -1
- data/lib/bls/point/g1.rb +105 -0
- data/lib/bls/point/g2.rb +188 -0
- data/lib/bls/point.rb +13 -276
- data/lib/bls/version.rb +1 -1
- data/lib/bls.rb +89 -36
- metadata +19 -2
data/lib/bls/field.rb
CHANGED
@@ -13,10 +13,6 @@ module BLS
|
|
13
13
|
self.class.new(-value)
|
14
14
|
end
|
15
15
|
|
16
|
-
def ==(other)
|
17
|
-
value == other.value
|
18
|
-
end
|
19
|
-
|
20
16
|
def invert
|
21
17
|
x0 = 1
|
22
18
|
x1 = 0
|
@@ -75,23 +71,31 @@ module BLS
|
|
75
71
|
end
|
76
72
|
|
77
73
|
# Finite field over q.
|
78
|
-
class
|
74
|
+
class Fp
|
79
75
|
include Field
|
80
76
|
|
81
77
|
ORDER = BLS::Curve::P
|
82
78
|
MAX_BITS = Curve::P.bit_length
|
79
|
+
BYTES_LEN = (MAX_BITS / 8.0).ceil
|
83
80
|
|
84
81
|
attr_reader :value
|
85
82
|
|
86
83
|
def initialize(value)
|
87
|
-
raise ArgumentError, '
|
84
|
+
raise ArgumentError, 'value must be Integer.' unless value.is_a?(Integer)
|
88
85
|
|
89
86
|
@value = BLS.mod(value, ORDER)
|
90
87
|
end
|
91
88
|
|
92
|
-
ZERO =
|
93
|
-
ONE =
|
89
|
+
ZERO = Fp.new(0)
|
90
|
+
ONE = Fp.new(1)
|
94
91
|
|
92
|
+
def to_bytes
|
93
|
+
[to_hex].pack('H*')
|
94
|
+
end
|
95
|
+
|
96
|
+
def to_hex
|
97
|
+
value.to_s(16).rjust(2 * BYTES_LEN, '0')
|
98
|
+
end
|
95
99
|
end
|
96
100
|
|
97
101
|
# Finite field over r.
|
@@ -103,7 +107,7 @@ module BLS
|
|
103
107
|
attr_reader :value
|
104
108
|
|
105
109
|
def initialize(value)
|
106
|
-
raise ArgumentError, '
|
110
|
+
raise ArgumentError, 'value must be Integer.' unless value.is_a?(Integer)
|
107
111
|
|
108
112
|
@value = BLS.mod(value, ORDER)
|
109
113
|
end
|
@@ -111,10 +115,6 @@ module BLS
|
|
111
115
|
ZERO = Fr.new(0)
|
112
116
|
ONE = Fr.new(1)
|
113
117
|
|
114
|
-
def legendre
|
115
|
-
pow((order - 1) / 2)
|
116
|
-
end
|
117
|
-
|
118
118
|
end
|
119
119
|
|
120
120
|
# Module for a field over polynomial.
|
@@ -140,7 +140,7 @@ module BLS
|
|
140
140
|
alias - subtract
|
141
141
|
|
142
142
|
def div(other)
|
143
|
-
inv = other.is_a?(Integer) ?
|
143
|
+
inv = other.is_a?(Integer) ? Fp.new(other).invert.value : other.invert
|
144
144
|
multiply(inv)
|
145
145
|
end
|
146
146
|
alias / div
|
@@ -168,14 +168,26 @@ module BLS
|
|
168
168
|
def conjugate
|
169
169
|
self.class.new([coeffs[0], coeffs[1].negate])
|
170
170
|
end
|
171
|
+
|
172
|
+
# Convert to byte string.
|
173
|
+
# @return [String]
|
174
|
+
def to_bytes
|
175
|
+
[to_hex].pack('H*')
