aws-sdk-sagemaker 1.98.0 → 1.102.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -260,7 +260,7 @@ module Aws::SageMaker
260
260
  # {
261
261
  # training_image: "AlgorithmImage",
262
262
  # algorithm_name: "ArnOrName",
263
- # training_input_mode: "Pipe", # required, accepts Pipe, File
263
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
264
264
  # metric_definitions: [
265
265
  # {
266
266
  # name: "MetricName", # required
@@ -293,27 +293,45 @@ module Aws::SageMaker
293
293
  # @return [String]
294
294
  #
295
295
  # @!attribute [rw] training_input_mode
296
- # The input mode that the algorithm supports. For the input modes that
297
- # Amazon SageMaker algorithms support, see [Algorithms][1]. If an
298
- # algorithm supports the `File` input mode, Amazon SageMaker downloads
299
- # the training data from S3 to the provisioned ML storage Volume, and
300
- # mounts the directory to docker volume for training container. If an
301
- # algorithm supports the `Pipe` input mode, Amazon SageMaker streams
302
- # data directly from S3 to the container.
303
- #
304
- # In File mode, make sure you provision ML storage volume with
305
- # sufficient capacity to accommodate the data download from S3. In
306
- # addition to the training data, the ML storage volume also stores the
307
- # output model. The algorithm container use ML storage volume to also
308
- # store intermediate information, if any.
309
- #
310
- # For distributed algorithms using File mode, training data is
311
- # distributed uniformly, and your training duration is predictable if
312
- # the input data objects size is approximately same. Amazon SageMaker
313
- # does not split the files any further for model training. If the
314
- # object sizes are skewed, training won't be optimal as the data
315
- # distribution is also skewed where one host in a training cluster is
316
- # overloaded, thus becoming bottleneck in training.
296
+ # The training input mode that the algorithm supports. For more
297
+ # information about input modes, see [Algorithms][1].
298
+ #
299
+ # **Pipe mode**
300
+ #
301
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
302
+ # directly from Amazon S3 to the container.
303
+ #
304
+ # **File mode**
305
+ #
306
+ # If an algorithm supports `File` mode, SageMaker downloads the
307
+ # training data from S3 to the provisioned ML storage volume, and
308
+ # mounts the directory to the Docker volume for the training
309
+ # container.
310
+ #
311
+ # You must provision the ML storage volume with sufficient capacity to
312
+ # accommodate the data downloaded from S3. In addition to the training
313
+ # data, the ML storage volume also stores the output model. The
314
+ # algorithm container uses the ML storage volume to also store
315
+ # intermediate information, if any.
316
+ #
317
+ # For distributed algorithms, training data is distributed uniformly.
318
+ # Your training duration is predictable if the input data objects
319
+ # sizes are approximately the same. SageMaker does not split the files
320
+ # any further for model training. If the object sizes are skewed,
321
+ # training won't be optimal as the data distribution is also skewed
322
+ # when one host in a training cluster is overloaded, thus becoming a
323
+ # bottleneck in training.
324
+ #
325
+ # **FastFile mode**
326
+ #
327
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
328
+ # directly from S3 to the container with no code changes, and provides
329
+ # file system access to the data. Users can author their training
330
+ # script to interact with these files as if they were stored on disk.
331
+ #
332
+ # `FastFile` mode works best when the data is read sequentially.
333
+ # Augmented manifest files aren't supported. The startup time is
334
+ # lower when there are fewer files in the S3 bucket provided.
317
335
  #
318
336
  #
319
337
  #
@@ -451,7 +469,7 @@ module Aws::SageMaker
451
469
  # {
452
470
  # profile_name: "EntityName", # required
453
471
  # training_job_definition: { # required
454
- # training_input_mode: "Pipe", # required, accepts Pipe, File
472
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
455
473
  # hyper_parameters: {
456
474
  # "HyperParameterKey" => "HyperParameterValue",
457
475
  # },
@@ -475,7 +493,7 @@ module Aws::SageMaker
475
493
  # content_type: "ContentType",
476
494
  # compression_type: "None", # accepts None, Gzip
477
495
  # record_wrapper_type: "None", # accepts None, RecordIO
478
- # input_mode: "Pipe", # accepts Pipe, File
496
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
479
497
  # shuffle_config: {
480
498
  # seed: 1, # required
481
499
  # },
@@ -565,7 +583,7 @@ module Aws::SageMaker
565
583
  # {
566
584
  # profile_name: "EntityName", # required
567
585
  # training_job_definition: { # required
568
- # training_input_mode: "Pipe", # required, accepts Pipe, File
586
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
569
587
  # hyper_parameters: {
570
588
  # "HyperParameterKey" => "HyperParameterValue",
571
589
  # },
@@ -589,7 +607,7 @@ module Aws::SageMaker
589
607
  # content_type: "ContentType",
590
608
  # compression_type: "None", # accepts None, Gzip
591
609
  # record_wrapper_type: "None", # accepts None, RecordIO
592
- # input_mode: "Pipe", # accepts Pipe, File
610
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
593
611
  # shuffle_config: {
594
612
  # seed: 1, # required
595
613
  # },
@@ -1622,7 +1640,7 @@ module Aws::SageMaker
1622
1640
  #
1623
1641
  # @!attribute [rw] created_by
1624
1642
  # Information about the user who created or modified an experiment,
1625
- # trial, or trial component.
1643
+ # trial, trial component, or project.
1626
1644
  # @return [Types::UserContext]
1627
1645
  #
1628
1646
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AssociationSummary AWS API Documentation
@@ -2063,12 +2081,20 @@ module Aws::SageMaker
2063
2081
  # @return [Integer]
2064
2082
  #
2065
2083
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2066
- # The maximum time, in seconds, a training job is allowed to run as
2067
- # part of an AutoML job.
2084
+ # The maximum time, in seconds, that each training job is allowed to
2085
+ # run as part of a hyperparameter tuning job. For more information,
2086
+ # see the used by the action.
2068
2087
  # @return [Integer]
2069
2088
  #
2070
2089
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
2071
2090
  # The maximum runtime, in seconds, an AutoML job has to complete.
2091
+ #
2092
+ # If an AutoML job exceeds the maximum runtime, the job is stopped
2093
+ # automatically and its processing is ended gracefully. The AutoML job
2094
+ # identifies the best model whose training was completed and marks it
2095
+ # as the best-performing model. Any unfinished steps of the job, such
2096
+ # as automatic one-click Autopilot model deployment, will not be
2097
+ # completed.
2072
2098
  # @return [Integer]
2073
2099
  #
2074
2100
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -2676,7 +2702,7 @@ module Aws::SageMaker
2676
2702
  # content_type: "ContentType",
2677
2703
  # compression_type: "None", # accepts None, Gzip
2678
2704
  # record_wrapper_type: "None", # accepts None, RecordIO
2679
- # input_mode: "Pipe", # accepts Pipe, File
2705
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
2680
2706
  # shuffle_config: {
2681
2707
  # seed: 1, # required
2682
2708
  # },
@@ -2775,7 +2801,7 @@ module Aws::SageMaker
2775
2801
  # is_required: false,
2776
2802
  # supported_content_types: ["ContentType"], # required
2777
2803
  # supported_compression_types: ["None"], # accepts None, Gzip
2778
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
2804
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
2779
2805
  # }
2780
2806
  #
2781
2807
  # @!attribute [rw] name
@@ -3549,7 +3575,7 @@ module Aws::SageMaker
3549
3575
  # is_required: false,
3550
3576
  # supported_content_types: ["ContentType"], # required
3551
3577
  # supported_compression_types: ["None"], # accepts None, Gzip
3552
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
3578
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
3553
3579
  # },
3554
3580
  # ],
3555
3581
  # supported_tuning_job_objective_metrics: [
@@ -3583,7 +3609,7 @@ module Aws::SageMaker
3583
3609
  # {
3584
3610
  # profile_name: "EntityName", # required
3585
3611
  # training_job_definition: { # required
3586
- # training_input_mode: "Pipe", # required, accepts Pipe, File
3612
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
3587
3613
  # hyper_parameters: {
3588
3614
  # "HyperParameterKey" => "HyperParameterValue",
3589
3615
  # },
@@ -3607,7 +3633,7 @@ module Aws::SageMaker
3607
3633
  # content_type: "ContentType",
3608
3634
  # compression_type: "None", # accepts None, Gzip
3609
3635
  # record_wrapper_type: "None", # accepts None, RecordIO
3610
- # input_mode: "Pipe", # accepts Pipe, File
3636
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
3611
3637
  # shuffle_config: {
3612
3638
  # seed: 1, # required
3613
3639
  # },
@@ -3842,6 +3868,7 @@ module Aws::SageMaker
3842
3868
  # sage_maker_image_arn: "ImageArn",
3843
3869
  # sage_maker_image_version_arn: "ImageVersionArn",
3844
3870
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
3871
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
3845
3872
  # },
3846
3873
  # }
3847
3874
  #
@@ -4200,7 +4227,7 @@ module Aws::SageMaker
4200
4227
  # },
4201
4228
  # output_config: { # required
4202
4229
  # s3_output_location: "S3Uri", # required
4203
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm
4230
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm, imx8mplus
4204
4231
  # target_platform: {
4205
4232
  # os: "ANDROID", # required, accepts ANDROID, LINUX
4206
4233
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -4641,13 +4668,16 @@ module Aws::SageMaker
4641
4668
  # sage_maker_image_arn: "ImageArn",
4642
4669
  # sage_maker_image_version_arn: "ImageVersionArn",
4643
4670
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4671
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
4644
4672
  # },
4673
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
4645
4674
  # },
4646
4675
  # kernel_gateway_app_settings: {
4647
4676
  # default_resource_spec: {
4648
4677
  # sage_maker_image_arn: "ImageArn",
4649
4678
  # sage_maker_image_version_arn: "ImageVersionArn",
4650
4679
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4680
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
4651
4681
  # },
4652
4682
  # custom_images: [
4653
4683
  # {
@@ -4656,12 +4686,14 @@ module Aws::SageMaker
4656
4686
  # app_image_config_name: "AppImageConfigName", # required
4657
4687
  # },
4658
4688
  # ],
4689
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
4659
4690
  # },
4660
4691
  # tensor_board_app_settings: {
4661
4692
  # default_resource_spec: {
4662
4693
  # sage_maker_image_arn: "ImageArn",
4663
4694
  # sage_maker_image_version_arn: "ImageVersionArn",
4664
4695
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4696
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
4665
4697
  # },
4666
4698
  # },
4667
4699
  # },
@@ -4732,9 +4764,8 @@ module Aws::SageMaker
4732
4764
  #
4733
4765
  # @!attribute [rw] kms_key_id
4734
4766
  # SageMaker uses Amazon Web Services KMS to encrypt the EFS volume
4735
- # attached to the domain with an Amazon Web Services managed customer
4736
- # master key (CMK) by default. For more control, specify a customer
4737
- # managed CMK.
