aws-sdk-sagemaker 1.90.0 → 1.94.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 577c90f61b7941f4ce11e7016d5ad9a539867d7fa6cccc2a72134bde16eb7ca9
4
- data.tar.gz: 9a38c22a8a5f3298e8047339a0d820e35c785387855cd6e531852c6cb5192a3e
3
+ metadata.gz: 9c40beeecd4f516516674db874a959010bf8fc9b6eabb385066cf316768d097a
4
+ data.tar.gz: a7f2a93a6e0885f25973602f960e9fe4266a4302356b7aae34bcb206f201d306
5
5
  SHA512:
6
- metadata.gz: 18e2caa1c266c232679c5864c1c4a01aa6be06e181938d4aafe7bc09bd235bf7f1520768914bbd0c7fba6c8b5fd472eb4f0c9e8ca7e292b21c65445604411b39
7
- data.tar.gz: 62c68e5a060c4185a699499054be6ce58ed2eb49c3eb93915aa13508f917724cc38b64ba6e8aa09994f72271ede18b588b3dbe0d90b6667f7ad8d832aafe6fe3
6
+ metadata.gz: 8e8b65a61f64a6a117bdb2d92d7b15f785a3344885b218ca2aaa2a6340667f2a42d435309cae8eee25c1eb711ba158919e9055233a2f6686b52b514e37dcd087
7
+ data.tar.gz: ce3700ceaa7e117313815ad3e398685948e6a2990431aac497d74d19467121c1a7001ea3291b4df2f9d1c6bac2e2ca0c5a0e96342aeca744a61a3930c4b792e1
data/CHANGELOG.md CHANGED
@@ -1,6 +1,26 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.94.0 (2021-07-28)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.93.0 (2021-07-09)
10
+ ------------------
11
+
12
+ * Feature - Releasing new APIs related to Tuning steps in model building pipelines.
13
+
14
+ 1.92.0 (2021-07-01)
15
+ ------------------
16
+
17
+ * Feature - SageMaker model registry now supports up to 5 containers and associated environment variables.
18
+
19
+ 1.91.0 (2021-06-28)
20
+ ------------------
21
+
22
+ * Feature - Sagemaker Neo now supports running compilation jobs using customer's Amazon VPC
23
+
4
24
  1.90.0 (2021-06-17)
5
25
  ------------------
6
26
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.90.0
1
+ 1.94.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.90.0'
52
+ GEM_VERSION = '1.94.0'
53
53
 
54
54
  end
@@ -405,7 +405,7 @@ module Aws::SageMaker
405
405
  #
406
406
  # Each tag consists of a key and an optional value. Tag keys must be
407
407
  # unique per resource. For more information about tags, see For more
408
- # information, see [AWS Tagging Strategies][1].
408
+ # information, see [Amazon Web Services Tagging Strategies][1].
409
409
  #
410
410
  # <note markdown="1"> Tags that you add to a hyperparameter tuning job by calling this API
411
411
  # are also added to any training jobs that the hyperparameter tuning job
@@ -438,9 +438,10 @@ module Aws::SageMaker
438
438
  # The Amazon Resource Name (ARN) of the resource that you want to tag.
439
439
  #
440
440
  # @option params [required, Array<Types::Tag>] :tags
441
- # An array of key-value pairs. You can use tags to categorize your AWS
442
- # resources in different ways, for example, by purpose, owner, or
443
- # environment. For more information, see [Tagging AWS Resources][1].
441
+ # An array of key-value pairs. You can use tags to categorize your
442
+ # Amazon Web Services resources in different ways, for example, by
443
+ # purpose, owner, or environment. For more information, see [Tagging
444
+ # Amazon Web Services Resources][1].
444
445
  #
445
446
  #
446
447
  #
@@ -531,8 +532,8 @@ module Aws::SageMaker
531
532
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
532
533
  #
533
534
  # @option params [required, String] :action_name
534
- # The name of the action. Must be unique to your account in an AWS
535
- # Region.
535
+ # The name of the action. Must be unique to your account in an Amazon
536
+ # Web Services Region.
536
537
  #
537
538
  # @option params [required, Types::ActionSource] :source
538
539
  # The source type, ID, and URI.
@@ -602,7 +603,7 @@ module Aws::SageMaker
602
603
  end
603
604
 