|
176
|
+
end
|
177
|
+
|
178
|
+
# Convert to hex string.
|
179
|
+
# @return [String]
|
180
|
+
def to_hex
|
181
|
+
coeffs.map(&:to_hex).join
|
182
|
+
end
|
171
183
|
end
|
172
184
|
|
173
185
|
# Finite extension field over irreducible polynomial.
|
174
|
-
#
|
175
|
-
class
|
186
|
+
# Fp(u) / (u^2 - β) where β = -1
|
187
|
+
class Fp2
|
176
188
|
include FQP
|
177
189
|
|
178
|
-
# For
|
190
|
+
# For Fp2 roots of unity.
|
179
191
|
RV1 = 0x6af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09
|
180
192
|
EV1 = 0x699be3b8c6870965e5bf892ad5d2cc7b0e85a117402dfd83b7f4a947e02d978498255a2aaec0ac627b5afbdf1bf1c90
|
181
193
|
EV2 = 0x8157cd83046453f5dd0972b6e3949e4288020b5b8a9cc99ca07e27089a2ce2436d965026adad3ef7baba37f2183e9b5
|
@@ -191,36 +203,36 @@ module BLS
|
|
191
203
|
def initialize(coeffs)
|
192
204
|
raise ArgumentError, 'Expected array with 2 elements' unless coeffs.size == 2
|
193
205
|
|
194
|
-
@coeffs = coeffs.map { |c| c.is_a?(Integer) ?
|
206
|
+
@coeffs = coeffs.map { |c| c.is_a?(Integer) ? Fp.new(c) : c }
|
195
207
|
end
|
196
208
|
|
197
|
-
ROOT =
|
198
|
-
ZERO =
|
199
|
-
ONE =
|
209
|
+
ROOT = Fp.new(-1)
|
210
|
+
ZERO = Fp2.new([0, 0])
|
211
|
+
ONE = Fp2.new([1, 0])
|
200
212
|
|
201
|
-
# Eighth roots of unity, used for computing square roots in
|
213
|
+
# Eighth roots of unity, used for computing square roots in Fp2.
|
202
214
|
ROOTS_OF_UNITY = [
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
215
|
+
Fp2.new([1, 0]),
|
216
|
+
Fp2.new([RV1, -RV1]),
|
217
|
+
Fp2.new([0, 1]),
|
218
|
+
Fp2.new([RV1, RV1]),
|
219
|
+
Fp2.new([-1, 0]),
|
220
|
+
Fp2.new([-RV1, RV1]),
|
221
|
+
Fp2.new([0, -1]),
|
222
|
+
Fp2.new([-RV1, -RV1])
|
211
223
|
].freeze
|
212
224
|
|
213
225
|
# eta values, used for computing sqrt(g(X1(t)))
|
214
226
|
ETAS = [
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
227
|
+
Fp2.new([EV1, EV2]),
|
228
|
+
Fp2.new([-EV2, EV1]),
|
229
|
+
Fp2.new([EV3, EV4]),
|
230
|
+
Fp2.new([-EV4, EV3])
|
219
231
|
].freeze
|
220
232
|
|
221
233
|
FROBENIUS_COEFFICIENTS = [
|
222
|
-
|
223
|
-
|
234
|
+
Fp.new(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001),
|
235
|
+
Fp.new(0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa)
|
224
236
|
].freeze
|
225
237
|
|
226
238
|
def values
|
@@ -233,47 +245,62 @@ module BLS
|
|
233
245
|
a = c0 + c1
|
234
246
|
b = c0 - c1
|
235
247
|
c = c0 + c0
|
236
|
-
|
248
|
+
Fp2.new([a * b, c * c1])
|
249
|
+
end
|
250
|
+
|
251
|
+
def sqrt
|
252
|
+
candidate = pow((Fp2::ORDER + 8) / 16)
|
253
|
+
check = candidate.square / self
|
254
|
+
r = ROOTS_OF_UNITY
|
255
|
+
divisor = [r[0], r[2], r[4], r[6]].find { |x| x == check }
|
256
|
+
return nil unless divisor
|
257
|
+
root = r[r.index(divisor) / 2]
|
258
|
+
raise Error, 'Invalid root' unless root
|
259
|
+
x1 = candidate / root
|
260
|
+
x2 = x1.negate
|
261
|
+
re1, im1 = x1.coeffs
|
262
|
+
re2, im2 = x2.coeffs
|
263
|
+
im1.value > im2.value || (im1 == im2 && re1.value > re2.value) ? x1 : x2
|
237
264
|
end
|
238
265
|
|
239
266
|
def multiply(other)
|
240
|
-
return
|
267
|
+
return Fp2.new(coeffs.map { |c| c * other }) if other.is_a?(Integer)
|
241
268
|
|
242
269
|
c0, c1 = coeffs
|
243
270
|
r0, r1 = other.coeffs
|
244
271
|
t1 = c0 * r0
|
245
272
|
t2 = c1 * r1
|
246
|
-
|
273
|
+
Fp2.new([t1 - t2, ((c0 + c1) * (r0 + r1)) - (t1 + t2)])
|
247
274
|
end
|
248
275
|
alias * multiply
|
249
276
|
|
250
277
|
def invert
|
251
278
|
a, b = values
|
252
|
-
factor =
|
253
