backports 2.3.0 → 2.4.0
Sign up to get free protection for your applications and to get access to all the features.
- data/.irbrc +1 -0
- data/README.rdoc +55 -3
- data/Rakefile +1 -0
- data/VERSION.yml +1 -1
- data/backports.gemspec +99 -118
- data/lib/backports/1.8.7/string.rb +1 -1
- data/lib/backports/1.9.1/array.rb +1 -2
- data/lib/backports/1.9.1/file.rb +20 -0
- data/lib/backports/1.9.1/float.rb +19 -0
- data/lib/backports/1.9.1/hash.rb +20 -3
- data/lib/backports/1.9.1/integer.rb +19 -0
- data/lib/backports/1.9.1/io.rb +18 -3
- data/lib/backports/1.9.1/numeric.rb +9 -0
- data/lib/backports/1.9.1/regexp.rb +1 -6
- data/lib/backports/1.9.1/stdlib/prime.rb +495 -0
- data/lib/backports/1.9.1/stdlib.rb +1 -0
- data/lib/backports/1.9.1/string.rb +2 -7
- data/lib/backports/1.9.2/array.rb +3 -4
- data/lib/backports/1.9.2/complex.rb +6 -0
- data/lib/backports/1.9.2/stdlib/matrix/eigenvalue_decomposition.rb +886 -0
- data/lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb +218 -0
- data/lib/backports/1.9.2/stdlib/matrix.rb +1872 -0
- data/lib/backports/1.9.2/stdlib/set.rb +13 -0
- data/lib/backports/1.9.2/stdlib.rb +1 -0
- data/lib/backports/1.9.3/io.rb +12 -0
- data/lib/backports/1.9.3.rb +5 -0
- data/lib/backports/1.9.rb +1 -1
- data/lib/backports/basic_object.rb +3 -2
- data/lib/backports/force/array_map.rb +1 -0
- data/lib/backports/force/enumerable_map.rb +3 -0
- data/lib/backports/force/hash_select.rb +9 -0
- data/lib/backports/force/string_length.rb +10 -0
- data/lib/backports/force/string_size.rb +1 -0
- data/lib/backports/tools.rb +137 -1
- data/test/README +13 -0
- metadata +25 -42
- data/.gitignore +0 -7
- data/test/_README +0 -1
- data/test/array_test.rb +0 -82
- data/test/basic_object_test.rb +0 -70
- data/test/binding_test.rb +0 -20
- data/test/enumerable_test.rb +0 -244
- data/test/enumerator_test.rb +0 -45
- data/test/hash_test.rb +0 -26
- data/test/kernel_test.rb +0 -31
- data/test/math_test.rb +0 -59
- data/test/method_missing_test.rb +0 -37
- data/test/method_test.rb +0 -73
- data/test/module_test.rb +0 -20
- data/test/object_test.rb +0 -35
- data/test/proc_test.rb +0 -116
- data/test/regexp_test.rb +0 -14
- data/test/string_test.rb +0 -74
- data/test/symbol_test.rb +0 -23
- data/test/test_helper.rb +0 -8
@@ -0,0 +1,218 @@
|
|
1
|
+
class Matrix
|
2
|
+
# Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
|
3
|
+
|
4
|
+
#
|
5
|
+
# For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
6
|
+
# unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
7
|
+
# and a m-by-m permutation matrix P so that L*U = P*A.
|
8
|
+
# If m < n, then L is m-by-m and U is m-by-n.
|
9
|
+
#
|
10
|
+
# The LUP decomposition with pivoting always exists, even if the matrix is
|
11
|
+
# singular, so the constructor will never fail. The primary use of the
|
12
|
+
# LU decomposition is in the solution of square systems of simultaneous
|
13
|
+
# linear equations. This will fail if singular? returns true.
|
14
|
+
#
|
15
|
+
|
16
|
+
class LUPDecomposition
|
17
|
+
# Returns the lower triangular factor +L+
|
18
|
+
|
19
|
+
include Matrix::ConversionHelper
|
20
|
+
|
21
|
+
def l
|
22
|
+
Matrix.build(@row_size, @col_size) do |i, j|
|
23
|
+
if (i > j)
|
24
|
+
@lu[i][j]
|
25
|
+
elsif (i == j)
|
26
|
+
1
|
27
|
+
else
|
28
|
+
0
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
# Returns the upper triangular factor +U+
|
34
|
+
|
35
|
+
def u
|
36
|
+
Matrix.build(@col_size, @col_size) do |i, j|
|
37
|
+
if (i <= j)
|
38
|
+
@lu[i][j]
|
39
|
+
else
|
40
|
+
0
|
41
|
+
end
|
42
|
+
end
|
43
|
+
end
|
44
|
+
|
45
|
+
# Returns the permutation matrix +P+
|
46
|
+
|
47
|
+
def p
|
48
|
+
rows = Array.new(@row_size){Array.new(@col_size, 0)}
|
49
|
+
@pivots.each_with_index{|p, i| rows[i][p] = 1}
|
50
|
+
Matrix.send :new, rows, @col_size
|
51
|
+
end
|
52
|
+
|
53
|
+
# Returns +L+, +U+, +P+ in an array
|
54
|
+
|
55
|
+
def to_ary
|
56
|
+
[l, u, p]
|
57
|
+
end
|
58
|
+
alias_method :to_a, :to_ary
|
59
|
+
|
60
|
+
# Returns the pivoting indices
|
61
|
+
|
62
|
+
attr_reader :pivots
|
63
|
+
|
64
|
+
# Returns +true+ if +U+, and hence +A+, is singular.
|
65
|
+
|
66
|
+
def singular? ()
|
67
|
+
@col_size.times do |j|
|
68
|
+
if (@lu[j][j] == 0)
|
69
|
+
return true
|
70
|
+
end
|
71
|
+
end
|
72
|
+
false
|
73
|
+
end
|
74
|
+
|
75
|
+
# Returns the determinant of +A+, calculated efficiently
|
76
|
+
# from the factorization.
|
77
|
+
|
78
|
+
def det
|
79
|
+
if (@row_size != @col_size)
|
80
|
+
Matrix.Raise Matrix::ErrDimensionMismatch unless square?
|
81
|
+
end
|
82
|
+
d = @pivot_sign
|
83
|
+
@col_size.times do |j|
|
84
|
+
d *= @lu[j][j]
|
85
|
+
end
|
86
|
+
d
|
87
|
+
end
|
88
|
+
alias_method :determinant, :det
|
89
|
+
|
90
|
+
# Returns +m+ so that <tt>A*m = b</tt>,
|
91
|
+
# or equivalently so that <tt>L*U*m = P*b</tt>
|
92
|
+
# +b+ can be a Matrix or a Vector
|
93
|
+
|
94
|
+
def solve b
|
95
|
+
if (singular?)
