aws-sdk-sagemaker 1.88.0 → 1.93.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: '08aa015687aed885049b6d88001b8df5c20b6f94eacd16571db42fedafde4211'
4
- data.tar.gz: e980e0c862d4e72783e764c0a57793bb9762a59e9522fa600b9705685769753d
3
+ metadata.gz: cd4e9473512fad517d8f4a572649fbee7183b77a6bf85057a1ea8a38270e05d2
4
+ data.tar.gz: ea41aa031e529c9f2901fc6809e03801d4cf0194a58fa56c81c385ca13e80176
5
5
  SHA512:
6
- metadata.gz: 3c69ef72d9f4b00633219e5cdaa853893377a929289bf9b911a2970a8ad45b70c2c62e9693070c6b6a946bf6b18a32303ed2234f38fb0caecf47f89d5b33fa00
7
- data.tar.gz: e5896a529d93d0128d494905c3706948b7514ea1133abb567f0065b9269338cc1d8841be31fb34626d1452e81653172f3f44b86bd1332ce5d42762affc836a9f
6
+ metadata.gz: 80ad3dd8557aa62e1f33afc3cc15de70d6956d8f14948aa63912e084c20500c56233ea1c7de06fae35c75dae122e69162343dc6241e46f23f6a9b892b1e738a7
7
+ data.tar.gz: a57c7c197c71ca2aa955b37be2efcd5fbccbcd3c319987820da8c347b06c0b0991ecc5f39c7d91d39b5398aef1822cd4e8c66d88e23ee13d03af2dedd6b16079
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.93.0 (2021-07-09)
5
+ ------------------
6
+
7
+ * Feature - Releasing new APIs related to Tuning steps in model building pipelines.
8
+
9
+ 1.92.0 (2021-07-01)
10
+ ------------------
11
+
12
+ * Feature - SageMaker model registry now supports up to 5 containers and associated environment variables.
13
+
14
+ 1.91.0 (2021-06-28)
15
+ ------------------
16
+
17
+ * Feature - Sagemaker Neo now supports running compilation jobs using customer's Amazon VPC
18
+
19
+ 1.90.0 (2021-06-17)
20
+ ------------------
21
+
22
+ * Feature - Enable ml.g4dn instance types for SageMaker Batch Transform and SageMaker Processing
23
+
24
+ 1.89.0 (2021-06-10)
25
+ ------------------
26
+
27
+ * Feature - Using SageMaker Edge Manager with AWS IoT Greengrass v2 simplifies accessing, maintaining, and deploying models to your devices. You can now create deployable IoT Greengrass components during edge packaging jobs. You can choose to create a device fleet with or without creating an AWS IoT role alias.
28
+
4
29
  1.88.0 (2021-06-07)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.88.0
1
+ 1.93.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.88.0'
52
+ GEM_VERSION = '1.93.0'
53
53
 
54
54
  end
@@ -405,7 +405,7 @@ module Aws::SageMaker
405
405
  #
406
406
  # Each tag consists of a key and an optional value. Tag keys must be
407
407
  # unique per resource. For more information about tags, see For more
408
- # information, see [AWS Tagging Strategies][1].
408
+ # information, see [Amazon Web Services Tagging Strategies][1].
409
409
  #
410
410
  # <note markdown="1"> Tags that you add to a hyperparameter tuning job by calling this API
411
411
  # are also added to any training jobs that the hyperparameter tuning job
@@ -438,9 +438,10 @@ module Aws::SageMaker
438
438
  # The Amazon Resource Name (ARN) of the resource that you want to tag.
439
439
  #
440
440
  # @option params [required, Array<Types::Tag>] :tags
441
- # An array of key-value pairs. You can use tags to categorize your AWS
442
- # resources in different ways, for example, by purpose, owner, or
443
- # environment. For more information, see [Tagging AWS Resources][1].
441
+ # An array of key-value pairs. You can use tags to categorize your
442
+ # Amazon Web Services resources in different ways, for example, by
443
+ # purpose, owner, or environment. For more information, see [Tagging
444
+ # Amazon Web Services Resources][1].
444
445
  #
445
446
  #
446
447
  #
@@ -531,8 +532,8 @@ module Aws::SageMaker
531
532
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
532
533
  #
533
534
  # @option params [required, String] :action_name
534
- # The name of the action. Must be unique to your account in an AWS
535
- # Region.
535
+ # The name of the action. Must be unique to your account in an Amazon
536
+ # Web Services Region.
536
537
  #
537
538
  # @option params [required, Types::ActionSource] :source
538
539
  # The source type, ID, and URI.
@@ -602,7 +603,7 @@ module Aws::SageMaker
602
603
  end
603
604
 