|
-
|
279
|
+
factor = Fp.new(a * a + b * b).invert
|
280
|
+
Fp2.new([factor * a, factor * -b])
|
254
281
|
end
|
255
282
|
|
256
283
|
# Raises to q**i -th power
|
257
284
|
def frobenius_map(power)
|
258
|
-
|
285
|
+
Fp2.new([coeffs[0], coeffs[1] * Fp2::FROBENIUS_COEFFICIENTS[power % 2]])
|
259
286
|
end
|
260
287
|
|
261
288
|
def mul_by_non_residue
|
262
289
|
c0, c1 = coeffs
|
263
|
-
|
290
|
+
Fp2.new([c0 - c1, c0 + c1])
|
264
291
|
end
|
265
292
|
|
266
293
|
def multiply_by_b
|
267
294
|
c0, c1 = coeffs
|
268
295
|
t0 = c0 * 4
|
269
296
|
t1 = c1 * 4
|
270
|
-
|
297
|
+
Fp2.new([t0 - t1, t0 + t1])
|
271
298
|
end
|
272
299
|
end
|
273
300
|
|
274
301
|
# Finite extension field over irreducible polynomial.
|
275
|
-
#
|
276
|
-
class
|
302
|
+
# Fp2(v) / (v^3 - ξ) where ξ = u + 1
|
303
|
+
class Fp6
|
277
304
|
include FQP
|
278
305
|
|
279
306
|
attr_reader :coeffs
|
@@ -285,61 +312,61 @@ module BLS
|
|
285
312
|
end
|
286
313
|
|
287
314
|
def self.from_tuple(t)
|
288
|
-
|
315
|
+
Fp6.new([Fp2.new(t[0...2]), Fp2.new(t[2...4]), Fp2.new(t[4...6])])
|
289
316
|
end
|
290
317
|
|
291
|
-
ZERO =
|
292
|
-
ONE =
|
318
|
+
ZERO = Fp6.new([Fp2::ZERO, Fp2::ZERO, Fp2::ZERO])
|
319
|
+
ONE = Fp6.new([Fp2::ONE, Fp2::ZERO, Fp2::ZERO])
|
293
320
|
|
294
321
|
FROBENIUS_COEFFICIENTS_1 = [
|
295
|
-
|
322
|
+
Fp2.new([
|
296
323
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001,
|
297
324
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
298
325
|
]),
|
299
|
-
|
326
|
+
Fp2.new([
|
300
327
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
|
301
328
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac
|
302
329
|
]),
|
303
|
-
|
330
|
+
Fp2.new([
|
304
331
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe,
|
305
332
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
|
306
333
|
]),
|
307
|
-
|
334
|
+
Fp2.new([
|
308
335
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
|
309
336
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
|
310
337
|
]),
|
311
|
-
|
338
|
+
Fp2.new([
|
312
339
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac,
|
313
340
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
314
341
|
]),
|
315
|
-
|
342
|
+
Fp2.new([
|
316
343
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
|
317
344
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe
|
318
345
|
])
|
319
346
|
].freeze
|
320
347
|
|
321
348
|
FROBENIUS_COEFFICIENTS_2 = [
|
322
|
-
|
349
|
+
Fp2.new([
|
323
350
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001,
|
324
351
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
325
352
|
]),
|
326
|
-
|
353
|
+
Fp2.new([
|
327
354
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad,
|
328
355
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
329
356
|
]),
|
330
|
-
|
357
|
+
Fp2.new([
|
331
358
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac,
|
332
359
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
333
360
|
]),
|
334
|
-
|
361
|
+
Fp2.new([
|
335
362
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa,
|
336
363
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
337
364
|
]),
|
338
|
-
|
365
|
+
Fp2.new([
|
339
366
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe,
|
340
367
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
341
368
|
]),
|
342
|
-
|
369
|
+
Fp2.new([
|
343
370
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffff,
|
344
371
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
345
372
|
])
