aws-sdk-sagemaker 1.81.0 → 1.82.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 2c5be4e4f4a2d09c6bfabfe50c30180d430159a06ca517b54fdcc89e861cba61
4
- data.tar.gz: 9145c2c496bd9d4250f3da46b4b8bb4d21756bf36ed38197c4a43d7943ddd328
3
+ metadata.gz: 67cd458d9885345bf4c946b19922cd5701d71d129e1155a1a1118f89222690d5
4
+ data.tar.gz: 79549091e6f25640eb25cf5db6f13dfaa44b3499e34c676298b553bc5a13e10e
5
5
  SHA512:
6
- metadata.gz: 7999308409f54115552ad36d65e7ffb7abdffbd58ea682f6d538192622541365cc2483734fc0abef9887aa672ea483e5ad0646ec5103072cf7bac5d999ebd96e
7
- data.tar.gz: 6818bdde11e4e6366efdaea136a90caeb998e7061154635601b2f950c6185b23c30c7654da780acb1fee7d58851c5070ee9f420269d3aa8a83e8f314477056f8
6
+ metadata.gz: d29ea9219b5f7018ccc3d3742f7c17e17c246663b588b2eb17b3d3acd5dc96398ced4c732eee46b79ed800c353e1b5e202b275ba33051a0eb52f71c7e100aeb2
7
+ data.tar.gz: 83a1e6afea0864e0cad52b912ccc0470e6eaea646b4705de282fefac8dadf0c45706f2d458af6add286411a8838dbefcbc4b2813baf537f0b69b05450b69ae53
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.82.0 (2021-03-17)
5
+ ------------------
6
+
7
+ * Feature - Support new target device ml_eia2 in SageMaker CreateCompilationJob API
8
+
4
9
  1.81.0 (2021-03-10)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.81.0
1
+ 1.82.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.81.0'
52
+ GEM_VERSION = '1.82.0'
53
53
 
54
54
  end
@@ -1304,7 +1304,7 @@ module Aws::SageMaker
1304
1304
  # },
1305
1305
  # output_config: { # required
1306
1306
  # s3_output_location: "S3Uri", # required
1307
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1307
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1308
1308
  # target_platform: {
1309
1309
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1310
1310
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -7641,7 +7641,7 @@ module Aws::SageMaker
7641
7641
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7642
7642
  # resp.input_config.framework_version #=> String
7643
7643
  # resp.output_config.s3_output_location #=> String
7644
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7644
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7645
7645
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7646
7646
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7647
7647
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -11372,7 +11372,7 @@ module Aws::SageMaker
11372
11372
  # resp.compilation_job_summaries[0].creation_time #=> Time
11373
11373
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11374
11374
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11375
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11375
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11376
11376
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11377
11377
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11378
11378
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -17309,7 +17309,7 @@ module Aws::SageMaker
17309
17309
  params: params,
17310
17310
  config: config)
17311
17311
  context[:gem_name] = 'aws-sdk-sagemaker'
17312
- context[:gem_version] = '1.81.0'
17312
+ context[:gem_version] = '1.82.0'
17313
17313
  Seahorse::Client::Request.new(handlers, context)
17314
17314
  end
17315
17315
 
@@ -3951,7 +3951,7 @@ module Aws::SageMaker
3951
3951
  # },
3952
3952
  # output_config: { # required
3953
3953
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3954
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
3955
  # target_platform: {
3956
3956
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
3957
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -18818,6 +18818,33 @@ module Aws::SageMaker
18818
18818
  #
18819
18819
  # * `"CompilerOptions": \{"class_labels":
18820
18820
  # "imagenet_labels_1000.txt"\}`
18821
+ #
18822
+ # Depending on the model format, `DataInputConfig` requires the
18823
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18824
+ #
18825
+ # * For TensorFlow models saved in the SavedModel format, specify the
18826
+ # input names from `signature_def_key` and the input model shapes
18827
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18828
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18829
+ # TensorFlow's default signature def key. For example:
18830
+ #
18831
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18832
+ #
18833
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18834
+ #
18835
+ # * For TensorFlow models saved as a frozen graph, specify the input
18836
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18837
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18838
+ # For example:
18839
+ #
18840
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18841
+ #
18842
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18843
+ #
18844
+ #
18845
+ #
18846
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18847
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18821
18848
  # @return [String]
18822
18849
  #
18823
18850
  # @!attribute [rw] framework
@@ -27032,7 +27059,7 @@ module Aws::SageMaker
27032
27059
  #
27033
27060
  # {
27034
27061
  # s3_output_location: "S3Uri", # required
27035
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27062
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27036
27063
  # target_platform: {
27037
27064
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27038
27065
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -27167,6 +27194,24 @@ module Aws::SageMaker
27167
27194
  #
27168
27195
  # ^
27169
27196
  #
27197
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27198
+ # the following compiler options:
27199
+ #
27200
+ # * `precision_mode`\: Specifies the precision of compiled
27201
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27202
+ # is `"FP32"`.
27203
+ #
27204
+ # * `signature_def_key`\: Specifies the signature to use for models
27205
+ # in SavedModel format. Defaults is TensorFlow's default
27206
+ # signature def key.
27207
+ #
27208
+ # * `output_names`\: Specifies a list of output tensor names for
27209
+ # models in FrozenGraph format. Set at most one API field, either:
27210
+ # `signature_def_key` or `output_names`.
27211
+ #
27212
+ # For example: `\{"precision_mode": "FP32", "output_names":
27213
+ # ["output:0"]\}`
27214
+ #
27170
27215
  #
27171
27216
  #
27172
27217
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.81.0
4
+ version: 1.82.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-03-10 00:00:00.000000000 Z
11
+ date: 2021-03-17 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core