4767
+ # attached to the domain with an Amazon Web Services managed key by
4768
+ # default. For more control, specify a customer managed key.
4738
4769
  # @return [String]
4739
4770
  #
4740
4771
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
@@ -4823,8 +4854,8 @@ module Aws::SageMaker
4823
4854
  # @return [Types::EdgeOutputConfig]
4824
4855
  #
4825
4856
  # @!attribute [rw] resource_key
4826
- # The CMK to use when encrypting the EBS volume the edge packaging job
4827
- # runs on.
4857
+ # The Amazon Web Services KMS key to use when encrypting the EBS
4858
+ # volume the edge packaging job runs on.
4828
4859
  # @return [String]
4829
4860
  #
4830
4861
  # @!attribute [rw] tags
@@ -5250,12 +5281,19 @@ module Aws::SageMaker
5250
5281
  # `OfflineStore`.
5251
5282
  #
5252
5283
  # * A configuration for an Amazon Web Services Glue or Amazon Web
5253
- # Services Hive data cataolgue.
5284
+ # Services Hive data catalog.
5254
5285
  #
5255
5286
  # * An KMS encryption key to encrypt the Amazon S3 location used for
5256
- # `OfflineStore`.
5287
+ # `OfflineStore`. If KMS encryption key is not specified, by default
5288
+ # we encrypt all data at rest using Amazon Web Services KMS key. By
5289
+ # defining your [bucket-level key][1] for SSE, you can reduce Amazon
5290
+ # Web Services KMS requests costs by up to 99 percent.
5257
5291
  #
5258
5292
  # To learn more about this parameter, see OfflineStoreConfig.
5293
+ #
5294
+ #
5295
+ #
5296
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
5259
5297
  # @return [Types::OfflineStoreConfig]
5260
5298
  #
5261
5299
  # @!attribute [rw] role_arn
@@ -5539,7 +5577,7 @@ module Aws::SageMaker
5539
5577
  # },
5540
5578
  # algorithm_specification: { # required
5541
5579
  # training_image: "AlgorithmImage",
5542
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5580
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5543
5581
  # algorithm_name: "ArnOrName",
5544
5582
  # metric_definitions: [
5545
5583
  # {
@@ -5569,7 +5607,7 @@ module Aws::SageMaker
5569
5607
  # content_type: "ContentType",
5570
5608
  # compression_type: "None", # accepts None, Gzip
5571
5609
  # record_wrapper_type: "None", # accepts None, RecordIO
5572
- # input_mode: "Pipe", # accepts Pipe, File
5610
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5573
5611
  # shuffle_config: {
5574
5612
  # seed: 1, # required
5575
5613
  # },
@@ -5640,7 +5678,7 @@ module Aws::SageMaker
5640
5678
  # },
5641
5679
  # algorithm_specification: { # required
5642
5680
  # training_image: "AlgorithmImage",
5643
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5681
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5644
5682
  # algorithm_name: "ArnOrName",
5645
5683
  # metric_definitions: [
5646
5684
  # {
@@ -5670,7 +5708,7 @@ module Aws::SageMaker
5670
5708
  # content_type: "ContentType",
5671
5709
  # compression_type: "None", # accepts None, Gzip
5672
5710
  # record_wrapper_type: "None", # accepts None, RecordIO
5673
- # input_mode: "Pipe", # accepts Pipe, File
5711
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5674
5712
  # shuffle_config: {
5675
5713
  # seed: 1, # required
5676
5714
  # },
@@ -7975,6 +8013,63 @@ module Aws::SageMaker
7975
8013
  include Aws::Structure
7976
8014
  end
7977
8015
 
8016
+ # @note When making an API call, you may pass CreateStudioLifecycleConfigRequest
8017
+ # data as a hash:
8018
+ #
8019
+ # {
8020
+ # studio_lifecycle_config_name: "StudioLifecycleConfigName", # required
8021
+ # studio_lifecycle_config_content: "StudioLifecycleConfigContent", # required
8022
+ # studio_lifecycle_config_app_type: "JupyterServer", # required, accepts JupyterServer, KernelGateway
8023
+ # tags: [
8024
+ # {
8025
+ # key: "TagKey", # required
8026
+ # value: "TagValue", # required
8027
+ # },
8028
+ # ],
8029
+ # }
8030
+ #
8031
+ # @!attribute [rw] studio_lifecycle_config_name
8032
+ # The name of the Studio Lifecycle Configuration to create.
8033
+ # @return [String]
8034
+ #
8035
+ # @!attribute [rw] studio_lifecycle_config_content
8036
+ # The content of your Studio Lifecycle Configuration script. This
8037
+ # content must be base64 encoded.
8038
+ # @return [String]
8039
+ #
8040
+ # @!attribute [rw] studio_lifecycle_config_app_type
8041
+ # The App type that the Lifecycle Configuration is attached to.
8042
+ # @return [String]
8043
+ #
8044
+ # @!attribute [rw] tags
8045
+ # Tags to be associated with the Lifecycle Configuration. Each tag
8046
+ # consists of a key and an optional value. Tag keys must be unique per
8047
+ # resource. Tags are searchable using the Search API.
8048
+ # @return [Array<Types::Tag>]
8049
+ #
8050
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateStudioLifecycleConfigRequest AWS API Documentation
8051
+ #
8052
+ class CreateStudioLifecycleConfigRequest < Struct.new(
8053
+ :studio_lifecycle_config_name,
8054
+ :studio_lifecycle_config_content,
8055
+ :studio_lifecycle_config_app_type,
8056
+ :tags)
8057
+ SENSITIVE = []
8058
+ include Aws::Structure
8059
+ end
8060
+
8061
+ # @!attribute [rw] studio_lifecycle_config_arn
8062
+ # The ARN of your created Lifecycle Configuration.
8063
+ # @return [String]
8064
+ #
8065
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateStudioLifecycleConfigResponse AWS API Documentation
8066
+ #
8067
+ class CreateStudioLifecycleConfigResponse < Struct.new(
8068
+ :studio_lifecycle_config_arn)
8069
+ SENSITIVE = []
