aws-sdk-sagemaker 1.95.0 → 1.96.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 5b6ad55e6ba358f6f2bdb7d1d32266b4876ad899da2c9f71337882a0d362de82
4
- data.tar.gz: 9f0dea84ca377db88dd5e908e811c5dd1fd685b2d0774b7453897ec82750bd38
3
+ metadata.gz: 021cb5b0efa607e2dadeda49f2f105093f0ee41141fe6cce95457f7cba88613b
4
+ data.tar.gz: 80c0e145e366990cb77ce3063ce96a93ec8e4485cafd2acfefa7270dbb0e36ca
5
5
  SHA512:
6
- metadata.gz: 835a24d7bb5f59b712b084d6225a4155eb325edc143736fb000fe5914dfd1d086b24e05d16ffa14f3d0f7010169ef68cb306a61d0b601f2555a61034a3420233
7
- data.tar.gz: 318a4931f18913f82abcbbcb0e4c1d3a6c4a84e5816a5b91ad9bccfbaca33c90bbccb8c22043286c6c265545986bdc8d47821e69293fd35cd30026e846d4d9dd
6
+ metadata.gz: 501cbaeea0d7689f925547b08707dfd942b946d47e4825b4d1c2e8bce7699febcb48e2db49d3a69377a1572eeea80c07da2fda8d4250dd42656343c8d2528bd0
7
+ data.tar.gz: 96b087849239d5c3e25211aebc5f96ed620535e82e3ba87b082c38079e8e9b3373b9c11ecd4eabd98395fcfeff6781deefae92bb10c5952f93e3d9d60a37eb7f
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.96.0 (2021-08-12)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot adds new metrics for all candidate models generated by Autopilot experiments.
8
+
4
9
  1.95.0 (2021-07-30)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.95.0
1
+ 1.96.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.95.0'
52
+ GEM_VERSION = '1.96.0'
53
53
 
54
54
  end
@@ -1055,7 +1055,7 @@ module Aws::SageMaker
1055
1055
 
1056
1056
  # Creates an Autopilot job.
1057
1057
  #
1058
- # Find the best performing model after you run an Autopilot job by
1058
+ # Find the best-performing model after you run an Autopilot job by
1059
1059
  # calling .
1060
1060
  #
1061
1061
  # For information about how to use Autopilot, see [Automate Model
@@ -3218,7 +3218,15 @@ module Aws::SageMaker
3218
3218
  # configuration file. To learn how, see [Create a Labeling Category
3219
3219
  # Configuration File for 3D Point Cloud Labeling Jobs][1].
3220
3220
  #
3221
- # For all other [built-in task types][2] and [custom tasks][3], your
3221
+ # For named entity recognition jobs, in addition to `"labels"`, you must
3222
+ # provide worker instructions in the label category configuration file
3223
+ # using the `"instructions"` parameter: `"instructions":
3224
+ # \{"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
3225
+ # "fullInstruction":"<p>Add additional instructions.</p>"\}`. For
3226
+ # details and an example, see [Create a Named Entity Recognition
3227
+ # Labeling Job (API) ][2].
3228
+ #
3229
+ # For all other [built-in task types][3] and [custom tasks][4], your
3222
3230
  # label category configuration file must be a JSON file in the following
3223
3231
  # format. Identify the labels you want to use by replacing `label_1`,
3224
3232
  # `label_2`,`...`,`label_n` with your label categories.
@@ -3245,15 +3253,16 @@ module Aws::SageMaker
3245
3253
  # * If you create a 3D point cloud or video frame adjustment or
3246
3254
  # verification labeling job, you must include
3247
3255
  # `auditLabelAttributeName` in the label category configuration. Use
3248
- # this parameter to enter the [ `LabelAttributeName` ][4] of the
3256
+ # this parameter to enter the [ `LabelAttributeName` ][5] of the
3249
3257
  # labeling job you want to adjust or verify annotations of.
3250
3258
  #
3251
3259
  #
3252
3260
  #
3253
3261
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3254
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3255
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3256
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3262
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api
3263
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3264
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3265
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3257
3266
  #
3258
3267
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
3259
3268
  # A set of conditions for stopping the labeling job. If any of the
@@ -7719,6 +7728,10 @@ module Aws::SageMaker
7719
7728
  # resp.best_candidate.last_modified_time #=> Time
7720
7729
  # resp.best_candidate.failure_reason #=> String
7721
7730
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7731
+ # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
7732
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
7733
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
7734
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
7722
7735
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7723
7736
  # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7724
7737
  # resp.generate_candidate_definitions_only #=> Boolean
@@ -11457,6 +11470,10 @@ module Aws::SageMaker
11457
11470
  # resp.candidates[0].last_modified_time #=> Time
11458
11471
  # resp.candidates[0].failure_reason #=> String
11459
11472
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11473
+ # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
11474
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
11475
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
11476
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
11460
11477
  # resp.next_token #=> String
11461
11478
  #
11462
11479
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -16101,6 +16118,8 @@ module Aws::SageMaker
16101
16118
 
