biopsy 0.1.0.alpha
Sign up to get free protection for your applications and to get access to all the features.
- data/LICENSE.txt +7 -0
- data/README.md +49 -0
- data/Rakefile +8 -0
- data/lib/biopsy/base_extensions.rb +64 -0
- data/lib/biopsy/domain.rb +156 -0
- data/lib/biopsy/experiment.rb +103 -0
- data/lib/biopsy/objective_function.rb +38 -0
- data/lib/biopsy/objective_handler.rb +170 -0
- data/lib/biopsy/objectives/fastest_optimum.rb +26 -0
- data/lib/biopsy/opt_algorithm.rb +0 -0
- data/lib/biopsy/optimisers/genetic_algorithm.rb +244 -0
- data/lib/biopsy/optimisers/parameter_sweeper.rb +66 -0
- data/lib/biopsy/optimisers/tabu_search.rb +437 -0
- data/lib/biopsy/settings.rb +110 -0
- data/lib/biopsy/target.rb +113 -0
- data/lib/biopsy/version.rb +12 -0
- data/lib/biopsy.rb +13 -0
- data/test/helper.rb +187 -0
- data/test/test_domain.rb +61 -0
- data/test/test_experiment.rb +84 -0
- data/test/test_file.rb +20 -0
- data/test/test_hash.rb +55 -0
- data/test/test_objective_handler.rb +99 -0
- data/test/test_settings.rb +74 -0
- data/test/test_string.rb +14 -0
- data/test/test_target.rb +89 -0
- metadata +198 -0
@@ -0,0 +1,244 @@
|
|
1
|
+
require 'csv'
|
2
|
+
require 'pp'
|
3
|
+
|
4
|
+
$global = 0
|
5
|
+
|
6
|
+
module Biopsy
|
7
|
+
|
8
|
+
class Generation
|
9
|
+
attr_reader :best, :population_homogenosity
|
10
|
+
|
11
|
+
def initialize (population_size, parameter_ranges)
|
12
|
+
@population_homogenosity = 0
|
13
|
+
@population_size = population_size
|
14
|
+
@current_generation = []
|
15
|
+
@ranges = parameter_ranges
|
16
|
+
@MUTATION_RATE = 0.40
|
17
|
+
@best = {
|
18
|
+
:parameters => nil,
|
19
|
+
:score => 0.0
|
20
|
+
}
|
21
|
+
end
|
22
|
+
|
23
|
+
# insert the next chromosome into the generation
|
24
|
+
def next_chromosome (chromosome)
|
25
|
+
@current_generation += [chromosome]
|
26
|
+
end
|
27
|
+
|
28
|
+
def update_best? (current)
|
29
|
+
@best = current if current[:score] > @best[:score]
|
30
|
+
end
|
31
|
+
|
32
|
+
# is the generation now full?
|
33
|
+
def last?
|
34
|
+
return @current_generation.length == @population_size
|
35
|
+
end
|
36
|
+
|
37
|
+
def run_generation
|
38
|
+
#pp @current_generation if $global%100 == 0
|
39
|
+
$global += 1
|
40
|
+
#homogeneous_test
|
41
|
+
selection_process
|
42
|
+
crossover
|
43
|
+
|
44
|
+
return @current_generation
|
45
|
+
end
|
46
|
+
|
47
|
+
###################################
|
48
|
+
# ----remainder stochastic sampling (stochastic universal sampling method)----
|
49
|
+
# apply obj function on parameter_sets, rank parameter_sets by obj func score
|
50
|
+
# scale obj func score to ranking where: highest rank=2, lowest rank=0
|
51
|
+
# for each integer in rank reproduce += 1, for decimal allow random reproduction (based on size of decimal)
|
52
|
+
def selection_process
|
53
|
+
current_generation_temp = []
|
54
|
+
#apply obj func on all params, store score in @current_generation[X][:score]
|
55
|
+
@current_generation.each do |chromosome|
|
56
|
+
current_generation_temp << {:parameters => chromosome[:parameters], :score => chromosome[:score]}
|
57
|
+
end
|
58
|
+
# sort @current_generation by objective function score (ASC), replace @current_generation w/ temporary array
|
59
|
+
@current_generation = current_generation_temp.sort {|a, b| a[:score] <=> b[:score]}
|
60
|
+
