aws-sdk-sagemaker 1.87.0 → 1.92.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
4
- data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
3
+ metadata.gz: 04d894bf01b7b45baf2fc484d1b5cd4c47e7e212acfc791e1aa8c6c1831a263f
4
+ data.tar.gz: 3dc642b0df15b81d4753ec4abfd64b366864e8a24a36c6c81bea13052d87a882
5
5
  SHA512:
6
- metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
7
- data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
6
+ metadata.gz: '01809f9724b6dd37f11f48e158a431d281b488a40c62eef37d71d6139b09c2357d987edc87da5a6ac1e3cf979f17ecc99c5bc9ce09d1da0feffc0669236b8cd9'
7
+ data.tar.gz: 0fa5edb60b80a01f965bf0328e654a4b574f35a605b8ef214ab3411ec6657ccaa9b22cc8dad713d2fb9cc8dfc01c01a7aa029822db8e695cb9a2c673695a3a3c
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.92.0 (2021-07-01)
5
+ ------------------
6
+
7
+ * Feature - SageMaker model registry now supports up to 5 containers and associated environment variables.
8
+
9
+ 1.91.0 (2021-06-28)
10
+ ------------------
11
+
12
+ * Feature - Sagemaker Neo now supports running compilation jobs using customer's Amazon VPC
13
+
14
+ 1.90.0 (2021-06-17)
15
+ ------------------
16
+
17
+ * Feature - Enable ml.g4dn instance types for SageMaker Batch Transform and SageMaker Processing
18
+
19
+ 1.89.0 (2021-06-10)
20
+ ------------------
21
+
22
+ * Feature - Using SageMaker Edge Manager with AWS IoT Greengrass v2 simplifies accessing, maintaining, and deploying models to your devices. You can now create deployable IoT Greengrass components during edge packaging jobs. You can choose to create a device fleet with or without creating an AWS IoT role alias.
23
+
24
+ 1.88.0 (2021-06-07)
25
+ ------------------
26
+
27
+ * Feature - AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
28
+
4
29
  1.87.0 (2021-05-05)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.87.0
1
+ 1.92.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.87.0'
52
+ GEM_VERSION = '1.92.0'
53
53
 
54
54
  end
@@ -405,7 +405,7 @@ module Aws::SageMaker
405
405
  #
406
406
  # Each tag consists of a key and an optional value. Tag keys must be
407
407
  # unique per resource. For more information about tags, see For more
408
- # information, see [AWS Tagging Strategies][1].
408
+ # information, see [Amazon Web Services Tagging Strategies][1].
409
409
  #
410
410
  # <note markdown="1"> Tags that you add to a hyperparameter tuning job by calling this API
411
411
  # are also added to any training jobs that the hyperparameter tuning job
@@ -438,9 +438,10 @@ module Aws::SageMaker
438
438
  # The Amazon Resource Name (ARN) of the resource that you want to tag.
439
439
  #
440
440
  # @option params [required, Array<Types::Tag>] :tags
441
- # An array of key-value pairs. You can use tags to categorize your AWS
442
- # resources in different ways, for example, by purpose, owner, or
443
- # environment. For more information, see [Tagging AWS Resources][1].
441
+ # An array of key-value pairs. You can use tags to categorize your
442
+ # Amazon Web Services resources in different ways, for example, by
443
+ # purpose, owner, or environment. For more information, see [Tagging
444
+ # Amazon Web Services Resources][1].
444
445
  #
445
446
  #
446
447
  #
@@ -531,8 +532,8 @@ module Aws::SageMaker
531
532
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
532
533
  #
533
534
  # @option params [required, String] :action_name
534
- # The name of the action. Must be unique to your account in an AWS
535
- # Region.
535
+ # The name of the action. Must be unique to your account in an Amazon
536
+ # Web Services Region.
536
537
  #
537
538
  # @option params [required, Types::ActionSource] :source
538
539
  # The source type, ID, and URI.
@@ -602,7 +603,7 @@ module Aws::SageMaker
602
603
  end
603
604
 
604
605
  # Create a machine learning algorithm that you can use in Amazon
605
- # SageMaker and list in the AWS Marketplace.
606
+ # SageMaker and list in the Amazon Web Services Marketplace.
606
607
  #
607
608
  # @option params [required, String] :algorithm_name
608
609
  # The name of the algorithm.
@@ -652,13 +653,14 @@ module Aws::SageMaker
652
653
  # the algorithm's inference code.
653
654
  #
654
655
  # @option params [Boolean] :certify_for_marketplace
655
- # Whether to certify the algorithm so that it can be listed in AWS
656
- # Marketplace.
656
+ # Whether to certify the algorithm so that it can be listed in Amazon
657
+ # Web Services Marketplace.
657
658
  #
658
659
  # @option params [Array<Types::Tag>] :tags
659
- # An array of key-value pairs. You can use tags to categorize your AWS
660
- # resources in different ways, for example, by purpose, owner, or
661
- # environment. For more information, see [Tagging AWS Resources][1].
660
+ # An array of key-value pairs. You can use tags to categorize your
661
+ # Amazon Web Services resources in different ways, for example, by
662
+ # purpose, owner, or environment. For more information, see [Tagging
663
+ # Amazon Web Services Resources][1].
662
664
  #
663
665
  #
664
666
  #
@@ -732,9 +734,12 @@ module Aws::SageMaker
732
734
  # image_digest: "ImageDigest",
733
735
  # model_data_url: "Url",
734
736
  # product_id: "ProductId",
737
+ # environment: {
738
+ # "EnvironmentKey" => "EnvironmentValue",
739
+ # },
735
740
  # },
736
741
  # ],
737
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
742
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
738
743
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
739
744
  # supported_content_types: ["ContentType"], # required
740
745
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -815,7 +820,7 @@ module Aws::SageMaker
815
820
  # kms_key_id: "KmsKeyId",
816
821
  # },
817
822
  # transform_resources: { # required
818
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
823
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
819
824
  # instance_count: 1, # required
820
825
  # volume_kms_key_id: "KmsKeyId",
821
826
  # },
@@ -982,8 +987,8 @@ module Aws::SageMaker
982
987
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
983
988
  #
984
989
  # @option params [String] :artifact_name
985
- # The name of the artifact. Must be unique to your account in an AWS
986
- # Region.
990
+ # The name of the artifact. Must be unique to your account in an Amazon
991
+ # Web Services Region.
987
992
  #
988
993
  # @option params [required, Types::ArtifactSource] :source
989
994
  # The ID, ID type, and URI of the source.
@@ -1075,10 +1080,6 @@ module Aws::SageMaker
1075
1080
  # needed to store artifacts from an AutoML job. Format(s) supported:
1076
1081
  # CSV.
1077
1082
  #
1078
- # &lt;para&gt;Specifies whether to automatically deploy the best
1079
- # &amp;ATP; model to an endpoint and the name of that endpoint if
1080
- # deployed automatically.&lt;/para&gt;
1081
- #
1082
1083
  # @option params [String] :problem_type
1083
1084
  # Defines the type of supervised learning available for the candidates.
1084
1085
  # Options include: `BinaryClassification`, `MulticlassClassification`,
@@ -1101,10 +1102,6 @@ module Aws::SageMaker
1101
1102
  # @option params [required, String] :role_arn
1102
1103
  # The ARN of the role that is used to access the data.
1103
1104
  #
1104
- # &lt;para&gt;Specifies whether to automatically deploy the best
1105
- # &amp;ATP; model to an endpoint and the name of that endpoint if
1106
- # deployed automatically.&lt;/para&gt;
1107
- #
1108
1105
  # @option params [Boolean] :generate_candidate_definitions_only
1109
1106
  # Generates possible candidates without training the models. A candidate
1110
1107
  # is a combination of data preprocessors, algorithms, and algorithm
@@ -1196,8 +1193,8 @@ module Aws::SageMaker
1196
1193
  # persists independently from the lifecycle of any notebook instances it
1197
1194
  # is associated with.
1198
1195
  #
1199
- # The repository can be hosted either in [AWS CodeCommit][1] or in any
1200
- # other Git repository.
1196
+ # The repository can be hosted either in [Amazon Web Services
1197
+ # CodeCommit][1] or in any other Git repository.
1201
1198
  #
1202
1199
  #
1203
1200
  #
@@ -1213,9 +1210,10 @@ module Aws::SageMaker
1213
1210
  # access the repository.
1214
1211
  #
1215
1212
  # @option params [Array<Types::Tag>] :tags
1216
- # An array of key-value pairs. You can use tags to categorize your AWS
1217
- # resources in different ways, for example, by purpose, owner, or
1218
- # environment. For more information, see [Tagging AWS Resources][1].
