bigdecimal 3.2.1-java → 3.2.3-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9b5da530aeebf5e9c788776af5fd26104ec1c4d8aa5fb17860d260bd8383a623
4
- data.tar.gz: c64558c28a513be4bb52ff8d3406acedf1e37303eb00acc7ccdbcba350f0b97b
3
+ metadata.gz: 72ea230b182767a2c32bc9dafe2cb3b39165960ca8683b5afaab7dd9cfcae7fb
4
+ data.tar.gz: f34cbd33b43a2ca0441d1f9b070fee1d27dc3ad9bba3e0df1f6774d688d18b68
5
5
  SHA512:
6
- metadata.gz: 331d8baab61d8f253057d6831f08269909506294de8cb834b8498990aa8285d6b0503f9be8402393eb22430648d961ead1f191509f898ece3875fc204ce7d6a9
7
- data.tar.gz: 4273d7d09033ae473aaddca66b29ff3d1ddc241cfec2819308d4c11ac7fcaa7e960e77ef5f9fdc6be29e99922b921d8ceaea276a9e7634675de10ccff62525b5
6
+ metadata.gz: 55cb0f29873b8685d9cfeb14627fe9ecfed5e735a08cd82730da1d736d83b0f630f48e4ee0df164ba799ac0e54dbfbea629712b131d5e9355d07b4ed755edabb
7
+ data.tar.gz: 8d0ac09e425579924920109a14290858b03bc70cd66ec3acae334593df0b786e922220a683f20bf2bd35900d1e5ebca1aa9cd3ed0463b20edc34ec3fbce2f01c
@@ -61,7 +61,8 @@ module BigMath
61
61
  one = BigDecimal("1")
62
62
  two = BigDecimal("2")
63
63
  x = -x if neg = x < 0
64
- if x > (twopi = two * BigMath.PI(prec))
64
+ if x > 6
65
+ twopi = two * BigMath.PI(prec + x.exponent)
65
66
  if x > 30
66
67
  x %= twopi
67
68
  else
@@ -84,6 +85,7 @@ module BigMath
84
85
  d = sign * x1.div(z,m)
85
86
  y += d
86
87
  end
88
+ y = BigDecimal("1") if y > 1
87
89
  neg ? -y : y
88
90
  end
89
91
 
@@ -105,7 +107,8 @@ module BigMath
105
107
  one = BigDecimal("1")
106
108
  two = BigDecimal("2")
107
109
  x = -x if x < 0
108
- if x > (twopi = two * BigMath.PI(prec))
110
+ if x > 6
111
+ twopi = two * BigMath.PI(prec + x.exponent)
109
112
  if x > 30
110
113
  x %= twopi
111
114
  else
@@ -128,7 +131,7 @@ module BigMath
128
131
  d = sign * x1.div(z,m)
129
132
  y += d
130
133
  end
131
- y
134
+ y < -1 ? BigDecimal("-1") : y > 1 ? BigDecimal("1") : y
132
135
  end
133
136
 
134
137
  # call-seq:
@@ -149,9 +152,9 @@ module BigMath
149
152
  x = -x if neg = x < 0
150
153
  return pi.div(neg ? -2 : 2, prec) if x.infinite?
151
154
  return pi / (neg ? -4 : 4) if x.round(prec) == 1
152
- x = BigDecimal("1").div(x, prec) if inv = x > 1
153
- x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
154
- n = prec + BigDecimal.double_fig
155
+ n = prec + BigDecimal.double_fig
156
+ x = BigDecimal("1").div(x, n) if inv = x > 1
157
+ x = (-1 + sqrt(1 + x.mult(x, n), n)).div(x, n) if dbl = x > 0.5
155
158
  y = x
156
159
  d = y
157
160
  t = x
data/lib/bigdecimal.rb CHANGED
@@ -1,5 +1,329 @@
1
1
  if RUBY_ENGINE == 'jruby'
2
2
  JRuby::Util.load_ext("org.jruby.ext.bigdecimal.BigDecimalLibrary")
3
+ return
3
4
  else
4
5
  require 'bigdecimal.so'
5
6
  end
7
+
8
+ class BigDecimal
9
+ module Internal # :nodoc:
10
+
11
+ # Coerce x to BigDecimal with the specified precision.
12
+ # TODO: some methods (example: BigMath.exp) require more precision than specified to coerce.