# the highest rank is 2.0, generate step_size (difference in rank between each element)
|
61
|
+
step_size = 2.0/(@current_generation.length-1)
|
62
|
+
# counter to be used when assigning rank
|
63
|
+
counter = 0
|
64
|
+
# next_generation temporary array, @current_generation is replaced by next_generation after loop
|
65
|
+
next_generation = []
|
66
|
+
# switch scores with ranks
|
67
|
+
@current_generation.each do |chromosome|
|
68
|
+
# rank (asc) is the order in which the element appears (counter) times step_size so that the max is 2
|
69
|
+
rank = counter * step_size
|
70
|
+
next_generation << {:parameters => chromosome[:parameters], :score => rank} if rank >= 1.0
|
71
|
+
next_generation << {:parameters => chromosome[:parameters], :score => rank} if rank >= 2.0
|
72
|
+
next_generation << {:parameters => chromosome[:parameters], :score => rank} if rand <= rank.modulo(1)
|
73
|
+
counter += 1
|
74
|
+
end
|
75
|
+
# if population is too small
|
76
|
+
while next_generation.length < @population_size
|
77
|
+
select_chromosome = next_generation.sample(1)[0]
|
78
|
+
next_generation << select_chromosome
|
79
|
+
end
|
80
|
+
while next_generation.length > @population_size
|
81
|
+
select_chromosome_index = next_generation.index(next_generation.sample(1)[0])
|
82
|
+
next_generation.delete_at(select_chromosome_index)
|
83
|
+
end
|
84
|
+
# sort @current_generation by objective function score (ASC), replace @current_generation w/ temporary array
|
85
|
+
@current_generation = next_generation.sort {|a, b| a[:score] <=> b[:score]}
|
86
|
+
return
|
87
|
+
end
|
88
|
+
|
89
|
+
def crossover
|
90
|
+
def mating_process(mother, father)
|
91
|
+
children = [{:parameters=>{}}, {:parameters=>{}}]
|
92
|
+
mother[:parameters].each do |mother_key, mother_value|
|
93
|
+
if rand <= 0.5
|
94
|
+
children[0][:parameters][mother_key.to_sym] = mother_value
|
95
|
+
children[1][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym]
|
96
|
+
else
|
97
|
+
children[0][:parameters][mother_key.to_sym] = father[:parameters][mother_key.to_sym]
|
98
|
+
children[1][:parameters][mother_key.to_sym] = mother_value
|
99
|
+
end
|
100
|
+
end
|
101
|
+
return children
|
102
|
+
end
|
103
|
+
# mate the best quarter with the best half
|
104
|
+
best_quarter_num = (@current_generation.length.to_f/4.0).round
|
105
|
+
best_half_num = best_quarter_num
|
106
|
+
|
107
|
+
best_quarter = @current_generation[-best_quarter_num..-1]
|
108
|
+
best_half = @current_generation[-(best_quarter_num+best_half_num)..-(best_quarter_num+1)]
|
109
|
+
children = []
|
110
|
+
best_quarter.each do |father|
|
111
|
+
twins = mating_process(best_half.shuffle!.pop, father)
|
112
|
+
children += twins.map{|value| value}
|
113
|
+
end
|
114
|
+
(0..(children.length-1)).each do |num|
|
115
|
+
@current_generation.delete_at(0)
|
116
|
+
end
|
117
|
+
children.each do |child|
|
118
|
+
if @MUTATION_RATE > rand
|
119
|
+
children.delete_at(children.index(child))
|
120
|
+
children += [generateMutation(child)]
|
121
|
+
end
|
122
|
+
end
|
123
|
+
|
124
|
+
@current_generation += children
|
125
|
+
return true
|
126
|
+
end
|
127
|
+
|
128
|
+
def generateMutation chromosome
|
129
|
+
if !@mutation_wheel
|
130
|
+
@mutation_wheel = [{}, 0]
|
131
|
+
total_param_ranges = 0
|
132
|
+
@ranges.each do |key, value|
|
133
|
+
next if value.length <= 1