604
605
  # Create a machine learning algorithm that you can use in Amazon
605
- # SageMaker and list in the AWS Marketplace.
606
+ # SageMaker and list in the Amazon Web Services Marketplace.
606
607
  #
607
608
  # @option params [required, String] :algorithm_name
608
609
  # The name of the algorithm.
@@ -652,13 +653,14 @@ module Aws::SageMaker
652
653
  # the algorithm's inference code.
653
654
  #
654
655
  # @option params [Boolean] :certify_for_marketplace
655
- # Whether to certify the algorithm so that it can be listed in AWS
656
- # Marketplace.
656
+ # Whether to certify the algorithm so that it can be listed in Amazon
657
+ # Web Services Marketplace.
657
658
  #
658
659
  # @option params [Array<Types::Tag>] :tags
659
- # An array of key-value pairs. You can use tags to categorize your AWS
660
- # resources in different ways, for example, by purpose, owner, or
661
- # environment. For more information, see [Tagging AWS Resources][1].
660
+ # An array of key-value pairs. You can use tags to categorize your
661
+ # Amazon Web Services resources in different ways, for example, by
662
+ # purpose, owner, or environment. For more information, see [Tagging
663
+ # Amazon Web Services Resources][1].
662
664
  #
663
665
  #
664
666
  #
@@ -732,9 +734,12 @@ module Aws::SageMaker
732
734
  # image_digest: "ImageDigest",
733
735
  # model_data_url: "Url",
734
736
  # product_id: "ProductId",
737
+ # environment: {
738
+ # "EnvironmentKey" => "EnvironmentValue",
739
+ # },
735
740
  # },
736
741
  # ],
737
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
742
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
738
743
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
739
744
  # supported_content_types: ["ContentType"], # required
740
745
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -815,7 +820,7 @@ module Aws::SageMaker
815
820
  # kms_key_id: "KmsKeyId",
816
821
  # },
817
822
  # transform_resources: { # required
818
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
823
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
819
824
  # instance_count: 1, # required
820
825
  # volume_kms_key_id: "KmsKeyId",
821
826
  # },
@@ -982,8 +987,8 @@ module Aws::SageMaker
982
987
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
983
988
  #
984
989
  # @option params [String] :artifact_name
985
- # The name of the artifact. Must be unique to your account in an AWS
986
- # Region.
990
+ # The name of the artifact. Must be unique to your account in an Amazon
991
+ # Web Services Region.
987
992
  #
988
993
  # @option params [required, Types::ArtifactSource] :source
989
994
  # The ID, ID type, and URI of the source.
@@ -1188,8 +1193,8 @@ module Aws::SageMaker
1188
1193
  # persists independently from the lifecycle of any notebook instances it
1189
1194
  # is associated with.
1190
1195
  #
1191
- # The repository can be hosted either in [AWS CodeCommit][1] or in any
1192
- # other Git repository.
1196
+ # The repository can be hosted either in [Amazon Web Services
1197
+ # CodeCommit][1] or in any other Git repository.
1193
1198
  #
1194
1199
  #
1195
1200
  #
@@ -1205,9 +1210,10 @@ module Aws::SageMaker
1205
1210
  # access the repository.
1206
1211
  #
1207
1212
  # @option params [Array<Types::Tag>] :tags
1208
- # An array of key-value pairs. You can use tags to categorize your AWS
1209
- # resources in different ways, for example, by purpose, owner, or
1210
- # environment. For more information, see [Tagging AWS Resources][1].
1213
+ # An array of key-value pairs. You can use tags to categorize your
1214
+ # Amazon Web Services resources in different ways, for example, by
1215
+ # purpose, owner, or environment. For more information, see [Tagging
1216
+ # Amazon Web Services Resources][1].
1211
1217
  #
1212
1218
  #
1213
1219
  #
@@ -1253,8 +1259,8 @@ module Aws::SageMaker
1253
1259
  #
1254
1260
  # If you choose to host your model using Amazon SageMaker hosting
1255
1261
  # services, you can use the resulting model artifacts as part of the
1256
- # model. You can also use the artifacts with AWS IoT Greengrass. In that
1257
- # case, deploy them as an ML resource.
1262
+ # model. You can also use the artifacts with Amazon Web Services IoT
1263
+ # Greengrass. In that case, deploy them as an ML resource.
1258
1264
  #
1259
1265
  # In the request body, you provide the following:
1260
1266
  #
@@ -1279,7 +1285,8 @@ module Aws::SageMaker
1279
1285
  #
1280
1286
  # @option params [required, String] :compilation_job_name
1281
1287
  # A name for the model compilation job. The name must be unique within
1282
- # the AWS Region and within your AWS account.
1288
+ # the Amazon Web Services Region and within your Amazon Web Services
1289
+ # account.
1283
1290
  #
1284
1291
  # @option params [required, String] :role_arn
1285
1292
  # The Amazon Resource Name (ARN) of an IAM role that enables Amazon
@@ -1313,15 +1320,26 @@ module Aws::SageMaker
1313
1320
  # Provides information about the output location for the compiled model
1314
1321
  # and the target device the model runs on.
1315
1322
  #
1323
+ # @option params [Types::NeoVpcConfig] :vpc_config
1324
+ # A VpcConfig object that specifies the VPC that you want your
1325
+ # compilation job to connect to. Control access to your models by
1326
+ # configuring the VPC. For more information, see [Protect Compilation
1327
+ # Jobs by Using an Amazon Virtual Private Cloud][1].
1328
+ #
1329
+ #
1330
+ #
1331
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
1332
+ #
1316
1333
  # @option params [required, Types::StoppingCondition] :stopping_condition
1317
1334
  # Specifies a limit to how long a model compilation job can run. When
1318
1335
  # the job reaches the time limit, Amazon SageMaker ends the compilation
1319
1336
  # job. Use this API to cap model training costs.
1320
1337
  #
1321
1338
  # @option params [Array<Types::Tag>] :tags
1322
- # An array of key-value pairs. You can use tags to categorize your AWS
1323
- # resources in different ways, for example, by purpose, owner, or
1324
- # environment. For more information, see [Tagging AWS Resources][1].
1339
+ # An array of key-value pairs. You can use tags to categorize your
1340
+ # Amazon Web Services resources in different ways, for example, by
1341
+ # purpose, owner, or environment. For more information, see [Tagging
1342
+ # Amazon Web Services Resources][1].
1325
1343
  #
1326
1344
  #
1327
1345
  #
@@ -1344,7 +1362,7 @@ module Aws::SageMaker
1344
1362
  # },
1345
1363
  # output_config: { # required
1346
1364
  # s3_output_location: "S3Uri", # required
1347
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1365
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm
1348
1366
  # target_platform: {
1349
1367
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1350
1368
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1353,6 +1371,10 @@ module Aws::SageMaker
1353
1371
  # compiler_options: "CompilerOptions",
1354
1372
  # kms_key_id: "KmsKeyId",
1355
1373
  # },
1374
+ # vpc_config: {
1375
+ # security_group_ids: ["NeoVpcSecurityGroupId"], # required
1376
+ # subnets: ["NeoVpcSubnetId"], # required
1377
+ # },
1356
1378
  # stopping_condition: { # required
1357
1379
  # max_runtime_in_seconds: 1,
1358
1380
  # max_wait_time_in_seconds: 1,
@@ -1395,8 +1417,8 @@ module Aws::SageMaker
1395
1417
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
1396
1418
  #
1397
1419
  # @option params [required, String] :context_name
1398
- # The name of the context. Must be unique to your account in an AWS
1399
- # Region.
1420
+ # The name of the context. Must be unique to your account in an Amazon
1421
+ # Web Services Region.
1400
1422
  #
1401
1423
  # @option params [required, Types::ContextSource] :source
1402
1424
  # The source type, ID, and URI.
@@ -1492,8 +1514,8 @@ module Aws::SageMaker
1492
1514
  #
1493
1515
  # @option params [Array<Types::Tag>] :tags
1494
1516
  # (Optional) An array of key-value pairs. For more information, see
1495
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
1496
- # Management User Guide*.
1517
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
1518
+ # and Cost Management User Guide*.
1497
1519
  #
1498
1520
  #
1499
1521
  #
@@ -1555,7 +1577,7 @@ module Aws::SageMaker
1555
1577
  # job_resources: { # required
1556
1578
  # cluster_config: { # required
1557
1579
  # instance_count: 1, # required
1558
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
1580
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1559
1581
  # volume_size_in_gb: 1, # required
1560
1582
  # volume_kms_key_id: "KmsKeyId",
1561
1583
  # },
@@ -1599,8 +1621,8 @@ module Aws::SageMaker
1599
1621
  # The name of the fleet that the device belongs to.
1600
1622
  #
1601
1623
  # @option params [String] :role_arn
1602
- # The Amazon Resource Name (ARN) that has access to AWS Internet of
1603
- # Things (IoT).
1624
+ # The Amazon Resource Name (ARN) that has access to Amazon Web Services
1625
+ # Internet of Things (IoT).
1604
1626
  #
1605
1627
  # @option params [String] :description
1606
1628
  # A description of the fleet.
@@ -1612,6 +1634,14 @@ module Aws::SageMaker
1612
1634
  # @option params [Array<Types::Tag>] :tags
1613
1635
  # Creates tags for the specified fleet.
1614
1636
  #
1637
+ # @option params [Boolean] :enable_iot_role_alias
1638
+ # Whether to create an Amazon Web Services IoT Role Alias during device
1639
+ # fleet creation. The name of the role alias generated will match this
1640
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
1641
+ #
1642
+ # For example, if your device fleet is called "demo-fleet", the name
1643
+ # of the role alias will be "SageMakerEdge-demo-fleet".
1644
+ #
1615
1645
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1616
1646
  #
1617
1647
  # @example Request syntax with placeholder values
@@ -1623,6 +1653,8 @@ module Aws::SageMaker
1623
1653
  # output_config: { # required
1624
1654
  # s3_output_location: "S3Uri", # required
1625
1655
  # kms_key_id: "KmsKeyId",
1656
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1657
+ # preset_deployment_config: "String",
1626
1658
  # },
1627
1659
  # tags: [
1628
1660
  # {
@@ -1630,6 +1662,7 @@ module Aws::SageMaker
1630
1662
  # value: "TagValue", # required
1631
1663
  # },
1632
1664
  # ],
1665
+ # enable_iot_role_alias: false,
1633
1666
  # })
1634
1667
  #
1635
1668
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleet AWS API Documentation
@@ -1644,9 +1677,9 @@ module Aws::SageMaker
1644
1677
  # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1645
1678
  # of an associated Amazon Elastic File System (EFS) volume, a list of
1646
1679
  # authorized users, and a variety of security, application, policy, and
1647
- # Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
1648
- # limited to one domain per region. Users within a domain can share
1649
- # notebook files and other artifacts with each other.
1680
+ # Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web
1681
+ # Services account is limited to one domain per region. Users within a
1682
+ # domain can share notebook files and other artifacts with each other.
1650
1683
  #
1651
1684
  # **EFS storage**
1652
1685
  #
@@ -1655,11 +1688,11 @@ module Aws::SageMaker
1655
1688
  # directory within the EFS volume for notebooks, Git repositories, and
1656
1689
  # data files.
1657
1690
  #
1658
- # SageMaker uses the AWS Key Management Service (AWS KMS) to encrypt the
1659
- # EFS volume attached to the domain with an AWS managed customer master
1660
- # key (CMK) by default. For more control, you can specify a customer
1661
- # managed CMK. For more information, see [Protect Data at Rest Using
1662
- # Encryption][1].
1691
+ # SageMaker uses the Amazon Web Services Key Management Service (Amazon
1692
+ # Web Services KMS) to encrypt the EFS volume attached to the domain
1693
+ # with an Amazon Web Services managed customer master key (CMK) by
1694
+ # default. For more control, you can specify a customer managed CMK. For
1695
+ # more information, see [Protect Data at Rest Using Encryption][1].
1663
1696
  #
1664
1697
  # **VPC configuration**
1665
1698
  #
@@ -1683,6 +1716,10 @@ module Aws::SageMaker
1683
1716
  # endpoint to the SageMaker API and runtime or a NAT gateway and your
1684
1717
  # security groups allow outbound connections.
1685
1718
  #
1719
+ # NFS traffic over TCP on port 2049 needs to be allowed in both inbound
1720
+ # and outbound rules in order to launch a SageMaker Studio app
1721
+ # successfully.
1722
+ #
1686
1723
  # For more information, see [Connect SageMaker Studio Notebooks to
1687
1724
  # Resources in a VPC][2].
1688
1725
  #
@@ -1736,9 +1773,10 @@ module Aws::SageMaker
1736
1773
  # This member is deprecated and replaced with `KmsKeyId`.
1737
1774
  #
1738
1775
  # @option params [String] :kms_key_id
1739
- # SageMaker uses AWS KMS to encrypt the EFS volume attached to the
1740
- # domain with an AWS managed customer master key (CMK) by default. For
1741
- # more control, specify a customer managed CMK.
1776
+ # SageMaker uses Amazon Web Services KMS to encrypt the EFS volume
1777
+ # attached to the domain with an Amazon Web Services managed customer
1778
+ # master key (CMK) by default. For more control, specify a customer
1779
+ # managed CMK.
1742
1780
  #
1743
1781
  # @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1744
1782
  #
@@ -1860,6 +1898,8 @@ module Aws::SageMaker
1860
1898
  # output_config: { # required
1861
1899
  # s3_output_location: "S3Uri", # required
1862
1900
  # kms_key_id: "KmsKeyId",
1901
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1902
+ # preset_deployment_config: "String",
1863
1903
  # },
1864
1904
  # resource_key: "KmsKeyId",
1865
1905
  # tags: [
@@ -1888,7 +1928,7 @@ module Aws::SageMaker
1888
1928
  #
1889
1929
  # For an example that calls this method when deploying a model to Amazon
1890
1930
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
1891
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
1931
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
1892
1932
  #
1893
1933
  # <note markdown="1"> You must not delete an `EndpointConfig` that is in use by an endpoint
1894
1934
  # that is live or while the `UpdateEndpoint` or `CreateEndpoint`
@@ -1897,8 +1937,8 @@ module Aws::SageMaker
1897
1937
  #
1898
1938
  # </note>
1899
1939
  #
1900
- # The endpoint name must be unique within an AWS Region in your AWS
1901
- # account.
1940
+ # The endpoint name must be unique within an Amazon Web Services Region
1941
+ # in your Amazon Web Services account.
1902
1942
  #
1903
1943
  # When it receives the request, Amazon SageMaker creates the endpoint,
1904
1944
  # launches the resources (ML compute instances), and deploys the
@@ -1925,13 +1965,14 @@ module Aws::SageMaker
1925
1965
  # DescribeEndpoint API.
1926
1966
  #
1927
1967
  # If any of the models hosted at this endpoint get model data from an
1928
- # Amazon S3 location, Amazon SageMaker uses AWS Security Token Service
1929
- # to download model artifacts from the S3 path you provided. AWS STS is
1930
- # activated in your IAM user account by default. If you previously
1931
- # deactivated AWS STS for a region, you need to reactivate AWS STS for
1968
+ # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
1969
+ # Token Service to download model artifacts from the S3 path you
1970
+ # provided. Amazon Web Services STS is activated in your IAM user
1971
+ # account by default. If you previously deactivated Amazon Web Services
1972
+ # STS for a region, you need to reactivate Amazon Web Services STS for
1932
1973
  # that region. For more information, see [Activating and Deactivating
1933
- # AWS STS in an AWS Region][3] in the *AWS Identity and Access
1934
- # Management User Guide*.
1974
+ # Amazon Web Services STS in an Amazon Web Services Region][3] in the
1975
+ # *Amazon Web Services Identity and Access Management User Guide*.
1935
1976
  #
1936
1977
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
1937
1978
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -1971,18 +2012,20 @@ module Aws::SageMaker
1971
2012
  # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html
1972
2013
  #
1973
2014
  # @option params [required, String] :endpoint_name
1974
- # The name of the endpoint.The name must be unique within an AWS Region
1975
- # in your AWS account. The name is case-insensitive in `CreateEndpoint`,
1976
- # but the case is preserved and must be matched in .
