bayes_classifier 0.0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +3 -0
- data/.rspec +2 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +34 -0
- data/LICENSE.txt +22 -0
- data/README.md +55 -0
- data/Rakefile +1 -0
- data/bayes_classifier.gemspec +25 -0
- data/lib/bayes.rb +3 -0
- data/lib/bayes/category.rb +67 -0
- data/lib/bayes/classifier.rb +55 -0
- data/lib/bayes/string.rb +107 -0
- data/lib/bayes/test.rb +81 -0
- data/lib/bayes_classifier.rb +2 -0
- data/lib/bayes_classifier/version.rb +3 -0
- data/spec/category_spec.rb +144 -0
- data/spec/classifier_spec.rb +191 -0
- data/spec/data/negative +394 -0
- data/spec/data/positive +386 -0
- data/spec/spec_helper.rb +4 -0
- metadata +125 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: d164296489c1f693f53f141b5233c8fc76babdcc
|
4
|
+
data.tar.gz: 65d421b448594b4e70c52b6841b4993c6276dcda
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: b39634094b910f7cca0822803e10a378382b57d061f988a226dc62bae1d8685298959b7d8a16dc1b4c0091f13fb15332503f3fc71ce700478cb5fafe2ab790af
|
7
|
+
data.tar.gz: 953add18915f3bfa1881efb6c1a99658096fcdaffa14f4215778e3211517210b228e73405ecd76882856d810de424f7453e68e18c2607393deedeb9bc477ab3c
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/Gemfile
ADDED
data/Gemfile.lock
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
PATH
|
2
|
+
remote: .
|
3
|
+
specs:
|
4
|
+
bayes_classifier (0.0.1.1)
|
5
|
+
|
6
|
+
GEM
|
7
|
+
remote: https://rubygems.org/
|
8
|
+
specs:
|
9
|
+
diff-lcs (1.2.4)
|
10
|
+
fuubar (1.1.1)
|
11
|
+
rspec (~> 2.0)
|
12
|
+
rspec-instafail (~> 0.2.0)
|
13
|
+
ruby-progressbar (~> 1.0)
|
14
|
+
rake (10.1.0)
|
15
|
+
rspec (2.14.1)
|
16
|
+
rspec-core (~> 2.14.0)
|
17
|
+
rspec-expectations (~> 2.14.0)
|
18
|
+
rspec-mocks (~> 2.14.0)
|
19
|
+
rspec-core (2.14.5)
|
20
|
+
rspec-expectations (2.14.2)
|
21
|
+
diff-lcs (>= 1.1.3, < 2.0)
|
22
|
+
rspec-instafail (0.2.4)
|
23
|
+
rspec-mocks (2.14.3)
|
24
|
+
ruby-progressbar (1.2.0)
|
25
|
+
|
26
|
+
PLATFORMS
|
27
|
+
ruby
|
28
|
+
|
29
|
+
DEPENDENCIES
|
30
|
+
bayes_classifier!
|
31
|
+
bundler (~> 1.3)
|
32
|
+
fuubar
|
33
|
+
rake
|
34
|
+
rspec
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2013 DarthSim
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,55 @@
|
|
1
|
+
# Bayes::Classifier
|
2
|
+
|
3
|
+
Bayes::Classifier allows you to classify strings with naive Bayes classifier.
|
4
|
+
|
5
|
+
## Installation
|
6
|
+
|
7
|
+
Just add the following line to your `Gemfile`:
|
8
|
+
|
9
|
+
```ruby
|
10
|
+
gem 'bayes_classifier'
|
11
|
+
```
|
12
|
+
|
13
|
+
Then run 'bundle install'.