|
96
|
+
Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
|
97
|
+
end
|
98
|
+
if b.is_a? Matrix
|
99
|
+
if (b.row_size != @row_size)
|
100
|
+
Matrix.Raise Matrix::ErrDimensionMismatch
|
101
|
+
end
|
102
|
+
|
103
|
+
# Copy right hand side with pivoting
|
104
|
+
nx = b.column_size
|
105
|
+
m = @pivots.map{|row| b.row(row).to_a}
|
106
|
+
|
107
|
+
# Solve L*Y = P*b
|
108
|
+
@col_size.times do |k|
|
109
|
+
(k+1).upto(@col_size-1) do |i|
|
110
|
+
nx.times do |j|
|
111
|
+
m[i][j] -= m[k][j]*@lu[i][k]
|
112
|
+
end
|
113
|
+
end
|
114
|
+
end
|
115
|
+
# Solve U*m = Y
|
116
|
+
(@col_size-1).downto(0) do |k|
|
117
|
+
nx.times do |j|
|
118
|
+
m[k][j] = m[k][j].quo(@lu[k][k])
|
119
|
+
end
|
120
|
+
k.times do |i|
|
121
|
+
nx.times do |j|
|
122
|
+
m[i][j] -= m[k][j]*@lu[i][k]
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
126
|
+
Matrix.send :new, m, nx
|
127
|
+
else # same algorithm, specialized for simpler case of a vector
|
128
|
+
b = convert_to_array(b)
|
129
|
+
if (b.size != @row_size)
|
130
|
+
Matrix.Raise Matrix::ErrDimensionMismatch
|
131
|
+
end
|
132
|
+
|
133
|
+
# Copy right hand side with pivoting
|
134
|
+
m = b.values_at(*@pivots)
|
135
|
+
|
136
|
+
# Solve L*Y = P*b
|
137
|
+
@col_size.times do |k|
|
138
|
+
(k+1).upto(@col_size-1) do |i|
|
139
|
+
m[i] -= m[k]*@lu[i][k]
|
140
|
+
end
|
141
|
+
end
|
142
|
+
# Solve U*m = Y
|
143
|
+
(@col_size-1).downto(0) do |k|
|
144
|
+
m[k] = m[k].quo(@lu[k][k])
|
145
|
+
k.times do |i|
|
146
|
+
m[i] -= m[k]*@lu[i][k]
|
147
|
+
end
|
148
|
+
end
|
149
|
+
Vector.elements(m, false)
|
150
|
+
end
|
151
|
+
end
|
152
|
+
|
153
|
+
def initialize a
|
154
|
+
raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
|
155
|
+
# Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
156
|
+
@lu = a.to_a
|
157
|
+
@row_size = a.row_size
|
158
|
+
@col_size = a.column_size
|
159
|
+
@pivots = Array.new(@row_size)
|
160
|
+
@row_size.times do |i|
|
161
|
+
@pivots[i] = i
|
162
|
+
end
|
163
|
+
@pivot_sign = 1
|
164
|
+
lu_col_j = Array.new(@row_size)
|
165
|
+
|
166
|
+
# Outer loop.
|
167
|
+
|
168
|
+
@col_size.times do |j|
|
169
|
+
|
170
|
+
# Make a copy of the j-th column to localize references.
|
171
|
+
|
172
|
+
@row_size.times do |i|
|
173
|
+
lu_col_j[i] = @lu[i][j]
|
174
|
+
end
|
175
|
+
|
176
|
+
# Apply previous transformations.
|
177
|
+
|
178
|
+
@row_size.times do |i|
|
179
|
+
lu_row_i = @lu[i]
|
180
|
+
|
181
|
+
# Most of the time is spent in the following dot product.
|
182
|
+
|
183
|
+
kmax = [i, j].min
|
184
|
+
s = 0
|
185
|
+
kmax.times do |k|
|
186
|
+
s += lu_row_i[k]*lu_col_j[k]
|
187
|
+
end
|
188
|
+
|
189
|
+
lu_row_i[j] = lu_col_j[i] -= s
|
190
|
+
end
|
191
|
+
|
192
|
+
# Find pivot and exchange if necessary.
|
193
|
+
|
194
|
+
p = j
|
195
|
+
(j+1).upto(@row_size-1) do |i|
|
196
|
+
if (lu_col_j[i].abs > lu_col_j[p].abs)
|
197
|
+
p = i
|
198
|
+
end
|
199
|
+
end
|
200
|
+
if (p != j)
|
201
|
+
@col_size.times do |k|
|
202
|
+
t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
|
203
|
+
end
|
204
|
+
k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
|
205
|
+
@pivot_sign = -@pivot_sign
|
206
|
+
end
|
207
|
+
|
208
|
+
# Compute multipliers.
|
209
|
+
|
210
|
+
if (j < @row_size && @lu[j][j] != 0)
|
211
|
+
(j+1).upto(@row_size-1) do |i|
|
212
|
+
@lu[i][j] = @lu[i][j].quo(@lu[j][j])
|
213
|
+
end
|
214
|
+
end
|
215
|
+
end
|
216
|
+
end
|
217
|
+
end
|
218
|
+
end
|