1213
+ # An array of key-value pairs. You can use tags to categorize your
1214
+ # Amazon Web Services resources in different ways, for example, by
1215
+ # purpose, owner, or environment. For more information, see [Tagging
1216
+ # Amazon Web Services Resources][1].
1219
1217
  #
1220
1218
  #
1221
1219
  #
@@ -1261,8 +1259,8 @@ module Aws::SageMaker
1261
1259
  #
1262
1260
  # If you choose to host your model using Amazon SageMaker hosting
1263
1261
  # services, you can use the resulting model artifacts as part of the
1264
- # model. You can also use the artifacts with AWS IoT Greengrass. In that
1265
- # case, deploy them as an ML resource.
1262
+ # model. You can also use the artifacts with Amazon Web Services IoT
1263
+ # Greengrass. In that case, deploy them as an ML resource.
1266
1264
  #
1267
1265
  # In the request body, you provide the following:
1268
1266
  #
@@ -1287,7 +1285,8 @@ module Aws::SageMaker
1287
1285
  #
1288
1286
  # @option params [required, String] :compilation_job_name
1289
1287
  # A name for the model compilation job. The name must be unique within
1290
- # the AWS Region and within your AWS account.
1288
+ # the Amazon Web Services Region and within your Amazon Web Services
1289
+ # account.
1291
1290
  #
1292
1291
  # @option params [required, String] :role_arn
1293
1292
  # The Amazon Resource Name (ARN) of an IAM role that enables Amazon
@@ -1321,15 +1320,26 @@ module Aws::SageMaker
1321
1320
  # Provides information about the output location for the compiled model
1322
1321
  # and the target device the model runs on.
1323
1322
  #
1323
+ # @option params [Types::NeoVpcConfig] :vpc_config
1324
+ # A VpcConfig object that specifies the VPC that you want your
1325
+ # compilation job to connect to. Control access to your models by
1326
+ # configuring the VPC. For more information, see [Protect Compilation
1327
+ # Jobs by Using an Amazon Virtual Private Cloud][1].
1328
+ #
1329
+ #
1330
+ #
1331
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
1332
+ #
1324
1333
  # @option params [required, Types::StoppingCondition] :stopping_condition
1325
1334
  # Specifies a limit to how long a model compilation job can run. When
1326
1335
  # the job reaches the time limit, Amazon SageMaker ends the compilation
1327
1336
  # job. Use this API to cap model training costs.
1328
1337
  #
1329
1338
  # @option params [Array<Types::Tag>] :tags
1330
- # An array of key-value pairs. You can use tags to categorize your AWS
1331
- # resources in different ways, for example, by purpose, owner, or
1332
- # environment. For more information, see [Tagging AWS Resources][1].
1339
+ # An array of key-value pairs. You can use tags to categorize your
1340
+ # Amazon Web Services resources in different ways, for example, by
1341
+ # purpose, owner, or environment. For more information, see [Tagging
1342
+ # Amazon Web Services Resources][1].
1333
1343
  #
1334
1344
  #
1335
1345
  #
@@ -1352,7 +1362,7 @@ module Aws::SageMaker
1352
1362
  # },
1353
1363
  # output_config: { # required
1354
1364
  # s3_output_location: "S3Uri", # required
1355
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1365
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, amba_cv25, x86_win32, x86_win64, coreml, jacinto_tda4vm
1356
1366
  # target_platform: {
1357
1367
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1358
1368
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1361,6 +1371,10 @@ module Aws::SageMaker
1361
1371
  # compiler_options: "CompilerOptions",
1362
1372
  # kms_key_id: "KmsKeyId",
1363
1373
  # },
1374
+ # vpc_config: {
1375
+ # security_group_ids: ["NeoVpcSecurityGroupId"], # required
1376
+ # subnets: ["NeoVpcSubnetId"], # required
1377
+ # },
1364
1378
  # stopping_condition: { # required
1365
1379
  # max_runtime_in_seconds: 1,
1366
1380
  # max_wait_time_in_seconds: 1,
@@ -1403,8 +1417,8 @@ module Aws::SageMaker
1403
1417
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
1404
1418
  #
1405
1419
  # @option params [required, String] :context_name
1406
- # The name of the context. Must be unique to your account in an AWS
1407
- # Region.
1420
+ # The name of the context. Must be unique to your account in an Amazon
1421
+ # Web Services Region.
1408
1422
  #
1409
1423
  # @option params [required, Types::ContextSource] :source
1410
1424
  # The source type, ID, and URI.
@@ -1500,8 +1514,8 @@ module Aws::SageMaker
1500
1514
  #
1501
1515
  # @option params [Array<Types::Tag>] :tags
1502
1516
  # (Optional) An array of key-value pairs. For more information, see
1503
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
1504
- # Management User Guide*.
1517
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
1518
+ # and Cost Management User Guide*.
1505
1519
  #
1506
1520
  #
1507
1521
  #
@@ -1563,7 +1577,7 @@ module Aws::SageMaker
1563
1577
  # job_resources: { # required
1564
1578
  # cluster_config: { # required
1565
1579
  # instance_count: 1, # required
1566
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
1580
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1567
1581
  # volume_size_in_gb: 1, # required
1568
1582
  # volume_kms_key_id: "KmsKeyId",
1569
1583
  # },
@@ -1607,8 +1621,8 @@ module Aws::SageMaker
1607
1621
  # The name of the fleet that the device belongs to.
1608
1622
  #
1609
1623
  # @option params [String] :role_arn
1610
- # The Amazon Resource Name (ARN) that has access to AWS Internet of
1611
- # Things (IoT).
1624
+ # The Amazon Resource Name (ARN) that has access to Amazon Web Services
1625
+ # Internet of Things (IoT).
1612
1626
  #
1613
1627
  # @option params [String] :description
1614
1628
  # A description of the fleet.
@@ -1620,6 +1634,14 @@ module Aws::SageMaker
1620
1634
  # @option params [Array<Types::Tag>] :tags
1621
1635
  # Creates tags for the specified fleet.
1622
1636
  #
1637
+ # @option params [Boolean] :enable_iot_role_alias
1638
+ # Whether to create an Amazon Web Services IoT Role Alias during device
1639
+ # fleet creation. The name of the role alias generated will match this
1640
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
1641
+ #
1642
+ # For example, if your device fleet is called "demo-fleet", the name
1643
+ # of the role alias will be "SageMakerEdge-demo-fleet".
1644
+ #
1623
1645
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1624
1646
  #
1625
1647
  # @example Request syntax with placeholder values
@@ -1631,6 +1653,8 @@ module Aws::SageMaker
1631
1653
  # output_config: { # required
1632
1654
  # s3_output_location: "S3Uri", # required
1633
1655
  # kms_key_id: "KmsKeyId",
1656
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1657
+ # preset_deployment_config: "String",
1634
1658
  # },
1635
1659
  # tags: [
1636
1660
  # {
@@ -1638,6 +1662,7 @@ module Aws::SageMaker
1638
1662
  # value: "TagValue", # required
1639
1663
  # },
1640
1664
  # ],
1665
+ # enable_iot_role_alias: false,
1641
1666
  # })
1642
1667
  #
1643
1668
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleet AWS API Documentation
@@ -1652,9 +1677,9 @@ module Aws::SageMaker
1652
1677
  # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1653
1678
  # of an associated Amazon Elastic File System (EFS) volume, a list of
1654
1679
  # authorized users, and a variety of security, application, policy, and
1655
- # Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
1656
- # limited to one domain per region. Users within a domain can share
1657
- # notebook files and other artifacts with each other.
1680
+ # Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web
1681
+ # Services account is limited to one domain per region. Users within a
1682
+ # domain can share notebook files and other artifacts with each other.
1658
1683
  #
1659
1684
  # **EFS storage**
1660
1685
  #
@@ -1663,11 +1688,11 @@ module Aws::SageMaker
1663
1688
  # directory within the EFS volume for notebooks, Git repositories, and
1664
1689
  # data files.
1665
1690
  #
1666
- # SageMaker uses the AWS Key Management Service (AWS KMS) to encrypt the
1667
- # EFS volume attached to the domain with an AWS managed customer master
1668
- # key (CMK) by default. For more control, you can specify a customer
1669
- # managed CMK. For more information, see [Protect Data at Rest Using
1670
- # Encryption][1].
1691
+ # SageMaker uses the Amazon Web Services Key Management Service (Amazon
1692
+ # Web Services KMS) to encrypt the EFS volume attached to the domain
1693
+ # with an Amazon Web Services managed customer master key (CMK) by
1694
+ # default. For more control, you can specify a customer managed CMK. For
1695
+ # more information, see [Protect Data at Rest Using Encryption][1].
