aws-sdk-sagemaker 1.81.0 → 1.82.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 2c5be4e4f4a2d09c6bfabfe50c30180d430159a06ca517b54fdcc89e861cba61
4
- data.tar.gz: 9145c2c496bd9d4250f3da46b4b8bb4d21756bf36ed38197c4a43d7943ddd328
3
+ metadata.gz: 67cd458d9885345bf4c946b19922cd5701d71d129e1155a1a1118f89222690d5
4
+ data.tar.gz: 79549091e6f25640eb25cf5db6f13dfaa44b3499e34c676298b553bc5a13e10e
5
5
  SHA512:
6
- metadata.gz: 7999308409f54115552ad36d65e7ffb7abdffbd58ea682f6d538192622541365cc2483734fc0abef9887aa672ea483e5ad0646ec5103072cf7bac5d999ebd96e
7
- data.tar.gz: 6818bdde11e4e6366efdaea136a90caeb998e7061154635601b2f950c6185b23c30c7654da780acb1fee7d58851c5070ee9f420269d3aa8a83e8f314477056f8
6
+ metadata.gz: d29ea9219b5f7018ccc3d3742f7c17e17c246663b588b2eb17b3d3acd5dc96398ced4c732eee46b79ed800c353e1b5e202b275ba33051a0eb52f71c7e100aeb2
7
+ data.tar.gz: 83a1e6afea0864e0cad52b912ccc0470e6eaea646b4705de282fefac8dadf0c45706f2d458af6add286411a8838dbefcbc4b2813baf537f0b69b05450b69ae53
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.82.0 (2021-03-17)
5
+ ------------------
6
+
7
+ * Feature - Support new target device ml_eia2 in SageMaker CreateCompilationJob API
8
+
4
9
  1.81.0 (2021-03-10)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.81.0
1
+ 1.82.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.81.0'
52
+ GEM_VERSION = '1.82.0'
53
53
 
54
54
  end
@@ -1304,7 +1304,7 @@ module Aws::SageMaker
1304
1304
  # },
1305
1305
  # output_config: { # required
1306
1306
  # s3_output_location: "S3Uri", # required
1307
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1307
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1308
1308
  # target_platform: {
1309
1309
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1310
1310
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -7641,7 +7641,7 @@ module Aws::SageMaker
7641
7641
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7642
7642
  # resp.input_config.framework_version #=> String
7643
7643
  # resp.output_config.s3_output_location #=> String
7644
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7644
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7645
7645
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7646
7646
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7647
7647
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -11372,7 +11372,7 @@ module Aws::SageMaker
11372
11372
  # resp.compilation_job_summaries[0].creation_time #=> Time
11373
11373
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11374
11374
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11375
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11375
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11376
11376
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11377
11377
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11378
11378
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -17309,7 +17309,7 @@ module Aws::SageMaker
17309
17309
  params: params,
17310
17310
  config: config)
17311
17311
  context[:gem_name] = 'aws-sdk-sagemaker'
17312
- context[:gem_version] = '1.81.0'
17312
+ context[:gem_version] = '1.82.0'
17313
17313
  Seahorse::Client::Request.new(handlers, context)
17314
17314
  end
17315
17315
 
@@ -3951,7 +3951,7 @@ module Aws::SageMaker
3951
3951
  # },
3952
3952
  # output_config: { # required
3953
3953
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3954
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
3955
  # target_platform: {
3956
3956
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
3957
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -18818,6 +18818,33 @@ module Aws::SageMaker
18818
18818
  #
18819
18819
  # * `"CompilerOptions": \{"class_labels":
18820
18820
  # "imagenet_labels_1000.txt"\}`
18821
+ #
18822
+ # Depending on the model format, `DataInputConfig` requires the
18823
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18824
+ #
18825
+ # * For TensorFlow models saved in the SavedModel format, specify the
18826
+ # input names from `signature_def_key` and the input model shapes
18827
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18828
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18829
+ # TensorFlow's default signature def key. For example:
18830
+ #
18831
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18832
+ #
18833
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18834
+ #
18835
+ # * For TensorFlow models saved as a frozen graph, specify the input
18836
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18837
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18838
+ # For example:
18839
+ #
18840
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18841
+ #
18842
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18843
+ #
18844
+ #
18845
+ #
18846
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18847
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18821
18848
  # @return [String]
18822
18849
  #
18823
18850
  # @!attribute [rw] framework
@@ -27032,7 +27059,7 @@ module Aws::SageMaker
27032
27059
  #
27033
27060
  # {
27034
27061
  # s3_output_location: "S3Uri", # required
27035
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27062
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27036
27063
  # target_platform: {
27037
27064
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27038
27065
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -27167,6 +27194,24 @@ module Aws::SageMaker
27167
27194
  #
27168
27195
  # ^
27169
27196
  #
27197
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27198
+ # the following compiler options:
27199
+ #
27200
+ # * `precision_mode`\: Specifies the precision of compiled
27201
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27202
+ # is `"FP32"`.
27203
+ #
27204
+ # * `signature_def_key`\: Specifies the signature to use for models
27205
+ # in SavedModel format. Defaults is TensorFlow's default
27206
+ # signature def key.
27207
+ #
27208
+ # * `output_names`\: Specifies a list of output tensor names for
27209
+ # models in FrozenGraph format. Set at most one API field, either:
27210
+ # `signature_def_key` or `output_names`.
27211
+ #
27212
+ # For example: `\{"precision_mode": "FP32", "output_names":
27213
+ # ["output:0"]\}`
27214
+ #
27170
27215
  #
27171
27216
  #
27172
27217
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.81.0
4
+ version: 1.82.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-03-10 00:00:00.000000000 Z
11
+ date: 2021-03-17 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core