|
134
|
+
total_param_ranges += value.length
|
135
|
+
@mutation_wheel[0][key.to_sym] = total_param_ranges
|
136
|
+
end
|
137
|
+
@mutation_wheel[1] = total_param_ranges
|
138
|
+
end
|
139
|
+
mutation_location = rand(1..@mutation_wheel[1])
|
140
|
+
temp_options_params = Marshal.load(Marshal.dump(@ranges))
|
141
|
+
@mutation_wheel[0].each do |key, value|
|
142
|
+
next if value < mutation_location
|
143
|
+
temp_options_params[key.to_sym].delete(chromosome[:parameters][key.to_sym])
|
144
|
+
chromosome[:parameters][key.to_sym] = temp_options_params[key.to_sym].sample(1)[0]
|
145
|
+
break
|
146
|
+
end
|
147
|
+
return chromosome
|
148
|
+
end
|
149
|
+
|
150
|
+
def homogeneous_test
|
151
|
+
homo_val = 0
|
152
|
+
(0..(@current_generation.length-1)).each do |i|
|
153
|
+
(i..(@current_generation.length-1)).each do |j|
|
154
|
+
next if i == j
|
155
|
+
@current_generation[i][:parameters].each do |key, val|
|
156
|
+
homo_val += 1 if val == @current_generation[j][:parameters][key.to_sym]
|
157
|
+
end
|
158
|
+
end
|
159
|
+
end
|
160
|
+
n_value = @current_generation.length-1
|
161
|
+
sum = (n_value/2)*(n_value+1)
|
162
|
+
@population_homogenosity = (homo_val/(sum*@current_generation[0][:parameters].length).to_f)
|
163
|
+
end
|
164
|
+
|
165
|
+
def get_population
|
166
|
+
if self.last?
|
167
|
+
return @current_generation
|
168
|
+
else
|
169
|
+
return false
|
170
|
+
end
|
171
|
+
end
|
172
|
+
|
173
|
+
end # Generation
|
174
|
+
|
175
|
+
|
176
|
+
class GeneticAlgorithm
|
177
|
+
attr_reader :current, :best, :generation_no, :get_homog
|
178
|
+
|
179
|
+
def initialize (population_size, parameter_ranges)
|
180
|
+
@ranges = parameter_ranges
|
181
|
+
@population_size = population_size
|
182
|
+
@current_generation = Generation.new(@population_size, @ranges)
|
183
|
+
@best = {
|
184
|
+
:parameters => nil,
|
185
|
+
:score => 0.0
|
186
|
+
}
|
187
|
+
end
|
188
|
+
|
189
|
+
def run
|
190
|
+
nil
|
191
|
+
end
|
192
|
+
|
193
|
+
def run_one_iteration (parameters, score)
|
194
|
+
@current = {:parameters => parameters, :score => score}
|
195
|
+
# update best score?
|
196
|
+
self.update_best? @current
|
197
|
+
# push next chromosome to GA, generation will compute if population size is full
|
198
|
+
return self.next_candidate @current
|
199
|
+
# update tabu list
|
200
|
+
#self.update_tabu
|
201
|
+
#@current
|
202
|
+
end
|
203
|
+
|
204
|
+
def update_best? (current)
|
205
|
+
# ... runs an identical method in GenerationHandler
|
206
|
+
@current_generation.update_best? current
|
207
|
+
@best = current if current[:score] > @best[:score]
|
208
|
+
end
|
209
|
+
|
210
|
+
def next_candidate (chromosome)
|
211
|
+
# .. will run update ga if @current_generation.last? is true
|
212
|
+
@current_generation.next_chromosome(chromosome)
|
213
|
+
|
214
|
+
if @current_generation.last?
|
215
|
+
return self.update_ga
|
216
|
+
end
|
217
|
+
return @current
|
218
|
+
end
|
219
|
+
|
220
|
+
def update_ga
|
221
|
+
# ... will run to next generation
|
222
|
+
store = @current_generation.run_generation
|
223
|
+
@current_generation.homogeneous_test
|
224
|
+
@get_homog = @current_generation.population_homogenosity
|
225
|
+
@current_generation = Generation.new(@population_size, @ranges)
|
226
|
+
return store
|
227
|
+
end
|
228
|
+
|
229
|
+
def finished?