1671
1696
  #
1672
1697
  # **VPC configuration**
1673
1698
  #
@@ -1691,6 +1716,10 @@ module Aws::SageMaker
1691
1716
  # endpoint to the SageMaker API and runtime or a NAT gateway and your
1692
1717
  # security groups allow outbound connections.
1693
1718
  #
1719
+ # NFS traffic over TCP on port 2049 needs to be allowed in both inbound
1720
+ # and outbound rules in order to launch a SageMaker Studio app
1721
+ # successfully.
1722
+ #
1694
1723
  # For more information, see [Connect SageMaker Studio Notebooks to
1695
1724
  # Resources in a VPC][2].
1696
1725
  #
@@ -1744,9 +1773,10 @@ module Aws::SageMaker
1744
1773
  # This member is deprecated and replaced with `KmsKeyId`.
1745
1774
  #
1746
1775
  # @option params [String] :kms_key_id
1747
- # SageMaker uses AWS KMS to encrypt the EFS volume attached to the
1748
- # domain with an AWS managed customer master key (CMK) by default. For
1749
- # more control, specify a customer managed CMK.
1776
+ # SageMaker uses Amazon Web Services KMS to encrypt the EFS volume
1777
+ # attached to the domain with an Amazon Web Services managed customer
1778
+ # master key (CMK) by default. For more control, specify a customer
1779
+ # managed CMK.
1750
1780
  #
1751
1781
  # @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1752
1782
  #
@@ -1868,6 +1898,8 @@ module Aws::SageMaker
1868
1898
  # output_config: { # required
1869
1899
  # s3_output_location: "S3Uri", # required
1870
1900
  # kms_key_id: "KmsKeyId",
1901
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1902
+ # preset_deployment_config: "String",
1871
1903
  # },
1872
1904
  # resource_key: "KmsKeyId",
1873
1905
  # tags: [
@@ -1896,7 +1928,7 @@ module Aws::SageMaker
1896
1928
  #
1897
1929
  # For an example that calls this method when deploying a model to Amazon
1898
1930
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
1899
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
1931
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
1900
1932
  #
1901
1933
  # <note markdown="1"> You must not delete an `EndpointConfig` that is in use by an endpoint
1902
1934
  # that is live or while the `UpdateEndpoint` or `CreateEndpoint`
@@ -1905,8 +1937,8 @@ module Aws::SageMaker
1905
1937
  #
1906
1938
  # </note>
1907
1939
  #
1908
- # The endpoint name must be unique within an AWS Region in your AWS
1909
- # account.
1940
+ # The endpoint name must be unique within an Amazon Web Services Region
1941
+ # in your Amazon Web Services account.
1910
1942
  #
1911
1943
  # When it receives the request, Amazon SageMaker creates the endpoint,
1912
1944
  # launches the resources (ML compute instances), and deploys the
@@ -1933,13 +1965,14 @@ module Aws::SageMaker
1933
1965
  # DescribeEndpoint API.
1934
1966
  #
1935
1967
  # If any of the models hosted at this endpoint get model data from an
1936
- # Amazon S3 location, Amazon SageMaker uses AWS Security Token Service
1937
- # to download model artifacts from the S3 path you provided. AWS STS is
1938
- # activated in your IAM user account by default. If you previously
1939
- # deactivated AWS STS for a region, you need to reactivate AWS STS for
1968
+ # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
1969
+ # Token Service to download model artifacts from the S3 path you
1970
+ # provided. Amazon Web Services STS is activated in your IAM user
1971
+ # account by default. If you previously deactivated Amazon Web Services
1972
+ # STS for a region, you need to reactivate Amazon Web Services STS for
1940
1973
  # that region. For more information, see [Activating and Deactivating
1941
- # AWS STS in an AWS Region][3] in the *AWS Identity and Access
1942
- # Management User Guide*.
1974
+ # Amazon Web Services STS in an Amazon Web Services Region][3] in the
1975
+ # *Amazon Web Services Identity and Access Management User Guide*.
1943
1976
  #
1944
1977
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
1945
1978
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -1979,18 +2012,20 @@ module Aws::SageMaker
1979
2012
  # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html
1980
2013
  #
1981
2014
  # @option params [required, String] :endpoint_name
1982
- # The name of the endpoint.The name must be unique within an AWS Region
1983
- # in your AWS account. The name is case-insensitive in `CreateEndpoint`,
1984
- # but the case is preserved and must be matched in .
2015
+ # The name of the endpoint.The name must be unique within an Amazon Web
2016
+ # Services Region in your Amazon Web Services account. The name is
2017
+ # case-insensitive in `CreateEndpoint`, but the case is preserved and
2018
+ # must be matched in .
1985
2019
  #
1986
2020
  # @option params [required, String] :endpoint_config_name
1987
2021
  # The name of an endpoint configuration. For more information, see
1988
2022
  # CreateEndpointConfig.
1989
2023
  #
1990
2024
  # @option params [Array<Types::Tag>] :tags
1991
- # An array of key-value pairs. You can use tags to categorize your AWS
1992
- # resources in different ways, for example, by purpose, owner, or
1993
- # environment. For more information, see [Tagging AWS Resources][1].
2025
+ # An array of key-value pairs. You can use tags to categorize your
2026
+ # Amazon Web Services resources in different ways, for example, by
2027
+ # purpose, owner, or environment. For more information, see [Tagging
2028
+ # Amazon Web Services Resources][1].
1994
2029
  #
1995
2030
  #
1996
2031
  #
@@ -2051,7 +2086,7 @@ module Aws::SageMaker
2051
2086
  #
2052
2087
  # For an example that calls this method when deploying a model to Amazon
2053
2088
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
2054
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
2089
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
2055
2090
  #
2056
2091
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2057
2092
  # verify that your endpoint configuration exists. When you read data
@@ -2083,18 +2118,19 @@ module Aws::SageMaker
2083
2118
  # @option params [Types::DataCaptureConfig] :data_capture_config
2084
2119
  #
2085
2120
  # @option params [Array<Types::Tag>] :tags
2086
- # An array of key-value pairs. You can use tags to categorize your AWS
2087
- # resources in different ways, for example, by purpose, owner, or
2088
- # environment. For more information, see [Tagging AWS Resources][1].
2121
+ # An array of key-value pairs. You can use tags to categorize your
2122
+ # Amazon Web Services resources in different ways, for example, by
2123
+ # purpose, owner, or environment. For more information, see [Tagging
2124
+ # Amazon Web Services Resources][1].
2089
2125
  #
2090
2126
  #
2091
2127
  #
2092
2128
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
2093
2129
  #
2094
2130
  # @option params [String] :kms_key_id
2095
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
2096
- # that Amazon SageMaker uses to encrypt data on the storage volume
2097
- # attached to the ML compute instance that hosts the endpoint.
2131
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2132
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
2133
+ # volume attached to the ML compute instance that hosts the endpoint.
2098
2134
  #
2099
2135
  # The KmsKeyId can be any of the following formats:
2100
2136
  #
@@ -2110,8 +2146,8 @@ module Aws::SageMaker
2110
2146
  #
2111
2147
  # The KMS key policy must grant permission to the IAM role that you
2112
2148
  # specify in your `CreateEndpoint`, `UpdateEndpoint` requests. For more
2113
- # information, refer to the AWS Key Management Service section[ Using
2114
- # Key Policies in AWS KMS ][1]
2149
+ # information, refer to the Amazon Web Services Key Management Service
2150
+ # section[ Using Key Policies in Amazon Web Services KMS ][1]
2115
2151
  #
2116
2152
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on the
2117
2153
  # instance type. Local storage volumes are encrypted using a hardware
@@ -2208,8 +2244,8 @@ module Aws::SageMaker
2208
2244
  #
2209
2245
  # When you use SageMaker Studio or the SageMaker Python SDK, all
2210
2246
  # experiments, trials, and trial components are automatically tracked,
2211
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2212
- # must use the logging APIs provided by the SDK.
2247
+ # logged, and indexed. When you use the Amazon Web Services SDK for
2248
+ # Python (Boto), you must use the logging APIs provided by the SDK.
2213
2249
  #
2214
2250
  # You can add tags to experiments, trials, trial components and then use
2215
2251
  # the Search API to search for the tags.
@@ -2224,8 +2260,8 @@ module Aws::SageMaker
2224
2260
  # the ListTrials API. To create a trial call the CreateTrial API.
2225
2261
  #
2226
2262
  # @option params [required, String] :experiment_name
2227
- # The name of the experiment. The name must be unique in your AWS
2228
- # account and is not case-sensitive.
2263
+ # The name of the experiment. The name must be unique in your Amazon Web
2264
+ # Services account and is not case-sensitive.