|
@@ -347,11 +374,11 @@ module BLS
|
|
347
374
|
|
348
375
|
# Multiply by quadratic non-residue v.
|
349
376
|
def mul_by_non_residue
|
350
|
-
|
377
|
+
Fp6.new([coeffs[2].mul_by_non_residue, coeffs[0], coeffs[1]])
|
351
378
|
end
|
352
379
|
|
353
380
|
def multiply(other)
|
354
|
-
return
|
381
|
+
return Fp6.new([coeffs[0] * other, coeffs[1] * other, coeffs[2] * other]) if other.is_a?(Integer)
|
355
382
|
|
356
383
|
c0, c1, c2 = coeffs
|
357
384
|
r0, r1, r2 = other.coeffs
|
@@ -359,7 +386,7 @@ module BLS
|
|
359
386
|
t1 = c1 * r1
|
360
387
|
t2 = c2 * r2
|
361
388
|
|
362
|
-
|
389
|
+
Fp6.new([
|
363
390
|
t0 + ((c1 + c2) * (r1 + r2) - (t1 + t2)).mul_by_non_residue,
|
364
391
|
(c0 + c1) * (r0 + r1) - (t0 + t1) + t2.mul_by_non_residue,
|
365
392
|
t1 + ((c0 + c2) * (r0 + r2) - (t0 + t2))
|
@@ -369,7 +396,7 @@ module BLS
|
|
369
396
|
|
370
397
|
# Sparse multiplication.
|
371
398
|
def multiply_by_1(b1)
|
372
|
-
|
399
|
+
Fp6.new([coeffs[2].multiply(b1).mul_by_non_residue, coeffs[0] * b1, coeffs[1] * b1])
|
373
400
|
end
|
374
401
|
|
375
402
|
# Sparse multiplication.
|
@@ -377,11 +404,11 @@ module BLS
|
|
377
404
|
c0, c1, c2 = coeffs
|
378
405
|
t0 = c0 * b0
|
379
406
|
t1 = c1 * b1
|
380
|
-
|
407
|
+
Fp6.new([((c1 + c2) * b1 - t1).mul_by_non_residue + t0, (b0 + b1) * (c0 + c1) - t0 - t1, (c0 + c2) * b0 - t0 + t1])
|
381
408
|
end
|
382
409
|
|
383
|
-
def
|
384
|
-
|
410
|
+
def multiply_by_fp2(other)
|
411
|
+
Fp6.new(coeffs.map { |c| c * other })
|
385
412
|
end
|
386
413
|
|
387
414
|
def square
|
@@ -390,7 +417,7 @@ module BLS
|
|
390
417
|
t1 = c0 * c1 * 2
|
391
418
|
t3 = c1 * c2 * 2
|
392
419
|
t4 = c2.square
|
393
|
-
|
420
|
+
Fp6.new([t3.mul_by_non_residue + t0, t4.mul_by_non_residue + t1, t1 + (c0 - c1 + c2).square + t3 - t0 - t4])
|
394
421
|
end
|
395
422
|
|
396
423
|
def invert
|
@@ -399,21 +426,21 @@ module BLS
|
|
399
426
|
t1 = c2.square.mul_by_non_residue - (c0 * c1)
|
400
427
|
t2 = c1.square - c0 * c2
|
401
428
|
t4 = ((c2 * t1 + c1 * t2).mul_by_non_residue + c0 * t0).invert
|
402
|
-
|
429
|
+
Fp6.new([t4 * t0, t4 * t1, t4 * t2])
|
403
430
|
end
|
404
431
|
|
405
432
|
def frobenius_map(power)
|
406
|
-
|
433
|
+
Fp6.new([
|
407
434
|
coeffs[0].frobenius_map(power),
|
408
|
-
coeffs[1].frobenius_map(power) *
|
409
|
-
coeffs[2].frobenius_map(power) *
|
435
|
+
coeffs[1].frobenius_map(power) * Fp6::FROBENIUS_COEFFICIENTS_1[power % 6],
|
436
|
+
coeffs[2].frobenius_map(power) * Fp6::FROBENIUS_COEFFICIENTS_2[power % 6]
|
410
437
|
])