16102
16119
  # Stops a pipeline execution.
16103
16120
  #
16121
+ # **Callback Step**
16122
+ #
16104
16123
  # A pipeline execution won't stop while a callback step is running.
16105
16124
  # When you call `StopPipelineExecution` on a pipeline execution with a
16106
16125
  # running callback step, SageMaker Pipelines sends an additional Amazon
@@ -16115,6 +16134,17 @@ module Aws::SageMaker
16115
16134
  # Only when SageMaker Pipelines receives one of these calls will it stop
16116
16135
  # the pipeline execution.
16117
16136
  #
16137
+ # **Lambda Step**
16138
+ #
16139
+ # A pipeline execution can't be stopped while a lambda step is running
16140
+ # because the Lambda function invoked by the lambda step can't be
16141
+ # stopped. If you attempt to stop the execution while the Lambda
16142
+ # function is running, the pipeline waits for the Lambda function to
16143
+ # finish or until the timeout is hit, whichever occurs first, and then
16144
+ # stops. If the Lambda function finishes, the pipeline execution status
16145
+ # is `Stopped`. If the timeout is hit the pipeline execution status is
16146
+ # `Failed`.
16147
+ #
16118
16148
  # @option params [required, String] :pipeline_execution_arn
16119
16149
  # The Amazon Resource Name (ARN) of the pipeline execution.
16120
16150
  #
@@ -17702,7 +17732,7 @@ module Aws::SageMaker
17702
17732
  params: params,
17703
17733
  config: config)
17704
17734
  context[:gem_name] = 'aws-sdk-sagemaker'
17705
- context[:gem_version] = '1.95.0'
17735
+ context[:gem_version] = '1.96.0'
17706
17736
  Seahorse::Client::Request.new(handlers, context)
17707
17737
  end
17708
17738
 
@@ -879,10 +879,13 @@ module Aws::SageMaker
879
879
  MetadataProperties = Shapes::StructureShape.new(name: 'MetadataProperties')
880
880
  MetadataPropertyValue = Shapes::StringShape.new(name: 'MetadataPropertyValue')
881
881
  MetricData = Shapes::StructureShape.new(name: 'MetricData')
882
+ MetricDataList = Shapes::ListShape.new(name: 'MetricDataList')
883
+ MetricDatum = Shapes::StructureShape.new(name: 'MetricDatum')
882
884
  MetricDefinition = Shapes::StructureShape.new(name: 'MetricDefinition')
883
885
  MetricDefinitionList = Shapes::ListShape.new(name: 'MetricDefinitionList')
884
886
  MetricName = Shapes::StringShape.new(name: 'MetricName')
885
887
  MetricRegex = Shapes::StringShape.new(name: 'MetricRegex')
888
+ MetricSetSource = Shapes::StringShape.new(name: 'MetricSetSource')
886
889
  MetricValue = Shapes::FloatShape.new(name: 'MetricValue')
887
890
  MetricsSource = Shapes::StructureShape.new(name: 'MetricsSource')
888
891
  ModelApprovalStatus = Shapes::StringShape.new(name: 'ModelApprovalStatus')
@@ -1718,6 +1721,7 @@ module Aws::SageMaker
1718
1721
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1719
1722
 