|
230
|
+
false
|
231
|
+
end
|
232
|
+
|
233
|
+
##############################
|
234
|
+
def generate_chromosome
|
235
|
+
return Hash[@ranges.map { |param, range| [param, range.sample] }]
|
236
|
+
end
|
237
|
+
|
238
|
+
def get_population
|
239
|
+
return @current_generation.get_population
|
240
|
+
end
|
241
|
+
|
242
|
+
end # GeneticAlgorithm
|
243
|
+
|
244
|
+
end # Biopsy
|
@@ -0,0 +1,66 @@
|
|
1
|
+
# ParameterSweeper.new(options, constructor)
|
2
|
+
# options = {:settings => {...}, :parameters => {...}}
|
3
|
+
#
|
4
|
+
# Description:
|
5
|
+
# ParameterSweeper generates all combinations of a hash of arrays (options[:parameters]).
|
6
|
+
# The generated combinations are each passed in turn to the constructor which returns an execute command
|
7
|
+
# incorporating the parameters, and finally the target program is run with each generated command.
|
8
|
+
#
|
9
|
+
# The constructor will also have access to an unchanging settings hash (options[:settings])
|
10
|
+
# constructor proc will be passed multipule hashes in format: {:settings => {...}, :parameters => {...}}
|
11
|
+
# where the values in settings remain constant, and the values in parameters vary
|
12
|
+
|
13
|
+
require 'pp'
|
14
|
+
require 'fileutils'
|
15
|
+
require 'csv'
|
16
|
+
require 'threach'
|
17
|
+
require 'logger'
|
18
|
+
|
19
|
+
module Biopsy
|
20
|
+
# options - is a hash of two hashes, :settings and :parameters
|
21
|
+
# :ranges are arrays to be parameter sweeped
|
22
|
+
# ---(single values may be present, these are also remain unchanged but are accessible within the parameters hash to the constructor)
|
23
|
+
class ParameterSweeper
|
24
|
+
|
25
|
+
attr_reader :combinations
|
26
|
+
|
27
|
+
def initialize(ranges, threads=8, limit=nil)
|
28
|
+
@ranges = ranges
|
29
|
+
# parameter_counter: a count of input parameters to be used
|
30
|
+
@parameter_counter = 1
|
31
|
+
# input_combinations: an array of arrays of input parameters
|
32
|
+
@combinations = []
|
33
|
+
# if the number of threads is set, update the global variable, if not default to 1
|
34
|
+
@threads = threads
|
35
|
+
# convert all options to an array so it can be handled by the generate_combinations() method
|
36
|
+
# ..this is for users entering single values e.g 4 as a parameter
|
37
|
+
@ranges.each { |key, value| value = [value] unless value.kind_of? Array }
|
38
|
+
self.generate_combinations
|
39
|
+
# restrict to a subsample?
|
40
|
+
unless limit.nil?
|
41
|
+
@combinations = @combinations.sample limit
|
42
|
+
end
|
43
|
+
end
|
44
|
+
|
45
|
+
# return the next parameter set to evaluate
|
46
|
+
def run_one_iteration(*args)
|
47
|
+
@combinations.pop
|
48
|
+
rescue
|
49
|
+
nil
|
50
|
+
end
|
51
|
+
|
52
|
+
# generate all the parameter combinations to be applied
|
53
|
+
def generate_combinations(index=0, opts={})
|
54
|
+
if index == @ranges.length
|
55
|
+
@combinations << opts.clone
|
56
|
+
return
|
57
|
+
end
|
58
|
+
# recurse
|
59
|
+
key = @ranges.keys[index]
|
60
|
+
@ranges[key].each do |value|
|
61
|
+
opts[key] = value
|
62
|
+
generate_combinations(index + 1, opts)
|
63
|
+
end
|
64
|
+
end
|
65
|
+
end
|
66
|
+
end
|