604
605
  # Create a machine learning algorithm that you can use in Amazon
605
- # SageMaker and list in the AWS Marketplace.
606
+ # SageMaker and list in the Amazon Web Services Marketplace.
606
607
  #
607
608
  # @option params [required, String] :algorithm_name
608
609
  # The name of the algorithm.
@@ -652,13 +653,14 @@ module Aws::SageMaker
652
653
  # the algorithm's inference code.
653
654
  #
654
655
  # @option params [Boolean] :certify_for_marketplace
655
- # Whether to certify the algorithm so that it can be listed in AWS
656
- # Marketplace.
656
+ # Whether to certify the algorithm so that it can be listed in Amazon
657
+ # Web Services Marketplace.
657
658
  #
658
659
  # @option params [Array<Types::Tag>] :tags
659
- # An array of key-value pairs. You can use tags to categorize your AWS
660
- # resources in different ways, for example, by purpose, owner, or
661
- # environment. For more information, see [Tagging AWS Resources][1].
660
+ # An array of key-value pairs. You can use tags to categorize your
661
+ # Amazon Web Services resources in different ways, for example, by
662
+ # purpose, owner, or environment. For more information, see [Tagging
663
+ # Amazon Web Services Resources][1].
662
664
  #
663
665
  #
664
666
  #
@@ -732,6 +734,9 @@ module Aws::SageMaker
732
734
  # image_digest: "ImageDigest",
733
735
  # model_data_url: "Url",
734
736
  # product_id: "ProductId",
737
+ # environment: {
738
+ # "EnvironmentKey" => "EnvironmentValue",
739
+ # },
735
740
  # },
736
741
  # ],
737
742
  # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
@@ -982,8 +987,8 @@ module Aws::SageMaker
982
987
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
983
988
  #
984
989
  # @option params [String] :artifact_name
985
- # The name of the artifact. Must be unique to your account in an AWS
986
- # Region.
990
+ # The name of the artifact. Must be unique to your account in an Amazon
991
+ # Web Services Region.
987
992
  #
988
993
  # @option params [required, Types::ArtifactSource] :source
989
994
  # The ID, ID type, and URI of the source.
@@ -1188,8 +1193,8 @@ module Aws::SageMaker
1188
1193
  # persists independently from the lifecycle of any notebook instances it
1189
1194
  # is associated with.
1190
1195
  #
1191
- # The repository can be hosted either in [AWS CodeCommit][1] or in any
1192
- # other Git repository.
1196
+ # The repository can be hosted either in [Amazon Web Services
1197
+ # CodeCommit][1] or in any other Git repository.
1193
1198
  #
1194
1199
  #
1195
1200
  #
@@ -1205,9 +1210,10 @@ module Aws::SageMaker
1205
1210
  # access the repository.
1206
1211
  #
1207
1212
  # @option params [Array<Types::Tag>] :tags
1208
- # An array of key-value pairs. You can use tags to categorize your AWS
1209
- # resources in different ways, for example, by purpose, owner, or
1210
- # environment. For more information, see [Tagging AWS Resources][1].
1213
+ # An array of key-value pairs. You can use tags to categorize your
1214
+ # Amazon Web Services resources in different ways, for example, by
1215
+ # purpose, owner, or environment. For more information, see [Tagging
1216
+ # Amazon Web Services Resources][1].
1211
1217
  #
1212
1218
  #
1213
1219
  #
@@ -1253,8 +1259,8 @@ module Aws::SageMaker
1253
1259
  #
1254
1260
  # If you choose to host your model using Amazon SageMaker hosting
1255
1261
  # services, you can use the resulting model artifacts as part of the
1256
- # model. You can also use the artifacts with AWS IoT Greengrass. In that
1257
- # case, deploy them as an ML resource.
1262
+ # model. You can also use the artifacts with Amazon Web Services IoT
1263
+ # Greengrass. In that case, deploy them as an ML resource.
1258
1264
  #
1259
1265
  # In the request body, you provide the following:
1260
1266
  #
@@ -1279,7 +1285,8 @@ module Aws::SageMaker
1279
1285
  #
1280
1286
  # @option params [required, String] :compilation_job_name
1281
1287
  # A name for the model compilation job. The name must be unique within
1282
- # the AWS Region and within your AWS account.
1288
+ # the Amazon Web Services Region and within your Amazon Web Services
1289
+ # account.
1283
1290
  #
1284
1291
  # @option params [required, String] :role_arn
1285
1292
  # The Amazon Resource Name (ARN) of an IAM role that enables Amazon
@@ -1313,15 +1320,26 @@ module Aws::SageMaker
1313
1320
  # Provides information about the output location for the compiled model
1314
1321
  # and the target device the model runs on.
1315
1322
  #
1323
+ # @option params [Types::NeoVpcConfig] :vpc_config
1324
+ # A VpcConfig object that specifies the VPC that you want your
1325
+ # compilation job to connect to. Control access to your models by
1326
+ # configuring the VPC. For more information, see [Protect Compilation
1327
+ # Jobs by Using an Amazon Virtual Private Cloud][1].
1328
+ #
1329
+ #
1330
+ #
1331
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
1332
+ #
1316
1333
  # @option params [required, Types::StoppingCondition] :stopping_condition
1317
1334
  # Specifies a limit to how long a model compilation job can run. When
1318
1335
  # the job reaches the time limit, Amazon SageMaker ends the compilation
1319
1336
  # job. Use this API to cap model training costs.
1320
1337
  #
1321
1338
  # @option params [Array<Types::Tag>] :tags
1322
- # An array of key-value pairs. You can use tags to categorize your AWS
1323
- # resources in different ways, for example, by purpose, owner, or
1324
- # environment. For more information, see [Tagging AWS Resources][1].
1339
+ # An array of key-value pairs. You can use tags to categorize your
1340
+ # Amazon Web Services resources in different ways, for example, by
1341
+ # purpose, owner, or environment. For more information, see [Tagging
1342
+ # Amazon Web Services Resources][1].
1325
1343
  #
1326
1344
  #
1327
1345
  #
@@ -1344,7 +1362,7 @@ module Aws::SageMaker
1344
1362
  # },
1345
1363
  # output_config: { # required
1346
1364
  # s3_output_location: "S3Uri", # required
1347
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1365
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm
1348
1366
  # target_platform: {
1349
1367
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1350
1368
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1353,6 +1371,10 @@ module Aws::SageMaker
1353
1371
  # compiler_options: "CompilerOptions",
1354
1372
  # kms_key_id: "KmsKeyId",
1355
1373
  # },
1374
+ # vpc_config: {
1375
+ # security_group_ids: ["NeoVpcSecurityGroupId"], # required
1376
+ # subnets: ["NeoVpcSubnetId"], # required
1377
+ # },
1356
1378
  # stopping_condition: { # required
1357
1379
  # max_runtime_in_seconds: 1,
1358
1380
  # max_wait_time_in_seconds: 1,
@@ -1395,8 +1417,8 @@ module Aws::SageMaker
1395
1417
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
1396
1418
  #
1397
1419
  # @option params [required, String] :context_name
1398
- # The name of the context. Must be unique to your account in an AWS
1399
- # Region.
1420
+ # The name of the context. Must be unique to your account in an Amazon
1421
+ # Web Services Region.
1400
1422
  #
1401
1423
  # @option params [required, Types::ContextSource] :source
1402
1424
  # The source type, ID, and URI.
@@ -1492,8 +1514,8 @@ module Aws::SageMaker
1492
1514
  #
1493
1515
  # @option params [Array<Types::Tag>] :tags
1494
1516
  # (Optional) An array of key-value pairs. For more information, see
1495
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
1496
- # Management User Guide*.
1517
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
1518
+ # and Cost Management User Guide*.
1497
1519
  #
1498
1520
  #
1499
1521
  #
@@ -1599,8 +1621,8 @@ module Aws::SageMaker
1599
1621
  # The name of the fleet that the device belongs to.
1600
1622
  #
1601
1623
  # @option params [String] :role_arn
1602
- # The Amazon Resource Name (ARN) that has access to AWS Internet of
1603
- # Things (IoT).
1624
+ # The Amazon Resource Name (ARN) that has access to Amazon Web Services
1625
+ # Internet of Things (IoT).
1604
1626
  #
1605
1627
  # @option params [String] :description
1606
1628
  # A description of the fleet.
@@ -1613,9 +1635,9 @@ module Aws::SageMaker
1613
1635
  # Creates tags for the specified fleet.
1614
1636
  #
1615
1637
  # @option params [Boolean] :enable_iot_role_alias
1616
- # Whether to create an AWS IoT Role Alias during device fleet creation.
1617
- # The name of the role alias generated will match this pattern:
1618
- # "SageMakerEdge-\\\{DeviceFleetName\\}".
1638
+ # Whether to create an Amazon Web Services IoT Role Alias during device
1639
+ # fleet creation. The name of the role alias generated will match this
1640
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
1619
1641
  #
1620
1642
  # For example, if your device fleet is called "demo-fleet", the name
1621
1643
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -1655,9 +1677,9 @@ module Aws::SageMaker
1655
1677
  # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1656
1678
  # of an associated Amazon Elastic File System (EFS) volume, a list of
1657
1679
  # authorized users, and a variety of security, application, policy, and
1658
- # Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
1659
- # limited to one domain per region. Users within a domain can share
1660
- # notebook files and other artifacts with each other.
1680
+ # Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web
1681
+ # Services account is limited to one domain per region. Users within a
1682
+ # domain can share notebook files and other artifacts with each other.
1661
1683
  #
1662
1684
  # **EFS storage**
1663
1685
  #
@@ -1666,11 +1688,11 @@ module Aws::SageMaker
1666
1688
  # directory within the EFS volume for notebooks, Git repositories, and
1667
1689
  # data files.
1668
1690
  #
1669
- # SageMaker uses the AWS Key Management Service (AWS KMS) to encrypt the
1670
- # EFS volume attached to the domain with an AWS managed customer master
1671
- # key (CMK) by default. For more control, you can specify a customer
1672
- # managed CMK. For more information, see [Protect Data at Rest Using
1673
- # Encryption][1].
1691
+ # SageMaker uses the Amazon Web Services Key Management Service (Amazon
1692
+ # Web Services KMS) to encrypt the EFS volume attached to the domain
1693
+ # with an Amazon Web Services managed customer master key (CMK) by
1694
+ # default. For more control, you can specify a customer managed CMK. For
1695
+ # more information, see [Protect Data at Rest Using Encryption][1].
1674
1696
  #
1675
1697
  # **VPC configuration**
1676
1698
  #
@@ -1694,6 +1716,10 @@ module Aws::SageMaker
1694
1716
  # endpoint to the SageMaker API and runtime or a NAT gateway and your
1695
1717
  # security groups allow outbound connections.
1696
1718
  #
1719
+ # NFS traffic over TCP on port 2049 needs to be allowed in both inbound
1720
+ # and outbound rules in order to launch a SageMaker Studio app
1721
+ # successfully.
1722
+ #
1697
1723
  # For more information, see [Connect SageMaker Studio Notebooks to
1698
1724
  # Resources in a VPC][2].
1699
1725
  #
@@ -1747,9 +1773,10 @@ module Aws::SageMaker
1747
1773
  # This member is deprecated and replaced with `KmsKeyId`.
1748
1774
  #
1749
1775
  # @option params [String] :kms_key_id
1750
- # SageMaker uses AWS KMS to encrypt the EFS volume attached to the
1751
- # domain with an AWS managed customer master key (CMK) by default. For
1752
- # more control, specify a customer managed CMK.
1776
+ # SageMaker uses Amazon Web Services KMS to encrypt the EFS volume
1777
+ # attached to the domain with an Amazon Web Services managed customer
1778
+ # master key (CMK) by default. For more control, specify a customer
1779
+ # managed CMK.
1753
1780
  #
1754
1781
  # @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1755
1782
  #
@@ -1901,7 +1928,7 @@ module Aws::SageMaker
1901
1928
  #
1902
1929
  # For an example that calls this method when deploying a model to Amazon
1903
1930
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
1904
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
1931
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
1905
1932
  #
1906
1933
  # <note markdown="1"> You must not delete an `EndpointConfig` that is in use by an endpoint
1907
1934
  # that is live or while the `UpdateEndpoint` or `CreateEndpoint`
@@ -1910,8 +1937,8 @@ module Aws::SageMaker
1910
1937
  #
1911
1938
  # </note>
1912
1939
  #
1913
- # The endpoint name must be unique within an AWS Region in your AWS
1914
- # account.
1940
+ # The endpoint name must be unique within an Amazon Web Services Region
1941
+ # in your Amazon Web Services account.
1915
1942
  #
1916
1943
  # When it receives the request, Amazon SageMaker creates the endpoint,
1917
1944
  # launches the resources (ML compute instances), and deploys the
@@ -1938,13 +1965,14 @@ module Aws::SageMaker
1938
1965
  # DescribeEndpoint API.
1939
1966
  #
1940
1967
  # If any of the models hosted at this endpoint get model data from an
1941
- # Amazon S3 location, Amazon SageMaker uses AWS Security Token Service
1942
- # to download model artifacts from the S3 path you provided. AWS STS is
1943
- # activated in your IAM user account by default. If you previously
1944
- # deactivated AWS STS for a region, you need to reactivate AWS STS for
1968
+ # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
1969
+ # Token Service to download model artifacts from the S3 path you
1970
+ # provided. Amazon Web Services STS is activated in your IAM user
1971
+ # account by default. If you previously deactivated Amazon Web Services
1972
+ # STS for a region, you need to reactivate Amazon Web Services STS for
1945
1973
  # that region. For more information, see [Activating and Deactivating
1946
- # AWS STS in an AWS Region][3] in the *AWS Identity and Access
1947
- # Management User Guide*.
1974
+ # Amazon Web Services STS in an Amazon Web Services Region][3] in the
1975
+ # *Amazon Web Services Identity and Access Management User Guide*.
1948
1976
  #
1949
1977
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
1950
1978
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -1984,18 +2012,20 @@ module Aws::SageMaker
1984
2012
  # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html
1985
2013
  #
1986
2014
  # @option params [required, String] :endpoint_name
1987
- # The name of the endpoint.The name must be unique within an AWS Region
1988
- # in your AWS account. The name is case-insensitive in `CreateEndpoint`,
1989
- # but the case is preserved and must be matched in .
2015
+ # The name of the endpoint.The name must be unique within an Amazon Web
2016
+ # Services Region in your Amazon Web Services account. The name is
2017
+ # case-insensitive in `CreateEndpoint`, but the case is preserved and
2018
+ # must be matched in .
1990
2019
  #
1991
2020
  # @option params [required, String] :endpoint_config_name
1992
2021
  # The name of an endpoint configuration. For more information, see
1993
2022
  # CreateEndpointConfig.
1994
2023
  #
1995
2024
  # @option params [Array<Types::Tag>] :tags
1996