1720
1723
  CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1724
+ CandidateProperties.add_member(:candidate_metrics, Shapes::ShapeRef.new(shape: MetricDataList, location_name: "CandidateMetrics"))
1721
1725
  CandidateProperties.struct_class = Types::CandidateProperties
1722
1726
 
1723
1727
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
@@ -4781,6 +4785,13 @@ module Aws::SageMaker
4781
4785
  MetricData.add_member(:timestamp, Shapes::ShapeRef.new(shape: Timestamp, location_name: "Timestamp"))
4782
4786
  MetricData.struct_class = Types::MetricData
4783
4787
 
4788
+ MetricDataList.member = Shapes::ShapeRef.new(shape: MetricDatum)
4789
+
4790
+ MetricDatum.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, location_name: "MetricName"))
4791
+ MetricDatum.add_member(:value, Shapes::ShapeRef.new(shape: Float, location_name: "Value"))
4792
+ MetricDatum.add_member(:set, Shapes::ShapeRef.new(shape: MetricSetSource, location_name: "Set"))
4793
+ MetricDatum.struct_class = Types::MetricDatum
4794
+
4784
4795
  MetricDefinition.add_member(:name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "Name"))
4785
4796
  MetricDefinition.add_member(:regex, Shapes::ShapeRef.new(shape: MetricRegex, required: true, location_name: "Regex"))
4786
4797
  MetricDefinition.struct_class = Types::MetricDefinition
@@ -797,7 +797,7 @@ module Aws::SageMaker
797
797
  # Maximization approach to estimate the true class of text based on
798
798
  # annotations from individual workers.
799
799
  #
800
- # * `rn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass`
800
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass`
801
801
  #
802
802
  # * `arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass`
803
803
  #
@@ -1707,8 +1707,8 @@ module Aws::SageMaker
1707
1707
  include Aws::Structure
1708
1708
  end
1709
1709
 