13
+ def self.coerce_to_bigdecimal(x, prec, method_name) # :nodoc:
14
+ case x
15
+ when BigDecimal
16
+ return x
17
+ when Integer, Float
18
+ return BigDecimal(x)
19
+ when Rational
20
+ return BigDecimal(x, [prec, 2 * BigDecimal.double_fig].max)
21
+ end
22
+ raise ArgumentError, "#{x.inspect} can't be coerced into BigDecimal"
23
+ end
24
+
25
+ def self.validate_prec(prec, method_name, accept_zero: false) # :nodoc:
26
+ raise ArgumentError, 'precision must be an Integer' unless Integer === prec
27
+ if accept_zero
28
+ raise ArgumentError, "Negative precision for #{method_name}" if prec < 0
29
+ else
30
+ raise ArgumentError, "Zero or negative precision for #{method_name}" if prec <= 0
31
+ end
32
+ end
33
+
34
+ def self.infinity_computation_result # :nodoc:
35
+ if BigDecimal.mode(BigDecimal::EXCEPTION_ALL).anybits?(BigDecimal::EXCEPTION_INFINITY)
36
+ raise FloatDomainError, "Computation results in 'Infinity'"
37
+ end
38
+ BigDecimal::INFINITY
39
+ end
40
+
41
+ def self.nan_computation_result # :nodoc:
42
+ if BigDecimal.mode(BigDecimal::EXCEPTION_ALL).anybits?(BigDecimal::EXCEPTION_NaN)
43
+ raise FloatDomainError, "Computation results to 'NaN'"
44
+ end
45
+ BigDecimal::NAN
46
+ end
47
+ end
48
+
49
+ # call-seq:
50
+ # self ** other -> bigdecimal
51
+ #
52
+ # Returns the \BigDecimal value of +self+ raised to power +other+:
53
+ #
54
+ # b = BigDecimal('3.14')
55
+ # b ** 2 # => 0.98596e1
56
+ # b ** 2.0 # => 0.98596e1
57
+ # b ** Rational(2, 1) # => 0.98596e1
58
+ #
59
+ # Related: BigDecimal#power.
60
+ #
61
+ def **(y)
62
+ case y
63
+ when BigDecimal, Integer, Float, Rational
64
+ power(y)
65
+ when nil
66
+ raise TypeError, 'wrong argument type NilClass'
67
+ else
68
+ x, y = y.coerce(self)
69
+ x**y
70
+ end
71
+ end
72
+
73
+ # call-seq:
74
+ # power(n)
75
+ # power(n, prec)
76
+ #
77
+ # Returns the value raised to the power of n.
78
+ #
79
+ # Also available as the operator **.
80
+ #
81
+ def power(y, prec = nil)
82
+ Internal.validate_prec(prec, :power) if prec
83
+ x = self
84
+ y = Internal.coerce_to_bigdecimal(y, prec || n_significant_digits, :power)
85
+
86
+ return Internal.nan_computation_result if x.nan? || y.nan?
87
+ return BigDecimal(1) if y.zero?
88
+
89
+ if y.infinite?
90
+ if x < 0
91
+ return BigDecimal(0) if x < -1 && y.negative?
92
+ return BigDecimal(0) if x > -1 && y.positive?
93
+ raise Math::DomainError, 'Result undefined for negative base raised to infinite power'
94
+ elsif x < 1
95
+ return y.positive? ? BigDecimal(0) : BigDecimal::Internal.infinity_computation_result
96
+ elsif x == 1
97
+ return BigDecimal(1)
98
+ else
99
+ return y.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)
100
+ end
101
+ end
102
+
103
+ if x.infinite? && y < 0
104
+ # Computation result will be +0 or -0. Avoid overflow.
105
+ neg = x < 0 && y.frac.zero? && y % 2 == 1
106
+ return neg ? -BigDecimal(0) : BigDecimal(0)
107
+ end
108
+
109
+ if x.zero?
110
+ return BigDecimal(1) if y.zero?
111
+ return BigDecimal(0) if y > 0
112
+ if y.frac.zero? && y % 2 == 1 && x.sign == -1
113
+ return -BigDecimal::Internal.infinity_computation_result
114
+ else
115
+ return BigDecimal::Internal.infinity_computation_result
116
+ end
117
+ elsif x < 0
118
+ if y.frac.zero?
119
+ if y % 2 == 0
120
+ return (-x).power(y, prec)
121
+ else
122
+ return -(-x).power(y, prec)
123
+ end
124
+ else
125
+ raise Math::DomainError, 'Computation results in complex number'
126
+ end
127
+ elsif x == 1
128
+ return BigDecimal(1)
129
+ end
130
+
131
+ prec ||= BigDecimal.limit.nonzero?