|
14
|
+
|
15
|
+
## Usage
|
16
|
+
|
17
|
+
```ruby
|
18
|
+
# Create new classifier
|
19
|
+
classifier = Bayes::Classifier.new
|
20
|
+
|
21
|
+
# Train classifier with a string
|
22
|
+
classifier.train :category1, "lorem ipsum dolor sit amet"
|
23
|
+
|
24
|
+
# Train classifier with array of strings
|
25
|
+
classifier.train_with_array :category2, ["the first string", "the second string", "the third string"]
|
26
|
+
|
27
|
+
# Train classifier with textfile
|
28
|
+
classifier.train_with_file :category3, "data/category3.txt"
|
29
|
+
|
30
|
+
# Train classifier with CSV file (first column - string, second column - category)
|
31
|
+
classifier.train_with_csv "data/training.csv"
|
32
|
+
|
33
|
+
# Apply weighting to the top words of category
|
34
|
+
classifier.apply_weighting :category3, 10
|
35
|
+
|
36
|
+
# Remove empty categories
|
37
|
+
classifier.pop_unused
|
38
|
+
|
39
|
+
# Classify string
|
40
|
+
classifier.classify "the string"
|
41
|
+
|
42
|
+
# Reset categories
|
43
|
+
classifier.flush
|
44
|
+
|
45
|
+
# Remove all categories
|
46
|
+
classifier.flush_all
|
47
|
+
```
|
48
|
+
|
49
|
+
## Contributing
|
50
|
+
|
51
|
+
1. Fork it
|
52
|
+
2. Create your feature branch (git checkout -b my-new-feature)
|
53
|
+
3. Commit your changes (git commit -am 'Add some feature')
|
54
|
+
4. Push to the branch (git push origin my-new-feature)
|
55
|
+
5. Create new Pull Request
|
data/Rakefile
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
require "bundler/gem_tasks"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# coding: utf-8
|
2
|
+
lib = File.expand_path('../lib', __FILE__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require 'bayes_classifier/version'
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = "bayes_classifier"
|
8
|
+
spec.version = Bayes::VERSION
|
9
|
+
spec.authors = ["DarthSim"]
|
10
|
+
spec.email = ["darthsim@gmail.com"]
|
11
|
+
spec.description = "Naive Bayes classifier"
|
12
|
+
spec.summary = "Allows to classify strings with naive Bayes classifier"
|
13
|
+
spec.homepage = "https://github.com/DarthSim/bayes_classifier"
|
14
|
+
spec.license = "MIT"
|
15
|
+
|
16
|
+
spec.files = `git ls-files`.split($/)
|
17
|
+
spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
|
18
|
+
spec.test_files = spec.files.grep(%r{^spec/})
|
19
|
+
spec.require_paths = ["lib"]
|
20
|
+
|
21
|
+
spec.add_development_dependency "bundler", "~> 1.3"
|
22
|
+
spec.add_development_dependency "rake"
|
23
|
+
spec.add_development_dependency "rspec"
|
24
|
+
spec.add_development_dependency "fuubar"
|
25
|
+
end
|
data/lib/bayes.rb
ADDED
@@ -0,0 +1,67 @@
|
|
1
|
+
module Bayes
|
2
|
+
class Category
|
3
|
+
MIN_SCORE = 0.0000001
|
4
|
+
|
5
|
+
def initialize
|
6
|
+
reset
|
7
|
+
end
|
8
|
+
|
9
|
+
def reset
|
10
|
+
@words = {}
|
11
|
+
@words_count = 0
|
12
|
+
end
|
13
|
+
|
14
|
+
def train(text)
|
15
|
+
text.word_hash.each do |word, count|
|
16
|
+
@words[word] = @words[word].to_i + count
|
17
|
+
@words_count += count
|
18
|
+
end
|
19
|
+
end
|
20
|
+
|
21
|
+
def forget(text)
|
22
|
+
text.word_hash.each do |word, count|
|
23
|
+
@words[word] = @words[word].to_i - count
|
24
|
+
@words.delete(word) if @words[word] == 0
|
25
|
+
@words_count -= count
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
def apply_weighting(coeff)
|
30
|
+
top_words.each do |word|
|
31
|
+
apply_weighting_for word, coeff
|
32
|
+
end
|
33
|
+
end
|
34
|
+
|
35
|
+
def apply_weighting_for(word, coeff)
|
36
|
+
if old_weight = @words[word]
|
37
|
+
@words[word] = old_weight * coeff
|
38
|
+
@words_count += @words[word] - old_weight
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
def top_words(num = 100)
|
43
|
+
@words.sort_by{ |w,c| -c }.slice(0,num).map{ |w| w[0] }
|
44
|
+
end
|
45
|
+
|
46
|
+
def score_for(words)
|
47
|
+
if @words_count > 0
|
48
|
+
words = words.word_hash.keys unless words.is_a? Array
|
49
|
+
|
50
|
+
if words.any?
|
51
|
+
words.map do |word|
|
52
|
+
word_value = @words[word] || MIN_SCORE
|
53
|
+
Math.log(word_value / @words_count.to_f)
|
54
|
+
end.inject(:+)
|
55
|
+
else
|
56
|
+
Math.log(MIN_SCORE / @words_count)
|
57
|
+
end
|
58
|
+
else
|
59
|
+
-Float::INFINITY
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
def blank?