1710
- # An Autopilot job returns recommendations, or candidates. Each
1711
- # candidate has futher details about the steps involved and the status.
1710
+ # Information about a candidate produced by an AutoML training job,
1711
+ # including its status, steps, and other properties.
1712
1712
  #
1713
1713
  # @!attribute [rw] candidate_name
1714
1714
  # The name of the candidate.
@@ -1751,7 +1751,7 @@ module Aws::SageMaker
1751
1751
  # @return [String]
1752
1752
  #
1753
1753
  # @!attribute [rw] candidate_properties
1754
- # The AutoML candidate's properties.
1754
+ # The properties of an AutoML candidate job.
1755
1755
  # @return [Types::CandidateProperties]
1756
1756
  #
1757
1757
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
@@ -1842,7 +1842,8 @@ module Aws::SageMaker
1842
1842
  # that make up an AutoML candidate. For more information, see .
1843
1843
  #
1844
1844
  # @!attribute [rw] image
1845
- # The ECR path of the container. For more information, see .
1845
+ # The Amazon Elastic Container Registry (Amazon ECR) path of the
1846
+ # container. For more information, see .
1846
1847
  # @return [String]
1847
1848
  #
1848
1849
  # @!attribute [rw] model_data_url
@@ -2006,7 +2007,7 @@ module Aws::SageMaker
2006
2007
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2007
2008
  # differences between the predicted and actual values. It is used
2008
2009
  # for regression. MSE values are always positive: the better a model
2009
- # is at predicting the actual values, the smaller the MSE value.
2010
+ # is at predicting the actual values, the smaller the MSE value is.
2010
2011
  # When the data contains outliers, they tend to dominate the MSE,
2011
2012
  # which might cause subpar prediction performance.
2012
2013
  #
@@ -2085,7 +2086,7 @@ module Aws::SageMaker
2085
2086
  # Provides a summary about an AutoML job.
2086
2087
  #
2087
2088
  # @!attribute [rw] auto_ml_job_name
2088
- # The name of the AutoML you are requesting.
2089
+ # The name of the AutoML job you are requesting.
2089
2090
  # @return [String]
2090
2091
  #
2091
2092
  # @!attribute [rw] auto_ml_job_arn
@@ -2388,10 +2389,15 @@ module Aws::SageMaker
2388
2389
  # candidate.
2389
2390
  # @return [Types::CandidateArtifactLocations]
2390
2391
  #
2392
+ # @!attribute [rw] candidate_metrics
2393
+ # Information about the candidate metrics for an AutoML job.
2394
+ # @return [Array<Types::MetricDatum>]
2395
+ #
2391
2396
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2392
2397
  #
2393
2398
  class CandidateProperties < Struct.new(
2394
- :candidate_artifact_locations)
2399
+ :candidate_artifact_locations,
2400
+ :candidate_metrics)
2395
2401
  SENSITIVE = []
2396
2402
  include Aws::Structure
2397
2403
  end
@@ -3973,8 +3979,7 @@ module Aws::SageMaker
3973
3979
  end
3974
3980
 
3975
3981
  # @!attribute [rw] auto_ml_job_arn
3976
- # The unique ARN that is assigned to the AutoML job when it is
3977
- # created.
3982
+ # The unique ARN assigned to the AutoML job when it is created.
3978
3983
  # @return [String]
3979
3984
  #
3980
3985
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -5947,7 +5952,15 @@ module Aws::SageMaker
5947
5952
  # configuration file. To learn how, see [Create a Labeling Category
5948
5953
  # Configuration File for 3D Point Cloud Labeling Jobs][1].
5949
5954
  #
5950
- # For all other [built-in task types][2] and [custom tasks][3], your
5955
+ # For named entity recognition jobs, in addition to `"labels"`, you
5956
+ # must provide worker instructions in the label category configuration
5957
+ # file using the `"instructions"` parameter: `"instructions":
5958
+ # \{"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
5959
+ # "fullInstruction":"<p>Add additional instructions.</p>"\}`. For
5960
+ # details and an example, see [Create a Named Entity Recognition
5961
+ # Labeling Job (API) ][2].
5962
+ #
5963
+ # For all other [built-in task types][3] and [custom tasks][4], your
5951
5964
  # label category configuration file must be a JSON file in the
5952
5965
  # following format. Identify the labels you want to use by replacing
5953
5966
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
@@ -5974,15 +5987,16 @@ module Aws::SageMaker
5974
5987
  # * If you create a 3D point cloud or video frame adjustment or
5975
5988
  # verification labeling job, you must include
5976
5989
  # `auditLabelAttributeName` in the label category configuration. Use
5977
- # this parameter to enter the [ `LabelAttributeName` ][4] of the
5990
+ # this parameter to enter the [ `LabelAttributeName` ][5] of the
5978
5991
  # labeling job you want to adjust or verify annotations of.
5979
5992
  #
5980
5993
  #
5981
5994
  #
5982
5995
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
5983
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5984
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5985
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5996
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api
5997
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5998
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5999
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5986
6000
  # @return [String]
5987
6001
  #
5988
6002
  # @!attribute [rw] stopping_conditions
@@ -11117,7 +11131,7 @@ module Aws::SageMaker
11117
11131
  # @return [Types::AutoMLJobArtifacts]
11118
11132
  #
11119
11133
  # @!attribute [rw] resolved_attributes
11120
- # This contains `ProblemType`, `AutoMLJobObjective` and
11134
+ # This contains `ProblemType`, `AutoMLJobObjective`, and
11121
11135
  # `CompletionCriteria`. If you do not provide these values, they are
11122
11136
  # auto-inferred. If you do provide them, the values used are the ones
11123
11137
  # you provide.
@@ -24737,6 +24751,31 @@ module Aws::SageMaker
24737
24751
  include Aws::Structure
24738
24752
  end
24739
24753
 
