bio-statsample-glm 0.1.0 → 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/VERSION +1 -1
- data/lib/bio-statsample-glm/regression.rb +5 -2
- data/lib/bio-statsample-glm/regression/logistic.rb +20 -6
- data/lib/bio-statsample-glm/regression/poisson.rb +19 -5
- data/test/helper.rb +8 -0
- data/test/test_glm.rb +0 -33
- data/test/test_glm_logistic.rb +23 -0
- data/test/test_glm_poisson.rb +25 -0
- metadata +4 -2
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.1.
|
1
|
+
0.1.1
|
@@ -22,14 +22,17 @@ module Statsample
|
|
22
22
|
#
|
23
23
|
# == Returns
|
24
24
|
# GLM object for given method.
|
25
|
-
def self.glm(x, y, method=:
|
25
|
+
def self.glm(x, y, method=:gaussian)
|
26
|
+
|
26
27
|
if method.downcase.to_sym == :poisson
|
27
28
|
obj = Statsample::Regression::GLM::Poisson.new(x,y)
|
28
29
|
elsif method.downcase.to_sym == :binomial
|
29
30
|
obj = Statsample::Regression::GLM::Logistic.new(x,y)
|
31
|
+
else
|
32
|
+
raise("Not implemented yet")
|
30
33
|
end
|
34
|
+
obj.irwls
|
31
35
|
obj
|
32
|
-
#now, #irwls method is available to be called on returned obj
|
33
36
|
end
|
34
37
|
|
35
38
|
|
@@ -4,9 +4,6 @@ module Statsample
|
|
4
4
|
|
5
5
|
class Logistic
|
6
6
|
|
7
|
-
# a named vector of coefficients
|
8
|
-
attr_reader :coefficients
|
9
|
-
#
|
10
7
|
attr_reader :se
|
11
8
|
# The fitted mean values
|
12
9
|
attr_reader :fit
|
@@ -19,11 +16,28 @@ module Statsample
|
|
19
16
|
# Boolean. Tells whether the IRWLS for the given model converged or not
|
20
17
|
attr_reader :converged
|
21
18
|
|
22
|
-
def initialize(
|
23
|
-
@
|
19
|
+
def initialize(ds, y)
|
20
|
+
@ds=ds
|
21
|
+
@fields=@ds.fields
|
22
|
+
@x = ds.to_matrix
|
24
23
|
@y = y
|
25
24
|
end
|
26
25
|
|
26
|
+
# named vector/hash of coefficients
|
27
|
+
# === Parameter
|
28
|
+
# * *type*: symbol; (:array, default). Options = [:array, :hash]
|
29
|
+
def coefficients(type=:array)
|
30
|
+
if type==:array
|
31
|
+
#originally returned as vector; so pass it
|
32
|
+
@coefficients
|
33
|
+
elsif type==:hash
|
34
|
+
h={}
|
35
|
+
@fields.size.times {|i|
|
36
|
+
h[@fields[i]]=@coefficients[i]
|
37
|
+
}
|
38
|
+
h
|
39
|
+
end
|
40
|
+
end
|
27
41
|
def self.mu(x, b)
|
28
42
|
matrix_mul = x * b
|
29
43
|
numerator = matrix_mul.map { |y| Math.exp(y) }
|
@@ -91,4 +105,4 @@ module Statsample
|
|
91
105
|
|
92
106
|
end
|
93
107
|
end
|
94
|
-
end
|
108
|
+
end
|
@@ -4,9 +4,6 @@ module Statsample
|
|
4
4
|
|
5
5
|
class Poisson
|
6
6
|
|
7
|
-
# a named vector of coefficients
|
8
|
-
attr_reader :coefficients
|
9
|
-
#
|
10
7
|
attr_reader :se
|
11
8
|
# The fitted mean values
|
12
9
|
attr_reader :fit
|
@@ -19,11 +16,28 @@ module Statsample
|
|
19
16
|
# Boolean. Tells whether the IRWLS for the given model converged or not
|
20
17
|
attr_reader :converged
|
21
18
|
|
22
|
-
def initialize(
|
23
|
-
@
|
19
|
+
def initialize(ds, y)
|
20
|
+
@ds=ds
|
21
|
+
@fields=@ds.fields
|
22
|
+
@x = ds.to_matrix
|
24
23
|
@y = y
|
25
24
|
end
|
26
25
|
|
26
|
+
# named vector/hash of coefficients
|
27
|
+
# === Parameter
|
28
|
+
# * *type*: symbol; (:array, default). Options = [:array, :hash]
|
29
|
+
def coefficients(type=:array)
|
30
|
+
if type==:array
|
31
|
+
@coefficients
|
32
|
+
elsif type==:hash
|
33
|
+
h={}
|
34
|
+
@fields.size.times {|i|
|
35
|
+
h[@fields[i]]=@coefficients[i]
|
36
|
+
}
|
37
|
+
h
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
27
41
|
def self.mu(x, b, link=:log)
|
28
42
|
if link.downcase.to_sym == :log
|
29
43
|
(x * b).map { |y| Math.exp(y) }
|
data/test/helper.rb
CHANGED