8070
+ include Aws::Structure
8071
+ end
8072
+
7978
8073
  # @note When making an API call, you may pass CreateTrainingJobRequest
7979
8074
  # data as a hash:
7980
8075
  #
@@ -7986,7 +8081,7 @@ module Aws::SageMaker
7986
8081
  # algorithm_specification: { # required
7987
8082
  # training_image: "AlgorithmImage",
7988
8083
  # algorithm_name: "ArnOrName",
7989
- # training_input_mode: "Pipe", # required, accepts Pipe, File
8084
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
7990
8085
  # metric_definitions: [
7991
8086
  # {
7992
8087
  # name: "MetricName", # required
@@ -8016,7 +8111,7 @@ module Aws::SageMaker
8016
8111
  # content_type: "ContentType",
8017
8112
  # compression_type: "None", # accepts None, Gzip
8018
8113
  # record_wrapper_type: "None", # accepts None, RecordIO
8019
- # input_mode: "Pipe", # accepts Pipe, File
8114
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
8020
8115
  # shuffle_config: {
8021
8116
  # seed: 1, # required
8022
8117
  # },
@@ -8812,13 +8907,16 @@ module Aws::SageMaker
8812
8907
  # sage_maker_image_arn: "ImageArn",
8813
8908
  # sage_maker_image_version_arn: "ImageVersionArn",
8814
8909
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
8910
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
8815
8911
  # },
8912
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
8816
8913
  # },
8817
8914
  # kernel_gateway_app_settings: {
8818
8915
  # default_resource_spec: {
8819
8916
  # sage_maker_image_arn: "ImageArn",
8820
8917
  # sage_maker_image_version_arn: "ImageVersionArn",
8821
8918
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
8919
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
8822
8920
  # },
8823
8921
  # custom_images: [
8824
8922
  # {
@@ -8827,12 +8925,14 @@ module Aws::SageMaker
8827
8925
  # app_image_config_name: "AppImageConfigName", # required
8828
8926
  # },
8829
8927
  # ],
8928
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
8830
8929
  # },
8831
8930
  # tensor_board_app_settings: {
8832
8931
  # default_resource_spec: {
8833
8932
  # sage_maker_image_arn: "ImageArn",
8834
8933
  # sage_maker_image_version_arn: "ImageVersionArn",
8835
8934
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
8935
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
8836
8936
  # },
8837
8937
  # },
8838
8938
  # },
@@ -9316,19 +9416,18 @@ module Aws::SageMaker
9316
9416
  # specify `OutputFilter` as an additional filter to select a portion
9317
9417
  # of the joined dataset and store it in the output file.
9318
9418
  #
9319
- # For JSON or JSONLines objects, such as a JSON array, Amazon
9320
- # SageMaker adds the transformed data to the input JSON object in an
9321
- # attribute called `SageMakerOutput`. The joined result for JSON must
9322
- # be a key-value pair object. If the input is not a key-value pair
9323
- # object, Amazon SageMaker creates a new JSON file. In the new JSON
9324
- # file, and the input data is stored under the `SageMakerInput` key
9325
- # and the results are stored in `SageMakerOutput`.
9419
+ # For JSON or JSONLines objects, such as a JSON array, SageMaker adds
9420
+ # the transformed data to the input JSON object in an attribute called
9421
+ # `SageMakerOutput`. The joined result for JSON must be a key-value
9422
+ # pair object. If the input is not a key-value pair object, SageMaker
9423
+ # creates a new JSON file. In the new JSON file, and the input data is
9424
+ # stored under the `SageMakerInput` key and the results are stored in
9425
+ # `SageMakerOutput`.
9326
9426
  #
9327
- # For CSV data, Amazon SageMaker takes each row as a JSON array and
9328
- # joins the transformed data with the input by appending each
9329
- # transformed row to the end of the input. The joined data has the
9330
- # original input data followed by the transformed data and the output
9331
- # is a CSV file.
9427
+ # For CSV data, SageMaker takes each row as a JSON array and joins the
9428
+ # transformed data with the input by appending each transformed row to
9429
+ # the end of the input. The joined data has the original input data
9430
+ # followed by the transformed data and the output is a CSV file.
9332
9431
  #
9333
9432
  # For information on how joining in applied, see [Workflow for
9334
9433
  # Associating Inferences with Input Records][1].
@@ -10519,6 +10618,25 @@ module Aws::SageMaker
10519
10618
  include Aws::Structure
10520
10619
  end
10521
10620
 
10621
+ # @note When making an API call, you may pass DeleteStudioLifecycleConfigRequest
10622
+ # data as a hash:
10623
+ #
10624
+ # {
10625
+ # studio_lifecycle_config_name: "StudioLifecycleConfigName", # required
10626
+ # }
10627
+ #
10628
+ # @!attribute [rw] studio_lifecycle_config_name
10629
+ # The name of the Studio Lifecycle Configuration to delete.
10630
+ # @return [String]
10631
+ #
10632
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteStudioLifecycleConfigRequest AWS API Documentation
10633
+ #
10634
+ class DeleteStudioLifecycleConfigRequest < Struct.new(
10635
+ :studio_lifecycle_config_name)
10636
+ SENSITIVE = []
10637
+ include Aws::Structure
10638
+ end
10639
+
10522
10640
  # @note When making an API call, you may pass DeleteTagsInput
10523
10641
  # data as a hash:
10524
10642
  #
@@ -10850,7 +10968,7 @@ module Aws::SageMaker
10850
10968
  #
10851
10969
  # @!attribute [rw] created_by
10852
10970
  # Information about the user who created or modified an experiment,
10853
- # trial, or trial component.
10971
+ # trial, trial component, or project.
10854
10972
  # @return [Types::UserContext]
10855
10973
  #
10856
10974
  # @!attribute [rw] last_modified_time
@@ -10859,7 +10977,7 @@ module Aws::SageMaker
10859
10977
  #
10860
10978
  # @!attribute [rw] last_modified_by
10861
10979
  # Information about the user who created or modified an experiment,
10862
- # trial, or trial component.
10980
+ # trial, trial component, or project.
10863
10981
  # @return [Types::UserContext]
10864
10982
  #
10865
10983
  # @!attribute [rw] metadata_properties
@@ -11087,6 +11205,9 @@ module Aws::SageMaker
11087
11205
  #
11088
11206
  # @!attribute [rw] last_user_activity_timestamp
11089
11207
  # The timestamp of the last user's activity.
11208
+ # `LastUserActivityTimestamp` is also updated when SageMaker performs
11209
+ # health checks without user activity. As a result, this value is set
11210
+ # to the same value as `LastHealthCheckTimestamp`.
11090
11211
  # @return [Time]
11091
11212
  #
11092
11213
  # @!attribute [rw] creation_time
@@ -11165,7 +11286,7 @@ module Aws::SageMaker
11165
11286
  #
11166
11287
  # @!attribute [rw] created_by
11167
11288
  # Information about the user who created or modified an experiment,
11168
- # trial, or trial component.
11289
+ # trial, trial component, or project.
11169
11290
  # @return [Types::UserContext]
11170
11291
  #
11171
11292
  # @!attribute [rw] last_modified_time
@@ -11174,7 +11295,7 @@ module Aws::SageMaker
11174
11295
  #
11175
11296
  # @!attribute [rw] last_modified_by
11176
11297
  # Information about the user who created or modified an experiment,
11177
- # trial, or trial component.
11298
+ # trial, trial component, or project.
11178
11299
  # @return [Types::UserContext]
11179
11300
  #
11180
11301
  # @!attribute [rw] metadata_properties
@@ -11576,7 +11697,7 @@ module Aws::SageMaker
11576
11697
  #
11577
11698
  # @!attribute [rw] created_by
11578
11699
  # Information about the user who created or modified an experiment,
11579
- # trial, or trial component.
11700
+ # trial, trial component, or project.
11580
11701
  # @return [Types::UserContext]
11581
11702
  #
11582
11703
  # @!attribute [rw] last_modified_time
@@ -11585,7 +11706,7 @@ module Aws::SageMaker
11585
11706
  #
11586
11707
  # @!attribute [rw] last_modified_by
11587
11708
  # Information about the user who created or modified an experiment,
11588
- # trial, or trial component.
11709
+ # trial, trial component, or project.
11589
11710
  # @return [Types::UserContext]
11590
11711
  #
11591
11712
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeContextResponse AWS API Documentation
@@ -11945,7 +12066,7 @@ module Aws::SageMaker
11945
12066
  # @return [String]
11946
12067
  #
11947
12068
  # @!attribute [rw] kms_key_id
11948
- # The Amazon Web Services KMS customer managed CMK used to encrypt the
12069
+ # The Amazon Web Services KMS customer managed key used to encrypt the
11949
12070
  # EFS volume attached to the domain.
11950
12071
  # @return [String]
11951
12072
  #
@@ -12023,7 +12144,8 @@ module Aws::SageMaker
12023
12144
  # @return [Types::EdgeOutputConfig]
12024
12145
  #
12025
12146
  # @!attribute [rw] resource_key
12026
- # The CMK to use when encrypting the EBS volume the job run on.
12147
+ # The Amazon Web Services KMS key to use when encrypting the EBS
12148
+ # volume the job run on.
12027
12149
  # @return [String]
12028
12150
  #
12029
12151
  # @!attribute [rw] edge_packaging_job_status
@@ -13332,7 +13454,7 @@ module Aws::SageMaker
13332
13454
  #
13333
13455
  # @!attribute [rw] created_by
13334
13456
  # Information about the user who created or modified an experiment,
13335
- # trial, or trial component.
13457
+ # trial, trial component, or project.
13336
13458
  # @return [Types::UserContext]
13337
13459
  #
13338
13460
  # @!attribute [rw] model_package_group_status
@@ -13434,7 +13556,7 @@ module Aws::SageMaker
13434
13556
  #
13435
13557
  # @!attribute [rw] created_by
13436
13558
  # Information about the user who created or modified an experiment,
13437
- # trial, or trial component.
13559
+ # trial, trial component, or project.
13438
13560
  # @return [Types::UserContext]
13439
13561
  #
13440
13562
  # @!attribute [rw] metadata_properties
@@ -13452,7 +13574,7 @@ module Aws::SageMaker
13452
13574
  #
13453
13575
  # @!attribute [rw] last_modified_by
13454
13576
  # Information about the user who created or modified an experiment,
13455
- # trial, or trial component.
13577
+ # trial, trial component, or project.
13456
13578
  # @return [Types::UserContext]
13457
13579
  #
13458
13580
  # @!attribute [rw] approval_description
@@ -14011,12 +14133,12 @@ module Aws::SageMaker
14011
14133
  #
14012
14134
  # @!attribute [rw] created_by
14013
14135
  # Information about the user who created or modified an experiment,
14014
- # trial, or trial component.