2015
+ # The name of the endpoint.The name must be unique within an Amazon Web
2016
+ # Services Region in your Amazon Web Services account. The name is
2017
+ # case-insensitive in `CreateEndpoint`, but the case is preserved and
2018
+ # must be matched in .
1977
2019
  #
1978
2020
  # @option params [required, String] :endpoint_config_name
1979
2021
  # The name of an endpoint configuration. For more information, see
1980
2022
  # CreateEndpointConfig.
1981
2023
  #
1982
2024
  # @option params [Array<Types::Tag>] :tags
1983
- # An array of key-value pairs. You can use tags to categorize your AWS
1984
- # resources in different ways, for example, by purpose, owner, or
1985
- # environment. For more information, see [Tagging AWS Resources][1].
2025
+ # An array of key-value pairs. You can use tags to categorize your
2026
+ # Amazon Web Services resources in different ways, for example, by
2027
+ # purpose, owner, or environment. For more information, see [Tagging
2028
+ # Amazon Web Services Resources][1].
1986
2029
  #
1987
2030
  #
1988
2031
  #
@@ -2043,7 +2086,7 @@ module Aws::SageMaker
2043
2086
  #
2044
2087
  # For an example that calls this method when deploying a model to Amazon
2045
2088
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
2046
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
2089
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
2047
2090
  #
2048
2091
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2049
2092
  # verify that your endpoint configuration exists. When you read data
@@ -2075,18 +2118,19 @@ module Aws::SageMaker
2075
2118
  # @option params [Types::DataCaptureConfig] :data_capture_config
2076
2119
  #
2077
2120
  # @option params [Array<Types::Tag>] :tags
2078
- # An array of key-value pairs. You can use tags to categorize your AWS
2079
- # resources in different ways, for example, by purpose, owner, or
2080
- # environment. For more information, see [Tagging AWS Resources][1].
2121
+ # An array of key-value pairs. You can use tags to categorize your
2122
+ # Amazon Web Services resources in different ways, for example, by
2123
+ # purpose, owner, or environment. For more information, see [Tagging
2124
+ # Amazon Web Services Resources][1].
2081
2125
  #
2082
2126
  #
2083
2127
  #
2084
2128
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
2085
2129
  #
2086
2130
  # @option params [String] :kms_key_id
2087
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
2088
- # that Amazon SageMaker uses to encrypt data on the storage volume
2089
- # attached to the ML compute instance that hosts the endpoint.
2131
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2132
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
2133
+ # volume attached to the ML compute instance that hosts the endpoint.
2090
2134
  #
2091
2135
  # The KmsKeyId can be any of the following formats:
2092
2136
  #
@@ -2102,8 +2146,8 @@ module Aws::SageMaker
2102
2146
  #
2103
2147
  # The KMS key policy must grant permission to the IAM role that you
2104
2148
  # specify in your `CreateEndpoint`, `UpdateEndpoint` requests. For more
2105
- # information, refer to the AWS Key Management Service section[ Using
2106
- # Key Policies in AWS KMS ][1]
2149
+ # information, refer to the Amazon Web Services Key Management Service
2150
+ # section[ Using Key Policies in Amazon Web Services KMS ][1]
2107
2151
  #
2108
2152
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on the
2109
2153
  # instance type. Local storage volumes are encrypted using a hardware
@@ -2200,8 +2244,8 @@ module Aws::SageMaker
2200
2244
  #
2201
2245
  # When you use SageMaker Studio or the SageMaker Python SDK, all
2202
2246
  # experiments, trials, and trial components are automatically tracked,
2203
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2204
- # must use the logging APIs provided by the SDK.
2247
+ # logged, and indexed. When you use the Amazon Web Services SDK for
2248
+ # Python (Boto), you must use the logging APIs provided by the SDK.
2205
2249
  #
2206
2250
  # You can add tags to experiments, trials, trial components and then use
2207
2251
  # the Search API to search for the tags.
@@ -2216,8 +2260,8 @@ module Aws::SageMaker
2216
2260
  # the ListTrials API. To create a trial call the CreateTrial API.
2217
2261
  #
2218
2262
  # @option params [required, String] :experiment_name
2219
- # The name of the experiment. The name must be unique in your AWS
2220
- # account and is not case-sensitive.
2263
+ # The name of the experiment. The name must be unique in your Amazon Web
2264
+ # Services account and is not case-sensitive.
2221
2265
  #
2222
2266
  # @option params [String] :display_name
2223
2267
  # The name of the experiment as displayed. The name doesn't need to be
@@ -2269,8 +2313,8 @@ module Aws::SageMaker
2269
2313
  # FeatureGroup. A `FeatureGroup` definition is composed of a list of
2270
2314
  # `Features`, a `RecordIdentifierFeatureName`, an `EventTimeFeatureName`
2271
2315
  # and configurations for its `OnlineStore` and `OfflineStore`. Check
2272
- # [AWS service quotas][1] to see the `FeatureGroup`s quota for your AWS
2273
- # account.
2316
+ # [Amazon Web Services service quotas][1] to see the `FeatureGroup`s
2317
+ # quota for your Amazon Web Services account.
2274
2318
  #
2275
2319
  # You must include at least one of `OnlineStoreConfig` and
2276
2320
  # `OfflineStoreConfig` to create a `FeatureGroup`.
@@ -2280,8 +2324,9 @@ module Aws::SageMaker
2280
2324
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
2281
2325
  #
2282
2326
  # @option params [required, String] :feature_group_name
2283
- # The name of the `FeatureGroup`. The name must be unique within an AWS
2284
- # Region in an AWS account. The name:
2327
+ # The name of the `FeatureGroup`. The name must be unique within an
2328
+ # Amazon Web Services Region in an Amazon Web Services account. The
2329
+ # name:
2285
2330
  #
2286
2331
  # * Must start and end with an alphanumeric character.
2287
2332
  #
@@ -2344,8 +2389,8 @@ module Aws::SageMaker
2344
2389
  # `EnableOnlineStore` flag in `OnlineStoreConfig`; the default value is
2345
2390
  # `False`.
2346
2391
  #
2347
- # You can also include an AWS KMS key ID (`KMSKeyId`) for at-rest
2348
- # encryption of the `OnlineStore`.
2392
+ # You can also include an Amazon Web Services KMS key ID (`KMSKeyId`)
2393
+ # for at-rest encryption of the `OnlineStore`.
2349
2394
  #
2350
2395
  # @option params [Types::OfflineStoreConfig] :offline_store_config
2351
2396
  # Use this to configure an `OfflineFeatureStore`. This parameter allows
@@ -2354,7 +2399,8 @@ module Aws::SageMaker
2354
2399
  # * The Amazon Simple Storage Service (Amazon S3) location of an
2355
2400
  # `OfflineStore`.
2356
2401
  #
2357
- # * A configuration for an AWS Glue or AWS Hive data cataolgue.
2402
+ # * A configuration for an Amazon Web Services Glue or Amazon Web
2403
+ # Services Hive data cataolgue.
2358
2404
  #
2359
2405
  # * An KMS encryption key to encrypt the Amazon S3 location used for
2360
2406
  # `OfflineStore`.
@@ -2578,9 +2624,10 @@ module Aws::SageMaker
2578
2624
  # @option params [required, String] :hyper_parameter_tuning_job_name
2579
2625
  # The name of the tuning job. This name is the prefix for the names of
2580
2626
  # all training jobs that this tuning job launches. The name must be
2581
- # unique within the same AWS account and AWS Region. The name must have
2582
- # 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ \_
2583
- # % - (hyphen). The name is not case sensitive.
2627
+ # unique within the same Amazon Web Services account and Amazon Web
2628
+ # Services Region. The name must have 1 to 32 characters. Valid
2629
+ # characters are a-z, A-Z, 0-9, and : + = @ \_ % - (hyphen). The name is
2630
+ # not case sensitive.
2584
2631
  #
2585
2632
  # @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
2586
2633
  # The HyperParameterTuningJobConfig object that describes the tuning
@@ -2625,9 +2672,10 @@ module Aws::SageMaker
2625
2672
  # </note>
2626
2673
  #
2627
2674
  # @option params [Array<Types::Tag>] :tags
2628
- # An array of key-value pairs. You can use tags to categorize your AWS
2629
- # resources in different ways, for example, by purpose, owner, or
2630
- # environment. For more information, see [Tagging AWS Resources][1].
2675
+ # An array of key-value pairs. You can use tags to categorize your
2676
+ # Amazon Web Services resources in different ways, for example, by
2677
+ # purpose, owner, or environment. For more information, see [Tagging
2678
+ # Amazon Web Services Resources][1].
2631
2679
  #
2632
2680
  # Tags that you specify for the tuning job are also added to all
2633
2681
  # training jobs that the tuning job launches.
@@ -2985,8 +3033,9 @@ module Aws::SageMaker
2985
3033
  # [@digest]>`
2986
3034
  #
2987
3035
  # @option params [required, String] :client_token
2988
- # A unique ID. If not specified, the AWS CLI and AWS SDKs, such as the
2989
- # SDK for Python (Boto3), add a unique value to the call.
3036
+ # A unique ID. If not specified, the Amazon Web Services CLI and Amazon
3037
+ # Web Services SDKs, such as the SDK for Python (Boto3), add a unique
3038
+ # value to the call.
2990
3039
  #
2991
3040
  # **A suitable default value is auto-generated.** You should normally
2992
3041
  # not need to pass this option.**
@@ -3030,8 +3079,8 @@ module Aws::SageMaker
3030
3079
  # the data to stay within your organization or when a specific set of
3031
3080
  # skills is required.
3032
3081
  #
3033
- # * One or more vendors that you select from the AWS Marketplace.
3034
- # Vendors provide expertise in specific areas.
3082
+ # * One or more vendors that you select from the Amazon Web Services
3083
+ # Marketplace. Vendors provide expertise in specific areas.
3035
3084
  #
3036
3085
  # * The Amazon Mechanical Turk workforce. This is the largest workforce,
3037
3086
  # but it should only be used for public data or data that has been
@@ -3071,9 +3120,9 @@ module Aws::SageMaker
3071
3120
  # @option params [required, String] :labeling_job_name
3072
3121
  # The name of the labeling job. This name is used to identify the job in
3073
3122
  # a list of labeling jobs. Labeling job names must be unique within an
3074
- # AWS account and region. `LabelingJobName` is not case sensitive. For
3075
- # example, Example-job and example-job are considered the same labeling
3076
- # job name by Ground Truth.
3123
+ # Amazon Web Services account and region. `LabelingJobName` is not case
3124
+ # sensitive. For example, Example-job and example-job are considered the
3125
+ # same labeling job name by Ground Truth.
3077
3126
  #
3078
3127
  # @option params [required, String] :label_attribute_name
3079
3128
  # The attribute name to use for the label in the output manifest file.
@@ -3150,8 +3199,9 @@ module Aws::SageMaker
3150
3199
  # content.
3151
3200
  #
3152
3201
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3153
- # The location of the output data and the AWS Key Management Service key
3154
- # ID for the key used to encrypt the output data, if any.
3202
+ # The location of the output data and the Amazon Web Services Key
3203
+ # Management Service key ID for the key used to encrypt the output data,
3204
+ # if any.
3155
3205
  #
3156
3206
  # @option params [required, String] :role_arn
3157
3207
  # The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
@@ -3221,8 +3271,8 @@ module Aws::SageMaker
3221
3271
  #
3222
3272
  # @option params [Array<Types::Tag>] :tags
3223
3273
  # An array of key/value pairs. For more information, see [Using Cost
3224
- # Allocation Tags][1] in the *AWS Billing and Cost Management User
3225
- # Guide*.
3274
+ # Allocation Tags][1] in the *Amazon Web Services Billing and Cost
3275
+ # Management User Guide*.
3226
3276
  #
3227
3277
  #
3228
3278
  #
@@ -3330,7 +3380,7 @@ module Aws::SageMaker
3330
3380
  #
3331
3381
  # For an example that calls this method when deploying a model to Amazon
3332
3382
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3333
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
3383
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3334
3384
  #
3335
3385
  # To run a batch transform using your model, you start a job with the
3336
3386
  # `CreateTransformJob` API. Amazon SageMaker uses your model and your
@@ -3344,8 +3394,8 @@ module Aws::SageMaker
3344
3394
  # assume to access model artifacts and docker image for deployment on ML
3345
3395
  # compute hosting instances or for batch transform jobs. In addition,
3346
3396
  # you also use the IAM role to manage permissions the inference code
3347
- # needs. For example, if the inference code access any other AWS
3348
- # resources, you grant necessary permissions via this role.
3397
+ # needs. For example, if the inference code access any other Amazon Web
3398
+ # Services resources, you grant necessary permissions via this role.
3349
3399
  #
3350
3400
  #
3351
3401
  #
@@ -3383,9 +3433,10 @@ module Aws::SageMaker
3383
3433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
3384
3434
  #
3385
3435
  # @option params [Array<Types::Tag>] :tags
3386
- # An array of key-value pairs. You can use tags to categorize your AWS
3387
- # resources in different ways, for example, by purpose, owner, or
3388
- # environment. For more information, see [Tagging AWS Resources][1].
3436
+ # An array of key-value pairs. You can use tags to categorize your
3437
+ # Amazon Web Services resources in different ways, for example, by
3438
+ # purpose, owner, or environment. For more information, see [Tagging
3439
+ # Amazon Web Services Resources][1].
3389
3440
  #
3390
3441
  #
3391
3442
  #
@@ -3490,7 +3541,7 @@ module Aws::SageMaker
3490
3541
  #
3491
3542
  # @option params [required, String] :job_definition_name
3492
3543
  # The name of the bias job definition. The name must be unique within an
3493
- # AWS Region in the AWS account.
3544
+ # Amazon Web Services Region in the Amazon Web Services account.
3494
3545
  #
3495
3546
  # @option params [Types::ModelBiasBaselineConfig] :model_bias_baseline_config
3496
3547
  # The baseline configuration for a model bias job.
@@ -3521,8 +3572,8 @@ module Aws::SageMaker
3521
3572
  #
3522
3573
  # @option params [Array<Types::Tag>] :tags
3523
3574
  # (Optional) An array of key-value pairs. For more information, see
3524
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3525
- # Management User Guide*.
3575
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3576
+ # and Cost Management User Guide*.
3526
3577
  #
3527
3578
  #
3528
3579
  #
@@ -3581,7 +3632,7 @@ module Aws::SageMaker
3581
3632
  # job_resources: { # required
3582
3633
  # cluster_config: { # required
3583
3634
  # instance_count: 1, # required
3584
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
3635
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3585
3636
  # volume_size_in_gb: 1, # required
3586
3637
  # volume_kms_key_id: "KmsKeyId",
3587
3638
  # },
@@ -3623,7 +3674,8 @@ module Aws::SageMaker
3623
3674
  #
3624
3675
  # @option params [required, String] :job_definition_name
3625
3676
  # The name of the model explainability job definition. The name must be
3626
- # unique within an AWS Region in the AWS account.
3677
+ # unique within an Amazon Web Services Region in the Amazon Web Services
3678
+ # account.
3627
3679
  #
3628
3680
  # @option params [Types::ModelExplainabilityBaselineConfig] :model_explainability_baseline_config
3629
3681
  # The baseline configuration for a model explainability job.
@@ -3654,8 +3706,8 @@ module Aws::SageMaker
3654
3706
  #
3655
3707
  # @option params [Array<Types::Tag>] :tags
3656
3708
  # (Optional) An array of key-value pairs. For more information, see
3657
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3658
- # Management User Guide*.
3709
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3710
+ # and Cost Management User Guide*.
3659
3711
  #
3660
3712
  #
3661
3713
  #
@@ -3711,7 +3763,7 @@ module Aws::SageMaker
3711
3763
  # job_resources: { # required
3712
3764
  # cluster_config: { # required
3713
3765
  # instance_count: 1, # required
3714
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
3766
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3715
3767
  # volume_size_in_gb: 1, # required
3716
3768
  # volume_kms_key_id: "KmsKeyId",
3717
3769
  # },
@@ -3750,15 +3802,17 @@ module Aws::SageMaker
3750
3802
  end
3751
3803
 