- # An array of key-value pairs. You can use tags to categorize your AWS
1997
- # resources in different ways, for example, by purpose, owner, or
1998
- # environment. For more information, see [Tagging AWS Resources][1].
2025
+ # An array of key-value pairs. You can use tags to categorize your
2026
+ # Amazon Web Services resources in different ways, for example, by
2027
+ # purpose, owner, or environment. For more information, see [Tagging
2028
+ # Amazon Web Services Resources][1].
1999
2029
  #
2000
2030
  #
2001
2031
  #
@@ -2056,7 +2086,7 @@ module Aws::SageMaker
2056
2086
  #
2057
2087
  # For an example that calls this method when deploying a model to Amazon
2058
2088
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
2059
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
2089
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
2060
2090
  #
2061
2091
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2062
2092
  # verify that your endpoint configuration exists. When you read data
@@ -2088,18 +2118,19 @@ module Aws::SageMaker
2088
2118
  # @option params [Types::DataCaptureConfig] :data_capture_config
2089
2119
  #
2090
2120
  # @option params [Array<Types::Tag>] :tags
2091
- # An array of key-value pairs. You can use tags to categorize your AWS
2092
- # resources in different ways, for example, by purpose, owner, or
2093
- # environment. For more information, see [Tagging AWS Resources][1].
2121
+ # An array of key-value pairs. You can use tags to categorize your
2122
+ # Amazon Web Services resources in different ways, for example, by
2123
+ # purpose, owner, or environment. For more information, see [Tagging
2124
+ # Amazon Web Services Resources][1].
2094
2125
  #
2095
2126
  #
2096
2127
  #
2097
2128
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
2098
2129
  #
2099
2130
  # @option params [String] :kms_key_id
2100
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
2101
- # that Amazon SageMaker uses to encrypt data on the storage volume
2102
- # attached to the ML compute instance that hosts the endpoint.
2131
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2132
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
2133
+ # volume attached to the ML compute instance that hosts the endpoint.
2103
2134
  #
2104
2135
  # The KmsKeyId can be any of the following formats:
2105
2136
  #
@@ -2115,8 +2146,8 @@ module Aws::SageMaker
2115
2146
  #
2116
2147
  # The KMS key policy must grant permission to the IAM role that you
2117
2148
  # specify in your `CreateEndpoint`, `UpdateEndpoint` requests. For more
2118
- # information, refer to the AWS Key Management Service section[ Using
2119
- # Key Policies in AWS KMS ][1]
2149
+ # information, refer to the Amazon Web Services Key Management Service
2150
+ # section[ Using Key Policies in Amazon Web Services KMS ][1]
2120
2151
  #
2121
2152
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on the
2122
2153
  # instance type. Local storage volumes are encrypted using a hardware
@@ -2213,8 +2244,8 @@ module Aws::SageMaker
2213
2244
  #
2214
2245
  # When you use SageMaker Studio or the SageMaker Python SDK, all
2215
2246
  # experiments, trials, and trial components are automatically tracked,
2216
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2217
- # must use the logging APIs provided by the SDK.
2247
+ # logged, and indexed. When you use the Amazon Web Services SDK for
2248
+ # Python (Boto), you must use the logging APIs provided by the SDK.
2218
2249
  #
2219
2250
  # You can add tags to experiments, trials, trial components and then use
2220
2251
  # the Search API to search for the tags.
@@ -2229,8 +2260,8 @@ module Aws::SageMaker
2229
2260
  # the ListTrials API. To create a trial call the CreateTrial API.
2230
2261
  #
2231
2262
  # @option params [required, String] :experiment_name
2232
- # The name of the experiment. The name must be unique in your AWS
2233
- # account and is not case-sensitive.
2263
+ # The name of the experiment. The name must be unique in your Amazon Web
2264
+ # Services account and is not case-sensitive.
2234
2265
  #
2235
2266
  # @option params [String] :display_name
2236
2267
  # The name of the experiment as displayed. The name doesn't need to be
@@ -2282,8 +2313,8 @@ module Aws::SageMaker
2282
2313
  # FeatureGroup. A `FeatureGroup` definition is composed of a list of
2283
2314
  # `Features`, a `RecordIdentifierFeatureName`, an `EventTimeFeatureName`
2284
2315
  # and configurations for its `OnlineStore` and `OfflineStore`. Check
2285
- # [AWS service quotas][1] to see the `FeatureGroup`s quota for your AWS
2286
- # account.
2316
+ # [Amazon Web Services service quotas][1] to see the `FeatureGroup`s
2317
+ # quota for your Amazon Web Services account.
2287
2318
  #
2288
2319
  # You must include at least one of `OnlineStoreConfig` and
2289
2320
  # `OfflineStoreConfig` to create a `FeatureGroup`.
@@ -2293,8 +2324,9 @@ module Aws::SageMaker
2293
2324
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
2294
2325
  #
2295
2326
  # @option params [required, String] :feature_group_name
2296
- # The name of the `FeatureGroup`. The name must be unique within an AWS
2297
- # Region in an AWS account. The name:
2327
+ # The name of the `FeatureGroup`. The name must be unique within an
2328
+ # Amazon Web Services Region in an Amazon Web Services account. The
2329
+ # name:
2298
2330
  #
2299
2331
  # * Must start and end with an alphanumeric character.
2300
2332
  #
@@ -2357,8 +2389,8 @@ module Aws::SageMaker
2357
2389
  # `EnableOnlineStore` flag in `OnlineStoreConfig`; the default value is
2358
2390
  # `False`.
2359
2391
  #
2360
- # You can also include an AWS KMS key ID (`KMSKeyId`) for at-rest
2361
- # encryption of the `OnlineStore`.
2392
+ # You can also include an Amazon Web Services KMS key ID (`KMSKeyId`)
2393
+ # for at-rest encryption of the `OnlineStore`.
2362
2394
  #
2363
2395
  # @option params [Types::OfflineStoreConfig] :offline_store_config
2364
2396
  # Use this to configure an `OfflineFeatureStore`. This parameter allows
@@ -2367,7 +2399,8 @@ module Aws::SageMaker
2367
2399
  # * The Amazon Simple Storage Service (Amazon S3) location of an
2368
2400
  # `OfflineStore`.
2369
2401
  #
2370
- # * A configuration for an AWS Glue or AWS Hive data cataolgue.
2402
+ # * A configuration for an Amazon Web Services Glue or Amazon Web
2403
+ # Services Hive data cataolgue.
2371
2404
  #
2372
2405
  # * An KMS encryption key to encrypt the Amazon S3 location used for
2373
2406
  # `OfflineStore`.
@@ -2591,9 +2624,10 @@ module Aws::SageMaker
2591
2624
  # @option params [required, String] :hyper_parameter_tuning_job_name
2592
2625
  # The name of the tuning job. This name is the prefix for the names of
2593
2626
  # all training jobs that this tuning job launches. The name must be
2594
- # unique within the same AWS account and AWS Region. The name must have
2595
- # 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ \_
2596
- # % - (hyphen). The name is not case sensitive.
2627
+ # unique within the same Amazon Web Services account and Amazon Web
2628
+ # Services Region. The name must have 1 to 32 characters. Valid
2629
+ # characters are a-z, A-Z, 0-9, and : + = @ \_ % - (hyphen). The name is
2630
+ # not case sensitive.
2597
2631
  #
2598
2632
  # @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
2599
2633
  # The HyperParameterTuningJobConfig object that describes the tuning
@@ -2638,9 +2672,10 @@ module Aws::SageMaker
2638
2672
  # </note>
2639
2673
  #
2640
2674
  # @option params [Array<Types::Tag>] :tags
2641
- # An array of key-value pairs. You can use tags to categorize your AWS
2642
- # resources in different ways, for example, by purpose, owner, or
2643
- # environment. For more information, see [Tagging AWS Resources][1].
2675
+ # An array of key-value pairs. You can use tags to categorize your
2676
+ # Amazon Web Services resources in different ways, for example, by
2677
+ # purpose, owner, or environment. For more information, see [Tagging
2678
+ # Amazon Web Services Resources][1].
2644
2679
  #
2645
2680
  # Tags that you specify for the tuning job are also added to all
2646
2681
  # training jobs that the tuning job launches.
@@ -2998,8 +3033,9 @@ module Aws::SageMaker
2998
3033
  # [@digest]>`
2999
3034
  #
3000
3035
  # @option params [required, String] :client_token
3001
- # A unique ID. If not specified, the AWS CLI and AWS SDKs, such as the
3002
- # SDK for Python (Boto3), add a unique value to the call.
3036
+ # A unique ID. If not specified, the Amazon Web Services CLI and Amazon
3037
+ # Web Services SDKs, such as the SDK for Python (Boto3), add a unique
3038
+ # value to the call.
3003
3039
  #
3004
3040
  # **A suitable default value is auto-generated.** You should normally
3005
3041
  # not need to pass this option.**
@@ -3043,8 +3079,8 @@ module Aws::SageMaker
3043
3079
  # the data to stay within your organization or when a specific set of
3044
3080
  # skills is required.
3045
3081
  #
3046
- # * One or more vendors that you select from the AWS Marketplace.
3047
- # Vendors provide expertise in specific areas.
3082
+ # * One or more vendors that you select from the Amazon Web Services
3083
+ # Marketplace. Vendors provide expertise in specific areas.
3048
3084
  #
3049
3085
  # * The Amazon Mechanical Turk workforce. This is the largest workforce,
3050
3086
  # but it should only be used for public data or data that has been
@@ -3084,9 +3120,9 @@ module Aws::SageMaker
3084
3120
  # @option params [required, String] :labeling_job_name
3085
3121
  # The name of the labeling job. This name is used to identify the job in
3086
3122
  # a list of labeling jobs. Labeling job names must be unique within an
3087
- # AWS account and region. `LabelingJobName` is not case sensitive. For
3088
- # example, Example-job and example-job are considered the same labeling
3089
- # job name by Ground Truth.
3123
+ # Amazon Web Services account and region. `LabelingJobName` is not case
3124
+ # sensitive. For example, Example-job and example-job are considered the
3125
+ # same labeling job name by Ground Truth.
3090
3126
  #
3091
3127
  # @option params [required, String] :label_attribute_name
3092
3128
  # The attribute name to use for the label in the output manifest file.
@@ -3163,8 +3199,9 @@ module Aws::SageMaker
3163
3199
  # content.
3164
3200
  #
3165
3201
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3166
- # The location of the output data and the AWS Key Management Service key
3167
- # ID for the key used to encrypt the output data, if any.
3202
+ # The location of the output data and the Amazon Web Services Key
3203
+ # Management Service key ID for the key used to encrypt the output data,
3204
+ # if any.
3168
3205
  #
3169
3206
  # @option params [required, String] :role_arn
3170
3207
  # The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
@@ -3234,8 +3271,8 @@ module Aws::SageMaker
3234
3271
  #
3235
3272
  # @option params [Array<Types::Tag>] :tags
3236
3273
  # An array of key/value pairs. For more information, see [Using Cost
3237
- # Allocation Tags][1] in the *AWS Billing and Cost Management User
3238
- # Guide*.
3274
+ # Allocation Tags][1] in the *Amazon Web Services Billing and Cost
3275
+ # Management User Guide*.
3239
3276
  #
3240
3277
  #
3241
3278
  #
@@ -3343,7 +3380,7 @@ module Aws::SageMaker
3343
3380
  #
3344
3381
  # For an example that calls this method when deploying a model to Amazon
3345
3382
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3346
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
3383
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3347
3384
  #
3348
3385
  # To run a batch transform using your model, you start a job with the
3349
3386
  # `CreateTransformJob` API. Amazon SageMaker uses your model and your
@@ -3357,8 +3394,8 @@ module Aws::SageMaker
3357
3394
  # assume to access model artifacts and docker image for deployment on ML
3358
3395
  # compute hosting instances or for batch transform jobs. In addition,
3359
3396
  # you also use the IAM role to manage permissions the inference code
3360
- # needs. For example, if the inference code access any other AWS
3361
- # resources, you grant necessary permissions via this role.
3397
+ # needs. For example, if the inference code access any other Amazon Web
3398
+ # Services resources, you grant necessary permissions via this role.
3362
3399
  #
3363
3400
  #
3364
3401
  #
@@ -3396,9 +3433,10 @@ module Aws::SageMaker
3396
3433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
3397
3434
  #
3398
3435
  # @option params [Array<Types::Tag>] :tags
3399
- # An array of key-value pairs. You can use tags to categorize your AWS
3400
- # resources in different ways, for example, by purpose, owner, or
3401
- # environment. For more information, see [Tagging AWS Resources][1].
3436
+ # An array of key-value pairs. You can use tags to categorize your
3437
+ # Amazon Web Services resources in different ways, for example, by
3438
+ # purpose, owner, or environment. For more information, see [Tagging
3439
+ # Amazon Web Services Resources][1].
3402
3440
  #
3403
3441
  #
3404
3442
  #
@@ -3503,7 +3541,7 @@ module Aws::SageMaker
3503
3541
  #
3504
3542
  # @option params [required, String] :job_definition_name
3505
3543
  # The name of the bias job definition. The name must be unique within an
3506
- # AWS Region in the AWS account.
3544
+ # Amazon Web Services Region in the Amazon Web Services account.
3507
3545
  #
3508
3546
  # @option params [Types::ModelBiasBaselineConfig] :model_bias_baseline_config
3509
3547
  # The baseline configuration for a model bias job.
@@ -3534,8 +3572,8 @@ module Aws::SageMaker
3534
3572
  #
3535
3573
  # @option params [Array<Types::Tag>] :tags
3536
3574
  # (Optional) An array of key-value pairs. For more information, see
3537
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3538
- # Management User Guide*.
3575
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3576
+ # and Cost Management User Guide*.
3539
3577
  #
3540
3578
  #
3541
3579
  #
@@ -3636,7 +3674,8 @@ module Aws::SageMaker
3636
3674
  #
3637
3675
  # @option params [required, String] :job_definition_name
3638
3676
  # The name of the model explainability job definition. The name must be
3639
- # unique within an AWS Region in the AWS account.
3677
+ # unique within an Amazon Web Services Region in the Amazon Web Services
3678
+ # account.
3640
3679
  #
3641
3680
  # @option params [Types::ModelExplainabilityBaselineConfig] :model_explainability_baseline_config
3642
3681
  # The baseline configuration for a model explainability job.
@@ -3667,8 +3706,8 @@ module Aws::SageMaker
3667
3706
  #
3668
3707
  # @option params [Array<Types::Tag>] :tags
3669
3708
  # (Optional) An array of key-value pairs. For more information, see
3670
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3671
- # Management User Guide*.
3709
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3710
+ # and Cost Management User Guide*.
3672
3711
  #
3673
3712
  #
3674
3713
  #
@@ -3763,15 +3802,17 @@ module Aws::SageMaker
3763
3802
  end
3764
3803
 