14136
+ # trial, trial component, or project.
14015
14137
  # @return [Types::UserContext]
14016
14138
  #
14017
14139
  # @!attribute [rw] last_modified_by
14018
14140
  # Information about the user who created or modified an experiment,
14019
- # trial, or trial component.
14141
+ # trial, trial component, or project.
14020
14142
  # @return [Types::UserContext]
14021
14143
  #
14022
14144
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribePipelineExecutionResponse AWS API Documentation
@@ -14098,12 +14220,12 @@ module Aws::SageMaker
14098
14220
  #
14099
14221
  # @!attribute [rw] created_by
14100
14222
  # Information about the user who created or modified an experiment,
14101
- # trial, or trial component.
14223
+ # trial, trial component, or project.
14102
14224
  # @return [Types::UserContext]
14103
14225
  #
14104
14226
  # @!attribute [rw] last_modified_by
14105
14227
  # Information about the user who created or modified an experiment,
14106
- # trial, or trial component.
14228
+ # trial, trial component, or project.
14107
14229
  # @return [Types::UserContext]
14108
14230
  #
14109
14231
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribePipelineResponse AWS API Documentation
@@ -14318,7 +14440,7 @@ module Aws::SageMaker
14318
14440
  #
14319
14441
  # @!attribute [rw] created_by
14320
14442
  # Information about the user who created or modified an experiment,
14321
- # trial, or trial component.
14443
+ # trial, trial component, or project.
14322
14444
  # @return [Types::UserContext]
14323
14445
  #
14324
14446
  # @!attribute [rw] creation_time
@@ -14341,6 +14463,63 @@ module Aws::SageMaker
14341
14463
  include Aws::Structure
14342
14464
  end
14343
14465
 
14466
+ # @note When making an API call, you may pass DescribeStudioLifecycleConfigRequest
14467
+ # data as a hash:
14468
+ #
14469
+ # {
14470
+ # studio_lifecycle_config_name: "StudioLifecycleConfigName", # required
14471
+ # }
14472
+ #
14473
+ # @!attribute [rw] studio_lifecycle_config_name
14474
+ # The name of the Studio Lifecycle Configuration to describe.
14475
+ # @return [String]
14476
+ #
14477
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeStudioLifecycleConfigRequest AWS API Documentation
14478
+ #
14479
+ class DescribeStudioLifecycleConfigRequest < Struct.new(
14480
+ :studio_lifecycle_config_name)
14481
+ SENSITIVE = []
14482
+ include Aws::Structure
14483
+ end
14484
+
14485
+ # @!attribute [rw] studio_lifecycle_config_arn
14486
+ # The ARN of the Lifecycle Configuration to describe.
14487
+ # @return [String]
14488
+ #
14489
+ # @!attribute [rw] studio_lifecycle_config_name
14490
+ # The name of the Studio Lifecycle Configuration that is described.
14491
+ # @return [String]
14492
+ #
14493
+ # @!attribute [rw] creation_time
14494
+ # The creation time of the Studio Lifecycle Configuration.
14495
+ # @return [Time]
14496
+ #
14497
+ # @!attribute [rw] last_modified_time
14498
+ # This value is equivalent to CreationTime because Studio Lifecycle
14499
+ # Configurations are immutable.
14500
+ # @return [Time]
14501
+ #
14502
+ # @!attribute [rw] studio_lifecycle_config_content
14503
+ # The content of your Studio Lifecycle Configuration script.
14504
+ # @return [String]
14505
+ #
14506
+ # @!attribute [rw] studio_lifecycle_config_app_type
14507
+ # The App type that the Lifecycle Configuration is attached to.
14508
+ # @return [String]
14509
+ #
14510
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeStudioLifecycleConfigResponse AWS API Documentation
14511
+ #
14512
+ class DescribeStudioLifecycleConfigResponse < Struct.new(
14513
+ :studio_lifecycle_config_arn,
14514
+ :studio_lifecycle_config_name,
14515
+ :creation_time,
14516
+ :last_modified_time,
14517
+ :studio_lifecycle_config_content,
14518
+ :studio_lifecycle_config_app_type)
14519
+ SENSITIVE = []
14520
+ include Aws::Structure
14521
+ end
14522
+
14344
14523
  # @note When making an API call, you may pass DescribeSubscribedWorkteamRequest
14345
14524
  # data as a hash:
14346
14525
  #
@@ -14633,8 +14812,8 @@ module Aws::SageMaker
14633
14812
  #
14634
14813
  # Multiply `BillableTimeInSeconds` by the number of instances
14635
14814
  # (`InstanceCount`) in your training cluster to get the total compute
14636
- # time Amazon SageMaker will bill you if you run distributed training.
14637
- # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14815
+ # time SageMaker will bill you if you run distributed training. The
14816
+ # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14638
14817
  #
14639
14818
  # You can calculate the savings from using managed spot training using
14640
14819
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -14983,7 +15162,7 @@ module Aws::SageMaker
14983
15162
  # @return [Time]
14984
15163
  #
14985
15164
  # @!attribute [rw] created_by
14986
- # Who created the component.
15165
+ # Who created the trial component.
14987
15166
  # @return [Types::UserContext]
14988
15167
  #
14989
15168
  # @!attribute [rw] last_modified_time
@@ -15928,7 +16107,7 @@ module Aws::SageMaker
15928
16107
  #
15929
16108
  # @!attribute [rw] s3_input_mode
15930
16109
  # Whether the `Pipe` or `File` is used as the input mode for
15931
- # transfering data for the monitoring job. `Pipe` mode is recommended
16110
+ # transferring data for the monitoring job. `Pipe` mode is recommended
15932
16111
  # for large datasets. `File` mode is useful for small files that fit
15933
16112
  # in memory. Defaults to `File`.
15934
16113
  # @return [String]
@@ -16091,8 +16270,7 @@ module Aws::SageMaker
16091
16270
  # @return [Time]
16092
16271
  #
16093
16272
  # @!attribute [rw] created_by
16094
- # Information about the user who created or modified an experiment,
16095
- # trial, or trial component.
16273
+ # Who created the experiment.
16096
16274
  # @return [Types::UserContext]
16097
16275
  #
16098
16276
  # @!attribute [rw] last_modified_time
@@ -16101,7 +16279,7 @@ module Aws::SageMaker
16101
16279
  #
16102
16280
  # @!attribute [rw] last_modified_by
16103
16281
  # Information about the user who created or modified an experiment,
16104
- # trial, or trial component.
16282
+ # trial, trial component, or project.
16105
16283
  # @return [Types::UserContext]
16106
16284
  #
16107
16285
  # @!attribute [rw] tags
@@ -16927,7 +17105,7 @@ module Aws::SageMaker
16927
17105
  # data as a hash:
16928
17106
  #
16929
17107
  # {
16930
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup
17108
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project
16931
17109
  # suggestion_query: {
16932
17110
  # property_name_query: {
16933
17111
  # property_name_hint: "PropertyNameHint", # required
@@ -18240,7 +18418,7 @@ module Aws::SageMaker
18240
18418
  #
18241
18419
  # {
18242
18420
  # training_image: "AlgorithmImage",
18243
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18421
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18244
18422
  # algorithm_name: "ArnOrName",
18245
18423
  # metric_definitions: [
18246
18424
  # {
@@ -18266,21 +18444,45 @@ module Aws::SageMaker
18266
18444
  # @return [String]
18267
18445
  #
18268
18446
  # @!attribute [rw] training_input_mode
18269
- # The input mode that the algorithm supports: File or Pipe. In File
18270
- # input mode, Amazon SageMaker downloads the training data from Amazon
18271
- # S3 to the storage volume that is attached to the training instance
18272
- # and mounts the directory to the Docker volume for the training
18273
- # container. In Pipe input mode, Amazon SageMaker streams data
18447
+ # The training input mode that the algorithm supports. For more
18448
+ # information about input modes, see [Algorithms][1].
18449
+ #
18450
+ # **Pipe mode**
18451
+ #
18452
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
18274
18453
  # directly from Amazon S3 to the container.
18275
18454
  #
18276
- # If you specify File mode, make sure that you provision the storage
18277
- # volume that is attached to the training instance with enough
18278
- # capacity to accommodate the training data downloaded from Amazon S3,
18279
- # the model artifacts, and intermediate information.
18455
+ # **File mode**
18456
+ #
18457
+ # If an algorithm supports `File` mode, SageMaker downloads the
18458
+ # training data from S3 to the provisioned ML storage volume, and
18459
+ # mounts the directory to the Docker volume for the training
18460
+ # container.
18461
+ #
18462
+ # You must provision the ML storage volume with sufficient capacity to
18463
+ # accommodate the data downloaded from S3. In addition to the training
18464
+ # data, the ML storage volume also stores the output model. The
18465
+ # algorithm container uses the ML storage volume to also store
18466
+ # intermediate information, if any.
18280
18467
  #
18468
+ # For distributed algorithms, training data is distributed uniformly.
18469
+ # Your training duration is predictable if the input data objects
18470
+ # sizes are approximately the same. SageMaker does not split the files
18471
+ # any further for model training. If the object sizes are skewed,
18472
+ # training won't be optimal as the data distribution is also skewed
18473
+ # when one host in a training cluster is overloaded, thus becoming a
18474
+ # bottleneck in training.