3752
3804
  # Creates a model package that you can use to create Amazon SageMaker
3753
- # models or list on AWS Marketplace, or a versioned model that is part
3754
- # of a model group. Buyers can subscribe to model packages listed on AWS
3755
- # Marketplace to create models in Amazon SageMaker.
3805
+ # models or list on Amazon Web Services Marketplace, or a versioned
3806
+ # model that is part of a model group. Buyers can subscribe to model
3807
+ # packages listed on Amazon Web Services Marketplace to create models in
3808
+ # Amazon SageMaker.
3756
3809
  #
3757
3810
  # To create a model package by specifying a Docker container that
3758
3811
  # contains your inference code and the Amazon S3 location of your model
3759
3812
  # artifacts, provide values for `InferenceSpecification`. To create a
3760
3813
  # model from an algorithm resource that you created or subscribed to in
3761
- # AWS Marketplace, provide a value for `SourceAlgorithmSpecification`.
3814
+ # Amazon Web Services Marketplace, provide a value for
3815
+ # `SourceAlgorithmSpecification`.
3762
3816
  #
3763
3817
  # <note markdown="1"> There are two types of model packages:
3764
3818
  #
@@ -3806,15 +3860,16 @@ module Aws::SageMaker
3806
3860
  # Details about the algorithm that was used to create the model package.
3807
3861
  #
3808
3862
  # @option params [Boolean] :certify_for_marketplace
3809
- # Whether to certify the model package for listing on AWS Marketplace.
3863
+ # Whether to certify the model package for listing on Amazon Web
3864
+ # Services Marketplace.
3810
3865
  #
3811
3866
  # This parameter is optional for unversioned models, and does not apply
3812
3867
  # to versioned models.
3813
3868
  #
3814
3869
  # @option params [Array<Types::Tag>] :tags
3815
3870
  # A list of key value pairs associated with the model. For more
3816
- # information, see [Tagging AWS resources][1] in the *AWS General
3817
- # Reference Guide*.
3871
+ # information, see [Tagging Amazon Web Services resources][1] in the
3872
+ # *Amazon Web Services General Reference Guide*.
3818
3873
  #
3819
3874
  #
3820
3875
  #
@@ -3860,9 +3915,12 @@ module Aws::SageMaker
3860
3915
  # image_digest: "ImageDigest",
3861
3916
  # model_data_url: "Url",
3862
3917
  # product_id: "ProductId",
3918
+ # environment: {
3919
+ # "EnvironmentKey" => "EnvironmentValue",
3920
+ # },
3863
3921
  # },
3864
3922
  # ],
3865
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3923
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3866
3924
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
3867
3925
  # supported_content_types: ["ContentType"], # required
3868
3926
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -3897,7 +3955,7 @@ module Aws::SageMaker
3897
3955
  # kms_key_id: "KmsKeyId",
3898
3956
  # },
3899
3957
  # transform_resources: { # required
3900
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3958
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3901
3959
  # instance_count: 1, # required
3902
3960
  # volume_kms_key_id: "KmsKeyId",
3903
3961
  # },
@@ -3994,8 +4052,8 @@ module Aws::SageMaker
3994
4052
  #
3995
4053
  # @option params [Array<Types::Tag>] :tags
3996
4054
  # A list of key value pairs associated with the model group. For more
3997
- # information, see [Tagging AWS resources][1] in the *AWS General
3998
- # Reference Guide*.
4055
+ # information, see [Tagging Amazon Web Services resources][1] in the
4056
+ # *Amazon Web Services General Reference Guide*.
3999
4057
  #
4000
4058
  #
4001
4059
  #
@@ -4071,8 +4129,8 @@ module Aws::SageMaker
4071
4129
  #
4072
4130
  # @option params [Array<Types::Tag>] :tags
4073
4131
  # (Optional) An array of key-value pairs. For more information, see
4074
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4075
- # Management User Guide*.
4132
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4133
+ # and Cost Management User Guide*.
4076
4134
  #
4077
4135
  #
4078
4136
  #
@@ -4135,7 +4193,7 @@ module Aws::SageMaker
4135
4193
  # job_resources: { # required
4136
4194
  # cluster_config: { # required
4137
4195
  # instance_count: 1, # required
4138
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4196
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4139
4197
  # volume_size_in_gb: 1, # required
4140
4198
  # volume_kms_key_id: "KmsKeyId",
4141
4199
  # },
@@ -4178,7 +4236,7 @@ module Aws::SageMaker
4178
4236
  #
4179
4237
  # @option params [required, String] :monitoring_schedule_name
4180
4238
  # The name of the monitoring schedule. The name must be unique within an
4181
- # AWS Region within an AWS account.
4239
+ # Amazon Web Services Region within an Amazon Web Services account.
4182
4240
  #
4183
4241
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
4184
4242
  # The configuration object that specifies the monitoring schedule and
@@ -4188,7 +4246,7 @@ module Aws::SageMaker
4188
4246
  # (Optional) An array of key-value pairs. For more information, see
4189
4247
  # [Using Cost Allocation Tags](
4190
4248
  # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
4191
- # in the *AWS Billing and Cost Management User Guide*.
4249
+ # in the *Amazon Web Services Billing and Cost Management User Guide*.
4192
4250
  #
4193
4251
  # @return [Types::CreateMonitoringScheduleResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4194
4252
  #
@@ -4243,7 +4301,7 @@ module Aws::SageMaker
4243
4301
  # monitoring_resources: { # required
4244
4302
  # cluster_config: { # required
4245
4303
  # instance_count: 1, # required
4246
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4304
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4247
4305
  # volume_size_in_gb: 1, # required
4248
4306
  # volume_kms_key_id: "KmsKeyId",
4249
4307
  # },
@@ -4357,13 +4415,13 @@ module Aws::SageMaker
4357
4415
  # groups must be for the same VPC as specified in the subnet.
4358
4416
  #
4359
4417
  # @option params [required, String] :role_arn
4360
- # When you send any requests to AWS resources from the notebook
4361
- # instance, Amazon SageMaker assumes this role to perform tasks on your
4362
- # behalf. You must grant this role necessary permissions so Amazon
4363
- # SageMaker can perform these tasks. The policy must allow the Amazon
4364
- # SageMaker service principal (sagemaker.amazonaws.com) permissions to
4365
- # assume this role. For more information, see [Amazon SageMaker
4366
- # Roles][1].
4418
+ # When you send any requests to Amazon Web Services resources from the
4419
+ # notebook instance, Amazon SageMaker assumes this role to perform tasks
4420
+ # on your behalf. You must grant this role necessary permissions so
4421
+ # Amazon SageMaker can perform these tasks. The policy must allow the
4422
+ # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4423
+ # permissions to assume this role. For more information, see [Amazon
4424
+ # SageMaker Roles][1].
4367
4425
  #
4368
4426
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4369
4427
  # API must have the `iam:PassRole` permission.
@@ -4375,20 +4433,21 @@ module Aws::SageMaker
4375
4433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4376
4434
  #
4377
4435
  # @option params [String] :kms_key_id
4378
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
4379
- # that Amazon SageMaker uses to encrypt data on the storage volume
4380
- # attached to your notebook instance. The KMS key you provide must be
4381
- # enabled. For information, see [Enabling and Disabling Keys][1] in the
4382
- # *AWS Key Management Service Developer Guide*.
4436
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4437
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
4438
+ # volume attached to your notebook instance. The KMS key you provide
4439
+ # must be enabled. For information, see [Enabling and Disabling Keys][1]
4440
+ # in the *Amazon Web Services Key Management Service Developer Guide*.
4383
4441
  #
4384
4442
  #
4385
4443
  #
4386
4444
  # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
4387
4445
  #
4388
4446
  # @option params [Array<Types::Tag>] :tags
4389
- # An array of key-value pairs. You can use tags to categorize your AWS
4390
- # resources in different ways, for example, by purpose, owner, or
4391
- # environment. For more information, see [Tagging AWS Resources][1].
4447
+ # An array of key-value pairs. You can use tags to categorize your
4448
+ # Amazon Web Services resources in different ways, for example, by
4449
+ # purpose, owner, or environment. For more information, see [Tagging
4450
+ # Amazon Web Services Resources][1].
4392
4451
  #
4393
4452
  #
4394
4453
  #
@@ -4436,10 +4495,11 @@ module Aws::SageMaker
4436
4495
  # A Git repository to associate with the notebook instance as its
4437
4496
  # default code repository. This can be either the name of a Git
4438
4497
  # repository stored as a resource in your account, or the URL of a Git
4439
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
4440
- # you open a notebook instance, it opens in the directory that contains
4441
- # this repository. For more information, see [Associating Git
4442
- # Repositories with Amazon SageMaker Notebook Instances][2].
4498
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4499
+ # repository. When you open a notebook instance, it opens in the
4500
+ # directory that contains this repository. For more information, see
4501
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4502
+ # Instances][2].
4443
4503
  #
4444
4504
  #
4445
4505
  #
@@ -4450,10 +4510,11 @@ module Aws::SageMaker
4450
4510
  # An array of up to three Git repositories to associate with the
4451
4511
  # notebook instance. These can be either the names of Git repositories
4452
4512
  # stored as resources in your account, or the URL of Git repositories in
4453
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
4454
- # are cloned at the same level as the default repository of your
4455
- # notebook instance. For more information, see [Associating Git
4456
- # Repositories with Amazon SageMaker Notebook Instances][2].
4513
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4514
+ # These repositories are cloned at the same level as the default
4515
+ # repository of your notebook instance. For more information, see
4516
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4517
+ # Instances][2].
4457
4518
  #
4458
4519
  #
4459
4520
  #
@@ -4651,13 +4712,29 @@ module Aws::SageMaker
4651
4712
  # This operation can only be called when the authentication mode equals
4652
4713
  # IAM.
4653
4714
  #
4715
+ # The IAM role or user used to call this API defines the permissions to
4716
+ # access the app. Once the presigned URL is created, no additional
4717
+ # permission is required to access this URL. IAM authorization policies
4718
+ # for this API are also enforced for every HTTP request and WebSocket
4719
+ # frame that attempts to connect to the app.
4720
+ #
4721
+ # You can restrict access to this API and to the URL that it returns to
4722
+ # a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you
4723
+ # specify. For more information, see [Connect to SageMaker Studio
4724
+ # Through an Interface VPC Endpoint][1] .
4725
+ #
4654
4726
  # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4655
4727
  # default timeout of 5 minutes. You can configure this value using
4656
4728
  # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4657
- # expires, you are directed to the AWS console sign-in page.
4729
+ # expires, you are directed to the Amazon Web Services console sign-in
4730
+ # page.
4658
4731
  #
4659
4732
  # </note>
4660
4733
  #
4734
+ #
4735
+ #
4736
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html
4737
+ #
4661
4738
  # @option params [required, String] :domain_id
4662
4739
  # The domain ID.
4663
4740
  #
@@ -4720,8 +4797,8 @@ module Aws::SageMaker
4720
4797
  #
4721
4798
  # <note markdown="1"> The URL that you get from a call to CreatePresignedNotebookInstanceUrl
4722
4799
  # is valid only for 5 minutes. If you try to use the URL after the
4723
- # 5-minute limit expires, you are directed to the AWS console sign-in
4724
- # page.
4800
+ # 5-minute limit expires, you are directed to the Amazon Web Services
4801
+ # console sign-in page.
4725
4802
  #
4726
4803
  # </note>
4727
4804
  #
@@ -4769,8 +4846,8 @@ module Aws::SageMaker
4769
4846
  # Output configuration for the processing job.
4770
4847
  #
4771
4848
  # @option params [required, String] :processing_job_name
4772
- # The name of the processing job. The name must be unique within an AWS
4773
- # Region in the AWS account.
4849
+ # The name of the processing job. The name must be unique within an
4850
+ # Amazon Web Services Region in the Amazon Web Services account.
4774
4851
  #
4775
4852
  # @option params [required, Types::ProcessingResources] :processing_resources
4776
4853
  # Identifies the resources, ML compute instances, and ML storage volumes
@@ -4800,8 +4877,8 @@ module Aws::SageMaker
4800
4877
  #
4801
4878
  # @option params [Array<Types::Tag>] :tags
4802
4879
  # (Optional) An array of key-value pairs. For more information, see
4803
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4804
- # Management User Guide*.
4880
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4881
+ # and Cost Management User Guide*.
4805
4882
  #
4806
4883
  #
4807
4884
  #
@@ -4885,7 +4962,7 @@ module Aws::SageMaker
4885
4962
  # processing_resources: { # required
4886
4963
  # cluster_config: { # required
4887
4964
  # instance_count: 1, # required
4888
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4965
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4889
4966
  # volume_size_in_gb: 1, # required
4890
4967
  # volume_kms_key_id: "KmsKeyId",
4891
4968
  # },
@@ -4948,7 +5025,8 @@ module Aws::SageMaker
4948
5025
  #
4949
5026
  # @option params [required, Types::ServiceCatalogProvisioningDetails] :service_catalog_provisioning_details
4950
5027
  # The product ID and provisioning artifact ID to provision a service
4951
- # catalog. For information, see [What is AWS Service Catalog][1].
5028
+ # catalog. For information, see [What is Amazon Web Services Service
5029
+ # Catalog][1].
4952
5030
  #
4953
5031
  #
4954
5032
  #
@@ -4956,8 +5034,9 @@ module Aws::SageMaker
4956
5034
  #
4957
5035
  # @option params [Array<Types::Tag>] :tags
4958
5036
  # An array of key-value pairs that you want to use to organize and track
4959
- # your AWS resource costs. For more information, see [Tagging AWS
4960
- # resources][1] in the *AWS General Reference Guide*.
5037
+ # your Amazon Web Services resource costs. For more information, see
5038
+ # [Tagging Amazon Web Services resources][1] in the *Amazon Web Services
5039
+ # General Reference Guide*.
4961
5040
  #
4962
5041
  #
4963
5042
  #
@@ -5065,8 +5144,8 @@ module Aws::SageMaker
5065
5144
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
5066
5145
  #
5067
5146
  # @option params [required, String] :training_job_name
5068
- # The name of the training job. The name must be unique within an AWS
5069
- # Region in an AWS account.
5147
+ # The name of the training job. The name must be unique within an Amazon
5148
+ # Web Services Region in an Amazon Web Services account.
5070
5149
  #
5071
5150
  # @option params [Hash<String,String>] :hyper_parameters
5072
5151
  # Algorithm-specific parameters that influence the quality of the model.
@@ -5170,9 +5249,10 @@ module Aws::SageMaker
5170
5249
  # of training are not lost.
5171
5250
  #
5172
5251
  # @option params [Array<Types::Tag>] :tags
5173
- # An array of key-value pairs. You can use tags to categorize your AWS
5174
- # resources in different ways, for example, by purpose, owner, or
5175
- # environment. For more information, see [Tagging AWS Resources][1].
5252
+ # An array of key-value pairs. You can use tags to categorize your
5253
+ # Amazon Web Services resources in different ways, for example, by
5254
+ # purpose, owner, or environment. For more information, see [Tagging
5255
+ # Amazon Web Services Resources][1].
5176
5256
  #
5177
5257
  #
5178
5258
  #
@@ -5363,7 +5443,7 @@ module Aws::SageMaker
5363
5443
  # local_path: "DirectoryPath",
5364
5444
  # s3_output_path: "S3Uri",
5365
5445
  # rule_evaluator_image: "AlgorithmImage", # required
5366
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5446
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5367
5447
  # volume_size_in_gb: 1,
5368
5448
  # rule_parameters: {
5369
5449
  # "ConfigKey" => "ConfigValue",
@@ -5392,7 +5472,7 @@ module Aws::SageMaker
5392
5472
  # local_path: "DirectoryPath",
5393
5473
  # s3_output_path: "S3Uri",
5394
5474
  # rule_evaluator_image: "AlgorithmImage", # required
5395
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5475
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5396
5476
  # volume_size_in_gb: 1,
5397
5477
  # rule_parameters: {
5398
5478
  # "ConfigKey" => "ConfigValue",
@@ -5430,12 +5510,13 @@ module Aws::SageMaker
5430
5510
  # In the request body, you provide the following:
5431
5511
  #
5432
5512
  # * `TransformJobName` - Identifies the transform job. The name must be
5433
- # unique within an AWS Region in an AWS account.
5513
+ # unique within an Amazon Web Services Region in an Amazon Web
5514
+ # Services account.
5434
5515
  #
5435
5516
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
5436
- # name of an existing Amazon SageMaker model in the same AWS Region
5437
- # and AWS account. For information on creating a model, see
5438
- # CreateModel.
5517
+ # name of an existing Amazon SageMaker model in the same Amazon Web
5518
+ # Services Region and Amazon Web Services account. For information on
5519
+ # creating a model, see CreateModel.
5439
5520
  #
5440
5521
  # * `TransformInput` - Describes the dataset to be transformed and the
5441
5522
  # Amazon S3 location where it is stored.
@@ -5454,13 +5535,14 @@ module Aws::SageMaker
5454
5535
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
5455
5536
  #
5456
5537
  # @option params [required, String] :transform_job_name
5457
- # The name of the transform job. The name must be unique within an AWS
5458
- # Region in an AWS account.
5538
+ # The name of the transform job. The name must be unique within an
5539
+ # Amazon Web Services Region in an Amazon Web Services account.
5459
5540
  #
5460
5541
  # @option params [required, String] :model_name
5461
5542
  # The name of the model that you want to use for the transform job.
5462
5543
  # `ModelName` must be the name of an existing Amazon SageMaker model
5463
- # within an AWS Region in an AWS account.
5544
+ # within an Amazon Web Services Region in an Amazon Web Services
5545
+ # account.
5464
5546
  #
5465
5547
  # @option params [Integer] :max_concurrent_transforms
5466
5548
  # The maximum number of parallel requests that can be sent to each
@@ -5541,8 +5623,8 @@ module Aws::SageMaker
5541
5623
  #
5542
5624
  # @option params [Array<Types::Tag>] :tags
5543
5625
  # (Optional) An array of key-value pairs. For more information, see
5544
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
5545
- # Management User Guide*.
5626
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
5627
+ # and Cost Management User Guide*.
5546
5628
  #
5547
5629
  #
5548
5630
  #
@@ -5595,7 +5677,7 @@ module Aws::SageMaker
5595
5677
  # kms_key_id: "KmsKeyId",
5596
5678
  # },
5597
5679
  # transform_resources: { # required
5598
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
5680
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5599
5681
  # instance_count: 1, # required
5600
5682
  # volume_kms_key_id: "KmsKeyId",
5601
5683
  # },
@@ -5636,8 +5718,8 @@ module Aws::SageMaker
5636
5718
  #
5637
5719
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5638
5720
  # experiments, trials, and trial components are automatically tracked,
5639
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5640
- # must use the logging APIs provided by the SDK.
5721
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5722
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5641
5723
  #
5642
5724
  # You can add tags to a trial and then use the Search API to search for
5643
5725
  # the tags.
@@ -5647,8 +5729,8 @@ module Aws::SageMaker
5647
5729
  # component, call the CreateTrialComponent API.
5648
5730
  #
5649
5731
  # @option params [required, String] :trial_name
5650
- # The name of the trial. The name must be unique in your AWS account and
5651
- # is not case-sensitive.
5732
+ # The name of the trial. The name must be unique in your Amazon Web
5733
+ # Services account and is not case-sensitive.
5652
5734
  #
5653
5735
  # @option params [String] :display_name
5654
5736
  # The name of the trial as displayed. The name doesn't need to be
@@ -5710,23 +5792,15 @@ module Aws::SageMaker
5710
5792
  #
5711
5793
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5712
5794
  # experiments, trials, and trial components are automatically tracked,
5713
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5714
- # must use the logging APIs provided by the SDK.
5795
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5796
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5715
5797
  #
5716
5798
  # You can add tags to a trial component and then use the Search API to
5717
5799
  # search for the tags.
5718
5800
  #
5719
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5720
- # managed environment. This includes SageMaker training jobs, processing
5721
- # jobs, transform jobs, and SageMaker notebooks. A call to
5722
- # `CreateTrialComponent` from outside one of these environments results
5723
- # in an error.
5724
- #
5725
- # </note>
5726
- #
5727
5801
  # @option params [required, String] :trial_component_name
5728
- # The name of the component. The name must be unique in your AWS account
5729
- # and is not case-sensitive.
5802
+ # The name of the component. The name must be unique in your Amazon Web
5803
+ # Services account and is not case-sensitive.
5730
5804
  #
5731
5805
  # @option params [String] :display_name
5732
5806
  # The name of the component as displayed. The name doesn't need to be
@@ -5849,10 +5923,10 @@ module Aws::SageMaker
5849
5923
  # not SSO, this field cannot be specified.
5850
5924
  #
5851
5925
  # @option params [String] :single_sign_on_user_value
5852
- # The username of the associated AWS Single Sign-On User for this
5853
- # UserProfile. If the Domain's AuthMode is SSO, this field is required,
5854
- # and must match a valid username of a user in your directory. If the
5855
- # Domain's AuthMode is not SSO, this field cannot be specified.
5926
+ # The username of the associated Amazon Web Services Single Sign-On User
5927
+ # for this UserProfile. If the Domain's AuthMode is SSO, this field is
5928
+ # required, and must match a valid username of a user in your directory.
5929
+ # If the Domain's AuthMode is not SSO, this field cannot be specified.
5856
5930
  #
5857
5931
  # @option params [Array<Types::Tag>] :tags
5858
5932
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -5934,13 +6008,14 @@ module Aws::SageMaker
5934
6008
  end
5935
6009
 