2229
2265
  #
2230
2266
  # @option params [String] :display_name
2231
2267
  # The name of the experiment as displayed. The name doesn't need to be
@@ -2277,8 +2313,8 @@ module Aws::SageMaker
2277
2313
  # FeatureGroup. A `FeatureGroup` definition is composed of a list of
2278
2314
  # `Features`, a `RecordIdentifierFeatureName`, an `EventTimeFeatureName`
2279
2315
  # and configurations for its `OnlineStore` and `OfflineStore`. Check
2280
- # [AWS service quotas][1] to see the `FeatureGroup`s quota for your AWS
2281
- # account.
2316
+ # [Amazon Web Services service quotas][1] to see the `FeatureGroup`s
2317
+ # quota for your Amazon Web Services account.
2282
2318
  #
2283
2319
  # You must include at least one of `OnlineStoreConfig` and
2284
2320
  # `OfflineStoreConfig` to create a `FeatureGroup`.
@@ -2288,8 +2324,9 @@ module Aws::SageMaker
2288
2324
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
2289
2325
  #
2290
2326
  # @option params [required, String] :feature_group_name
2291
- # The name of the `FeatureGroup`. The name must be unique within an AWS
2292
- # Region in an AWS account. The name:
2327
+ # The name of the `FeatureGroup`. The name must be unique within an
2328
+ # Amazon Web Services Region in an Amazon Web Services account. The
2329
+ # name:
2293
2330
  #
2294
2331
  # * Must start and end with an alphanumeric character.
2295
2332
  #
@@ -2352,8 +2389,8 @@ module Aws::SageMaker
2352
2389
  # `EnableOnlineStore` flag in `OnlineStoreConfig`; the default value is
2353
2390
  # `False`.
2354
2391
  #
2355
- # You can also include an AWS KMS key ID (`KMSKeyId`) for at-rest
2356
- # encryption of the `OnlineStore`.
2392
+ # You can also include an Amazon Web Services KMS key ID (`KMSKeyId`)
2393
+ # for at-rest encryption of the `OnlineStore`.
2357
2394
  #
2358
2395
  # @option params [Types::OfflineStoreConfig] :offline_store_config
2359
2396
  # Use this to configure an `OfflineFeatureStore`. This parameter allows
@@ -2362,7 +2399,8 @@ module Aws::SageMaker
2362
2399
  # * The Amazon Simple Storage Service (Amazon S3) location of an
2363
2400
  # `OfflineStore`.
2364
2401
  #
2365
- # * A configuration for an AWS Glue or AWS Hive data cataolgue.
2402
+ # * A configuration for an Amazon Web Services Glue or Amazon Web
2403
+ # Services Hive data cataolgue.
2366
2404
  #
2367
2405
  # * An KMS encryption key to encrypt the Amazon S3 location used for
2368
2406
  # `OfflineStore`.
@@ -2586,9 +2624,10 @@ module Aws::SageMaker
2586
2624
  # @option params [required, String] :hyper_parameter_tuning_job_name
2587
2625
  # The name of the tuning job. This name is the prefix for the names of
2588
2626
  # all training jobs that this tuning job launches. The name must be
2589
- # unique within the same AWS account and AWS Region. The name must have
2590
- # 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ \_
2591
- # % - (hyphen). The name is not case sensitive.
2627
+ # unique within the same Amazon Web Services account and Amazon Web
2628
+ # Services Region. The name must have 1 to 32 characters. Valid
2629
+ # characters are a-z, A-Z, 0-9, and : + = @ \_ % - (hyphen). The name is
2630
+ # not case sensitive.
2592
2631
  #
2593
2632
  # @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
2594
2633
  # The HyperParameterTuningJobConfig object that describes the tuning
@@ -2633,9 +2672,10 @@ module Aws::SageMaker
2633
2672
  # </note>
2634
2673
  #
2635
2674
  # @option params [Array<Types::Tag>] :tags
2636
- # An array of key-value pairs. You can use tags to categorize your AWS
2637
- # resources in different ways, for example, by purpose, owner, or
2638
- # environment. For more information, see [Tagging AWS Resources][1].
2675
+ # An array of key-value pairs. You can use tags to categorize your
2676
+ # Amazon Web Services resources in different ways, for example, by
2677
+ # purpose, owner, or environment. For more information, see [Tagging
2678
+ # Amazon Web Services Resources][1].
2639
2679
  #
2640
2680
  # Tags that you specify for the tuning job are also added to all
2641
2681
  # training jobs that the tuning job launches.
@@ -2993,8 +3033,9 @@ module Aws::SageMaker
2993
3033
  # [@digest]>`
2994
3034
  #
2995
3035
  # @option params [required, String] :client_token
2996
- # A unique ID. If not specified, the AWS CLI and AWS SDKs, such as the
2997
- # SDK for Python (Boto3), add a unique value to the call.
3036
+ # A unique ID. If not specified, the Amazon Web Services CLI and Amazon
3037
+ # Web Services SDKs, such as the SDK for Python (Boto3), add a unique
3038
+ # value to the call.
2998
3039
  #
2999
3040
  # **A suitable default value is auto-generated.** You should normally
3000
3041
  # not need to pass this option.**
@@ -3038,8 +3079,8 @@ module Aws::SageMaker
3038
3079
  # the data to stay within your organization or when a specific set of
3039
3080
  # skills is required.
3040
3081
  #
3041
- # * One or more vendors that you select from the AWS Marketplace.
3042
- # Vendors provide expertise in specific areas.
3082
+ # * One or more vendors that you select from the Amazon Web Services
3083
+ # Marketplace. Vendors provide expertise in specific areas.
3043
3084
  #
3044
3085
  # * The Amazon Mechanical Turk workforce. This is the largest workforce,
3045
3086
  # but it should only be used for public data or data that has been
@@ -3079,9 +3120,9 @@ module Aws::SageMaker
3079
3120
  # @option params [required, String] :labeling_job_name
3080
3121
  # The name of the labeling job. This name is used to identify the job in
3081
3122
  # a list of labeling jobs. Labeling job names must be unique within an
3082
- # AWS account and region. `LabelingJobName` is not case sensitive. For
3083
- # example, Example-job and example-job are considered the same labeling
3084
- # job name by Ground Truth.
3123
+ # Amazon Web Services account and region. `LabelingJobName` is not case
3124
+ # sensitive. For example, Example-job and example-job are considered the
3125
+ # same labeling job name by Ground Truth.
3085
3126
  #
3086
3127
  # @option params [required, String] :label_attribute_name
3087
3128
  # The attribute name to use for the label in the output manifest file.
@@ -3158,8 +3199,9 @@ module Aws::SageMaker
3158
3199
  # content.
3159
3200
  #
3160
3201
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3161
- # The location of the output data and the AWS Key Management Service key
3162
- # ID for the key used to encrypt the output data, if any.
3202
+ # The location of the output data and the Amazon Web Services Key
3203
+ # Management Service key ID for the key used to encrypt the output data,
3204
+ # if any.
3163
3205
  #
3164
3206
  # @option params [required, String] :role_arn
3165
3207
  # The Amazon Resource Number (ARN) that Amazon SageMaker assumes to
@@ -3229,8 +3271,8 @@ module Aws::SageMaker
3229
3271
  #
3230
3272
  # @option params [Array<Types::Tag>] :tags
3231
3273
  # An array of key/value pairs. For more information, see [Using Cost
3232
- # Allocation Tags][1] in the *AWS Billing and Cost Management User
3233
- # Guide*.
3274
+ # Allocation Tags][1] in the *Amazon Web Services Billing and Cost
3275
+ # Management User Guide*.
3234
3276
  #
3235
3277
  #
3236
3278
  #
@@ -3338,7 +3380,7 @@ module Aws::SageMaker
3338
3380
  #
3339
3381
  # For an example that calls this method when deploying a model to Amazon
3340
3382
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3341
- # Hosting Services (AWS SDK for Python (Boto 3)).][1]
3383
+ # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3342
3384
  #
3343
3385
  # To run a batch transform using your model, you start a job with the
3344
3386
  # `CreateTransformJob` API. Amazon SageMaker uses your model and your
@@ -3352,8 +3394,8 @@ module Aws::SageMaker
3352
3394
  # assume to access model artifacts and docker image for deployment on ML
3353
3395
  # compute hosting instances or for batch transform jobs. In addition,
3354
3396
  # you also use the IAM role to manage permissions the inference code
3355
- # needs. For example, if the inference code access any other AWS
3356
- # resources, you grant necessary permissions via this role.
3397
+ # needs. For example, if the inference code access any other Amazon Web
3398
+ # Services resources, you grant necessary permissions via this role.