3765
3804
  # Creates a model package that you can use to create Amazon SageMaker
3766
- # models or list on AWS Marketplace, or a versioned model that is part
3767
- # of a model group. Buyers can subscribe to model packages listed on AWS
3768
- # Marketplace to create models in Amazon SageMaker.
3805
+ # models or list on Amazon Web Services Marketplace, or a versioned
3806
+ # model that is part of a model group. Buyers can subscribe to model
3807
+ # packages listed on Amazon Web Services Marketplace to create models in
3808
+ # Amazon SageMaker.
3769
3809
  #
3770
3810
  # To create a model package by specifying a Docker container that
3771
3811
  # contains your inference code and the Amazon S3 location of your model
3772
3812
  # artifacts, provide values for `InferenceSpecification`. To create a
3773
3813
  # model from an algorithm resource that you created or subscribed to in
3774
- # AWS Marketplace, provide a value for `SourceAlgorithmSpecification`.
3814
+ # Amazon Web Services Marketplace, provide a value for
3815
+ # `SourceAlgorithmSpecification`.
3775
3816
  #
3776
3817
  # <note markdown="1"> There are two types of model packages:
3777
3818
  #
@@ -3819,15 +3860,16 @@ module Aws::SageMaker
3819
3860
  # Details about the algorithm that was used to create the model package.
3820
3861
  #
3821
3862
  # @option params [Boolean] :certify_for_marketplace
3822
- # Whether to certify the model package for listing on AWS Marketplace.
3863
+ # Whether to certify the model package for listing on Amazon Web
3864
+ # Services Marketplace.
3823
3865
  #
3824
3866
  # This parameter is optional for unversioned models, and does not apply
3825
3867
  # to versioned models.
3826
3868
  #
3827
3869
  # @option params [Array<Types::Tag>] :tags
3828
3870
  # A list of key value pairs associated with the model. For more
3829
- # information, see [Tagging AWS resources][1] in the *AWS General
3830
- # Reference Guide*.
3871
+ # information, see [Tagging Amazon Web Services resources][1] in the
3872
+ # *Amazon Web Services General Reference Guide*.
3831
3873
  #
3832
3874
  #
3833
3875
  #
@@ -3873,6 +3915,9 @@ module Aws::SageMaker
3873
3915
  # image_digest: "ImageDigest",
3874
3916
  # model_data_url: "Url",
3875
3917
  # product_id: "ProductId",
3918
+ # environment: {
3919
+ # "EnvironmentKey" => "EnvironmentValue",
3920
+ # },
3876
3921
  # },
3877
3922
  # ],
3878
3923
  # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
@@ -4007,8 +4052,8 @@ module Aws::SageMaker
4007
4052
  #
4008
4053
  # @option params [Array<Types::Tag>] :tags
4009
4054
  # A list of key value pairs associated with the model group. For more
4010
- # information, see [Tagging AWS resources][1] in the *AWS General
4011
- # Reference Guide*.
4055
+ # information, see [Tagging Amazon Web Services resources][1] in the
4056
+ # *Amazon Web Services General Reference Guide*.
4012
4057
  #
4013
4058
  #
4014
4059
  #
@@ -4084,8 +4129,8 @@ module Aws::SageMaker
4084
4129
  #
4085
4130
  # @option params [Array<Types::Tag>] :tags
4086
4131
  # (Optional) An array of key-value pairs. For more information, see
4087
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4088
- # Management User Guide*.
4132
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4133
+ # and Cost Management User Guide*.
4089
4134
  #
4090
4135
  #
4091
4136
  #
@@ -4191,7 +4236,7 @@ module Aws::SageMaker
4191
4236
  #
4192
4237
  # @option params [required, String] :monitoring_schedule_name
4193
4238
  # The name of the monitoring schedule. The name must be unique within an
4194
- # AWS Region within an AWS account.
4239
+ # Amazon Web Services Region within an Amazon Web Services account.
4195
4240
  #
4196
4241
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
4197
4242
  # The configuration object that specifies the monitoring schedule and
@@ -4201,7 +4246,7 @@ module Aws::SageMaker
4201
4246
  # (Optional) An array of key-value pairs. For more information, see
4202
4247
  # [Using Cost Allocation Tags](
4203
4248
  # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
4204
- # in the *AWS Billing and Cost Management User Guide*.
4249
+ # in the *Amazon Web Services Billing and Cost Management User Guide*.
4205
4250
  #
4206
4251
  # @return [Types::CreateMonitoringScheduleResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4207
4252
  #
@@ -4370,13 +4415,13 @@ module Aws::SageMaker
4370
4415
  # groups must be for the same VPC as specified in the subnet.
4371
4416
  #
4372
4417
  # @option params [required, String] :role_arn
4373
- # When you send any requests to AWS resources from the notebook
4374
- # instance, Amazon SageMaker assumes this role to perform tasks on your
4375
- # behalf. You must grant this role necessary permissions so Amazon
4376
- # SageMaker can perform these tasks. The policy must allow the Amazon
4377
- # SageMaker service principal (sagemaker.amazonaws.com) permissions to
4378
- # assume this role. For more information, see [Amazon SageMaker
4379
- # Roles][1].
4418
+ # When you send any requests to Amazon Web Services resources from the
4419
+ # notebook instance, Amazon SageMaker assumes this role to perform tasks
4420
+ # on your behalf. You must grant this role necessary permissions so
4421
+ # Amazon SageMaker can perform these tasks. The policy must allow the
4422
+ # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4423
+ # permissions to assume this role. For more information, see [Amazon
4424
+ # SageMaker Roles][1].
4380
4425
  #
4381
4426
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4382
4427
  # API must have the `iam:PassRole` permission.
@@ -4388,20 +4433,21 @@ module Aws::SageMaker
4388
4433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4389
4434
  #
4390
4435
  # @option params [String] :kms_key_id
4391
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
4392
- # that Amazon SageMaker uses to encrypt data on the storage volume
4393
- # attached to your notebook instance. The KMS key you provide must be
4394
- # enabled. For information, see [Enabling and Disabling Keys][1] in the
4395
- # *AWS Key Management Service Developer Guide*.
4436
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4437
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
4438
+ # volume attached to your notebook instance. The KMS key you provide
4439
+ # must be enabled. For information, see [Enabling and Disabling Keys][1]
4440
+ # in the *Amazon Web Services Key Management Service Developer Guide*.
4396
4441
  #
4397
4442
  #
4398
4443
  #
4399
4444
  # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
4400
4445
  #
4401
4446
  # @option params [Array<Types::Tag>] :tags
4402
- # An array of key-value pairs. You can use tags to categorize your AWS
4403
- # resources in different ways, for example, by purpose, owner, or
4404
- # environment. For more information, see [Tagging AWS Resources][1].
4447
+ # An array of key-value pairs. You can use tags to categorize your
4448
+ # Amazon Web Services resources in different ways, for example, by
4449
+ # purpose, owner, or environment. For more information, see [Tagging
4450
+ # Amazon Web Services Resources][1].
4405
4451
  #
4406
4452
  #
4407
4453
  #
@@ -4449,10 +4495,11 @@ module Aws::SageMaker
4449
4495
  # A Git repository to associate with the notebook instance as its
4450
4496
  # default code repository. This can be either the name of a Git
4451
4497
  # repository stored as a resource in your account, or the URL of a Git
4452
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
4453
- # you open a notebook instance, it opens in the directory that contains
4454
- # this repository. For more information, see [Associating Git
4455
- # Repositories with Amazon SageMaker Notebook Instances][2].
4498
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4499
+ # repository. When you open a notebook instance, it opens in the
4500
+ # directory that contains this repository. For more information, see
4501
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4502
+ # Instances][2].
4456
4503
  #
4457
4504
  #
4458
4505
  #
@@ -4463,10 +4510,11 @@ module Aws::SageMaker
4463
4510
  # An array of up to three Git repositories to associate with the
4464
4511
  # notebook instance. These can be either the names of Git repositories
4465
4512
  # stored as resources in your account, or the URL of Git repositories in
4466
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
4467
- # are cloned at the same level as the default repository of your
4468
- # notebook instance. For more information, see [Associating Git
4469
- # Repositories with Amazon SageMaker Notebook Instances][2].
4513
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4514
+ # These repositories are cloned at the same level as the default
4515
+ # repository of your notebook instance. For more information, see
4516
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4517
+ # Instances][2].
4470
4518
  #
4471
4519
  #
4472
4520
  #
@@ -4664,13 +4712,29 @@ module Aws::SageMaker
4664
4712
  # This operation can only be called when the authentication mode equals
4665
4713
  # IAM.
4666
4714
  #
4715
+ # The IAM role or user used to call this API defines the permissions to
4716
+ # access the app. Once the presigned URL is created, no additional
4717
+ # permission is required to access this URL. IAM authorization policies
4718
+ # for this API are also enforced for every HTTP request and WebSocket
4719
+ # frame that attempts to connect to the app.
4720
+ #
4721
+ # You can restrict access to this API and to the URL that it returns to
4722
+ # a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you
4723
+ # specify. For more information, see [Connect to SageMaker Studio
4724
+ # Through an Interface VPC Endpoint][1] .
4725
+ #
4667
4726
  # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4668
4727
  # default timeout of 5 minutes. You can configure this value using
4669
4728
  # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4670
- # expires, you are directed to the AWS console sign-in page.
4729
+ # expires, you are directed to the Amazon Web Services console sign-in
4730
+ # page.
4671
4731
  #
4672
4732
  # </note>
4673
4733
  #
4734
+ #
4735
+ #
4736
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html
4737
+ #
4674
4738
  # @option params [required, String] :domain_id
4675
4739
  # The domain ID.
4676
4740
  #
@@ -4733,8 +4797,8 @@ module Aws::SageMaker
4733
4797
  #
4734
4798
  # <note markdown="1"> The URL that you get from a call to CreatePresignedNotebookInstanceUrl
4735
4799
  # is valid only for 5 minutes. If you try to use the URL after the
4736
- # 5-minute limit expires, you are directed to the AWS console sign-in
4737
- # page.
4800
+ # 5-minute limit expires, you are directed to the Amazon Web Services
4801
+ # console sign-in page.
4738
4802
  #
4739
4803
  # </note>
4740
4804
  #
@@ -4782,8 +4846,8 @@ module Aws::SageMaker
4782
4846
  # Output configuration for the processing job.
4783
4847
  #
4784
4848
  # @option params [required, String] :processing_job_name
4785
- # The name of the processing job. The name must be unique within an AWS
4786
- # Region in the AWS account.
4849
+ # The name of the processing job. The name must be unique within an
4850
+ # Amazon Web Services Region in the Amazon Web Services account.
4787
4851
  #
4788
4852
  # @option params [required, Types::ProcessingResources] :processing_resources
4789
4853
  # Identifies the resources, ML compute instances, and ML storage volumes
@@ -4813,8 +4877,8 @@ module Aws::SageMaker
4813
4877
  #
4814
4878
  # @option params [Array<Types::Tag>] :tags
4815
4879
  # (Optional) An array of key-value pairs. For more information, see
4816
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4817
- # Management User Guide*.
4880
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4881
+ # and Cost Management User Guide*.
4818
4882
  #
4819
4883
  #
4820
4884
  #
@@ -4961,7 +5025,8 @@ module Aws::SageMaker
4961
5025
  #
4962
5026
  # @option params [required, Types::ServiceCatalogProvisioningDetails] :service_catalog_provisioning_details
4963
5027
  # The product ID and provisioning artifact ID to provision a service
4964
- # catalog. For information, see [What is AWS Service Catalog][1].
5028
+ # catalog. For information, see [What is Amazon Web Services Service
5029
+ # Catalog][1].
4965
5030
  #
4966
5031
  #
4967
5032
  #
@@ -4969,8 +5034,9 @@ module Aws::SageMaker
4969
5034
  #
4970
5035
  # @option params [Array<Types::Tag>] :tags
4971
5036
  # An array of key-value pairs that you want to use to organize and track
4972
- # your AWS resource costs. For more information, see [Tagging AWS
4973
- # resources][1] in the *AWS General Reference Guide*.
5037
+ # your Amazon Web Services resource costs. For more information, see
5038
+ # [Tagging Amazon Web Services resources][1] in the *Amazon Web Services
5039
+ # General Reference Guide*.
4974
5040
  #
4975
5041
  #
4976
5042
  #
@@ -5078,8 +5144,8 @@ module Aws::SageMaker
5078
5144
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
5079
5145
  #
5080
5146
  # @option params [required, String] :training_job_name
5081
- # The name of the training job. The name must be unique within an AWS
5082
- # Region in an AWS account.
5147
+ # The name of the training job. The name must be unique within an Amazon
5148
+ # Web Services Region in an Amazon Web Services account.
5083
5149
  #
5084
5150
  # @option params [Hash<String,String>] :hyper_parameters
5085
5151
  # Algorithm-specific parameters that influence the quality of the model.
@@ -5183,9 +5249,10 @@ module Aws::SageMaker
5183
5249
  # of training are not lost.
5184
5250
  #
5185
5251
  # @option params [Array<Types::Tag>] :tags
5186
- # An array of key-value pairs. You can use tags to categorize your AWS
5187
- # resources in different ways, for example, by purpose, owner, or
5188
- # environment. For more information, see [Tagging AWS Resources][1].
5252
+ # An array of key-value pairs. You can use tags to categorize your
5253
+ # Amazon Web Services resources in different ways, for example, by
5254
+ # purpose, owner, or environment. For more information, see [Tagging
5255
+ # Amazon Web Services Resources][1].
5189
5256
  #
5190
5257
  #
5191
5258
  #
@@ -5443,12 +5510,13 @@ module Aws::SageMaker
5443
5510
  # In the request body, you provide the following:
5444
5511
  #
5445
5512
  # * `TransformJobName` - Identifies the transform job. The name must be
5446
- # unique within an AWS Region in an AWS account.
5513
+ # unique within an Amazon Web Services Region in an Amazon Web
5514
+ # Services account.
5447
5515
  #
5448
5516
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
5449
- # name of an existing Amazon SageMaker model in the same AWS Region
5450
- # and AWS account. For information on creating a model, see
5451
- # CreateModel.
5517
+ # name of an existing Amazon SageMaker model in the same Amazon Web
5518
+ # Services Region and Amazon Web Services account. For information on
5519
+ # creating a model, see CreateModel.
5452
5520
  #
5453
5521
  # * `TransformInput` - Describes the dataset to be transformed and the
5454
5522
  # Amazon S3 location where it is stored.
@@ -5467,13 +5535,14 @@ module Aws::SageMaker
5467
5535
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
5468
5536
  #
5469
5537
  # @option params [required, String] :transform_job_name
5470
- # The name of the transform job. The name must be unique within an AWS
5471
- # Region in an AWS account.
5538
+ # The name of the transform job. The name must be unique within an
5539
+ # Amazon Web Services Region in an Amazon Web Services account.
5472
5540
  #
5473
5541
  # @option params [required, String] :model_name
5474
5542
  # The name of the model that you want to use for the transform job.
5475
5543
  # `ModelName` must be the name of an existing Amazon SageMaker model
5476
- # within an AWS Region in an AWS account.
5544
+ # within an Amazon Web Services Region in an Amazon Web Services
5545
+ # account.
5477
5546
  #
5478
5547
  # @option params [Integer] :max_concurrent_transforms
5479
5548
  # The maximum number of parallel requests that can be sent to each
@@ -5554,8 +5623,8 @@ module Aws::SageMaker
5554
5623
  #
5555
5624
  # @option params [Array<Types::Tag>] :tags
5556
5625
  # (Optional) An array of key-value pairs. For more information, see
5557
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
5558
- # Management User Guide*.
5626
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
5627
+ # and Cost Management User Guide*.
5559
5628
  #
5560
5629
  #
5561
5630
  #
@@ -5649,8 +5718,8 @@ module Aws::SageMaker
5649
5718
  #
5650
5719
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5651
5720
  # experiments, trials, and trial components are automatically tracked,
5652
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5653
- # must use the logging APIs provided by the SDK.
5721
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5722
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5654
5723
  #
5655
5724
  # You can add tags to a trial and then use the Search API to search for
5656
5725
  # the tags.
@@ -5660,8 +5729,8 @@ module Aws::SageMaker
5660
5729
  # component, call the CreateTrialComponent API.
5661
5730
  #
5662
5731
  # @option params [required, String] :trial_name
5663
- # The name of the trial. The name must be unique in your AWS account and
5664
- # is not case-sensitive.
5732
+ # The name of the trial. The name must be unique in your Amazon Web
5733
+ # Services account and is not case-sensitive.
5665
5734
  #
5666
5735
  # @option params [String] :display_name
5667
5736
  # The name of the trial as displayed. The name doesn't need to be
@@ -5723,23 +5792,15 @@ module Aws::SageMaker
5723
5792
  #
5724
5793
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5725
5794
  # experiments, trials, and trial components are automatically tracked,
5726
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5727
- # must use the logging APIs provided by the SDK.
5795
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5796
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5728
5797
  #
5729
5798
  # You can add tags to a trial component and then use the Search API to
5730
5799
  # search for the tags.
5731
5800
  #
5732
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5733
- # managed environment. This includes SageMaker training jobs, processing
5734
- # jobs, transform jobs, and SageMaker notebooks. A call to
5735
- # `CreateTrialComponent` from outside one of these environments results
5736
- # in an error.
5737
- #
5738
- # </note>
5739
- #
5740
5801
  # @option params [required, String] :trial_component_name
5741
- # The name of the component. The name must be unique in your AWS account
5742
- # and is not case-sensitive.
5802
+ # The name of the component. The name must be unique in your Amazon Web
5803
+ # Services account and is not case-sensitive.
5743
5804
  #
5744
5805
  # @option params [String] :display_name
5745
5806
  # The name of the component as displayed. The name doesn't need to be
@@ -5862,10 +5923,10 @@ module Aws::SageMaker
5862
5923
  # not SSO, this field cannot be specified.
5863
5924
  #
5864
5925
  # @option params [String] :single_sign_on_user_value
5865
- # The username of the associated AWS Single Sign-On User for this
5866
- # UserProfile. If the Domain's AuthMode is SSO, this field is required,
5867
- # and must match a valid username of a user in your directory. If the
5868
- # Domain's AuthMode is not SSO, this field cannot be specified.
5926
+ # The username of the associated Amazon Web Services Single Sign-On User
5927
+ # for this UserProfile. If the Domain's AuthMode is SSO, this field is
5928
+ # required, and must match a valid username of a user in your directory.
5929
+ # If the Domain's AuthMode is not SSO, this field cannot be specified.
5869
5930
  #
5870
5931
  # @option params [Array<Types::Tag>] :tags
5871
5932
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -5947,13 +6008,14 @@ module Aws::SageMaker
5947
6008
  end
5948
6009
 