5936
6010
  # Use this operation to create a workforce. This operation will return
5937
- # an error if a workforce already exists in the AWS Region that you
5938
- # specify. You can only create one workforce in each AWS Region per AWS
5939
- # account.
6011
+ # an error if a workforce already exists in the Amazon Web Services
6012
+ # Region that you specify. You can only create one workforce in each
6013
+ # Amazon Web Services Region per Amazon Web Services account.
5940
6014
  #
5941
- # If you want to create a new workforce in an AWS Region where a
5942
- # workforce already exists, use the API operation to delete the existing
5943
- # workforce and then use `CreateWorkforce` to create a new workforce.
6015
+ # If you want to create a new workforce in an Amazon Web Services Region
6016
+ # where a workforce already exists, use the API operation to delete the
6017
+ # existing workforce and then use `CreateWorkforce` to create a new
6018
+ # workforce.
5944
6019
  #
5945
6020
  # To create a private workforce using Amazon Cognito, you must specify a
5946
6021
  # Cognito user pool in `CognitoConfig`. You can also create an Amazon
@@ -6088,7 +6163,8 @@ module Aws::SageMaker
6088
6163
  # An array of key-value pairs.
6089
6164
  #
6090
6165
  # For more information, see [Resource Tag][1] and [Using Cost Allocation
6091
- # Tags][2] in the <i> AWS Billing and Cost Management User Guide</i>.
6166
+ # Tags][2] in the <i> Amazon Web Services Billing and Cost Management
6167
+ # User Guide</i>.
6092
6168
  #
6093
6169
  #
6094
6170
  #
@@ -6545,13 +6621,14 @@ module Aws::SageMaker
6545
6621
  # `OnlineStore` of the `FeatureGroup`. Data cannot be accessed from the
6546
6622
  # `OnlineStore` immediately after `DeleteFeatureGroup` is called.
6547
6623
  #
6548
- # Data written into the `OfflineStore` will not be deleted. The AWS Glue
6549
- # database and tables that are automatically created for your
6550
- # `OfflineStore` are not deleted.
6624
+ # Data written into the `OfflineStore` will not be deleted. The Amazon
6625
+ # Web Services Glue database and tables that are automatically created
6626
+ # for your `OfflineStore` are not deleted.
6551
6627
  #
6552
6628
  # @option params [required, String] :feature_group_name
6553
6629
  # The name of the `FeatureGroup` you want to delete. The name must be
6554
- # unique within an AWS Region in an AWS account.
6630
+ # unique within an Amazon Web Services Region in an Amazon Web Services
6631
+ # account.
6555
6632
  #
6556
6633
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6557
6634
  #
@@ -6671,7 +6748,7 @@ module Aws::SageMaker
6671
6748
  end
6672
6749
 