3357
3399
  #
3358
3400
  #
3359
3401
  #
@@ -3391,9 +3433,10 @@ module Aws::SageMaker
3391
3433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
3392
3434
  #
3393
3435
  # @option params [Array<Types::Tag>] :tags
3394
- # An array of key-value pairs. You can use tags to categorize your AWS
3395
- # resources in different ways, for example, by purpose, owner, or
3396
- # environment. For more information, see [Tagging AWS Resources][1].
3436
+ # An array of key-value pairs. You can use tags to categorize your
3437
+ # Amazon Web Services resources in different ways, for example, by
3438
+ # purpose, owner, or environment. For more information, see [Tagging
3439
+ # Amazon Web Services Resources][1].
3397
3440
  #
3398
3441
  #
3399
3442
  #
@@ -3498,7 +3541,7 @@ module Aws::SageMaker
3498
3541
  #
3499
3542
  # @option params [required, String] :job_definition_name
3500
3543
  # The name of the bias job definition. The name must be unique within an
3501
- # AWS Region in the AWS account.
3544
+ # Amazon Web Services Region in the Amazon Web Services account.
3502
3545
  #
3503
3546
  # @option params [Types::ModelBiasBaselineConfig] :model_bias_baseline_config
3504
3547
  # The baseline configuration for a model bias job.
@@ -3529,8 +3572,8 @@ module Aws::SageMaker
3529
3572
  #
3530
3573
  # @option params [Array<Types::Tag>] :tags
3531
3574
  # (Optional) An array of key-value pairs. For more information, see
3532
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3533
- # Management User Guide*.
3575
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3576
+ # and Cost Management User Guide*.
3534
3577
  #
3535
3578
  #
3536
3579
  #
@@ -3589,7 +3632,7 @@ module Aws::SageMaker
3589
3632
  # job_resources: { # required
3590
3633
  # cluster_config: { # required
3591
3634
  # instance_count: 1, # required
3592
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
3635
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3593
3636
  # volume_size_in_gb: 1, # required
3594
3637
  # volume_kms_key_id: "KmsKeyId",
3595
3638
  # },
@@ -3631,7 +3674,8 @@ module Aws::SageMaker
3631
3674
  #
3632
3675
  # @option params [required, String] :job_definition_name
3633
3676
  # The name of the model explainability job definition. The name must be
3634
- # unique within an AWS Region in the AWS account.
3677
+ # unique within an Amazon Web Services Region in the Amazon Web Services
3678
+ # account.
3635
3679
  #
3636
3680
  # @option params [Types::ModelExplainabilityBaselineConfig] :model_explainability_baseline_config
3637
3681
  # The baseline configuration for a model explainability job.
@@ -3662,8 +3706,8 @@ module Aws::SageMaker
3662
3706
  #
3663
3707
  # @option params [Array<Types::Tag>] :tags
3664
3708
  # (Optional) An array of key-value pairs. For more information, see
3665
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
3666
- # Management User Guide*.
3709
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
3710
+ # and Cost Management User Guide*.
3667
3711
  #
3668
3712
  #
3669
3713
  #
@@ -3719,7 +3763,7 @@ module Aws::SageMaker
3719
3763
  # job_resources: { # required
3720
3764
  # cluster_config: { # required
3721
3765
  # instance_count: 1, # required
3722
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
3766
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3723
3767
  # volume_size_in_gb: 1, # required
3724
3768
  # volume_kms_key_id: "KmsKeyId",
3725
3769
  # },
@@ -3758,15 +3802,17 @@ module Aws::SageMaker
3758
3802
  end
3759
3803
 
3760
3804
  # Creates a model package that you can use to create Amazon SageMaker
3761
- # models or list on AWS Marketplace, or a versioned model that is part
3762
- # of a model group. Buyers can subscribe to model packages listed on AWS
3763
- # Marketplace to create models in Amazon SageMaker.
3805
+ # models or list on Amazon Web Services Marketplace, or a versioned
3806
+ # model that is part of a model group. Buyers can subscribe to model
3807
+ # packages listed on Amazon Web Services Marketplace to create models in
3808
+ # Amazon SageMaker.
3764
3809
  #
3765
3810
  # To create a model package by specifying a Docker container that
3766
3811
  # contains your inference code and the Amazon S3 location of your model
3767
3812
  # artifacts, provide values for `InferenceSpecification`. To create a
3768
3813
  # model from an algorithm resource that you created or subscribed to in
3769
- # AWS Marketplace, provide a value for `SourceAlgorithmSpecification`.
3814
+ # Amazon Web Services Marketplace, provide a value for
3815
+ # `SourceAlgorithmSpecification`.
3770
3816
  #
3771
3817
  # <note markdown="1"> There are two types of model packages:
3772
3818
  #
@@ -3814,15 +3860,16 @@ module Aws::SageMaker
3814
3860
  # Details about the algorithm that was used to create the model package.
3815
3861
  #
3816
3862
  # @option params [Boolean] :certify_for_marketplace
3817
- # Whether to certify the model package for listing on AWS Marketplace.
3863
+ # Whether to certify the model package for listing on Amazon Web
3864
+ # Services Marketplace.
3818
3865
  #
3819
3866
  # This parameter is optional for unversioned models, and does not apply
3820
3867
  # to versioned models.
3821
3868
  #
3822
3869
  # @option params [Array<Types::Tag>] :tags
3823
3870
  # A list of key value pairs associated with the model. For more
3824
- # information, see [Tagging AWS resources][1] in the *AWS General
3825
- # Reference Guide*.
3871
+ # information, see [Tagging Amazon Web Services resources][1] in the
3872
+ # *Amazon Web Services General Reference Guide*.
3826
3873
  #
3827
3874
  #
3828
3875
  #
@@ -3868,9 +3915,12 @@ module Aws::SageMaker
3868
3915
  # image_digest: "ImageDigest",
3869
3916
  # model_data_url: "Url",
3870
3917
  # product_id: "ProductId",
3918
+ # environment: {
3919
+ # "EnvironmentKey" => "EnvironmentValue",
3920
+ # },
3871
3921
  # },
3872
3922
  # ],
3873
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3923
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3874
3924
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
3875
3925
  # supported_content_types: ["ContentType"], # required
3876
3926
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -3905,7 +3955,7 @@ module Aws::SageMaker
3905
3955
  # kms_key_id: "KmsKeyId",
3906
3956
  # },
3907
3957
  # transform_resources: { # required
3908
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3958
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3909
3959
  # instance_count: 1, # required
3910
3960
  # volume_kms_key_id: "KmsKeyId",
3911
3961
  # },
@@ -4002,8 +4052,8 @@ module Aws::SageMaker
4002
4052
  #
4003
4053
  # @option params [Array<Types::Tag>] :tags
4004
4054
  # A list of key value pairs associated with the model group. For more
4005
- # information, see [Tagging AWS resources][1] in the *AWS General
4006
- # Reference Guide*.
4055
+ # information, see [Tagging Amazon Web Services resources][1] in the
4056
+ # *Amazon Web Services General Reference Guide*.
4007
4057
  #
4008
4058
  #
4009
4059
  #
@@ -4079,8 +4129,8 @@ module Aws::SageMaker
4079
4129
  #
4080
4130
  # @option params [Array<Types::Tag>] :tags
4081
4131
  # (Optional) An array of key-value pairs. For more information, see
4082
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4083
- # Management User Guide*.
4132
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4133
+ # and Cost Management User Guide*.
4084
4134
  #
4085
4135
  #
4086
4136
  #
@@ -4143,7 +4193,7 @@ module Aws::SageMaker
4143
4193
  # job_resources: { # required
4144
4194
  # cluster_config: { # required
4145
4195
  # instance_count: 1, # required
4146
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4196
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4147
4197
  # volume_size_in_gb: 1, # required
4148
4198
  # volume_kms_key_id: "KmsKeyId",
4149
4199
  # },
@@ -4186,7 +4236,7 @@ module Aws::SageMaker
4186
4236
  #
4187
4237
  # @option params [required, String] :monitoring_schedule_name
4188
4238
  # The name of the monitoring schedule. The name must be unique within an
4189
- # AWS Region within an AWS account.
4239
+ # Amazon Web Services Region within an Amazon Web Services account.
4190
4240
  #
4191
4241
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
4192
4242
  # The configuration object that specifies the monitoring schedule and
@@ -4196,7 +4246,7 @@ module Aws::SageMaker
4196
4246
  # (Optional) An array of key-value pairs. For more information, see
4197
4247
  # [Using Cost Allocation Tags](
4198
4248
  # https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
4199
- # in the *AWS Billing and Cost Management User Guide*.
4249
+ # in the *Amazon Web Services Billing and Cost Management User Guide*.