@@ -42,6 +42,14 @@ module MiniTest
|
|
42
42
|
assert_in_delta(v,obs[i],delta)
|
43
43
|
}
|
44
44
|
end
|
45
|
+
def assert_similar_hash(exp, obs, delta=1e-10,msg=nil)
|
46
|
+
msg||="Different hash #{exp} - #{obs}"
|
47
|
+
assert_equal(exp.size, obs.size)
|
48
|
+
exp.each_key {|k|
|
49
|
+
assert_in_delta(exp[k],obs[k],delta)
|
50
|
+
}
|
51
|
+
end
|
52
|
+
|
45
53
|
def assert_equal_vector(exp,obs,delta=1e-10,msg=nil)
|
46
54
|
assert_equal(exp.size, obs.size, "Different size.#{msg}")
|
47
55
|
exp.size.times {|i|
|
data/test/test_glm.rb
CHANGED
@@ -1,37 +1,4 @@
|
|
1
1
|
require(File.expand_path(File.dirname(__FILE__)+'/helper.rb'))
|
2
2
|
|
3
3
|
class StatsampleRegressionGlm < MiniTest::Unit::TestCase
|
4
|
-
|
5
|
-
context("Example") do
|
6
|
-
setup do
|
7
|
-
x1=Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
|
8
|
-
x2=Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
|
9
|
-
@y_log=Statsample::Vector.new([0,0,1,0,1,1,1,1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,1,1,1,1,0,0,0,1,1],:scale)
|
10
|
-
@y_pois=Statsample::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0],:scale)
|
11
|
-
intercept=Statsample::Vector.new([1]*50,:scale)
|
12
|
-
@df=Statsample::Dataset.new({"i"=>intercept,"x1"=>x1,"x2"=>x2})
|
13
|
-
end
|
14
|
-
|
15
|
-
context("Logistic") do
|
16
|
-
setup do
|
17
|
-
@glm=Statsample::Regression.glm(@df.to_matrix,@y_log,:binomial)
|
18
|
-
@glm.irwls
|
19
|
-
end
|
20
|
-
|
21
|
-
should "report correct coefficientes" do
|
22
|
-
assert_similar_vector(@glm.coefficients,[0.675603176233325,-0.312493754568903,2.28671333346264])
|
23
|
-
end
|
24
|
-
end
|
25
|
-
|
26
|
-
context("Poisson") do
|
27
|
-
setup do
|
28
|
-
@glm=Statsample::Regression.glm(@df.to_matrix,@y_pois,:poisson)
|
29
|
-
@glm.irwls
|
30
|
-
end
|
31
|
-
|
32
|
-
should "report correct coefficientes" do
|
33
|
-
assert_similar_vector(@glm.coefficients,[0.32993246633711,-0.586359358356708,1.28511323439258])
|
34
|
-
end
|
35
|
-
end
|
36
|
-
end
|
37
4
|
end
|
@@ -0,0 +1,23 @@
|
|
1
|
+
require(File.expand_path(File.dirname(__FILE__)+'/helper.rb'))
|
2
|
+
|
3
|
+
class StatsampleRegressionGlmLogistic < MiniTest::Unit::TestCase
|
4
|
+
|
5
|
+
context("Example") do
|
6
|
+
setup do
|
7
|
+
x1=Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
|
8
|
+
x2=Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
|
9
|
+
@y_log=Statsample::Vector.new([0,0,1,0,1,1,1,1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,1,1,1,1,0,0,0,1,1],:scale)
|
10
|
+
@y_pois=Statsample::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0],:scale)
|
11
|
+
intercept=Statsample::Vector.new([1]*50,:scale)
|
12
|
+
@df=Statsample::Dataset.new({"i"=>intercept,"x1"=>x1,"x2"=>x2})
|
13
|
+
@glm=Statsample::Regression.glm(@df,@y_log,:binomial)
|
14
|
+
end
|
15
|
+
should "report correct coefficientes as array" do
|
16
|
+
assert_similar_vector(@glm.coefficients,[0.675603176233325,-0.312493754568903,2.28671333346264])
|
17
|
+
end
|
18
|
+
should "report correct coefficientes as hash" do
|
19
|
+
assert_similar_hash(@glm.coefficients(:hash), {"i"=>0.675603176233325,"x1"=>-0.312493754568903,"x2"=>2.28671333346264})
|
20
|
+
end
|
21
|
+
|
22
|
+
end
|
23
|
+
end
|
@@ -0,0 +1,25 @@
|
|
1
|
+
require(File.expand_path(File.dirname(__FILE__)+'/helper.rb'))
|
2
|
+
|
3
|
+
class StatsampleRegressionGlmPoisson < MiniTest::Unit::TestCase
|
4
|
+
|
5
|
+
context("Example") do
|
6
|
+
setup do
|
7
|
+