6673
6750
  # Deletes a model. The `DeleteModel` API deletes only the model entry
6674
- # that was created in Amazon SageMaker when you called the CreateModel
6751
+ # that was created in Amazon SageMaker when you called the `CreateModel`
6675
6752
  # API. It does not delete model artifacts, inference code, or the IAM
6676
6753
  # role that you specified when creating the model.
6677
6754
  #
@@ -6742,8 +6819,9 @@ module Aws::SageMaker
6742
6819
  # Deletes a model package.
6743
6820
  #
6744
6821
  # A model package is used to create Amazon SageMaker models or list on
6745
- # AWS Marketplace. Buyers can subscribe to model packages listed on AWS
6746
- # Marketplace to create models in Amazon SageMaker.
6822
+ # Amazon Web Services Marketplace. Buyers can subscribe to model
6823
+ # packages listed on Amazon Web Services Marketplace to create models in
6824
+ # Amazon SageMaker.
6747
6825
  #
6748
6826
  # @option params [required, String] :model_package_name
6749
6827
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7103,9 +7181,9 @@ module Aws::SageMaker
7103
7181
 
7104
7182
  # Use this operation to delete a workforce.
7105
7183
  #
7106
- # If you want to create a new workforce in an AWS Region where a
7107
- # workforce already exists, use this operation to delete the existing
7108
- # workforce and then use to create a new workforce.
7184
+ # If you want to create a new workforce in an Amazon Web Services Region
7185
+ # where a workforce already exists, use this operation to delete the
7186
+ # existing workforce and then use to create a new workforce.
7109
7187
  #
7110
7188
  # If a private workforce contains one or more work teams, you must use
7111
7189
  # the operation to delete all work teams before you delete the
@@ -7319,8 +7397,10 @@ module Aws::SageMaker
7319
7397
  # resp.inference_specification.containers[0].image_digest #=> String
7320
7398
  # resp.inference_specification.containers[0].model_data_url #=> String
7321
7399
  # resp.inference_specification.containers[0].product_id #=> String
7400
+ # resp.inference_specification.containers[0].environment #=> Hash
7401
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
7322
7402
  # resp.inference_specification.supported_transform_instance_types #=> Array
7323
- # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
7403
+ # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7324
7404
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
7325
7405
  # resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
7326
7406
  # resp.inference_specification.supported_content_types #=> Array
@@ -7371,7 +7451,7 @@ module Aws::SageMaker
7371
7451
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
7372
7452
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
7373
7453
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
7374
- # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
7454
+ # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7375
7455
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
7376
7456
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
7377
7457
  # resp.algorithm_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -7717,6 +7797,7 @@ module Aws::SageMaker
7717
7797
  # * {Types::DescribeCompilationJobResponse#compilation_start_time #compilation_start_time} => Time
7718
7798
  # * {Types::DescribeCompilationJobResponse#compilation_end_time #compilation_end_time} => Time
7719
7799
  # * {Types::DescribeCompilationJobResponse#stopping_condition #stopping_condition} => Types::StoppingCondition
7800
+ # * {Types::DescribeCompilationJobResponse#inference_image #inference_image} => String
7720
7801
  # * {Types::DescribeCompilationJobResponse#creation_time #creation_time} => Time
7721
7802
  # * {Types::DescribeCompilationJobResponse#last_modified_time #last_modified_time} => Time
7722
7803
  # * {Types::DescribeCompilationJobResponse#failure_reason #failure_reason} => String
@@ -7725,6 +7806,7 @@ module Aws::SageMaker
7725
7806
  # * {Types::DescribeCompilationJobResponse#role_arn #role_arn} => String
7726
7807
  # * {Types::DescribeCompilationJobResponse#input_config #input_config} => Types::InputConfig
7727
7808
  # * {Types::DescribeCompilationJobResponse#output_config #output_config} => Types::OutputConfig
7809
+ # * {Types::DescribeCompilationJobResponse#vpc_config #vpc_config} => Types::NeoVpcConfig
7728
7810
  #
7729
7811
  # @example Request syntax with placeholder values
7730
7812
  #
@@ -7741,6 +7823,7 @@ module Aws::SageMaker
7741
7823
  # resp.compilation_end_time #=> Time
7742
7824
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
7743
7825
  # resp.stopping_condition.max_wait_time_in_seconds #=> Integer
7826
+ # resp.inference_image #=> String
7744
7827
  # resp.creation_time #=> Time
7745
7828
  # resp.last_modified_time #=> Time
7746
7829
  # resp.failure_reason #=> String
@@ -7752,12 +7835,16 @@ module Aws::SageMaker
7752
7835
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7753
7836
  # resp.input_config.framework_version #=> String
7754
7837
  # resp.output_config.s3_output_location #=> String
7755
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7838
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7756
7839
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7757
7840
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7758
7841
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
7759
7842
  # resp.output_config.compiler_options #=> String
7760
7843
  # resp.output_config.kms_key_id #=> String
7844
+ # resp.vpc_config.security_group_ids #=> Array
7845
+ # resp.vpc_config.security_group_ids[0] #=> String
7846
+ # resp.vpc_config.subnets #=> Array
7847
+ # resp.vpc_config.subnets[0] #=> String
7761
7848
  #
7762
7849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
7763
7850
  #
@@ -7879,7 +7966,7 @@ module Aws::SageMaker
7879
7966
  # resp.data_quality_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
7880
7967
  # resp.data_quality_job_output_config.kms_key_id #=> String
7881
7968
  # resp.job_resources.cluster_config.instance_count #=> Integer
7882
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
7969
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7883
7970
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
7884
7971
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
7885
7972
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -7986,6 +8073,8 @@ module Aws::SageMaker
7986
8073
  # resp.device_fleet_arn #=> String
7987
8074
  # resp.output_config.s3_output_location #=> String
7988
8075
  # resp.output_config.kms_key_id #=> String
8076
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8077
+ # resp.output_config.preset_deployment_config #=> String
7989
8078
  # resp.description #=> String
7990
8079
  # resp.creation_time #=> Time
7991
8080
  # resp.last_modified_time #=> Time
@@ -8101,6 +8190,7 @@ module Aws::SageMaker
8101
8190
  # * {Types::DescribeEdgePackagingJobResponse#last_modified_time #last_modified_time} => Time
8102
8191
  # * {Types::DescribeEdgePackagingJobResponse#model_artifact #model_artifact} => String
8103
8192
  # * {Types::DescribeEdgePackagingJobResponse#model_signature #model_signature} => String
8193
+ # * {Types::DescribeEdgePackagingJobResponse#preset_deployment_output #preset_deployment_output} => Types::EdgePresetDeploymentOutput
8104
8194
  #
8105
8195
  # @example Request syntax with placeholder values
8106
8196
  #
@@ -8118,6 +8208,8 @@ module Aws::SageMaker
8118
8208
  # resp.role_arn #=> String
8119
8209
  # resp.output_config.s3_output_location #=> String
8120
8210
  # resp.output_config.kms_key_id #=> String
8211
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8212
+ # resp.output_config.preset_deployment_config #=> String
8121
8213
  # resp.resource_key #=> String
8122
8214
  # resp.edge_packaging_job_status #=> String, one of "STARTING", "INPROGRESS", "COMPLETED", "FAILED", "STOPPING", "STOPPED"
8123
8215
  # resp.edge_packaging_job_status_message #=> String
@@ -8125,6 +8217,10 @@ module Aws::SageMaker
8125
8217
  # resp.last_modified_time #=> Time
8126
8218
  # resp.model_artifact #=> String
8127
8219
  # resp.model_signature #=> String
8220
+ # resp.preset_deployment_output.type #=> String, one of "GreengrassV2Component"
8221
+ # resp.preset_deployment_output.artifact #=> String
8222
+ # resp.preset_deployment_output.status #=> String, one of "COMPLETED", "FAILED"
8223
+ # resp.preset_deployment_output.status_message #=> String
8128
8224
  #
8129
8225
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJob AWS API Documentation
8130
8226
  #
@@ -8966,7 +9062,8 @@ module Aws::SageMaker
8966
9062
  #
8967
9063
  # @option params [required, String] :job_definition_name
8968
9064
  # The name of the model bias job definition. The name must be unique
8969
- # within an AWS Region in the AWS account.
9065
+ # within an Amazon Web Services Region in the Amazon Web Services
9066
+ # account.
8970
9067
  #
8971
9068
  # @return [Types::DescribeModelBiasJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8972
9069
  #
@@ -9016,7 +9113,7 @@ module Aws::SageMaker
9016
9113
  # resp.model_bias_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9017
9114
  # resp.model_bias_job_output_config.kms_key_id #=> String
9018
9115
  # resp.job_resources.cluster_config.instance_count #=> Integer
9019
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9116
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9020
9117
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9021
9118
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9022
9119
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9041,7 +9138,8 @@ module Aws::SageMaker
9041
9138
  #
9042
9139
  # @option params [required, String] :job_definition_name
9043
9140
  # The name of the model explainability job definition. The name must be
9044
- # unique within an AWS Region in the AWS account.
9141
+ # unique within an Amazon Web Services Region in the Amazon Web Services
9142
+ # account.
9045
9143
  #
9046
9144
  # @return [Types::DescribeModelExplainabilityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9047
9145
  #
@@ -9090,7 +9188,7 @@ module Aws::SageMaker
9090
9188
  # resp.model_explainability_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9091
9189
  # resp.model_explainability_job_output_config.kms_key_id #=> String
9092
9190
  # resp.job_resources.cluster_config.instance_count #=> Integer
9093
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9191
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9094
9192
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9095
9193
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9096
9194
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9112,10 +9210,11 @@ module Aws::SageMaker
9112
9210
  end
9113
9211
 