|
411
438
|
end
|
412
439
|
end
|
413
440
|
|
414
441
|
# Finite extension field over irreducible polynomial.
|
415
|
-
#
|
416
|
-
class
|
442
|
+
# Fp6(w) / (w2 - γ) where γ = v
|
443
|
+
class Fp12
|
417
444
|
include FQP
|
418
445
|
|
419
446
|
attr_reader :coeffs
|
@@ -425,71 +452,71 @@ module BLS
|
|
425
452
|
end
|
426
453
|
|
427
454
|
def self.from_tuple(t)
|
428
|
-
|
455
|
+
Fp12.new([Fp6.from_tuple(t[0...6]), Fp6.from_tuple(t[6...12])])
|
429
456
|
end
|
430
457
|
|
431
|
-
ZERO =
|
432
|
-
ONE =
|
458
|
+
ZERO = Fp12.new([Fp6::ZERO, Fp6::ZERO])
|
459
|
+
ONE = Fp12.new([Fp6::ONE, Fp6::ZERO])
|
433
460
|
|
434
461
|
FROBENIUS_COEFFICIENTS = [
|
435
|
-
|
462
|
+
Fp2.new([
|
436
463
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001,
|
437
464
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
438
465
|
]),
|
439
|
-
|
466
|
+
Fp2.new([
|
440
467
|
0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8,
|
441
468
|
0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3
|
442
469
|
]),
|
443
|
-
|
470
|
+
Fp2.new([
|
444
471
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffff,
|
445
472
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
446
473
|
]),
|
447
|
-
|
474
|
+
Fp2.new([
|
448
475
|
0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2,
|
449
476
|
0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09
|
450
477
|
]),
|
451
|
-
|
478
|
+
Fp2.new([
|
452
479
|
0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe,
|
453
480
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
454
481
|
]),
|
455
|
-
|
482
|
+
Fp2.new([
|
456
483
|
0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995,
|
457
484
|
0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116
|
458
485
|
]),
|
459
|
-
|
486
|
+
Fp2.new([
|
460
487
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa,
|
461
488
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
462
489
|
]),
|
463
|
-
|
490
|
+
Fp2.new([
|
464
491
|
0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3,
|
465
492
|
0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8
|
466
493
|
]),
|
467
|
-
|
494
|
+
Fp2.new([
|
468
495
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac,
|
469
496
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
470
497
|
]),
|
471
|
-
|
498
|
+
Fp2.new([
|
472
499
|
0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09,
|
473
500
|
0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2
|
474
501
|
]),
|
475
|
-
|
502
|
+
Fp2.new([
|
476
503
|
0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad,
|
477
504
|
0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
|
478
505
|
]),
|
479
|
-
|
506
|
+
Fp2.new([
|
480
507
|
0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116,
|
481
508
|
0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995
|
482
509
|
])
|
483
510
|
].freeze
|
484
511
|
|
485
512
|
def multiply(other)
|
486
|
-
return
|
513
|
+
return Fp12.new([coeffs[0] * other, coeffs[1] * other]) if other.is_a?(Integer)
|
487
514
|
|
488
515
|
c0, c1 = coeffs
|
489
516
|
r0, r1 = other.coeffs
|
490
517
|
t1 = c0 * r0
|
491
518
|
t2 = c1 * r1
|
492
|
-
|
519
|
+
Fp12.new([t1 + t2.mul_by_non_residue, (c0 + c1) * (r0 + r1) - (t1 + t2)])
|
493
520
|
end
|
494
521
|
alias * multiply
|
495
522
|
|