18281
18475
  #
18476
+ # **FastFile mode**
18282
18477
  #
18283
- # For more information about input modes, see [Algorithms][1].
18478
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
18479
+ # directly from S3 to the container with no code changes, and provides
18480
+ # file system access to the data. Users can author their training
18481
+ # script to interact with these files as if they were stored on disk.
18482
+ #
18483
+ # `FastFile` mode works best when the data is read sequentially.
18484
+ # Augmented manifest files aren't supported. The startup time is
18485
+ # lower when there are fewer files in the S3 bucket provided.
18284
18486
  #
18285
18487
  #
18286
18488
  #
@@ -18421,7 +18623,7 @@ module Aws::SageMaker
18421
18623
  # },
18422
18624
  # algorithm_specification: { # required
18423
18625
  # training_image: "AlgorithmImage",
18424
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18626
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18425
18627
  # algorithm_name: "ArnOrName",
18426
18628
  # metric_definitions: [
18427
18629
  # {
@@ -18451,7 +18653,7 @@ module Aws::SageMaker
18451
18653
  # content_type: "ContentType",
18452
18654
  # compression_type: "None", # accepts None, Gzip
18453
18655
  # record_wrapper_type: "None", # accepts None, RecordIO
18454
- # input_mode: "Pipe", # accepts Pipe, File
18656
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
18455
18657
  # shuffle_config: {
18456
18658
  # seed: 1, # required
18457
18659
  # },
@@ -19584,7 +19786,9 @@ module Aws::SageMaker
19584
19786
  # sage_maker_image_arn: "ImageArn",
19585
19787
  # sage_maker_image_version_arn: "ImageVersionArn",
19586
19788
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
19789
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
19587
19790
  # },
19791
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
19588
19792
  # }
19589
19793
  #
19590
19794
  # @!attribute [rw] default_resource_spec
@@ -19592,10 +19796,16 @@ module Aws::SageMaker
19592
19796
  # default SageMaker image used by the JupyterServer app.
19593
19797
  # @return [Types::ResourceSpec]
19594
19798
  #
19799
+ # @!attribute [rw] lifecycle_config_arns
19800
+ # The Amazon Resource Name (ARN) of the Lifecycle Configurations
19801
+ # attached to the JupyterServerApp.
19802
+ # @return [Array<String>]
19803
+ #
19595
19804
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
19596
19805
  #
19597
19806
  class JupyterServerAppSettings < Struct.new(
19598
- :default_resource_spec)
19807
+ :default_resource_spec,
19808
+ :lifecycle_config_arns)
19599
19809
  SENSITIVE = []
19600
19810
  include Aws::Structure
19601
19811
  end
@@ -19610,6 +19820,7 @@ module Aws::SageMaker
19610
19820
  # sage_maker_image_arn: "ImageArn",
19611
19821
  # sage_maker_image_version_arn: "ImageVersionArn",
19612
19822
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
19823
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
19613
19824
  # },
19614
19825
  # custom_images: [
19615
19826
  # {
@@ -19618,6 +19829,7 @@ module Aws::SageMaker
19618
19829
  # app_image_config_name: "AppImageConfigName", # required
19619
19830
  # },
19620
19831
  # ],
19832
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
19621
19833
  # }
19622
19834
  #
19623
19835
  # @!attribute [rw] default_resource_spec
@@ -19630,11 +19842,17 @@ module Aws::SageMaker
19630
19842
  # KernelGateway app.
19631
19843
  # @return [Array<Types::CustomImage>]
19632
19844
  #
19845
+ # @!attribute [rw] lifecycle_config_arns
19846
+ # The Amazon Resource Name (ARN) of the Lifecycle Configurations
19847
+ # attached to the the user profile or domain.
19848
+ # @return [Array<String>]
19849
+ #
19633
19850
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
19634
19851
  #
19635
19852
  class KernelGatewayAppSettings < Struct.new(
19636
19853
  :default_resource_spec,
19637
- :custom_images)
19854
+ :custom_images,
19855
+ :lifecycle_config_arns)
19638
19856
  SENSITIVE = []
19639
19857
  include Aws::Structure
19640
19858
  end
@@ -20079,10 +20297,10 @@ module Aws::SageMaker
20079
20297
  # You can only specify a `VolumeKmsKeyId` when you create a labeling
20080
20298
  # job with automated data labeling enabled using the API operation
20081
20299
  # `CreateLabelingJob`. You cannot specify an Amazon Web Services KMS
20082
- # customer managed CMK to encrypt the storage volume used for
20083
- # automated data labeling model training and inference when you create
20084
- # a labeling job using the console. To learn more, see [Output Data
20085
- # and Storage Volume Encryption][1].
20300
+ # key to encrypt the storage volume used for automated data labeling
20301
+ # model training and inference when you create a labeling job using
20302
+ # the console. To learn more, see [Output Data and Storage Volume
20303
+ # Encryption][1].
20086
20304
  #
20087
20305
  # The `VolumeKmsKeyId` can be any of the following formats:
20088
20306
  #
@@ -23092,8 +23310,8 @@ module Aws::SageMaker
23092
23310
  # @return [Integer]
23093
23311
  #
23094
23312
  # @!attribute [rw] name_contains
23095
- # A string in the training job name. This filter returns only models
23096
- # in the training job whose name contains the specified string.
23313
+ # A string in the model name. This filter returns only models whose
23314
+ # name contains the specified string.
23097
23315
  # @return [String]
23098
23316
  #
23099
23317
  # @!attribute [rw] creation_time_before
@@ -24078,6 +24296,107 @@ module Aws::SageMaker
24078
24296
  include Aws::Structure
24079
24297
  end
24080
24298
 
24299
+ # @note When making an API call, you may pass ListStudioLifecycleConfigsRequest
24300
+ # data as a hash:
24301
+ #
24302
+ # {
24303
+ # max_results: 1,
24304
+ # next_token: "NextToken",
24305
+ # name_contains: "StudioLifecycleConfigName",
24306
+ # app_type_equals: "JupyterServer", # accepts JupyterServer, KernelGateway
24307
+ # creation_time_before: Time.now,
24308
+ # creation_time_after: Time.now,
24309
+ # modified_time_before: Time.now,
24310
+ # modified_time_after: Time.now,
24311
+ # sort_by: "CreationTime", # accepts CreationTime, LastModifiedTime, Name
24312
+ # sort_order: "Ascending", # accepts Ascending, Descending
24313
+ # }
24314
+ #
24315
+ # @!attribute [rw] max_results
24316
+ # The maximum number of Studio Lifecycle Configurations to return in
24317
+ # the response. The default value is 10.
24318
+ # @return [Integer]
24319
+ #
24320
+ # @!attribute [rw] next_token
24321
+ # If the previous call to ListStudioLifecycleConfigs didn't return
24322
+ # the full set of Lifecycle Configurations, the call returns a token
24323
+ # for getting the next set of Lifecycle Configurations.
24324
+ # @return [String]
24325
+ #
24326
+ # @!attribute [rw] name_contains
24327
+ # A string in the Lifecycle Configuration name. This filter returns
24328
+ # only Lifecycle Configurations whose name contains the specified
24329
+ # string.
24330
+ # @return [String]
24331
+ #
24332
+ # @!attribute [rw] app_type_equals
24333
+ # A parameter to search for the App Type to which the Lifecycle
24334
+ # Configuration is attached.
24335
+ # @return [String]
24336
+ #
24337
+ # @!attribute [rw] creation_time_before
24338
+ # A filter that returns only Lifecycle Configurations created on or
24339
+ # before the specified time.
24340
+ # @return [Time]
24341
+ #
24342
+ # @!attribute [rw] creation_time_after
24343
+ # A filter that returns only Lifecycle Configurations created on or
24344
+ # after the specified time.
24345
+ # @return [Time]
24346
+ #
24347
+ # @!attribute [rw] modified_time_before
24348
+ # A filter that returns only Lifecycle Configurations modified before
24349
+ # the specified time.
24350
+ # @return [Time]
24351
+ #
24352
+ # @!attribute [rw] modified_time_after
24353
+ # A filter that returns only Lifecycle Configurations modified after
24354
+ # the specified time.
24355
+ # @return [Time]
24356
+ #
24357
+ # @!attribute [rw] sort_by
24358
+ # The property used to sort results. The default value is
24359
+ # CreationTime.
24360
+ # @return [String]
24361
+ #
24362
+ # @!attribute [rw] sort_order
24363
+ # The sort order. The default value is Descending.
24364
+ # @return [String]
24365
+ #
24366
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListStudioLifecycleConfigsRequest AWS API Documentation
24367
+ #
24368
+ class ListStudioLifecycleConfigsRequest < Struct.new(
24369
+ :max_results,
24370
+ :next_token,
24371
+ :name_contains,
24372
+ :app_type_equals,
24373
+ :creation_time_before,
24374
+ :creation_time_after,
24375
+ :modified_time_before,
24376
+ :modified_time_after,
24377
+ :sort_by,
24378
+ :sort_order)
24379
+ SENSITIVE = []
24380
+ include Aws::Structure
24381
+ end
24382
+
24383
+ # @!attribute [rw] next_token
24384
+ # A token for getting the next set of actions, if there are any.