9114
9212
  # Returns a description of the specified model package, which is used to
9115
- # create Amazon SageMaker models or list them on AWS Marketplace.
9213
+ # create Amazon SageMaker models or list them on Amazon Web Services
9214
+ # Marketplace.
9116
9215
  #
9117
9216
  # To create models in Amazon SageMaker, buyers can subscribe to model
9118
- # packages listed on AWS Marketplace.
9217
+ # packages listed on Amazon Web Services Marketplace.
9119
9218
  #
9120
9219
  # @option params [required, String] :model_package_name
9121
9220
  # The name or Amazon Resource Name (ARN) of the model package to
@@ -9166,8 +9265,10 @@ module Aws::SageMaker
9166
9265
  # resp.inference_specification.containers[0].image_digest #=> String
9167
9266
  # resp.inference_specification.containers[0].model_data_url #=> String
9168
9267
  # resp.inference_specification.containers[0].product_id #=> String
9268
+ # resp.inference_specification.containers[0].environment #=> Hash
9269
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
9169
9270
  # resp.inference_specification.supported_transform_instance_types #=> Array
9170
- # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9271
+ # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9171
9272
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
9172
9273
  # resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
9173
9274
  # resp.inference_specification.supported_content_types #=> Array
@@ -9194,7 +9295,7 @@ module Aws::SageMaker
9194
9295
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
9195
9296
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
9196
9297
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
9197
- # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9298
+ # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9198
9299
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
9199
9300
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
9200
9301
  # resp.model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -9292,7 +9393,7 @@ module Aws::SageMaker
9292
9393
  #
9293
9394
  # @option params [required, String] :job_definition_name
9294
9395
  # The name of the model quality job. The name must be unique within an
9295
- # AWS Region in the AWS account.
9396
+ # Amazon Web Services Region in the Amazon Web Services account.
9296
9397
  #
9297
9398
  # @return [Types::DescribeModelQualityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9298
9399
  #
@@ -9348,7 +9449,7 @@ module Aws::SageMaker
9348
9449
  # resp.model_quality_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9349
9450
  # resp.model_quality_job_output_config.kms_key_id #=> String
9350
9451
  # resp.job_resources.cluster_config.instance_count #=> Integer
9351
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9452
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9352
9453
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9353
9454
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9354
9455
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9423,7 +9524,7 @@ module Aws::SageMaker
9423
9524
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9424
9525
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.kms_key_id #=> String
9425
9526
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_count #=> Integer
9426
- # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9527
+ # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9427
9528
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_size_in_gb #=> Integer
9428
9529
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_kms_key_id #=> String
9429
9530
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.image_uri #=> String
@@ -9729,8 +9830,8 @@ module Aws::SageMaker
9729
9830
  # Returns a description of a processing job.
9730
9831
  #
9731
9832
  # @option params [required, String] :processing_job_name
9732
- # The name of the processing job. The name must be unique within an AWS
9733
- # Region in the AWS account.
9833
+ # The name of the processing job. The name must be unique within an
9834
+ # Amazon Web Services Region in the Amazon Web Services account.
9734
9835
  #
9735
9836
  # @return [Types::DescribeProcessingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9736
9837
  #
@@ -9803,7 +9904,7 @@ module Aws::SageMaker
9803
9904
  # resp.processing_output_config.kms_key_id #=> String
9804
9905
  # resp.processing_job_name #=> String
9805
9906
  # resp.processing_resources.cluster_config.instance_count #=> Integer
9806
- # resp.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9907
+ # resp.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9807
9908
  # resp.processing_resources.cluster_config.volume_size_in_gb #=> Integer
9808
9909
  # resp.processing_resources.cluster_config.volume_kms_key_id #=> String
9809
9910
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
@@ -9903,7 +10004,8 @@ module Aws::SageMaker
9903
10004
  end
9904
10005
 
9905
10006
  # Gets information about a work team provided by a vendor. It returns
9906
- # details about the subscription with a vendor in the AWS Marketplace.
10007
+ # details about the subscription with a vendor in the Amazon Web
10008
+ # Services Marketplace.
9907
10009
  #
9908
10010
  # @option params [required, String] :workteam_arn
9909
10011
  # The Amazon Resource Name (ARN) of the subscribed work team to
@@ -10081,7 +10183,7 @@ module Aws::SageMaker
10081
10183
  # resp.debug_rule_configurations[0].local_path #=> String
10082
10184
  # resp.debug_rule_configurations[0].s3_output_path #=> String
10083
10185
  # resp.debug_rule_configurations[0].rule_evaluator_image #=> String
10084
- # resp.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
10186
+ # resp.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10085
10187
  # resp.debug_rule_configurations[0].volume_size_in_gb #=> Integer
10086
10188
  # resp.debug_rule_configurations[0].rule_parameters #=> Hash
10087
10189
  # resp.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -10102,7 +10204,7 @@ module Aws::SageMaker
10102
10204
  # resp.profiler_rule_configurations[0].local_path #=> String
10103
10205
  # resp.profiler_rule_configurations[0].s3_output_path #=> String
10104
10206
  # resp.profiler_rule_configurations[0].rule_evaluator_image #=> String
10105
- # resp.profiler_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
10207
+ # resp.profiler_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10106
10208
  # resp.profiler_rule_configurations[0].volume_size_in_gb #=> Integer
10107
10209
  # resp.profiler_rule_configurations[0].rule_parameters #=> Hash
10108
10210
  # resp.profiler_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -10188,7 +10290,7 @@ module Aws::SageMaker
10188
10290
  # resp.transform_output.accept #=> String
10189
10291
  # resp.transform_output.assemble_with #=> String, one of "None", "Line"
10190
10292
  # resp.transform_output.kms_key_id #=> String
10191
- # resp.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
10293
+ # resp.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10192
10294
  # resp.transform_resources.instance_count #=> Integer
10193
10295
  # resp.transform_resources.volume_kms_key_id #=> String
10194
10296
  # resp.creation_time #=> Time
@@ -10622,6 +10724,8 @@ module Aws::SageMaker
10622
10724
  # resp.device_fleet_name #=> String
10623
10725
  # resp.output_config.s3_output_location #=> String
10624
10726
  # resp.output_config.kms_key_id #=> String
10727
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
10728
+ # resp.output_config.preset_deployment_config #=> String
10625
10729
  # resp.description #=> String
10626
10730
  # resp.report_generated #=> Time
10627
10731
  # resp.device_stats.connected_device_count #=> Integer
@@ -10648,8 +10752,8 @@ module Aws::SageMaker
10648
10752
 
10649
10753
  # Gets a resource policy that manages access for a model group. For
10650
10754
  # information about resource policies, see [Identity-based policies and
10651
- # resource-based policies][1] in the *AWS Identity and Access Management
10652
- # User Guide.*.
10755
+ # resource-based policies][1] in the *Amazon Web Services Identity and
10756
+ # Access Management User Guide.*.
10653
10757
  #
10654
10758
  #
10655
10759
  #
@@ -11504,7 +11608,7 @@ module Aws::SageMaker
11504
11608
  # resp.compilation_job_summaries[0].creation_time #=> Time
11505
11609
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11506
11610
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11507
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11611
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11508
11612
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11509
11613
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11510
11614
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -12892,7 +12996,7 @@ module Aws::SageMaker
12892
12996
  req.send_request(options)
12893
12997
  end
12894
12998
 
12895
- # Gets a list of the model groups in your AWS account.
12999
+ # Gets a list of the model groups in your Amazon Web Services account.
12896
13000
  #
12897
13001
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
12898
13002
  # A filter that returns only model groups created after the specified
@@ -13123,7 +13227,7 @@ module Aws::SageMaker
13123
13227
  req.send_request(options)
13124
13228
  end
13125
13229
 
13126
- # Lists models created with the CreateModel API.
13230
+ # Lists models created with the `CreateModel` API.
13127
13231
  #
13128
13232
  # @option params [String] :sort_by
13129
13233
  # Sorts the list of results. The default is `CreationTime`.
@@ -13469,7 +13573,7 @@ module Aws::SageMaker
13469
13573
  end
13470
13574
 
13471
13575
  # Returns a list of the Amazon SageMaker notebook instances in the
13472
- # requester's account in an AWS Region.
13576
+ # requester's account in an Amazon Web Services Region.
13473
13577
  #
13474
13578
  # @option params [String] :next_token
13475
13579
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -13627,6 +13731,7 @@ module Aws::SageMaker
13627
13731
  # resp.pipeline_execution_steps[0].metadata.training_job.arn #=> String
13628
13732
  # resp.pipeline_execution_steps[0].metadata.processing_job.arn #=> String
13629
13733
  # resp.pipeline_execution_steps[0].metadata.transform_job.arn #=> String
13734
+ # resp.pipeline_execution_steps[0].metadata.tuning_job.arn #=> String
13630
13735
  # resp.pipeline_execution_steps[0].metadata.model.arn #=> String
13631
13736
  # resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
13632
13737
  # resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
@@ -13907,7 +14012,7 @@ module Aws::SageMaker
13907
14012
  req.send_request(options)
13908
14013
  end
13909
14014
 
13910
- # Gets a list of the projects in an AWS account.
14015
+ # Gets a list of the projects in an Amazon Web Services account.
13911
14016
  #
13912
14017
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
13913
14018
  # A filter that returns the projects that were created after a specified
@@ -13974,9 +14079,9 @@ module Aws::SageMaker
13974
14079
  req.send_request(options)
13975
14080
  end
13976
14081
 