5949
6010
  # Use this operation to create a workforce. This operation will return
5950
- # an error if a workforce already exists in the AWS Region that you
5951
- # specify. You can only create one workforce in each AWS Region per AWS
5952
- # account.
6011
+ # an error if a workforce already exists in the Amazon Web Services
6012
+ # Region that you specify. You can only create one workforce in each
6013
+ # Amazon Web Services Region per Amazon Web Services account.
5953
6014
  #
5954
- # If you want to create a new workforce in an AWS Region where a
5955
- # workforce already exists, use the API operation to delete the existing
5956
- # workforce and then use `CreateWorkforce` to create a new workforce.
6015
+ # If you want to create a new workforce in an Amazon Web Services Region
6016
+ # where a workforce already exists, use the API operation to delete the
6017
+ # existing workforce and then use `CreateWorkforce` to create a new
6018
+ # workforce.
5957
6019
  #
5958
6020
  # To create a private workforce using Amazon Cognito, you must specify a
5959
6021
  # Cognito user pool in `CognitoConfig`. You can also create an Amazon
@@ -6101,7 +6163,8 @@ module Aws::SageMaker
6101
6163
  # An array of key-value pairs.
6102
6164
  #
6103
6165
  # For more information, see [Resource Tag][1] and [Using Cost Allocation
6104
- # Tags][2] in the <i> AWS Billing and Cost Management User Guide</i>.
6166
+ # Tags][2] in the <i> Amazon Web Services Billing and Cost Management
6167
+ # User Guide</i>.
6105
6168
  #
6106
6169
  #
6107
6170
  #
@@ -6558,13 +6621,14 @@ module Aws::SageMaker
6558
6621
  # `OnlineStore` of the `FeatureGroup`. Data cannot be accessed from the
6559
6622
  # `OnlineStore` immediately after `DeleteFeatureGroup` is called.
6560
6623
  #
6561
- # Data written into the `OfflineStore` will not be deleted. The AWS Glue
6562
- # database and tables that are automatically created for your
6563
- # `OfflineStore` are not deleted.
6624
+ # Data written into the `OfflineStore` will not be deleted. The Amazon
6625
+ # Web Services Glue database and tables that are automatically created
6626
+ # for your `OfflineStore` are not deleted.
6564
6627
  #
6565
6628
  # @option params [required, String] :feature_group_name
6566
6629
  # The name of the `FeatureGroup` you want to delete. The name must be
6567
- # unique within an AWS Region in an AWS account.
6630
+ # unique within an Amazon Web Services Region in an Amazon Web Services
6631
+ # account.
6568
6632
  #
6569
6633
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6570
6634
  #
@@ -6684,7 +6748,7 @@ module Aws::SageMaker
6684
6748
  end
6685
6749
 