24385
+ # @return [String]
24386
+ #
24387
+ # @!attribute [rw] studio_lifecycle_configs
24388
+ # A list of Lifecycle Configurations and their properties.
24389
+ # @return [Array<Types::StudioLifecycleConfigDetails>]
24390
+ #
24391
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListStudioLifecycleConfigsResponse AWS API Documentation
24392
+ #
24393
+ class ListStudioLifecycleConfigsResponse < Struct.new(
24394
+ :next_token,
24395
+ :studio_lifecycle_configs)
24396
+ SENSITIVE = []
24397
+ include Aws::Structure
24398
+ end
24399
+
24081
24400
  # @note When making an API call, you may pass ListSubscribedWorkteamsRequest
24082
24401
  # data as a hash:
24083
24402
  #
@@ -25563,7 +25882,7 @@ module Aws::SageMaker
25563
25882
  #
25564
25883
  # @!attribute [rw] created_by
25565
25884
  # Information about the user who created or modified an experiment,
25566
- # trial, or trial component.
25885
+ # trial, trial component, or project.
25567
25886
  # @return [Types::UserContext]
25568
25887
  #
25569
25888
  # @!attribute [rw] metadata_properties
@@ -25581,7 +25900,7 @@ module Aws::SageMaker
25581
25900
  #
25582
25901
  # @!attribute [rw] last_modified_by
25583
25902
  # Information about the user who created or modified an experiment,
25584
- # trial, or trial component.
25903
+ # trial, trial component, or project.
25585
25904
  # @return [Types::UserContext]
25586
25905
  #
25587
25906
  # @!attribute [rw] approval_description
@@ -25720,7 +26039,7 @@ module Aws::SageMaker
25720
26039
  #
25721
26040
  # @!attribute [rw] created_by
25722
26041
  # Information about the user who created or modified an experiment,
25723
- # trial, or trial component.
26042
+ # trial, trial component, or project.
25724
26043
  # @return [Types::UserContext]
25725
26044
  #
25726
26045
  # @!attribute [rw] model_package_group_status
@@ -27861,7 +28180,7 @@ module Aws::SageMaker
27861
28180
  #
27862
28181
  # {
27863
28182
  # s3_output_location: "S3Uri", # required
27864
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm
28183
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm, imx8mplus
27865
28184
  # target_platform: {
27866
28185
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27867
28186
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -28102,7 +28421,7 @@ module Aws::SageMaker
28102
28421
  #
28103
28422
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
28104
28423
  #
28105
- # If you use a KMS key ID or an alias of your master key, the Amazon
28424
+ # If you use a KMS key ID or an alias of your KMS key, the Amazon
28106
28425
  # SageMaker execution role must include permissions to call
28107
28426
  # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
28108
28427
  # uses the default KMS key for Amazon S3 for your role's account.
@@ -28393,12 +28712,12 @@ module Aws::SageMaker
28393
28712
  #
28394
28713
  # @!attribute [rw] created_by
28395
28714
  # Information about the user who created or modified an experiment,
28396
- # trial, or trial component.
28715
+ # trial, trial component, or project.
28397
28716
  # @return [Types::UserContext]
28398
28717
  #
28399
28718
  # @!attribute [rw] last_modified_by
28400
28719
  # Information about the user who created or modified an experiment,
28401
- # trial, or trial component.
28720
+ # trial, trial component, or project.
28402
28721
  # @return [Types::UserContext]
28403
28722
  #
28404
28723
  # @!attribute [rw] tags
@@ -28465,12 +28784,12 @@ module Aws::SageMaker
28465
28784
  #
28466
28785
  # @!attribute [rw] created_by
28467
28786
  # Information about the user who created or modified an experiment,
28468
- # trial, or trial component.
28787
+ # trial, trial component, or project.
28469
28788
  # @return [Types::UserContext]
28470
28789
  #
28471
28790
  # @!attribute [rw] last_modified_by
28472
28791
  # Information about the user who created or modified an experiment,
28473
- # trial, or trial component.
28792
+ # trial, trial component, or project.
28474
28793
  # @return [Types::UserContext]
28475
28794
  #
28476
28795
  # @!attribute [rw] pipeline_parameters
@@ -29477,7 +29796,7 @@ module Aws::SageMaker
29477
29796
  #
29478
29797
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
29479
29798
  #
29480
- # If you use a KMS key ID or an alias of your master key, the Amazon
29799
+ # If you use a KMS key ID or an alias of your KMS key, the Amazon
29481
29800
  # SageMaker execution role must include permissions to call
29482
29801
  # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
29483
29802
  # uses the default KMS key for Amazon S3 for your role's account.
@@ -29761,6 +30080,84 @@ module Aws::SageMaker
29761
30080
  include Aws::Structure
29762
30081
  end
29763
30082
 
30083
+ # The properties of a project as returned by the Search API.
30084
+ #
30085
+ # @!attribute [rw] project_arn
30086
+ # The Amazon Resource Name (ARN) of the project.
30087
+ # @return [String]
30088
+ #
30089
+ # @!attribute [rw] project_name
30090
+ # The name of the project.
30091
+ # @return [String]
30092
+ #
30093
+ # @!attribute [rw] project_id
30094
+ # The ID of the project.
30095
+ # @return [String]
30096
+ #
30097
+ # @!attribute [rw] project_description
30098
+ # The description of the project.
30099
+ # @return [String]
30100
+ #
30101
+ # @!attribute [rw] service_catalog_provisioning_details
30102
+ # Details that you specify to provision a service catalog product. For
30103
+ # information about service catalog, see [What is Amazon Web Services
30104
+ # Service Catalog][1].
30105
+ #
30106
+ #
30107
+ #
30108
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
30109
+ # @return [Types::ServiceCatalogProvisioningDetails]
30110
+ #
30111
+ # @!attribute [rw] service_catalog_provisioned_product_details
30112
+ # Details of a provisioned service catalog product. For information
30113
+ # about service catalog, see [What is Amazon Web Services Service
30114
+ # Catalog][1].
30115
+ #
30116
+ #
30117
+ #
30118
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
30119
+ # @return [Types::ServiceCatalogProvisionedProductDetails]
30120
+ #
30121
+ # @!attribute [rw] project_status
30122
+ # The status of the project.
30123
+ # @return [String]
30124
+ #
30125
+ # @!attribute [rw] created_by
30126
+ # Who created the project.
30127
+ # @return [Types::UserContext]
30128
+ #
30129
+ # @!attribute [rw] creation_time
30130
+ # A timestamp specifying when the project was created.
30131
+ # @return [Time]
30132
+ #
30133
+ # @!attribute [rw] tags
30134
+ # An array of key-value pairs. You can use tags to categorize your
30135
+ # Amazon Web Services resources in different ways, for example, by
30136
+ # purpose, owner, or environment. For more information, see [Tagging
30137
+ # Amazon Web Services Resources][1].
30138
+ #
30139
+ #
30140
+ #
30141
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
30142
+ # @return [Array<Types::Tag>]
30143
+ #
30144
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Project AWS API Documentation
30145
+ #
30146
+ class Project < Struct.new(
30147
+ :project_arn,
30148
+ :project_name,
30149
+ :project_id,
30150
+ :project_description,
30151
+ :service_catalog_provisioning_details,
30152
+ :service_catalog_provisioned_product_details,
30153
+ :project_status,
30154
+ :created_by,
30155
+ :creation_time,
30156
+ :tags)
30157
+ SENSITIVE = []
30158
+ include Aws::Structure
30159
+ end
30160
+
29764
30161
  # Information about a project.
29765
30162
  #
29766
30163
  # @!attribute [rw] project_name
@@ -30620,6 +31017,7 @@ module Aws::SageMaker
30620
31017
  # sage_maker_image_arn: "ImageArn",
30621
31018
  # sage_maker_image_version_arn: "ImageVersionArn",
30622
31019
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
31020
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
30623
31021
  # }
30624
31022
  #
30625
31023
  # @!attribute [rw] sage_maker_image_arn
@@ -30634,12 +31032,18 @@ module Aws::SageMaker
30634
31032
  # The instance type that the image version runs on.
30635
31033
  # @return [String]
30636
31034
  #
31035
+ # @!attribute [rw] lifecycle_config_arn
31036
+ # The Amazon Resource Name (ARN) of the Lifecycle Configuration
31037
+ # attached to the Resource.
31038
+ # @return [String]
31039
+ #
30637
31040
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceSpec AWS API Documentation
30638
31041
  #
30639
31042
  class ResourceSpec < Struct.new(
30640
31043
  :sage_maker_image_arn,
30641
31044
  :sage_maker_image_version_arn,
30642
- :instance_type)
31045
+ :instance_type,
31046
+ :lifecycle_config_arn)
30643
31047
  SENSITIVE = []
30644
31048
  include Aws::Structure
30645
31049
  end
@@ -30669,6 +31073,48 @@ module Aws::SageMaker
30669
31073
  include Aws::Structure
30670
31074
  end
30671
31075
 
31076
+ # @note When making an API call, you may pass RetryPipelineExecutionRequest
31077
+ # data as a hash:
31078
+ #
31079
+ # {
31080
+ # pipeline_execution_arn: "PipelineExecutionArn", # required
31081
+ # client_request_token: "IdempotencyToken", # required
31082
+ # }
31083
+ #
31084
+ # @!attribute [rw] pipeline_execution_arn
31085
+ # The Amazon Resource Name (ARN) of the pipeline execution.