132
+ frac_part = y.frac
133
+
134
+ if frac_part.zero? && !prec
135
+ # Infinite precision calculation for `x ** int` and `x.power(int)`
136
+ int_part = y.fix.to_i
137
+ int_part = -int_part if (neg = int_part < 0)
138
+ ans = BigDecimal(1)
139
+ n = 1
140
+ xn = x
141
+ while true
142
+ ans *= xn if int_part.allbits?(n)
143
+ n <<= 1
144
+ break if n > int_part
145
+ xn *= xn
146
+ # Detect overflow/underflow before consuming infinite memory
147
+ if (xn.exponent.abs - 1) * int_part / n >= 0x7FFFFFFFFFFFFFFF
148
+ return ((xn.exponent > 0) ^ neg ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)) * (int_part.even? || x > 0 ? 1 : -1)
149
+ end
150
+ end
151
+ return neg ? BigDecimal(1) / ans : ans
152
+ end
153
+
154
+ prec ||= [x.n_significant_digits, y.n_significant_digits, BigDecimal.double_fig].max + BigDecimal.double_fig
155
+
156
+ if y < 0
157
+ inv = x.power(-y, prec)
158
+ return BigDecimal(0) if inv.infinite?
159
+ return BigDecimal::Internal.infinity_computation_result if inv.zero?
160
+ return BigDecimal(1).div(inv, prec)
161
+ end
162
+
163
+ int_part = y.fix.to_i
164
+ prec2 = prec + BigDecimal.double_fig
165
+ pow_prec = prec2 + (int_part > 0 ? y.exponent : 0)
166
+ ans = BigDecimal(1)
167
+ n = 1
168
+ xn = x
169
+ while true
170
+ ans = ans.mult(xn, pow_prec) if int_part.allbits?(n)
171
+ n <<= 1
172
+ break if n > int_part
173
+ xn = xn.mult(xn, pow_prec)
174
+ end
175
+ unless frac_part.zero?
176
+ ans = ans.mult(BigMath.exp(BigMath.log(x, prec2).mult(frac_part, prec2), prec2), prec2)
177
+ end
178
+ ans.mult(1, prec)
179
+ end
180
+
181
+ # Returns the square root of the value.
182
+ #
183
+ # Result has at least prec significant digits.
184
+ #
185
+ def sqrt(prec)
186
+ Internal.validate_prec(prec, :sqrt, accept_zero: true)
187
+ return Internal.infinity_computation_result if infinite? == 1
188
+
189
+ raise FloatDomainError, 'sqrt of negative value' if self < 0
190
+ raise FloatDomainError, "sqrt of 'NaN'(Not a Number)" if nan?
191
+ return self if zero?
192
+
193
+ limit = BigDecimal.limit.nonzero? if prec == 0
194
+
195
+ # BigDecimal#sqrt calculates at least n_significant_digits precision.
196
+ # This feature maybe problematic for some cases.
197
+ n_digits = n_significant_digits
198
+ prec = [prec, n_digits].max
199
+
200
+ ex = exponent / 2
201
+ x = _decimal_shift(-2 * ex)
202
+ y = BigDecimal(Math.sqrt(x.to_f))
203
+ precs = [prec + BigDecimal.double_fig]
204
+ precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig
205
+ precs.reverse_each do |p|
206
+ y = y.add(x.div(y, p), p).div(2, p)
207
+ end
208
+ y = y.mult(1, limit) if limit
209
+ y._decimal_shift(ex)
210
+ end
211
+ end
212
+
213
+ # Core BigMath methods for BigDecimal (log, exp) are defined here.
214
+ # Other methods (sin, cos, atan) are defined in 'bigdecimal/math.rb'.
215
+ module BigMath
216
+
217
+ # call-seq:
218
+ # BigMath.log(decimal, numeric) -> BigDecimal
219
+ #
220
+ # Computes the natural logarithm of +decimal+ to the specified number of
221
+ # digits of precision, +numeric+.
222
+ #
223
+ # If +decimal+ is zero or negative, raises Math::DomainError.
224
+ #
225
+ # If +decimal+ is positive infinity, returns Infinity.
226
+ #
227
+ # If +decimal+ is NaN, returns NaN.
228
+ #
229
+ def self.log(x, prec)
230
+ BigDecimal::Internal.validate_prec(prec, :log)
231
+ raise Math::DomainError, 'Complex argument for BigMath.log' if Complex === x
232
+
233
+ x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log)
234
+ return BigDecimal::Internal.nan_computation_result if x.nan?
235
+ raise Math::DomainError, 'Zero or negative argument for log' if x <= 0
236
+ return BigDecimal::Internal.infinity_computation_result if x.infinite?