6686
6750
  # Deletes a model. The `DeleteModel` API deletes only the model entry
6687
- # that was created in Amazon SageMaker when you called the CreateModel
6751
+ # that was created in Amazon SageMaker when you called the `CreateModel`
6688
6752
  # API. It does not delete model artifacts, inference code, or the IAM
6689
6753
  # role that you specified when creating the model.
6690
6754
  #
@@ -6755,8 +6819,9 @@ module Aws::SageMaker
6755
6819
  # Deletes a model package.
6756
6820
  #
6757
6821
  # A model package is used to create Amazon SageMaker models or list on
6758
- # AWS Marketplace. Buyers can subscribe to model packages listed on AWS
6759
- # Marketplace to create models in Amazon SageMaker.
6822
+ # Amazon Web Services Marketplace. Buyers can subscribe to model
6823
+ # packages listed on Amazon Web Services Marketplace to create models in
6824
+ # Amazon SageMaker.
6760
6825
  #
6761
6826
  # @option params [required, String] :model_package_name
6762
6827
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7116,9 +7181,9 @@ module Aws::SageMaker
7116
7181
 
7117
7182
  # Use this operation to delete a workforce.
7118
7183
  #
7119
- # If you want to create a new workforce in an AWS Region where a
7120
- # workforce already exists, use this operation to delete the existing
7121
- # workforce and then use to create a new workforce.
7184
+ # If you want to create a new workforce in an Amazon Web Services Region
7185
+ # where a workforce already exists, use this operation to delete the
7186
+ # existing workforce and then use to create a new workforce.
7122
7187
  #
7123
7188
  # If a private workforce contains one or more work teams, you must use
7124
7189
  # the operation to delete all work teams before you delete the
@@ -7332,6 +7397,8 @@ module Aws::SageMaker
7332
7397
  # resp.inference_specification.containers[0].image_digest #=> String
7333
7398
  # resp.inference_specification.containers[0].model_data_url #=> String
7334
7399
  # resp.inference_specification.containers[0].product_id #=> String
7400
+ # resp.inference_specification.containers[0].environment #=> Hash
7401
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
7335
7402
  # resp.inference_specification.supported_transform_instance_types #=> Array
7336
7403
  # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7337
7404
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
@@ -7730,6 +7797,7 @@ module Aws::SageMaker
7730
7797
  # * {Types::DescribeCompilationJobResponse#compilation_start_time #compilation_start_time} => Time
7731
7798
  # * {Types::DescribeCompilationJobResponse#compilation_end_time #compilation_end_time} => Time
7732
7799
  # * {Types::DescribeCompilationJobResponse#stopping_condition #stopping_condition} => Types::StoppingCondition
7800
+ # * {Types::DescribeCompilationJobResponse#inference_image #inference_image} => String
7733
7801
  # * {Types::DescribeCompilationJobResponse#creation_time #creation_time} => Time
7734
7802
  # * {Types::DescribeCompilationJobResponse#last_modified_time #last_modified_time} => Time
7735
7803
  # * {Types::DescribeCompilationJobResponse#failure_reason #failure_reason} => String
@@ -7738,6 +7806,7 @@ module Aws::SageMaker
7738
7806
  # * {Types::DescribeCompilationJobResponse#role_arn #role_arn} => String
7739
7807
  # * {Types::DescribeCompilationJobResponse#input_config #input_config} => Types::InputConfig
7740
7808
  # * {Types::DescribeCompilationJobResponse#output_config #output_config} => Types::OutputConfig
7809
+ # * {Types::DescribeCompilationJobResponse#vpc_config #vpc_config} => Types::NeoVpcConfig
7741
7810
  #
7742
7811
  # @example Request syntax with placeholder values
7743
7812
  #
@@ -7754,6 +7823,7 @@ module Aws::SageMaker
7754
7823
  # resp.compilation_end_time #=> Time
7755
7824
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
7756
7825
  # resp.stopping_condition.max_wait_time_in_seconds #=> Integer
7826
+ # resp.inference_image #=> String
7757
7827
  # resp.creation_time #=> Time
7758
7828
  # resp.last_modified_time #=> Time
7759
7829
  # resp.failure_reason #=> String
@@ -7765,12 +7835,16 @@ module Aws::SageMaker
7765
7835
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7766
7836
  # resp.input_config.framework_version #=> String
7767
7837
  # resp.output_config.s3_output_location #=> String
7768
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7838
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7769
7839
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7770
7840
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7771
7841
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
7772
7842
  # resp.output_config.compiler_options #=> String
7773
7843
  # resp.output_config.kms_key_id #=> String
7844
+ # resp.vpc_config.security_group_ids #=> Array
7845
+ # resp.vpc_config.security_group_ids[0] #=> String
7846
+ # resp.vpc_config.subnets #=> Array
7847
+ # resp.vpc_config.subnets[0] #=> String
7774
7848
  #
7775
7849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
7776
7850
  #
@@ -8988,7 +9062,8 @@ module Aws::SageMaker
8988
9062
  #
8989
9063
  # @option params [required, String] :job_definition_name
8990
9064
  # The name of the model bias job definition. The name must be unique
8991
- # within an AWS Region in the AWS account.
9065
+ # within an Amazon Web Services Region in the Amazon Web Services
9066
+ # account.
8992
9067
  #
8993
9068
  # @return [Types::DescribeModelBiasJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8994
9069
  #
@@ -9063,7 +9138,8 @@ module Aws::SageMaker
9063
9138
  #
9064
9139
  # @option params [required, String] :job_definition_name
9065
9140
  # The name of the model explainability job definition. The name must be
9066
- # unique within an AWS Region in the AWS account.
9141
+ # unique within an Amazon Web Services Region in the Amazon Web Services
9142
+ # account.
9067
9143
  #
9068
9144
  # @return [Types::DescribeModelExplainabilityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9069
9145
  #
@@ -9134,10 +9210,11 @@ module Aws::SageMaker
9134
9210
  end
9135
9211
 