@@ -497,35 +524,35 @@ module BLS
|
|
497
524
|
c0, c1 = coeffs
|
498
525
|
t0 = c0.multiply_by_01(o0, o1)
|
499
526
|
t1 = c1.multiply_by_1(o4)
|
500
|
-
|
527
|
+
Fp12.new([t1.mul_by_non_residue + t0, (c1 + c0).multiply_by_01(o0, o1 + o4) - t0 - t1])
|
501
528
|
end
|
502
529
|
|
503
|
-
def
|
504
|
-
|
530
|
+
def multiply_by_fp2(other)
|
531
|
+
Fp12.new(coeffs.map{ |c| c.multiply_by_fp2(other) })
|
505
532
|
end
|
506
533
|
|
507
534
|
def square
|
508
535
|
c0, c1 = coeffs
|
509
536
|
ab = c0 * c1
|
510
|
-
|
537
|
+
Fp12.new([(c1.mul_by_non_residue + c0) * (c0 + c1) - ab - ab.mul_by_non_residue, ab + ab])
|
511
538
|
end
|
512
539
|
|
513
540
|
def invert
|
514
541
|
c0, c1 = coeffs
|
515
542
|
t = (c0.square - c1.square.mul_by_non_residue).invert
|
516
|
-
|
543
|
+
Fp12.new([c0 * t, (c1 * t).negate])
|
517
544
|
end
|
518
545
|
|
519
546
|
def frobenius_map(power)
|
520
547
|
c0, c1 = coeffs
|
521
548
|
r0 = c0.frobenius_map(power)
|
522
549
|
c1_0, c1_1, c1_2 = c1.frobenius_map(power).coeffs
|
523
|
-
|
550
|
+
Fp12.new([
|
524
551
|
r0,
|
525
|
-
|
526
|
-
c1_0 *
|
527
|
-
c1_1 *
|
528
|
-
c1_2 *
|
552
|
+
Fp6.new([
|
553
|
+
c1_0 * Fp12::FROBENIUS_COEFFICIENTS[power % 12],
|
554
|
+
c1_1 * Fp12::FROBENIUS_COEFFICIENTS[power % 12],
|
555
|
+
c1_2 * Fp12::FROBENIUS_COEFFICIENTS[power % 12]])])
|
529
556
|
end
|
530
557
|
|
531
558
|
def final_exponentiate
|
@@ -544,17 +571,17 @@ module BLS
|
|
544
571
|
c0, c1 = coeffs
|
545
572
|
c0c0, c0c1, c0c2 = c0.coeffs
|
546
573
|
c1c0, c1c1, c1c2 = c1.coeffs
|
547
|
-
t3, t4 =
|
548
|
-
t5, t6 =
|
549
|
-
t7, t8 =
|
574
|
+
t3, t4 = fp4_square(c0c0, c1c1)
|
575
|
+
t5, t6 = fp4_square(c1c0, c0c2)
|
576
|
+
t7, t8 = fp4_square(c0c1, c1c2)
|
550
577
|
t9 = t8.mul_by_non_residue
|
551
|
-
|
552
|
-
|
553
|
-
|
578
|
+
Fp12.new([
|
579
|
+
Fp6.new([(t3 - c0c0) * 2 + t3, (t5 - c0c1) * 2 + t5, (t7 - c0c2) * 2 + t7]),
|
580
|
+
Fp6.new([(t9 + c1c0) * 2 + t9, (t4 + c1c1) * 2 + t4, (t6 + c1c2) * 2 + t6])])
|
554
581
|
end
|
555
582
|
|
556
583
|
def cyclotomic_exp(n)
|
557
|
-
z =
|
584
|
+
z = Fp12::ONE
|
558
585
|
i = BLS_X_LEN - 1
|
559
586
|
while i >= 0
|
560
587
|
z = z.cyclotomic_square
|
@@ -566,10 +593,10 @@ module BLS
|
|
566
593
|
|
567
594
|
private
|
568
595
|
|
569
|
-
# @param [
|
570
|
-
# @param [
|
596
|
+
# @param [Fp2] a
|
597
|
+
# @param [Fp2] b
|
571
598
|
# @return [Array]
|
572
|
-
def
|
599
|
+
def fp4_square(a, b)
|
573
600
|
a2 = a.square
|
574
601
|
b2 = b.square
|
575
602
|
[b2.mul_by_non_residue + a2, (a + b).square - a2 - b2]
|
@@ -577,10 +604,10 @@ module BLS
|
|
577
604
|
|
578
605
|
end
|
579
606
|
|
580
|
-
UT_ROOT = BLS::
|
581
|
-
WSQ = BLS::
|
607
|
+
UT_ROOT = BLS::Fp6.new([BLS::Fp2::ZERO, BLS::Fp2::ONE, BLS::Fp2::ZERO])
|
608
|
+
WSQ = BLS::Fp12.new([UT_ROOT, BLS::Fp6::ZERO])
|
582
609
|
WSQ_INV = WSQ.invert
|
583
|
-
WCU = BLS::
|
610
|
+
WCU = BLS::Fp12.new([BLS::Fp6::ZERO, UT_ROOT])
|
584
611
|
WCU_INV = WCU.invert
|
585
612
|
# 1 / F2(2)^((p - 1) / 3) in GF(p^2)
|
586
613
|
PSI2_C1 = 0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac
|
@@ -589,54 +616,54 @@ module BLS
|
|
589
616
|
P_MINUS_9_DIV_16 = (Curve::P**2 - 9) / 16
|
590
617
|
|
591
618
|
XNUM = [
|
592
|
-
|
619
|
+
Fp2.new([
|
593
620
|
0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6,