4200
4250
  #
4201
4251
  # @return [Types::CreateMonitoringScheduleResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4202
4252
  #
@@ -4251,7 +4301,7 @@ module Aws::SageMaker
4251
4301
  # monitoring_resources: { # required
4252
4302
  # cluster_config: { # required
4253
4303
  # instance_count: 1, # required
4254
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4304
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4255
4305
  # volume_size_in_gb: 1, # required
4256
4306
  # volume_kms_key_id: "KmsKeyId",
4257
4307
  # },
@@ -4365,13 +4415,13 @@ module Aws::SageMaker
4365
4415
  # groups must be for the same VPC as specified in the subnet.
4366
4416
  #
4367
4417
  # @option params [required, String] :role_arn
4368
- # When you send any requests to AWS resources from the notebook
4369
- # instance, Amazon SageMaker assumes this role to perform tasks on your
4370
- # behalf. You must grant this role necessary permissions so Amazon
4371
- # SageMaker can perform these tasks. The policy must allow the Amazon
4372
- # SageMaker service principal (sagemaker.amazonaws.com) permissions to
4373
- # assume this role. For more information, see [Amazon SageMaker
4374
- # Roles][1].
4418
+ # When you send any requests to Amazon Web Services resources from the
4419
+ # notebook instance, Amazon SageMaker assumes this role to perform tasks
4420
+ # on your behalf. You must grant this role necessary permissions so
4421
+ # Amazon SageMaker can perform these tasks. The policy must allow the
4422
+ # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4423
+ # permissions to assume this role. For more information, see [Amazon
4424
+ # SageMaker Roles][1].
4375
4425
  #
4376
4426
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4377
4427
  # API must have the `iam:PassRole` permission.
@@ -4383,20 +4433,21 @@ module Aws::SageMaker
4383
4433
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4384
4434
  #
4385
4435
  # @option params [String] :kms_key_id
4386
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
4387
- # that Amazon SageMaker uses to encrypt data on the storage volume
4388
- # attached to your notebook instance. The KMS key you provide must be
4389
- # enabled. For information, see [Enabling and Disabling Keys][1] in the
4390
- # *AWS Key Management Service Developer Guide*.
4436
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4437
+ # Service key that Amazon SageMaker uses to encrypt data on the storage
4438
+ # volume attached to your notebook instance. The KMS key you provide
4439
+ # must be enabled. For information, see [Enabling and Disabling Keys][1]
4440
+ # in the *Amazon Web Services Key Management Service Developer Guide*.
4391
4441
  #
4392
4442
  #
4393
4443
  #
4394
4444
  # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
4395
4445
  #
4396
4446
  # @option params [Array<Types::Tag>] :tags
4397
- # An array of key-value pairs. You can use tags to categorize your AWS
4398
- # resources in different ways, for example, by purpose, owner, or
4399
- # environment. For more information, see [Tagging AWS Resources][1].
4447
+ # An array of key-value pairs. You can use tags to categorize your
4448
+ # Amazon Web Services resources in different ways, for example, by
4449
+ # purpose, owner, or environment. For more information, see [Tagging
4450
+ # Amazon Web Services Resources][1].
4400
4451
  #
4401
4452
  #
4402
4453
  #
@@ -4444,10 +4495,11 @@ module Aws::SageMaker
4444
4495
  # A Git repository to associate with the notebook instance as its
4445
4496
  # default code repository. This can be either the name of a Git
4446
4497
  # repository stored as a resource in your account, or the URL of a Git
4447
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
4448
- # you open a notebook instance, it opens in the directory that contains
4449
- # this repository. For more information, see [Associating Git
4450
- # Repositories with Amazon SageMaker Notebook Instances][2].
4498
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4499
+ # repository. When you open a notebook instance, it opens in the
4500
+ # directory that contains this repository. For more information, see
4501
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4502
+ # Instances][2].
4451
4503
  #
4452
4504
  #
4453
4505
  #
@@ -4458,10 +4510,11 @@ module Aws::SageMaker
4458
4510
  # An array of up to three Git repositories to associate with the
4459
4511
  # notebook instance. These can be either the names of Git repositories
4460
4512
  # stored as resources in your account, or the URL of Git repositories in
4461
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
4462
- # are cloned at the same level as the default repository of your
4463
- # notebook instance. For more information, see [Associating Git
4464
- # Repositories with Amazon SageMaker Notebook Instances][2].
4513
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4514
+ # These repositories are cloned at the same level as the default
4515
+ # repository of your notebook instance. For more information, see
4516
+ # [Associating Git Repositories with Amazon SageMaker Notebook
4517
+ # Instances][2].
4465
4518
  #
4466
4519
  #
4467
4520
  #
@@ -4659,13 +4712,29 @@ module Aws::SageMaker
4659
4712
  # This operation can only be called when the authentication mode equals
4660
4713
  # IAM.
4661
4714
  #
4715
+ # The IAM role or user used to call this API defines the permissions to
4716
+ # access the app. Once the presigned URL is created, no additional
4717
+ # permission is required to access this URL. IAM authorization policies
4718
+ # for this API are also enforced for every HTTP request and WebSocket
4719
+ # frame that attempts to connect to the app.
4720
+ #
4721
+ # You can restrict access to this API and to the URL that it returns to
4722
+ # a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you
4723
+ # specify. For more information, see [Connect to SageMaker Studio
4724
+ # Through an Interface VPC Endpoint][1] .
4725
+ #
4662
4726
  # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4663
4727
  # default timeout of 5 minutes. You can configure this value using
4664
4728
  # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4665
- # expires, you are directed to the AWS console sign-in page.
4729
+ # expires, you are directed to the Amazon Web Services console sign-in
4730
+ # page.
4666
4731
  #
4667
4732
  # </note>
4668
4733
  #
4734
+ #
4735
+ #
4736
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html
4737
+ #
4669
4738
  # @option params [required, String] :domain_id
4670
4739
  # The domain ID.
4671
4740
  #
@@ -4728,8 +4797,8 @@ module Aws::SageMaker
4728
4797
  #
4729
4798
  # <note markdown="1"> The URL that you get from a call to CreatePresignedNotebookInstanceUrl
4730
4799
  # is valid only for 5 minutes. If you try to use the URL after the
4731
- # 5-minute limit expires, you are directed to the AWS console sign-in
4732
- # page.
4800
+ # 5-minute limit expires, you are directed to the Amazon Web Services
4801
+ # console sign-in page.
4733
4802
  #
4734
4803
  # </note>
4735
4804
  #
@@ -4777,8 +4846,8 @@ module Aws::SageMaker
4777
4846
  # Output configuration for the processing job.
4778
4847
  #
4779
4848
  # @option params [required, String] :processing_job_name
4780
- # The name of the processing job. The name must be unique within an AWS
4781
- # Region in the AWS account.
4849
+ # The name of the processing job. The name must be unique within an
4850
+ # Amazon Web Services Region in the Amazon Web Services account.
4782
4851
  #
4783
4852
  # @option params [required, Types::ProcessingResources] :processing_resources
4784
4853
  # Identifies the resources, ML compute instances, and ML storage volumes
@@ -4808,8 +4877,8 @@ module Aws::SageMaker
4808
4877
  #
4809
4878
  # @option params [Array<Types::Tag>] :tags
4810
4879
  # (Optional) An array of key-value pairs. For more information, see
4811
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
4812
- # Management User Guide*.
4880
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
4881
+ # and Cost Management User Guide*.
4813
4882
  #
4814
4883
  #
4815
4884
  #
@@ -4893,7 +4962,7 @@ module Aws::SageMaker
4893
4962
  # processing_resources: { # required
4894
4963
  # cluster_config: { # required
4895
4964
  # instance_count: 1, # required
4896
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4965
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4897
4966
  # volume_size_in_gb: 1, # required
4898
4967
  # volume_kms_key_id: "KmsKeyId",
4899
4968
  # },
@@ -4956,7 +5025,8 @@ module Aws::SageMaker
4956
5025
  #
4957
5026
  # @option params [required, Types::ServiceCatalogProvisioningDetails] :service_catalog_provisioning_details
4958
5027
  # The product ID and provisioning artifact ID to provision a service
4959
- # catalog. For information, see [What is AWS Service Catalog][1].
5028
+ # catalog. For information, see [What is Amazon Web Services Service
5029
+ # Catalog][1].
4960
5030
  #
4961
5031
  #
4962
5032
  #
@@ -4964,8 +5034,9 @@ module Aws::SageMaker
4964
5034
  #
4965
5035
  # @option params [Array<Types::Tag>] :tags
4966
5036
  # An array of key-value pairs that you want to use to organize and track
4967
- # your AWS resource costs. For more information, see [Tagging AWS
4968
- # resources][1] in the *AWS General Reference Guide*.
5037
+ # your Amazon Web Services resource costs. For more information, see
5038
+ # [Tagging Amazon Web Services resources][1] in the *Amazon Web Services
5039
+ # General Reference Guide*.