9136
9212
  # Returns a description of the specified model package, which is used to
9137
- # create Amazon SageMaker models or list them on AWS Marketplace.
9213
+ # create Amazon SageMaker models or list them on Amazon Web Services
9214
+ # Marketplace.
9138
9215
  #
9139
9216
  # To create models in Amazon SageMaker, buyers can subscribe to model
9140
- # packages listed on AWS Marketplace.
9217
+ # packages listed on Amazon Web Services Marketplace.
9141
9218
  #
9142
9219
  # @option params [required, String] :model_package_name
9143
9220
  # The name or Amazon Resource Name (ARN) of the model package to
@@ -9188,6 +9265,8 @@ module Aws::SageMaker
9188
9265
  # resp.inference_specification.containers[0].image_digest #=> String
9189
9266
  # resp.inference_specification.containers[0].model_data_url #=> String
9190
9267
  # resp.inference_specification.containers[0].product_id #=> String
9268
+ # resp.inference_specification.containers[0].environment #=> Hash
9269
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
9191
9270
  # resp.inference_specification.supported_transform_instance_types #=> Array
9192
9271
  # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9193
9272
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
@@ -9314,7 +9393,7 @@ module Aws::SageMaker
9314
9393
  #
9315
9394
  # @option params [required, String] :job_definition_name
9316
9395
  # The name of the model quality job. The name must be unique within an
9317
- # AWS Region in the AWS account.
9396
+ # Amazon Web Services Region in the Amazon Web Services account.
9318
9397
  #
9319
9398
  # @return [Types::DescribeModelQualityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9320
9399
  #
@@ -9751,8 +9830,8 @@ module Aws::SageMaker
9751
9830
  # Returns a description of a processing job.
9752
9831
  #
9753
9832
  # @option params [required, String] :processing_job_name
9754
- # The name of the processing job. The name must be unique within an AWS
9755
- # Region in the AWS account.
9833
+ # The name of the processing job. The name must be unique within an
9834
+ # Amazon Web Services Region in the Amazon Web Services account.
9756
9835
  #
9757
9836
  # @return [Types::DescribeProcessingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9758
9837
  #
@@ -9925,7 +10004,8 @@ module Aws::SageMaker
9925
10004
  end
9926
10005
 
9927
10006
  # Gets information about a work team provided by a vendor. It returns
9928
- # details about the subscription with a vendor in the AWS Marketplace.
10007
+ # details about the subscription with a vendor in the Amazon Web
10008
+ # Services Marketplace.
9929
10009
  #
9930
10010
  # @option params [required, String] :workteam_arn
9931
10011
  # The Amazon Resource Name (ARN) of the subscribed work team to
@@ -10672,8 +10752,8 @@ module Aws::SageMaker
10672
10752
 
10673
10753
  # Gets a resource policy that manages access for a model group. For
10674
10754
  # information about resource policies, see [Identity-based policies and
10675
- # resource-based policies][1] in the *AWS Identity and Access Management
10676
- # User Guide.*.
10755
+ # resource-based policies][1] in the *Amazon Web Services Identity and
10756
+ # Access Management User Guide.*.
10677
10757
  #
10678
10758
  #
10679
10759
  #
@@ -11528,7 +11608,7 @@ module Aws::SageMaker
11528
11608
  # resp.compilation_job_summaries[0].creation_time #=> Time
11529
11609
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11530
11610
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11531
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11611
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11532
11612
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11533
11613
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11534
11614
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -12916,7 +12996,7 @@ module Aws::SageMaker
12916
12996
  req.send_request(options)
12917
12997
  end
12918
12998
 
12919
- # Gets a list of the model groups in your AWS account.
12999
+ # Gets a list of the model groups in your Amazon Web Services account.
12920
13000
  #
12921
13001
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
12922
13002
  # A filter that returns only model groups created after the specified
@@ -13147,7 +13227,7 @@ module Aws::SageMaker
13147
13227
  req.send_request(options)
13148
13228
  end
13149
13229
 