|
64
|
+
@words_count == 0
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
@@ -0,0 +1,55 @@
|
|
1
|
+
module Bayes
|
2
|
+
class Classifier
|
3
|
+
attr_reader :categories
|
4
|
+
|
5
|
+
def initialize
|
6
|
+
@categories = {}
|
7
|
+
end
|
8
|
+
|
9
|
+
def train(category, text)
|
10
|
+
ensure_category(category).train(text)
|
11
|
+
end
|
12
|
+
|
13
|
+
def ensure_category(category)
|
14
|
+
@categories[category] ||= Bayes::Category.new
|
15
|
+
end
|
16
|
+
|
17
|
+
def train_with_array(category, lines)
|
18
|
+
lines.each{ |line| train(category, line) }
|
19
|
+
end
|
20
|
+
|
21
|
+
def train_with_file(category, filename)
|
22
|
+
train_with_array category, File.read(filename).split(/\r?\n/)
|
23
|
+
end
|
24
|
+
|
25
|
+
def train_with_csv(filename, separator: "||")
|
26
|
+
csv = CSV.new File.read(filename), col_sep: separator, quote_char: "§" # hope § won't be used anywhere
|
27
|
+
csv.each do |row|
|
28
|
+
train row[1], row[0]
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
def apply_weighting(category, coeff)
|
33
|
+
ensure_category(category).apply_weighting(coeff)
|
34
|
+
end
|
35
|
+
|
36
|
+
def classify(string)
|
37
|
+
words = string.word_hash.keys
|
38
|
+
@categories.each_with_object({}) do |category, hash|
|
39
|
+
hash[category[0]] = category[1].score_for(words)
|
40
|
+
end.sort_by { |cat| -cat[1] }[0][0]
|
41
|
+
end
|
42
|
+
|
43
|
+
def pop_unused
|
44
|
+
@categories.delete_if{ |name,cat| cat.blank? }
|
45
|
+
end
|
46
|
+
|
47
|
+
def flush
|
48
|
+
@categories.each{ |name, cat| cat.reset }
|
49
|
+
end
|
50
|
+
|
51
|
+
def flush_all
|
52
|
+
@categories = {}
|
53
|
+
end
|
54
|
+
end
|
55
|
+
end
|
data/lib/bayes/string.rb
ADDED
@@ -0,0 +1,107 @@
|
|
1
|
+
class String
|
2
|
+
|
3
|
+
# Returns a Hash of words and their frequencies
|
4
|
+
def word_hash
|
5
|
+
split_words.each_with_object({}) do |word, hash|
|
6
|
+
word.downcase!
|
7
|
+
if !word.stopword? && word.length > 2
|
8
|
+
hash[word] ||= 0
|
9
|
+
hash[word] += 1
|
10
|
+
end
|
11
|
+
end
|
12
|
+
end
|
13
|
+
|
14
|
+
def split_words
|
15
|
+
gsub(/[^\w\s]+/," ").split
|
16
|
+
end
|
17
|
+
|
18
|
+
def stopword?
|
19
|
+
STOPWORDS.include? self
|
20
|
+
end
|
21
|
+
|
22
|
+
private
|
23
|
+
|
24
|
+
STOPWORDS = [
|
25
|
+
"a",
|
26
|
+
"again",
|
27
|
+
"all",
|
28
|
+
"along",
|
29
|
+
"are",
|
30
|
+
"also",
|
31
|
+
"an",
|
32
|
+
"and",
|
33
|
+
"as",
|
34
|
+
"at",
|
35
|
+
"but",
|
36
|
+
"by",
|
37
|
+
"came",
|
38
|
+
"can",
|
39
|
+
"cant",
|
40
|
+
"couldnt",
|
41
|
+
"did",
|
42
|
+
"didn",
|
43
|
+
"didnt",
|
44
|
+
"do",
|
45
|
+
"doesnt",
|
46
|
+
"dont",
|
47
|
+
"ever",
|
48
|
+
"first",
|
49
|
+
"from",
|
50
|
+
"have",
|
51
|
+
"her",
|
52
|
+
"here",
|
53
|
+
"him",
|
54
|
+
"how",
|
55
|
+
"i",
|
56
|
+
"if",
|
57
|
+
"in",
|
58
|
+
"into",
|
59
|
+
"is",
|
60
|
+
"isnt",
|
61
|
+
"it",
|
62
|
+
"itll",
|
63
|
+
"just",
|
64
|
+
"last",
|
65
|
+
"least",
|
66
|
+
"like",
|
67
|
+
"most",