31086
+ # @return [String]
31087
+ #
31088
+ # @!attribute [rw] client_request_token
31089
+ # A unique, case-sensitive identifier that you provide to ensure the
31090
+ # idempotency of the operation. An idempotent operation completes no
31091
+ # more than once.
31092
+ #
31093
+ # **A suitable default value is auto-generated.** You should normally
31094
+ # not need to pass this option.
31095
+ # @return [String]
31096
+ #
31097
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryPipelineExecutionRequest AWS API Documentation
31098
+ #
31099
+ class RetryPipelineExecutionRequest < Struct.new(
31100
+ :pipeline_execution_arn,
31101
+ :client_request_token)
31102
+ SENSITIVE = []
31103
+ include Aws::Structure
31104
+ end
31105
+
31106
+ # @!attribute [rw] pipeline_execution_arn
31107
+ # The Amazon Resource Name (ARN) of the pipeline execution.
31108
+ # @return [String]
31109
+ #
31110
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryPipelineExecutionResponse AWS API Documentation
31111
+ #
31112
+ class RetryPipelineExecutionResponse < Struct.new(
31113
+ :pipeline_execution_arn)
31114
+ SENSITIVE = []
31115
+ include Aws::Structure
31116
+ end
31117
+
30672
31118
  # The retry strategy to use when a training job fails due to an
30673
31119
  # `InternalServerError`. `RetryStrategy` is specified as part of the
30674
31120
  # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
@@ -31070,6 +31516,10 @@ module Aws::SageMaker
31070
31516
  # composed of features and values per features.
31071
31517
  # @return [Types::FeatureGroup]
31072
31518
  #
31519
+ # @!attribute [rw] project
31520
+ # The properties of a project.
31521
+ # @return [Types::Project]
31522
+ #
31073
31523
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SearchRecord AWS API Documentation
31074
31524
  #
31075
31525
  class SearchRecord < Struct.new(
@@ -31082,7 +31532,8 @@ module Aws::SageMaker
31082
31532
  :model_package_group,
31083
31533
  :pipeline,
31084
31534
  :pipeline_execution,
31085
- :feature_group)
31535
+ :feature_group,
31536
+ :project)
31086
31537
  SENSITIVE = []
31087
31538
  include Aws::Structure
31088
31539
  end
@@ -31091,7 +31542,7 @@ module Aws::SageMaker
31091
31542
  # data as a hash:
31092
31543
  #
31093
31544
  # {
31094
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup
31545
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project
31095
31546
  # search_expression: {
31096
31547
  # filters: [
31097
31548
  # {
@@ -31460,7 +31911,7 @@ module Aws::SageMaker
31460
31911
  end
31461
31912
 
31462
31913
  # Details that you specify to provision a service catalog product. For
31463
- # information about service catalog, see .[What is Amazon Web Services
31914
+ # information about service catalog, see [What is Amazon Web Services
31464
31915
  # Service Catalog][1].
31465
31916
  #
31466
31917
  #
@@ -31768,7 +32219,7 @@ module Aws::SageMaker
31768
32219
  # @!attribute [rw] client_request_token
31769
32220
  # A unique, case-sensitive identifier that you provide to ensure the
31770
32221
  # idempotency of the operation. An idempotent operation completes no
31771
- # more than one time.
32222
+ # more than once.
31772
32223
  #
31773
32224
  # **A suitable default value is auto-generated.** You should normally
31774
32225
  # not need to pass this option.
@@ -31946,7 +32397,7 @@ module Aws::SageMaker
31946
32397
  # @!attribute [rw] client_request_token
31947
32398
  # A unique, case-sensitive identifier that you provide to ensure the
31948
32399
  # idempotency of the operation. An idempotent operation completes no
31949
- # more than one time.
32400
+ # more than once.
31950
32401
  #
31951
32402
  # **A suitable default value is auto-generated.** You should normally
31952
32403
  # not need to pass this option.
@@ -32030,11 +32481,11 @@ module Aws::SageMaker
32030
32481
  include Aws::Structure
32031
32482
  end
32032
32483
 
32033
- # Specifies a limit to how long a model training job, model compilation
32034
- # job, or hyperparameter tuning job can run. It also specifies how long
32035
- # a managed Spot training job has to complete. When the job reaches the
32036
- # time limit, Amazon SageMaker ends the training or compilation job. Use
32037
- # this API to cap model training costs.
32484
+ # Specifies a limit to how long a model training job or model
32485
+ # compilation job can run. It also specifies how long a managed spot
32486
+ # training job has to complete. When the job reaches the time limit,
32487
+ # Amazon SageMaker ends the training or compilation job. Use this API to
32488
+ # cap model training costs.
32038
32489
  #
32039
32490
  # To stop a training job, Amazon SageMaker sends the algorithm the
32040
32491
  # `SIGTERM` signal, which delays job termination for 120 seconds.
@@ -32099,6 +32550,41 @@ module Aws::SageMaker
32099
32550
  include Aws::Structure
32100
32551
  end
32101
32552
 
32553
+ # Details of the Studio Lifecycle Configuration.
32554
+ #
32555
+ # @!attribute [rw] studio_lifecycle_config_arn
32556
+ # The Amazon Resource Name (ARN) of the Lifecycle Configuration.
32557
+ # @return [String]
32558
+ #
32559
+ # @!attribute [rw] studio_lifecycle_config_name
32560
+ # The name of the Studio Lifecycle Configuration.
32561
+ # @return [String]
32562
+ #
32563
+ # @!attribute [rw] creation_time
32564
+ # The creation time of the Studio Lifecycle Configuration.
32565
+ # @return [Time]
32566
+ #
32567
+ # @!attribute [rw] last_modified_time
32568
+ # This value is equivalent to CreationTime because Studio Lifecycle
32569
+ # Configurations are immutable.
32570
+ # @return [Time]
32571
+ #
32572
+ # @!attribute [rw] studio_lifecycle_config_app_type
32573
+ # The App type to which the Lifecycle Configuration is attached.
32574
+ # @return [String]
32575
+ #
32576
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StudioLifecycleConfigDetails AWS API Documentation
32577
+ #
32578
+ class StudioLifecycleConfigDetails < Struct.new(
32579
+ :studio_lifecycle_config_arn,
32580
+ :studio_lifecycle_config_name,
32581
+ :creation_time,
32582
+ :last_modified_time,
32583
+ :studio_lifecycle_config_app_type)
32584
+ SENSITIVE = []
32585
+ include Aws::Structure
32586
+ end
32587
+
32102
32588
  # Describes a work team of a vendor that does the a labelling job.
32103
32589
  #
32104
32590
  # @!attribute [rw] workteam_arn
@@ -32161,12 +32647,12 @@ module Aws::SageMaker
32161
32647
  end
32162
32648
 
32163
32649
  # A tag object that consists of a key and an optional value, used to
32164
- # manage metadata for Amazon SageMaker Amazon Web Services resources.
32650
+ # manage metadata for SageMaker Amazon Web Services resources.
32165
32651
  #
32166
32652
  # You can add tags to notebook instances, training jobs, hyperparameter
32167
32653
  # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
32168
32654
  # endpoint configurations, and endpoints. For more information on adding
32169
- # tags to Amazon SageMaker resources, see AddTags.
32655
+ # tags to SageMaker resources, see AddTags.
32170
32656
  #
32171
32657
  # For more information on adding metadata to your Amazon Web Services
32172
32658
  # resources with tagging, see [Tagging Amazon Web Services
@@ -32274,6 +32760,7 @@ module Aws::SageMaker
32274
32760
  # sage_maker_image_arn: "ImageArn",
32275
32761
  # sage_maker_image_version_arn: "ImageVersionArn",
32276
32762
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
32763
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
32277
32764
  # },
32278
32765
  # }
32279
32766
  #
@@ -32694,7 +33181,7 @@ module Aws::SageMaker
32694
33181
  # data as a hash:
32695
33182
  #
32696
33183
  # {
32697
- # training_input_mode: "Pipe", # required, accepts Pipe, File
33184
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
32698
33185
  # hyper_parameters: {
32699
33186
  # "HyperParameterKey" => "HyperParameterValue",
32700
33187
  # },
@@ -32718,7 +33205,7 @@ module Aws::SageMaker
32718
33205
  # content_type: "ContentType",
32719
33206
  # compression_type: "None", # accepts None, Gzip
32720
33207
  # record_wrapper_type: "None", # accepts None, RecordIO
32721
- # input_mode: "Pipe", # accepts Pipe, File
33208
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
32722
33209
  # shuffle_config: {
32723
33210
  # seed: 1, # required
32724
33211
  # },
@@ -32741,15 +33228,45 @@ module Aws::SageMaker
32741
33228
  # }
32742
33229
  #
32743
33230
  # @!attribute [rw] training_input_mode
32744
- # The input mode used by the algorithm for the training job. For the
32745
- # input modes that Amazon SageMaker algorithms support, see
32746
- # [Algorithms][1].