237
+ return BigDecimal(0) if x == 1
238
+
239
+ BigDecimal.save_limit do
240
+ BigDecimal.limit(0)
241
+ if x > 10 || x < 0.1
242
+ log10 = log(BigDecimal(10), prec)
243
+ exponent = x.exponent
244
+ x = x._decimal_shift(-exponent)
245
+ if x < 0.3
246
+ x *= 10
247
+ exponent -= 1
248
+ end
249
+ return log10 * exponent + log(x, prec)
250
+ end
251
+
252
+ x_minus_one_exponent = (x - 1).exponent
253
+ prec += BigDecimal.double_fig
254
+
255
+ # log(x) = log(sqrt(sqrt(sqrt(sqrt(x))))) * 2**sqrt_steps
256
+ sqrt_steps = [Integer.sqrt(prec) + 3 * x_minus_one_exponent, 0].max
257
+
258
+ lg2 = 0.3010299956639812
259
+ prec2 = prec + [-x_minus_one_exponent, 0].max + (sqrt_steps * lg2).ceil
260
+
261
+ sqrt_steps.times do
262
+ x = x.sqrt(prec2)
263
+
264
+ # Workaround for https://github.com/ruby/bigdecimal/issues/354
265
+ x = x.mult(1, prec2 + BigDecimal.double_fig)
266
+ end
267
+
268
+ # Taylor series for log(x) around 1
269
+ # log(x) = -log((1 + X) / (1 - X)) where X = (x - 1) / (x + 1)
270
+ # log(x) = 2 * (X + X**3 / 3 + X**5 / 5 + X**7 / 7 + ...)
271
+ x = (x - 1).div(x + 1, prec2)
272
+ y = x
273
+ x2 = x.mult(x, prec)
274
+ 1.step do |i|
275
+ n = prec + x.exponent - y.exponent + x2.exponent
276
+ break if n <= 0 || x.zero?
277
+ x = x.mult(x2.round(n - x2.exponent), n)
278
+ y = y.add(x.div(2 * i + 1, n), prec)
279
+ end
280
+
281
+ y.mult(2 ** (sqrt_steps + 1), prec)
282
+ end
283
+ end
284
+
285
+ # call-seq:
286
+ # BigMath.exp(decimal, numeric) -> BigDecimal
287
+ #
288
+ # Computes the value of e (the base of natural logarithms) raised to the
289
+ # power of +decimal+, to the specified number of digits of precision.
290
+ #
291
+ # If +decimal+ is infinity, returns Infinity.
292
+ #
293
+ # If +decimal+ is NaN, returns NaN.
294
+ #
295
+ def self.exp(x, prec)
296
+ BigDecimal::Internal.validate_prec(prec, :exp)
297
+ x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :exp)
298
+ return BigDecimal::Internal.nan_computation_result if x.nan?
299
+ return x.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) if x.infinite?
300
+ return BigDecimal(1) if x.zero?
301
+ return BigDecimal(1).div(exp(-x, prec), prec) if x < 0
302
+
303
+ # exp(x * 10**cnt) = exp(x)**(10**cnt)
304
+ cnt = x > 1 ? x.exponent : 0
305
+ prec2 = prec + BigDecimal.double_fig + cnt
306
+ x = x._decimal_shift(-cnt)
307
+ xn = BigDecimal(1)
308
+ y = BigDecimal(1)
309
+
310
+ # Taylor series for exp(x) around 0
311
+ 1.step do |i|
312
+ n = prec2 + xn.exponent
313
+ break if n <= 0 || xn.zero?
314
+ x = x.mult(1, n)
315
+ xn = xn.mult(x, n).div(i, n)
316
+ y = y.add(xn, prec2)
317
+ end
318
+
319
+ # calculate exp(x * 10**cnt) from exp(x)
320
+ # exp(x * 10**k) = exp(x * 10**(k - 1)) ** 10
321
+ cnt.times do
322
+ y2 = y.mult(y, prec2)
323
+ y5 = y2.mult(y2, prec2).mult(y, prec2)
324
+ y = y5.mult(y5, prec2)
325
+ end
326
+
327
+ y.mult(1, prec)
328
+ end
329
+ end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: bigdecimal
3
3
  version: !ruby/object:Gem::Version
4
- version: 3.2.1
4
+ version: 3.2.3
5
5
  platform: java
6
6
  authors:
7
7
  - Kenta Murata
@@ -9,7 +9,7 @@ authors:
9
9
  - Shigeo Kobayashi
10
10
  bindir: bin
11
11
  cert_chain: []
12
- date: 2025-05-31 00:00:00.000000000 Z
12
+ date: 2025-09-03 00:00:00.000000000 Z
13
13
  dependencies: []
14
14
  description: This library provides arbitrary-precision decimal floating-point number
15
15
  class.