x1=Statsample::Vector.new([0.537322309644812,-0.717124209978434,-0.519166718891331,0.434970973986765,-0.761822002215759,1.51170030921189,0.883854199811195,-0.908689798854196,1.70331977539793,-0.246971150634099,-1.59077593922623,-0.721548040910253,0.467025703920194,-0.510132788447137,0.430106510266798,-0.144353683251536,-1.54943800728303,0.849307651309298,-0.640304240933579,1.31462478279425,-0.399783455165345,0.0453055645017902,-2.58212161987746,-1.16484414309359,-1.08829266466281,-0.243893919684792,-1.96655661929441,0.301335373291024,-0.665832694463588,-0.0120650855753837,1.5116066367604,0.557300353673344,1.12829931872045,0.234443748015922,-2.03486690662651,0.275544751380246,-0.231465849558696,-0.356880153225012,-0.57746647541923,1.35758352580655,1.23971669378224,-0.662466275100489,0.313263561921793,-1.08783223256362,1.41964722846899,1.29325100940785,0.72153880625103,0.440580131022748,0.0351917814720056, -0.142353224879252],:scale)
|
8
|
+
x2=Statsample::Vector.new([-0.866655707911859,-0.367820249977585,0.361486610435,0.857332626245179,0.133438466268095,0.716104533073575,1.77206093023382,-0.10136697295802,-0.777086491435508,-0.204573554913706,0.963353531412233,-1.10103024900542,-0.404372761837392,-0.230226345183469,0.0363730246866971,-0.838265540390497,1.12543549657924,-0.57929175648001,-0.747060244805248,0.58946979365152,-0.531952663697324,1.53338594419818,0.521992029051441,1.41631763288724,0.611402316795129,-0.518355638373296,-0.515192557101107,-0.672697937866108,1.84347042325327,-0.21195540664804,-0.269869371631611,0.296155694010096,-2.18097898069634,-1.21314663927206,1.49193669881581,1.38969280369493,-0.400680808117106,-1.87282814976479,1.82394870451051,0.637864732838274,-0.141155946382493,0.0699950644281617,1.32568550595165,-0.412599258349398,0.14436832227506,-1.16507785388489,-2.16782049922428,0.24318371493798,0.258954871320764,-0.151966534521183],:scale)
|
9
|
+
@y_log=Statsample::Vector.new([0,0,1,0,1,1,1,1,0,1,1,1,1,0,1,0,1,1,0,1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,1,1,1,1,0,0,0,1,1],:scale)
|
10
|
+
@y_pois=Statsample::Vector.new([1,2,1,3,3,1,10,1,1,2,15,0,0,2,1,2,18,2,1,1,1,8,18,13,7,1,1,0,26,0,2,2,0,0,25,7,0,0,21,0,0,1,5,0,3,0,0,1,0,0],:scale)
|
11
|
+
intercept=Statsample::Vector.new([1]*50,:scale)
|
12
|
+
@df=Statsample::Dataset.new({"i"=>intercept,"x1"=>x1,"x2"=>x2})
|
13
|
+
@glm=Statsample::Regression.glm(@df,@y_pois,:poisson)
|
14
|
+
|
15
|
+
end
|
16
|
+
should "report correct coefficientes as array" do
|
17
|
+
assert_similar_vector(@glm.coefficients,[0.32993246633711,-0.586359358356708,1.28511323439258])
|
18
|
+
end # should
|
19
|
+
should "report correct coefficientes as hash" do
|
20
|
+
assert_similar_hash(@glm.coefficients(:hash), {"i"=>0.32993246633711,"x1"=>-0.586359358356708, "x2"=>1.28511323439258})
|
21
|
+
end # should
|
22
|
+
|
23
|
+
end # context
|
24
|
+
end # class
|
25
|
+
|
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: bio-statsample-glm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.1
|
5
5
|
prerelease:
|
6
6
|
platform: ruby
|
7
7
|
authors:
|
@@ -215,6 +215,8 @@ files:
|
|
215
215
|
- lib/bio-statsample-glm/regression/poisson.rb
|
216
216
|
- test/helper.rb
|
217
217
|
- test/test_glm.rb
|
218
|
+
- test/test_glm_logistic.rb
|
219
|
+
- test/test_glm_poisson.rb
|
218
220
|
homepage: http://github.com/AnkurGel/bioruby-statsample-glm
|
219
221
|
licenses:
|
220
222
|
- MIT
|
@@ -230,7 +232,7 @@ required_ruby_version: !ruby/object:Gem::Requirement
|
|
230
232
|
version: '0'
|
231
233
|
segments:
|
232
234
|
- 0
|
233
|
-
hash:
|
235
|
+
hash: -988046223
|
234
236
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
235
237
|
none: false
|
236
238
|
requirements:
|