13977
- # Gets a list of the work teams that you are subscribed to in the AWS
13978
- # Marketplace. The list may be empty if no work team satisfies the
13979
- # filter specified in the `NameContains` parameter.
14082
+ # Gets a list of the work teams that you are subscribed to in the Amazon
14083
+ # Web Services Marketplace. The list may be empty if no work team
14084
+ # satisfies the filter specified in the `NameContains` parameter.
13980
14085
  #
13981
14086
  # @option params [String] :name_contains
13982
14087
  # A string in the work team name. This filter returns only work teams
@@ -14087,7 +14192,8 @@ module Aws::SageMaker
14087
14192
  # from the most current to the oldest). Next, those with a status of
14088
14193
  # `InProgress` are returned.
14089
14194
  #
14090
- # You can quickly test the API using the following AWS CLI code.
14195
+ # You can quickly test the API using the following Amazon Web Services
14196
+ # CLI code.
14091
14197
  #
14092
14198
  # `aws sagemaker list-training-jobs --max-results 100 --status-equals
14093
14199
  # InProgress`
@@ -14569,9 +14675,9 @@ module Aws::SageMaker
14569
14675
  req.send_request(options)
14570
14676
  end
14571
14677
 
14572
- # Use this operation to list all private and vendor workforces in an AWS
14573
- # Region. Note that you can only have one private workforce per AWS
14574
- # Region.
14678
+ # Use this operation to list all private and vendor workforces in an
14679
+ # Amazon Web Services Region. Note that you can only have one private
14680
+ # workforce per Amazon Web Services Region.
14575
14681
  #
14576
14682
  # @option params [String] :sort_by
14577
14683
  # Sort workforces using the workforce name or creation date.
@@ -14708,8 +14814,8 @@ module Aws::SageMaker
14708
14814
 
14709
14815
  # Adds a resouce policy to control access to a model group. For
14710
14816
  # information about resoure policies, see [Identity-based policies and
14711
- # resource-based policies][1] in the *AWS Identity and Access Management
14712
- # User Guide.*.
14817
+ # resource-based policies][1] in the *Amazon Web Services Identity and
14818
+ # Access Management User Guide.*.
14713
14819
  #
14714
14820
  #
14715
14821
  #
@@ -15005,7 +15111,7 @@ module Aws::SageMaker
15005
15111
  # resp.results[0].training_job.debug_rule_configurations[0].local_path #=> String
15006
15112
  # resp.results[0].training_job.debug_rule_configurations[0].s3_output_path #=> String
15007
15113
  # resp.results[0].training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
15008
- # resp.results[0].training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15114
+ # resp.results[0].training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15009
15115
  # resp.results[0].training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
15010
15116
  # resp.results[0].training_job.debug_rule_configurations[0].rule_parameters #=> Hash
15011
15117
  # resp.results[0].training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -15194,7 +15300,7 @@ module Aws::SageMaker
15194
15300
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].local_path #=> String
15195
15301
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].s3_output_path #=> String
15196
15302
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
15197
- # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15303
+ # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15198
15304
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
15199
15305
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters #=> Hash
15200
15306
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -15251,7 +15357,7 @@ module Aws::SageMaker
15251
15357
  # resp.results[0].trial_component.source_detail.processing_job.processing_output_config.kms_key_id #=> String
15252
15358
  # resp.results[0].trial_component.source_detail.processing_job.processing_job_name #=> String
15253
15359
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_count #=> Integer
15254
- # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15360
+ # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15255
15361
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.volume_size_in_gb #=> Integer
15256
15362
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.volume_kms_key_id #=> String
15257
15363
  # resp.results[0].trial_component.source_detail.processing_job.stopping_condition.max_runtime_in_seconds #=> Integer
@@ -15307,7 +15413,7 @@ module Aws::SageMaker
15307
15413
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.accept #=> String
15308
15414
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.assemble_with #=> String, one of "None", "Line"
15309
15415
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.kms_key_id #=> String
15310
- # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15416
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15311
15417
  # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_count #=> Integer
15312
15418
  # resp.results[0].trial_component.source_detail.transform_job.transform_resources.volume_kms_key_id #=> String
15313
15419
  # resp.results[0].trial_component.source_detail.transform_job.creation_time #=> Time
@@ -15381,7 +15487,7 @@ module Aws::SageMaker
15381
15487
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
15382
15488
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.kms_key_id #=> String
15383
15489
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_count #=> Integer
15384
- # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15490
+ # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15385
15491
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_size_in_gb #=> Integer
15386
15492
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_kms_key_id #=> String
15387
15493
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.image_uri #=> String
@@ -15432,8 +15538,10 @@ module Aws::SageMaker
15432
15538
  # resp.results[0].model_package.inference_specification.containers[0].image_digest #=> String
15433
15539
  # resp.results[0].model_package.inference_specification.containers[0].model_data_url #=> String
15434
15540
  # resp.results[0].model_package.inference_specification.containers[0].product_id #=> String
15541
+ # resp.results[0].model_package.inference_specification.containers[0].environment #=> Hash
15542
+ # resp.results[0].model_package.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
15435
15543
  # resp.results[0].model_package.inference_specification.supported_transform_instance_types #=> Array
15436
- # resp.results[0].model_package.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15544
+ # resp.results[0].model_package.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15437
15545
  # resp.results[0].model_package.inference_specification.supported_realtime_inference_instance_types #=> Array
15438
15546
  # resp.results[0].model_package.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
15439
15547
  # resp.results[0].model_package.inference_specification.supported_content_types #=> Array
@@ -15460,7 +15568,7 @@ module Aws::SageMaker
15460
15568
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
15461
15569
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
15462
15570
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
15463
- # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15571
+ # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15464
15572
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
15465
15573
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
15466
15574
  # resp.results[0].model_package.model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -15976,6 +16084,20 @@ module Aws::SageMaker
15976
16084
 
15977
16085
  # Stops a pipeline execution.
15978
16086
  #
16087
+ # A pipeline execution won't stop while a callback step is running.
16088
+ # When you call `StopPipelineExecution` on a pipeline execution with a
16089
+ # running callback step, SageMaker Pipelines sends an additional Amazon
16090
+ # SQS message to the specified SQS queue. The body of the SQS message
16091
+ # contains a "Status" field which is set to "Stopping".
16092
+ #
16093
+ # You should add logic to your Amazon SQS message consumer to take any
16094
+ # needed action (for example, resource cleanup) upon receipt of the
16095
+ # message followed by a call to `SendPipelineExecutionStepSuccess` or
16096
+ # `SendPipelineExecutionStepFailure`.
16097
+ #
16098
+ # Only when SageMaker Pipelines receives one of these calls will it stop
16099
+ # the pipeline execution.
16100
+ #
15979
16101
  # @option params [required, String] :pipeline_execution_arn
15980
16102
  # The Amazon Resource Name (ARN) of the pipeline execution.
15981
16103
  #
@@ -16229,10 +16351,10 @@ module Aws::SageMaker
16229
16351
  #
16230
16352
  # @option params [Types::GitConfigForUpdate] :git_config
16231
16353
  # The configuration of the git repository, including the URL and the
16232
- # Amazon Resource Name (ARN) of the AWS Secrets Manager secret that
16233
- # contains the credentials used to access the repository. The secret
16234
- # must have a staging label of `AWSCURRENT` and must be in the following
16235
- # format:
16354
+ # Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
16355
+ # secret that contains the credentials used to access the repository.
16356
+ # The secret must have a staging label of `AWSCURRENT` and must be in
16357
+ # the following format:
16236
16358
  #
16237
16359
  # `\{"username": UserName, "password": Password\}`
16238
16360
  #
@@ -16318,6 +16440,14 @@ module Aws::SageMaker
16318
16440
  # @option params [required, Types::EdgeOutputConfig] :output_config
16319
16441
  # Output configuration for storing sample data collected by the fleet.
16320
16442
  #
16443
+ # @option params [Boolean] :enable_iot_role_alias
16444
+ # Whether to create an Amazon Web Services IoT Role Alias during device
16445
+ # fleet creation. The name of the role alias generated will match this
16446
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
16447
+ #
16448
+ # For example, if your device fleet is called "demo-fleet", the name
16449
+ # of the role alias will be "SageMakerEdge-demo-fleet".
16450
+ #
16321
16451
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
16322
16452
  #
16323
16453
  # @example Request syntax with placeholder values
@@ -16329,7 +16459,10 @@ module Aws::SageMaker
16329
16459
  # output_config: { # required
16330
16460
  # s3_output_location: "S3Uri", # required
16331
16461
  # kms_key_id: "KmsKeyId",
16462
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
16463
+ # preset_deployment_config: "String",
16332
16464
  # },
16465
+ # enable_iot_role_alias: false,
16333
16466
  # })
16334
16467
  #
16335
16468
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleet AWS API Documentation
@@ -16713,7 +16846,7 @@ module Aws::SageMaker
16713
16846
  #
16714
16847
  # @option params [required, String] :monitoring_schedule_name
16715
16848
  # The name of the monitoring schedule. The name must be unique within an
16716
- # AWS Region within an AWS account.
16849
+ # Amazon Web Services Region within an Amazon Web Services account.
16717
16850
  #
16718
16851
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
16719
16852
  # The configuration object that specifies the monitoring schedule and
@@ -16772,7 +16905,7 @@ module Aws::SageMaker
16772
16905
  # monitoring_resources: { # required
16773
16906
  # cluster_config: { # required
16774
16907
  # instance_count: 1, # required
16775
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
16908
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
16776
16909
  # volume_size_in_gb: 1, # required
16777
16910
  # volume_kms_key_id: "KmsKeyId",
16778
16911
  # },
@@ -16872,10 +17005,11 @@ module Aws::SageMaker
16872
17005
  # The Git repository to associate with the notebook instance as its
16873
17006
  # default code repository. This can be either the name of a Git
16874
17007
  # repository stored as a resource in your account, or the URL of a Git
16875
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
16876
- # you open a notebook instance, it opens in the directory that contains
16877
- # this repository. For more information, see [Associating Git
16878
- # Repositories with Amazon SageMaker Notebook Instances][2].
17008
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
17009
+ # repository. When you open a notebook instance, it opens in the
17010
+ # directory that contains this repository. For more information, see
17011
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17012
+ # Instances][2].
16879
17013
  #
16880
17014
  #
16881
17015
  #
@@ -16886,10 +17020,11 @@ module Aws::SageMaker
16886
17020
  # An array of up to three Git repositories to associate with the
16887
17021
  # notebook instance. These can be either the names of Git repositories
16888
17022
  # stored as resources in your account, or the URL of Git repositories in
16889
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
16890
- # are cloned at the same level as the default repository of your
16891
- # notebook instance. For more information, see [Associating Git
16892
- # Repositories with Amazon SageMaker Notebook Instances][2].
17023
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
17024
+ # These repositories are cloned at the same level as the default
17025
+ # repository of your notebook instance. For more information, see
17026
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17027
+ # Instances][2].
16893
17028
  #
16894
17029
  #
16895
17030
  #
@@ -17122,7 +17257,7 @@ module Aws::SageMaker
17122
17257
  # local_path: "DirectoryPath",
17123
17258
  # s3_output_path: "S3Uri",
17124
17259
  # rule_evaluator_image: "AlgorithmImage", # required
17125
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
17260
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
17126
17261
  # volume_size_in_gb: 1,
17127
17262
  # rule_parameters: {
17128
17263
  # "ConfigKey" => "ConfigValue",
@@ -17550,7 +17685,7 @@ module Aws::SageMaker
17550
17685
  params: params,
17551
17686
  config: config)
17552
17687
  context[:gem_name] = 'aws-sdk-sagemaker'
17553
- context[:gem_version] = '1.88.0'
17688
+ context[:gem_version] = '1.93.0'
17554
17689
  Seahorse::Client::Request.new(handlers, context)
17555
17690
  end
17556
17691