4969
5040
  #
4970
5041
  #
4971
5042
  #
@@ -5073,8 +5144,8 @@ module Aws::SageMaker
5073
5144
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
5074
5145
  #
5075
5146
  # @option params [required, String] :training_job_name
5076
- # The name of the training job. The name must be unique within an AWS
5077
- # Region in an AWS account.
5147
+ # The name of the training job. The name must be unique within an Amazon
5148
+ # Web Services Region in an Amazon Web Services account.
5078
5149
  #
5079
5150
  # @option params [Hash<String,String>] :hyper_parameters
5080
5151
  # Algorithm-specific parameters that influence the quality of the model.
@@ -5178,9 +5249,10 @@ module Aws::SageMaker
5178
5249
  # of training are not lost.
5179
5250
  #
5180
5251
  # @option params [Array<Types::Tag>] :tags
5181
- # An array of key-value pairs. You can use tags to categorize your AWS
5182
- # resources in different ways, for example, by purpose, owner, or
5183
- # environment. For more information, see [Tagging AWS Resources][1].
5252
+ # An array of key-value pairs. You can use tags to categorize your
5253
+ # Amazon Web Services resources in different ways, for example, by
5254
+ # purpose, owner, or environment. For more information, see [Tagging
5255
+ # Amazon Web Services Resources][1].
5184
5256
  #
5185
5257
  #
5186
5258
  #
@@ -5371,7 +5443,7 @@ module Aws::SageMaker
5371
5443
  # local_path: "DirectoryPath",
5372
5444
  # s3_output_path: "S3Uri",
5373
5445
  # rule_evaluator_image: "AlgorithmImage", # required
5374
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5446
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5375
5447
  # volume_size_in_gb: 1,
5376
5448
  # rule_parameters: {
5377
5449
  # "ConfigKey" => "ConfigValue",
@@ -5400,7 +5472,7 @@ module Aws::SageMaker
5400
5472
  # local_path: "DirectoryPath",
5401
5473
  # s3_output_path: "S3Uri",
5402
5474
  # rule_evaluator_image: "AlgorithmImage", # required
5403
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5475
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5404
5476
  # volume_size_in_gb: 1,
5405
5477
  # rule_parameters: {
5406
5478
  # "ConfigKey" => "ConfigValue",
@@ -5438,12 +5510,13 @@ module Aws::SageMaker
5438
5510
  # In the request body, you provide the following:
5439
5511
  #
5440
5512
  # * `TransformJobName` - Identifies the transform job. The name must be
5441
- # unique within an AWS Region in an AWS account.
5513
+ # unique within an Amazon Web Services Region in an Amazon Web
5514
+ # Services account.
5442
5515
  #
5443
5516
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
5444
- # name of an existing Amazon SageMaker model in the same AWS Region
5445
- # and AWS account. For information on creating a model, see
5446
- # CreateModel.
5517
+ # name of an existing Amazon SageMaker model in the same Amazon Web
5518
+ # Services Region and Amazon Web Services account. For information on
5519
+ # creating a model, see CreateModel.
5447
5520
  #
5448
5521
  # * `TransformInput` - Describes the dataset to be transformed and the
5449
5522
  # Amazon S3 location where it is stored.
@@ -5462,13 +5535,14 @@ module Aws::SageMaker
5462
5535
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
5463
5536
  #
5464
5537
  # @option params [required, String] :transform_job_name
5465
- # The name of the transform job. The name must be unique within an AWS
5466
- # Region in an AWS account.
5538
+ # The name of the transform job. The name must be unique within an
5539
+ # Amazon Web Services Region in an Amazon Web Services account.
5467
5540
  #
5468
5541
  # @option params [required, String] :model_name
5469
5542
  # The name of the model that you want to use for the transform job.
5470
5543
  # `ModelName` must be the name of an existing Amazon SageMaker model
5471
- # within an AWS Region in an AWS account.
5544
+ # within an Amazon Web Services Region in an Amazon Web Services
5545
+ # account.
5472
5546
  #
5473
5547
  # @option params [Integer] :max_concurrent_transforms
5474
5548
  # The maximum number of parallel requests that can be sent to each
@@ -5549,8 +5623,8 @@ module Aws::SageMaker
5549
5623
  #
5550
5624
  # @option params [Array<Types::Tag>] :tags
5551
5625
  # (Optional) An array of key-value pairs. For more information, see
5552
- # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
5553
- # Management User Guide*.
5626
+ # [Using Cost Allocation Tags][1] in the *Amazon Web Services Billing
5627
+ # and Cost Management User Guide*.
5554
5628
  #
5555
5629
  #
5556
5630
  #
@@ -5603,7 +5677,7 @@ module Aws::SageMaker
5603
5677
  # kms_key_id: "KmsKeyId",
5604
5678
  # },
5605
5679
  # transform_resources: { # required
5606
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
5680
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5607
5681
  # instance_count: 1, # required
5608
5682
  # volume_kms_key_id: "KmsKeyId",
5609
5683
  # },
@@ -5644,8 +5718,8 @@ module Aws::SageMaker
5644
5718
  #
5645
5719
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5646
5720
  # experiments, trials, and trial components are automatically tracked,
5647
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5648
- # must use the logging APIs provided by the SDK.
5721
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5722
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5649
5723
  #
5650
5724
  # You can add tags to a trial and then use the Search API to search for
5651
5725
  # the tags.
@@ -5655,8 +5729,8 @@ module Aws::SageMaker
5655
5729
  # component, call the CreateTrialComponent API.
5656
5730
  #
5657
5731
  # @option params [required, String] :trial_name
5658
- # The name of the trial. The name must be unique in your AWS account and
5659
- # is not case-sensitive.
5732
+ # The name of the trial. The name must be unique in your Amazon Web
5733
+ # Services account and is not case-sensitive.
5660
5734
  #
5661
5735
  # @option params [String] :display_name
5662
5736
  # The name of the trial as displayed. The name doesn't need to be
@@ -5718,23 +5792,15 @@ module Aws::SageMaker
5718
5792
  #
5719
5793
  # When you use SageMaker Studio or the SageMaker Python SDK, all
5720
5794
  # experiments, trials, and trial components are automatically tracked,
5721
- # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5722
- # must use the logging APIs provided by the SDK.
5795
+ # logged, and indexed. When you use the Amazon Web Services SDK for
5796
+ # Python (Boto), you must use the logging APIs provided by the SDK.
5723
5797
  #
5724
5798
  # You can add tags to a trial component and then use the Search API to
5725
5799
  # search for the tags.
5726
5800
  #
5727
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5728
- # managed environment. This includes SageMaker training jobs, processing
5729
- # jobs, transform jobs, and SageMaker notebooks. A call to
5730
- # `CreateTrialComponent` from outside one of these environments results
5731
- # in an error.
5732
- #
5733
- # </note>
5734
- #
5735
5801
  # @option params [required, String] :trial_component_name
5736
- # The name of the component. The name must be unique in your AWS account
5737
- # and is not case-sensitive.
5802
+ # The name of the component. The name must be unique in your Amazon Web
5803
+ # Services account and is not case-sensitive.
5738
5804
  #
5739
5805
  # @option params [String] :display_name
5740
5806
  # The name of the component as displayed. The name doesn't need to be
@@ -5857,10 +5923,10 @@ module Aws::SageMaker
5857
5923
  # not SSO, this field cannot be specified.
5858
5924
  #
5859
5925
  # @option params [String] :single_sign_on_user_value
5860
- # The username of the associated AWS Single Sign-On User for this
5861
- # UserProfile. If the Domain's AuthMode is SSO, this field is required,
5862
- # and must match a valid username of a user in your directory. If the
5863
- # Domain's AuthMode is not SSO, this field cannot be specified.
5926
+ # The username of the associated Amazon Web Services Single Sign-On User
5927
+ # for this UserProfile. If the Domain's AuthMode is SSO, this field is
5928
+ # required, and must match a valid username of a user in your directory.
5929
+ # If the Domain's AuthMode is not SSO, this field cannot be specified.
5864
5930
  #
5865
5931
  # @option params [Array<Types::Tag>] :tags
5866
5932
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -5942,13 +6008,14 @@ module Aws::SageMaker
5942
6008
  end
5943
6009
 
5944
6010
  # Use this operation to create a workforce. This operation will return
5945
- # an error if a workforce already exists in the AWS Region that you
5946
- # specify. You can only create one workforce in each AWS Region per AWS
5947
- # account.
6011
+ # an error if a workforce already exists in the Amazon Web Services
6012
+ # Region that you specify. You can only create one workforce in each
6013
+ # Amazon Web Services Region per Amazon Web Services account.