33231
+ # The training input mode that the algorithm supports. For more
33232
+ # information about input modes, see [Algorithms][1].
33233
+ #
33234
+ # **Pipe mode**
33235
+ #
33236
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
33237
+ # directly from Amazon S3 to the container.
32747
33238
  #
32748
- # If an algorithm supports the `File` input mode, Amazon SageMaker
32749
- # downloads the training data from S3 to the provisioned ML storage
32750
- # Volume, and mounts the directory to docker volume for training
32751
- # container. If an algorithm supports the `Pipe` input mode, Amazon
32752
- # SageMaker streams data directly from S3 to the container.
33239
+ # **File mode**
33240
+ #
33241
+ # If an algorithm supports `File` mode, SageMaker downloads the
33242
+ # training data from S3 to the provisioned ML storage volume, and
33243
+ # mounts the directory to the Docker volume for the training
33244
+ # container.
33245
+ #
33246
+ # You must provision the ML storage volume with sufficient capacity to
33247
+ # accommodate the data downloaded from S3. In addition to the training
33248
+ # data, the ML storage volume also stores the output model. The
33249
+ # algorithm container uses the ML storage volume to also store
33250
+ # intermediate information, if any.
33251
+ #
33252
+ # For distributed algorithms, training data is distributed uniformly.
33253
+ # Your training duration is predictable if the input data objects
33254
+ # sizes are approximately the same. SageMaker does not split the files
33255
+ # any further for model training. If the object sizes are skewed,
33256
+ # training won't be optimal as the data distribution is also skewed
33257
+ # when one host in a training cluster is overloaded, thus becoming a
33258
+ # bottleneck in training.
33259
+ #
33260
+ # **FastFile mode**
33261
+ #
33262
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
33263
+ # directly from S3 to the container with no code changes, and provides
33264
+ # file system access to the data. Users can author their training
33265
+ # script to interact with these files as if they were stored on disk.
33266
+ #
33267
+ # `FastFile` mode works best when the data is read sequentially.
33268
+ # Augmented manifest files aren't supported. The startup time is
33269
+ # lower when there are fewer files in the S3 bucket provided.
32753
33270
  #
32754
33271
  #
32755
33272
  #
@@ -32943,7 +33460,7 @@ module Aws::SageMaker
32943
33460
  # is_required: false,
32944
33461
  # supported_content_types: ["ContentType"], # required
32945
33462
  # supported_compression_types: ["None"], # accepts None, Gzip
32946
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
33463
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
32947
33464
  # },
32948
33465
  # ],
32949
33466
  # supported_tuning_job_objective_metrics: [
@@ -33722,8 +34239,7 @@ module Aws::SageMaker
33722
34239
  # @return [Time]
33723
34240
  #
33724
34241
  # @!attribute [rw] created_by
33725
- # Information about the user who created or modified an experiment,
33726
- # trial, or trial component.
34242
+ # Who created the trial.
33727
34243
  # @return [Types::UserContext]
33728
34244
  #
33729
34245
  # @!attribute [rw] last_modified_time
@@ -33732,7 +34248,7 @@ module Aws::SageMaker
33732
34248
  #
33733
34249
  # @!attribute [rw] last_modified_by
33734
34250
  # Information about the user who created or modified an experiment,
33735
- # trial, or trial component.
34251
+ # trial, trial component, or project.
33736
34252
  # @return [Types::UserContext]
33737
34253
  #
33738
34254
  # @!attribute [rw] metadata_properties
@@ -33806,8 +34322,7 @@ module Aws::SageMaker
33806
34322
  # @return [Time]
33807
34323
  #
33808
34324
  # @!attribute [rw] created_by
33809
- # Information about the user who created or modified an experiment,
33810
- # trial, or trial component.
34325
+ # Who created the trial component.
33811
34326
  # @return [Types::UserContext]
33812
34327
  #
33813
34328
  # @!attribute [rw] last_modified_time
@@ -33816,7 +34331,7 @@ module Aws::SageMaker
33816
34331
  #
33817
34332
  # @!attribute [rw] last_modified_by
33818
34333
  # Information about the user who created or modified an experiment,
33819
- # trial, or trial component.
34334
+ # trial, trial component, or project.
33820
34335
  # @return [Types::UserContext]
33821
34336
  #
33822
34337
  # @!attribute [rw] parameters
@@ -34027,7 +34542,7 @@ module Aws::SageMaker
34027
34542
  #
34028
34543
  # @!attribute [rw] created_by
34029
34544
  # Information about the user who created or modified an experiment,
34030
- # trial, or trial component.
34545
+ # trial, trial component, or project.
34031
34546
  # @return [Types::UserContext]
34032
34547
  #
34033
34548
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrialComponentSimpleSummary AWS API Documentation
@@ -34167,7 +34682,7 @@ module Aws::SageMaker
34167
34682
  # @return [Time]
34168
34683
  #
34169
34684
  # @!attribute [rw] created_by
34170
- # Who created the component.
34685
+ # Who created the trial component.
34171
34686
  # @return [Types::UserContext]
34172
34687
  #
34173
34688
  # @!attribute [rw] last_modified_time
@@ -34819,13 +35334,16 @@ module Aws::SageMaker
34819
35334
  # sage_maker_image_arn: "ImageArn",
34820
35335
  # sage_maker_image_version_arn: "ImageVersionArn",
34821
35336
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
35337
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
34822
35338
  # },
35339
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
34823
35340
  # },
34824
35341
  # kernel_gateway_app_settings: {
34825
35342
  # default_resource_spec: {
34826
35343
  # sage_maker_image_arn: "ImageArn",
34827
35344
  # sage_maker_image_version_arn: "ImageVersionArn",
34828
35345
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
35346
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
34829
35347
  # },
34830
35348
  # custom_images: [
34831
35349
  # {
@@ -34834,12 +35352,14 @@ module Aws::SageMaker
34834
35352
  # app_image_config_name: "AppImageConfigName", # required
34835
35353
  # },
34836
35354
  # ],
35355
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
34837
35356
  # },
34838
35357
  # tensor_board_app_settings: {
34839
35358
  # default_resource_spec: {
34840
35359
  # sage_maker_image_arn: "ImageArn",
34841
35360
  # sage_maker_image_version_arn: "ImageVersionArn",
34842
35361
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
35362
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
34843
35363
  # },
34844
35364
  # },
34845
35365
  # },
@@ -35821,13 +36341,16 @@ module Aws::SageMaker
35821
36341
  # sage_maker_image_arn: "ImageArn",
35822
36342
  # sage_maker_image_version_arn: "ImageVersionArn",
35823
36343
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36344
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
35824
36345
  # },
36346
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
35825
36347
  # },
35826
36348
  # kernel_gateway_app_settings: {
35827
36349
  # default_resource_spec: {
35828
36350
  # sage_maker_image_arn: "ImageArn",
35829
36351
  # sage_maker_image_version_arn: "ImageVersionArn",
35830
36352
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36353
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
35831
36354
  # },
35832
36355
  # custom_images: [
35833
36356
  # {
@@ -35836,12 +36359,14 @@ module Aws::SageMaker
35836
36359
  # app_image_config_name: "AppImageConfigName", # required
35837
36360
  # },
35838
36361
  # ],
36362
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
35839
36363
  # },
35840
36364
  # tensor_board_app_settings: {
35841
36365
  # default_resource_spec: {
35842
36366
  # sage_maker_image_arn: "ImageArn",
35843
36367
  # sage_maker_image_version_arn: "ImageVersionArn",
35844
36368
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36369
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
35845
36370
  # },
35846
36371
  # },
35847
36372
  # },
@@ -36044,7 +36569,7 @@ module Aws::SageMaker
36044
36569
  end
36045
36570
 
36046
36571
  # Information about the user who created or modified an experiment,
36047
- # trial, or trial component.
36572
+ # trial, trial component, or project.
36048
36573
  #
36049
36574
  # @!attribute [rw] user_profile_arn
36050
36575
  # The Amazon Resource Name (ARN) of the user's profile.
@@ -36128,13 +36653,16 @@ module Aws::SageMaker
36128
36653
  # sage_maker_image_arn: "ImageArn",
36129
36654
  # sage_maker_image_version_arn: "ImageVersionArn",
36130
36655
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36656
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
36131
36657
  # },
36658
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
36132
36659
  # },
36133
36660
  # kernel_gateway_app_settings: {
36134
36661
  # default_resource_spec: {
36135
36662
  # sage_maker_image_arn: "ImageArn",
36136
36663
  # sage_maker_image_version_arn: "ImageVersionArn",
36137
36664
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36665
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
36138
36666
  # },
36139
36667
  # custom_images: [
36140
36668
  # {
@@ -36143,12 +36671,14 @@ module Aws::SageMaker
36143
36671
  # app_image_config_name: "AppImageConfigName", # required
36144
36672
  # },
36145
36673
  # ],
36674
+ # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
36146
36675
  # },
36147
36676
  # tensor_board_app_settings: {
36148
36677
  # default_resource_spec: {
36149
36678
  # sage_maker_image_arn: "ImageArn",
36150
36679
  # sage_maker_image_version_arn: "ImageVersionArn",
36151
36680
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
36681
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
36152
36682
  # },
36153
36683
  # },
36154
36684
  # }