24754
+ # Information about the metric for a candidate produced by an AutoML
24755
+ # job.
24756
+ #
24757
+ # @!attribute [rw] metric_name
24758
+ # The name of the metric.
24759
+ # @return [String]
24760
+ #
24761
+ # @!attribute [rw] value
24762
+ # The value of the metric.
24763
+ # @return [Float]
24764
+ #
24765
+ # @!attribute [rw] set
24766
+ # The dataset split from which the AutoML job produced the metric.
24767
+ # @return [String]
24768
+ #
24769
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDatum AWS API Documentation
24770
+ #
24771
+ class MetricDatum < Struct.new(
24772
+ :metric_name,
24773
+ :value,
24774
+ :set)
24775
+ SENSITIVE = []
24776
+ include Aws::Structure
24777
+ end
24778
+
24740
24779
  # Specifies a metric that the training algorithm writes to `stderr` or
24741
24780
  # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
24742
24781
  # metrics. You specify one metric that a hyperparameter tuning job uses
@@ -34096,7 +34135,14 @@ module Aws::SageMaker
34096
34135
  end
34097
34136
 
34098
34137
  # Provided configuration information for the worker UI for a labeling
34099
- # job.
34138
+ # job. Provide either `HumanTaskUiArn` or `UiTemplateS3Uri`.
34139
+ #
34140
+ # For named entity recognition, 3D point cloud and video frame labeling
34141
+ # jobs, use `HumanTaskUiArn`.
34142
+ #
34143
+ # For all other Ground Truth built-in task types and custom task types,
34144
+ # use `UiTemplateS3Uri` to specify the location of a worker task
34145
+ # template in Amazon S3.
34100
34146
  #
34101
34147
  # @note When making an API call, you may pass UiConfig
34102
34148
  # data as a hash:
@@ -34122,11 +34168,21 @@ module Aws::SageMaker
34122
34168
  # The ARN of the worker task template used to render the worker UI and
34123
34169
  # tools for labeling job tasks.
34124
34170
  #
34125
- # Use this parameter when you are creating a labeling job for 3D point
34126
- # cloud and video fram labeling jobs. Use your labeling job task type
34127
- # to select one of the following ARNs and use it with this parameter
34128
- # when you create a labeling job. Replace `aws-region` with the Amazon
34129
- # Web Services region you are creating your labeling job in.
34171
+ # Use this parameter when you are creating a labeling job for named
34172
+ # entity recognition, 3D point cloud and video frame labeling jobs.
34173
+ # Use your labeling job task type to select one of the following ARNs
34174
+ # and use it with this parameter when you create a labeling job.
34175
+ # Replace `aws-region` with the Amazon Web Services Region you are
34176
+ # creating your labeling job in. For example, replace `aws-region`
34177
+ # with `us-west-1` if you create a labeling job in US West (N.
34178
+ # California).
34179
+ #
34180
+ # **Named Entity Recognition**
34181
+ #
34182
+ # Use the following `HumanTaskUiArn` for named entity recognition
34183
+ # labeling jobs:
34184
+ #
34185
+ # `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition`
34130
34186
  #
34131
34187
  # **3D Point Cloud HumanTaskUiArns**
34132
34188
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.95.0
4
+ version: 1.96.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-07-30 00:00:00.000000000 Z
11
+ date: 2021-08-12 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core