13150
- # Lists models created with the CreateModel API.
13230
+ # Lists models created with the `CreateModel` API.
13151
13231
  #
13152
13232
  # @option params [String] :sort_by
13153
13233
  # Sorts the list of results. The default is `CreationTime`.
@@ -13493,7 +13573,7 @@ module Aws::SageMaker
13493
13573
  end
13494
13574
 
13495
13575
  # Returns a list of the Amazon SageMaker notebook instances in the
13496
- # requester's account in an AWS Region.
13576
+ # requester's account in an Amazon Web Services Region.
13497
13577
  #
13498
13578
  # @option params [String] :next_token
13499
13579
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -13651,6 +13731,7 @@ module Aws::SageMaker
13651
13731
  # resp.pipeline_execution_steps[0].metadata.training_job.arn #=> String
13652
13732
  # resp.pipeline_execution_steps[0].metadata.processing_job.arn #=> String
13653
13733
  # resp.pipeline_execution_steps[0].metadata.transform_job.arn #=> String
13734
+ # resp.pipeline_execution_steps[0].metadata.tuning_job.arn #=> String
13654
13735
  # resp.pipeline_execution_steps[0].metadata.model.arn #=> String
13655
13736
  # resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
13656
13737
  # resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
@@ -13931,7 +14012,7 @@ module Aws::SageMaker
13931
14012
  req.send_request(options)
13932
14013
  end
13933
14014
 
13934
- # Gets a list of the projects in an AWS account.
14015
+ # Gets a list of the projects in an Amazon Web Services account.
13935
14016
  #
13936
14017
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
13937
14018
  # A filter that returns the projects that were created after a specified
@@ -13998,9 +14079,9 @@ module Aws::SageMaker
13998
14079
  req.send_request(options)
13999
14080
  end
14000
14081
 
14001
- # Gets a list of the work teams that you are subscribed to in the AWS
14002
- # Marketplace. The list may be empty if no work team satisfies the
14003
- # filter specified in the `NameContains` parameter.
14082
+ # Gets a list of the work teams that you are subscribed to in the Amazon
14083
+ # Web Services Marketplace. The list may be empty if no work team
14084
+ # satisfies the filter specified in the `NameContains` parameter.
14004
14085
  #
14005
14086
  # @option params [String] :name_contains
14006
14087
  # A string in the work team name. This filter returns only work teams
@@ -14111,7 +14192,8 @@ module Aws::SageMaker
14111
14192
  # from the most current to the oldest). Next, those with a status of
14112
14193
  # `InProgress` are returned.
14113
14194
  #
14114
- # You can quickly test the API using the following AWS CLI code.
14195
+ # You can quickly test the API using the following Amazon Web Services
14196
+ # CLI code.
14115
14197
  #
14116
14198
  # `aws sagemaker list-training-jobs --max-results 100 --status-equals
14117
14199
  # InProgress`
@@ -14593,9 +14675,9 @@ module Aws::SageMaker
14593
14675
  req.send_request(options)
14594
14676
  end
14595
14677
 
14596
- # Use this operation to list all private and vendor workforces in an AWS
14597
- # Region. Note that you can only have one private workforce per AWS
14598
- # Region.
14678
+ # Use this operation to list all private and vendor workforces in an
14679
+ # Amazon Web Services Region. Note that you can only have one private
14680
+ # workforce per Amazon Web Services Region.
14599
14681
  #
14600
14682
  # @option params [String] :sort_by
14601
14683
  # Sort workforces using the workforce name or creation date.
@@ -14732,8 +14814,8 @@ module Aws::SageMaker
14732
14814
 
14733
14815
  # Adds a resouce policy to control access to a model group. For
14734
14816
  # information about resoure policies, see [Identity-based policies and
14735
- # resource-based policies][1] in the *AWS Identity and Access Management
14736
- # User Guide.*.
14817
+ # resource-based policies][1] in the *Amazon Web Services Identity and
14818
+ # Access Management User Guide.*.
14737
14819
  #
14738
14820
  #
14739
14821
  #
@@ -15456,6 +15538,8 @@ module Aws::SageMaker
15456
15538
  # resp.results[0].model_package.inference_specification.containers[0].image_digest #=> String
15457
15539
  # resp.results[0].model_package.inference_specification.containers[0].model_data_url #=> String
15458
15540
  # resp.results[0].model_package.inference_specification.containers[0].product_id #=> String
15541
+ # resp.results[0].model_package.inference_specification.containers[0].environment #=> Hash
15542
+ # resp.results[0].model_package.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
15459
15543
  # resp.results[0].model_package.inference_specification.supported_transform_instance_types #=> Array
15460
15544
  # resp.results[0].model_package.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15461
15545
  # resp.results[0].model_package.inference_specification.supported_realtime_inference_instance_types #=> Array
@@ -16000,6 +16084,20 @@ module Aws::SageMaker
16000
16084
 
16001
16085
  # Stops a pipeline execution.
16002
16086
  #
16087
+ # A pipeline execution won't stop while a callback step is running.
16088
+ # When you call `StopPipelineExecution` on a pipeline execution with a
16089
+ # running callback step, SageMaker Pipelines sends an additional Amazon
16090
+ # SQS message to the specified SQS queue. The body of the SQS message
16091
+ # contains a "Status" field which is set to "Stopping".
16092
+ #
16093
+ # You should add logic to your Amazon SQS message consumer to take any
16094
+ # needed action (for example, resource cleanup) upon receipt of the
16095
+ # message followed by a call to `SendPipelineExecutionStepSuccess` or
16096
+ # `SendPipelineExecutionStepFailure`.
16097
+ #
16098
+ # Only when SageMaker Pipelines receives one of these calls will it stop
16099
+ # the pipeline execution.
16100
+ #
16003
16101
  # @option params [required, String] :pipeline_execution_arn
16004
16102
  # The Amazon Resource Name (ARN) of the pipeline execution.
16005
16103
  #
@@ -16253,10 +16351,10 @@ module Aws::SageMaker
16253
16351
  #
16254
16352
  # @option params [Types::GitConfigForUpdate] :git_config
16255
16353
  # The configuration of the git repository, including the URL and the
16256
- # Amazon Resource Name (ARN) of the AWS Secrets Manager secret that
16257
- # contains the credentials used to access the repository. The secret
16258
- # must have a staging label of `AWSCURRENT` and must be in the following
16259
- # format:
16354
+ # Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
16355
+ # secret that contains the credentials used to access the repository.
16356
+ # The secret must have a staging label of `AWSCURRENT` and must be in
16357
+ # the following format:
16260
16358
  #
16261
16359
  # `\{"username": UserName, "password": Password\}`
16262
16360
  #
@@ -16343,9 +16441,9 @@ module Aws::SageMaker
16343
16441
  # Output configuration for storing sample data collected by the fleet.
16344
16442
  #
16345
16443
  # @option params [Boolean] :enable_iot_role_alias
16346
- # Whether to create an AWS IoT Role Alias during device fleet creation.
16347
- # The name of the role alias generated will match this pattern:
16348
- # "SageMakerEdge-\\\{DeviceFleetName\\}".
16444
+ # Whether to create an Amazon Web Services IoT Role Alias during device
16445
+ # fleet creation. The name of the role alias generated will match this
16446
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
16349
16447
  #
16350
16448
  # For example, if your device fleet is called "demo-fleet", the name
16351
16449
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -16748,7 +16846,7 @@ module Aws::SageMaker
16748
16846
  #
16749
16847
  # @option params [required, String] :monitoring_schedule_name
16750
16848
  # The name of the monitoring schedule. The name must be unique within an
16751
- # AWS Region within an AWS account.
16849
+ # Amazon Web Services Region within an Amazon Web Services account.
16752
16850
  #
16753
16851
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
16754
16852
  # The configuration object that specifies the monitoring schedule and
@@ -16907,10 +17005,11 @@ module Aws::SageMaker
16907
17005
  # The Git repository to associate with the notebook instance as its
16908
17006
  # default code repository. This can be either the name of a Git
16909
17007
  # repository stored as a resource in your account, or the URL of a Git
16910
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
16911
- # you open a notebook instance, it opens in the directory that contains
16912
- # this repository. For more information, see [Associating Git
16913
- # Repositories with Amazon SageMaker Notebook Instances][2].
17008
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
17009
+ # repository. When you open a notebook instance, it opens in the
17010
+ # directory that contains this repository. For more information, see
17011
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17012
+ # Instances][2].
16914
17013
  #
16915
17014
  #
16916
17015
  #
@@ -16921,10 +17020,11 @@ module Aws::SageMaker
16921
17020
  # An array of up to three Git repositories to associate with the
16922
17021
  # notebook instance. These can be either the names of Git repositories
16923
17022
  # stored as resources in your account, or the URL of Git repositories in
16924
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
16925
- # are cloned at the same level as the default repository of your
16926
- # notebook instance. For more information, see [Associating Git
16927
- # Repositories with Amazon SageMaker Notebook Instances][2].
17023
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
17024
+ # These repositories are cloned at the same level as the default
17025
+ # repository of your notebook instance. For more information, see
17026
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17027
+ # Instances][2].
16928
17028
  #
16929
17029
  #
16930
17030
  #
@@ -17585,7 +17685,7 @@ module Aws::SageMaker
17585
17685
  params: params,
17586
17686
  config: config)
17587
17687
  context[:gem_name] = 'aws-sdk-sagemaker'
17588
- context[:gem_version] = '1.90.0'
17688
+ context[:gem_version] = '1.94.0'
17589
17689
  Seahorse::Client::Request.new(handlers, context)
17590
17690
  end
17591
17691