|
594
621
|
0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6]),
|
595
|
-
|
622
|
+
Fp2.new([
|
596
623
|
0x0,
|
597
624
|
0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71a]),
|
598
|
-
|
625
|
+
Fp2.new([
|
599
626
|
0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71e,
|
600
627
|
0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38d]),
|
601
|
-
|
628
|
+
Fp2.new([
|
602
629
|
0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d6108f142b85757098e38d0f671c7188e2aaaaaaaa5ed1,
|
603
630
|
0x0])
|
604
631
|
].freeze
|
605
632
|
XDEN = [
|
606
|
-
|
633
|
+
Fp2.new([
|
607
634
|
0x0,
|
608
635
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa63]),
|
609
|
-
|
636
|
+
Fp2.new([
|
610
637
|
0xc,
|
611
638
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9f]),
|
612
|
-
|
613
|
-
|
639
|
+
Fp2::ONE,
|
640
|
+
Fp2::ZERO
|
614
641
|
].freeze
|
615
642
|
YNUM = [
|
616
|
-
|
643
|
+
Fp2.new([
|
617
644
|
0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706,
|
618
645
|
0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706]),
|
619
|
-
|
646
|
+
Fp2.new([
|
620
647
|
0x0,
|
621
648
|
0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97be]),
|
622
|
-
|
649
|
+
Fp2.new([
|
623
650
|
0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71c,
|
624
651
|
0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38f]),
|
625
|
-
|
652
|
+
Fp2.new([
|
626
653
|
0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977c69aa274524e79097a56dc4bd9e1b371c71c718b10,
|
627
654
|
0x0])
|
628
655
|
].freeze
|
629
656
|
YDEN = [
|
630
|
-
|
657
|
+
Fp2.new([
|
631
658
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb,
|
632
659
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb]),
|
633
|
-
|
660
|
+
Fp2.new([
|
634
661
|
0x0,
|
635
662
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3]),
|
636
|
-
|
663
|
+
Fp2.new([
|
637
664
|
0x12,
|
638
665
|
0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99]),
|
639
|
-
|
666
|
+
Fp2.new([0x1, 0x0])
|
640
667
|
].freeze
|
641
668
|
|
642
669
|
ISOGENY_COEFFICIENTS = [XNUM, XDEN, YNUM, YDEN]
|
@@ -644,8 +671,8 @@ module BLS
|
|
644
671
|
module_function
|
645
672
|
|
646
673
|
def psi(x, y)
|
647
|
-
x2 = WSQ_INV.
|
648
|
-
y2 = WCU_INV.
|
674
|
+
x2 = WSQ_INV.multiply_by_fp2(x).frobenius_map(1).multiply(WSQ).coeffs[0].coeffs[0]
|
675
|
+
y2 = WCU_INV.multiply_by_fp2(y).frobenius_map(1).multiply(WCU).coeffs[0].coeffs[0]
|
649
676
|
[x2, y2]
|
650
677
|
end
|
651
678
|
|
@@ -654,7 +681,7 @@ module BLS
|
|
654
681
|
end
|
655
682
|
|
656
683
|
def miller_loop(ell, g1)
|
657
|
-
f12 =
|
684
|
+
f12 = Fp12::ONE
|
658
685
|
p_x, p_y = g1
|
659
686
|
i = BLS_X_LEN - 2
|
660
687
|
j = 0
|
@@ -681,13 +708,13 @@ module BLS
|
|
681
708
|
sign_0 || (zero_0 && sign_1)
|
682
709
|
end
|
683
710
|
|
684
|
-
def
|
711
|
+
def sqrt_div_fp2(u, v)
|
685
712
|
uv7 = u * v**7
|
686
713
|
uv15 = uv7 * v**8
|
687
714
|
gamma = uv15**P_MINUS_9_DIV_16 * uv7
|
688
715
|
success = false
|
689
716
|
result = gamma
|
690
|
-
positive_roots_of_unity =
|
717
|
+
positive_roots_of_unity = Fp2::ROOTS_OF_UNITY[0...4]
|
691
718
|
positive_roots_of_unity.each do |root|
|
692
719
|
candidate = root * gamma
|
693
720
|
if (candidate**2 * v - u).zero? && !success
|