|
68
|
+
"my",
|
69
|
+
"new",
|
70
|
+
"no",
|
71
|
+
"not",
|
72
|
+
"now",
|
73
|
+
"of",
|
74
|
+
"on",
|
75
|
+
"or",
|
76
|
+
"should",
|
77
|
+
"sinc",
|
78
|
+
"so",
|
79
|
+
"some",
|
80
|
+
"th",
|
81
|
+
"than",
|
82
|
+
"this",
|
83
|
+
"that",
|
84
|
+
"the",
|
85
|
+
"their",
|
86
|
+
"then",
|
87
|
+
"those",
|
88
|
+
"to",
|
89
|
+
"told",
|
90
|
+
"too",
|
91
|
+
"true",
|
92
|
+
"try",
|
93
|
+
"until",
|
94
|
+
"url",
|
95
|
+
"us",
|
96
|
+
"were",
|
97
|
+
"when",
|
98
|
+
"whether",
|
99
|
+
"while",
|
100
|
+
"with",
|
101
|
+
"within",
|
102
|
+
"yes",
|
103
|
+
"you",
|
104
|
+
"youll",
|
105
|
+
].freeze
|
106
|
+
|
107
|
+
end
|
data/lib/bayes/test.rb
ADDED
@@ -0,0 +1,81 @@
|
|
1
|
+
require "csv"
|
2
|
+
|
3
|
+
module Bayes
|
4
|
+
module Stats
|
5
|
+
|
6
|
+
### Error Analysis ====================================
|
7
|
+
|
8
|
+
def self.error_analysis(classifier, category, positive_items, negative_items)
|
9
|
+
true_positives = 0
|
10
|
+
true_negatives = 0
|
11
|
+
false_negatives = 0
|
12
|
+
false_positives = 0
|
13
|
+
|
14
|
+
positive_items.each do |i|
|
15
|
+
if classifier.classify(i) == category
|
16
|
+
true_positives += 1.0
|
17
|
+
else
|
18
|
+
false_negatives += 1.0
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
negative_items.each do |i|
|
23
|
+
if classifier.classify(i) == category
|
24
|
+
false_positives += 1.0
|
25
|
+
else
|
26
|
+
true_negatives += 1.0
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
precision = true_positives / (true_positives + false_positives)
|
31
|
+
recall = true_positives / (true_positives + false_negatives)
|
32
|
+
f_score = 2 * ( (precision * recall) / (precision + recall) )
|
33
|
+
|
34
|
+
{
|
35
|
+
true_positives: true_positives,
|
36
|
+
true_negatives: true_negatives,
|
37
|
+
false_negatives: false_negatives,
|
38
|
+
false_positives: false_positives,
|
39
|
+
precision: precision,
|
40
|
+
recall: recall,
|
41
|
+
f_score: f_score,
|
42
|
+
}
|
43
|
+
end
|
44
|
+
|
45
|
+
def self.error_analysis_csv(classifier, filename)
|
46
|
+
items = File.read(filename).split("\n").map {|t| t.split("||") }
|
47
|
+
|
48
|
+
correct = 0
|
49
|
+
incorrect = 0
|
50
|
+
|
51
|
+
items.each do |item|
|
52
|
+
category = classifier.classify(item.first)
|
53
|
+
if category == item.last
|
54
|
+
correct += 1
|
55
|
+
else
|
56
|
+
incorrect += 1
|
57
|
+
end
|
58
|
+
end
|
59
|
+
|
60
|
+
{
|
61
|
+
correct: correct,
|
62
|
+
incorrect: incorrect,
|
63
|
+
error_rate: incorrect / (incorrect + correct).to_f
|
64
|
+
}
|
65
|
+
end
|
66
|
+
|
67
|
+
### Helpers ===================================================
|
68
|
+
|
69
|
+
def self.to_csv(results, name: "examples")
|
70
|
+
`mkdir -p spec/reports`
|
71
|
+
|
72
|
+
CSV.open("spec/reports/#{name}.csv", "w+") do |csv|
|
73
|
+
csv << results.first.keys
|
74
|
+
results.each do |r|
|
75
|
+
csv << r.values
|
76
|
+
end
|
77
|
+
end
|
78
|
+
end
|
79
|
+
|
80
|
+
end
|
81
|
+
end
|