5948
6014
  #
5949
- # If you want to create a new workforce in an AWS Region where a
5950
- # workforce already exists, use the API operation to delete the existing
5951
- # workforce and then use `CreateWorkforce` to create a new workforce.
6015
+ # If you want to create a new workforce in an Amazon Web Services Region
6016
+ # where a workforce already exists, use the API operation to delete the
6017
+ # existing workforce and then use `CreateWorkforce` to create a new
6018
+ # workforce.
5952
6019
  #
5953
6020
  # To create a private workforce using Amazon Cognito, you must specify a
5954
6021
  # Cognito user pool in `CognitoConfig`. You can also create an Amazon
@@ -6096,7 +6163,8 @@ module Aws::SageMaker
6096
6163
  # An array of key-value pairs.
6097
6164
  #
6098
6165
  # For more information, see [Resource Tag][1] and [Using Cost Allocation
6099
- # Tags][2] in the <i> AWS Billing and Cost Management User Guide</i>.
6166
+ # Tags][2] in the <i> Amazon Web Services Billing and Cost Management
6167
+ # User Guide</i>.
6100
6168
  #
6101
6169
  #
6102
6170
  #
@@ -6553,13 +6621,14 @@ module Aws::SageMaker
6553
6621
  # `OnlineStore` of the `FeatureGroup`. Data cannot be accessed from the
6554
6622
  # `OnlineStore` immediately after `DeleteFeatureGroup` is called.
6555
6623
  #
6556
- # Data written into the `OfflineStore` will not be deleted. The AWS Glue
6557
- # database and tables that are automatically created for your
6558
- # `OfflineStore` are not deleted.
6624
+ # Data written into the `OfflineStore` will not be deleted. The Amazon
6625
+ # Web Services Glue database and tables that are automatically created
6626
+ # for your `OfflineStore` are not deleted.
6559
6627
  #
6560
6628
  # @option params [required, String] :feature_group_name
6561
6629
  # The name of the `FeatureGroup` you want to delete. The name must be
6562
- # unique within an AWS Region in an AWS account.
6630
+ # unique within an Amazon Web Services Region in an Amazon Web Services
6631
+ # account.
6563
6632
  #
6564
6633
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6565
6634
  #
@@ -6679,7 +6748,7 @@ module Aws::SageMaker
6679
6748
  end
6680
6749
 
6681
6750
  # Deletes a model. The `DeleteModel` API deletes only the model entry
6682
- # that was created in Amazon SageMaker when you called the CreateModel
6751
+ # that was created in Amazon SageMaker when you called the `CreateModel`
6683
6752
  # API. It does not delete model artifacts, inference code, or the IAM
6684
6753
  # role that you specified when creating the model.
6685
6754
  #
@@ -6750,12 +6819,15 @@ module Aws::SageMaker
6750
6819
  # Deletes a model package.
6751
6820
  #
6752
6821
  # A model package is used to create Amazon SageMaker models or list on
6753
- # AWS Marketplace. Buyers can subscribe to model packages listed on AWS
6754
- # Marketplace to create models in Amazon SageMaker.
6822
+ # Amazon Web Services Marketplace. Buyers can subscribe to model
6823
+ # packages listed on Amazon Web Services Marketplace to create models in
6824
+ # Amazon SageMaker.
6755
6825
  #
6756
6826
  # @option params [required, String] :model_package_name
6757
- # The name of the model package. The name must have 1 to 63 characters.
6758
- # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
6827
+ # The name or Amazon Resource Name (ARN) of the model package to delete.
6828
+ #
6829
+ # When you specify a name, the name must have 1 to 63 characters. Valid
6830
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
6759
6831
  #
6760
6832
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6761
6833
  #
@@ -7109,9 +7181,9 @@ module Aws::SageMaker
7109
7181
 
7110
7182
  # Use this operation to delete a workforce.
7111
7183
  #
7112
- # If you want to create a new workforce in an AWS Region where a
7113
- # workforce already exists, use this operation to delete the existing
7114
- # workforce and then use to create a new workforce.
7184
+ # If you want to create a new workforce in an Amazon Web Services Region
7185
+ # where a workforce already exists, use this operation to delete the
7186
+ # existing workforce and then use to create a new workforce.
7115
7187
  #
7116
7188
  # If a private workforce contains one or more work teams, you must use
7117
7189
  # the operation to delete all work teams before you delete the
@@ -7325,8 +7397,10 @@ module Aws::SageMaker
7325
7397
  # resp.inference_specification.containers[0].image_digest #=> String
7326
7398
  # resp.inference_specification.containers[0].model_data_url #=> String
7327
7399
  # resp.inference_specification.containers[0].product_id #=> String
7400
+ # resp.inference_specification.containers[0].environment #=> Hash
7401
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
7328
7402
  # resp.inference_specification.supported_transform_instance_types #=> Array
7329
- # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
7403
+ # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7330
7404
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
7331
7405
  # resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
7332
7406
  # resp.inference_specification.supported_content_types #=> Array
@@ -7377,7 +7451,7 @@ module Aws::SageMaker
7377
7451
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
7378
7452
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
7379
7453
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
7380
- # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
7454
+ # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7381
7455
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
7382
7456
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
7383
7457
  # resp.algorithm_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -7723,6 +7797,7 @@ module Aws::SageMaker
7723
7797
  # * {Types::DescribeCompilationJobResponse#compilation_start_time #compilation_start_time} => Time
7724
7798
  # * {Types::DescribeCompilationJobResponse#compilation_end_time #compilation_end_time} => Time
7725
7799
  # * {Types::DescribeCompilationJobResponse#stopping_condition #stopping_condition} => Types::StoppingCondition
7800
+ # * {Types::DescribeCompilationJobResponse#inference_image #inference_image} => String
7726
7801
  # * {Types::DescribeCompilationJobResponse#creation_time #creation_time} => Time
7727
7802
  # * {Types::DescribeCompilationJobResponse#last_modified_time #last_modified_time} => Time
7728
7803
  # * {Types::DescribeCompilationJobResponse#failure_reason #failure_reason} => String
@@ -7731,6 +7806,7 @@ module Aws::SageMaker
7731
7806
  # * {Types::DescribeCompilationJobResponse#role_arn #role_arn} => String
7732
7807
  # * {Types::DescribeCompilationJobResponse#input_config #input_config} => Types::InputConfig
7733
7808
  # * {Types::DescribeCompilationJobResponse#output_config #output_config} => Types::OutputConfig
7809
+ # * {Types::DescribeCompilationJobResponse#vpc_config #vpc_config} => Types::NeoVpcConfig
7734
7810
  #
7735
7811
  # @example Request syntax with placeholder values
7736
7812
  #
@@ -7747,6 +7823,7 @@ module Aws::SageMaker
7747
7823
  # resp.compilation_end_time #=> Time
7748
7824
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
7749
7825
  # resp.stopping_condition.max_wait_time_in_seconds #=> Integer
7826
+ # resp.inference_image #=> String
7750
7827
  # resp.creation_time #=> Time
7751
7828
  # resp.last_modified_time #=> Time
7752
7829
  # resp.failure_reason #=> String
@@ -7758,12 +7835,16 @@ module Aws::SageMaker
7758
7835
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7759
7836
  # resp.input_config.framework_version #=> String
7760
7837
  # resp.output_config.s3_output_location #=> String
7761
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7838
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7762
7839
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7763
7840
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7764
7841
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
7765
7842
  # resp.output_config.compiler_options #=> String
7766
7843
  # resp.output_config.kms_key_id #=> String
7844
+ # resp.vpc_config.security_group_ids #=> Array
7845
+ # resp.vpc_config.security_group_ids[0] #=> String
7846
+ # resp.vpc_config.subnets #=> Array
7847
+ # resp.vpc_config.subnets[0] #=> String
7767
7848
  #
7768
7849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
7769
7850
  #
@@ -7885,7 +7966,7 @@ module Aws::SageMaker
7885
7966
  # resp.data_quality_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
7886
7967
  # resp.data_quality_job_output_config.kms_key_id #=> String
7887
7968
  # resp.job_resources.cluster_config.instance_count #=> Integer
7888
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
7969
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
7889
7970
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
7890
7971
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
7891
7972
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -7992,6 +8073,8 @@ module Aws::SageMaker
7992
8073
  # resp.device_fleet_arn #=> String
7993
8074
  # resp.output_config.s3_output_location #=> String
7994
8075
  # resp.output_config.kms_key_id #=> String
8076
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8077
+ # resp.output_config.preset_deployment_config #=> String
7995
8078
  # resp.description #=> String
7996
8079
  # resp.creation_time #=> Time
7997
8080
  # resp.last_modified_time #=> Time
@@ -8107,6 +8190,7 @@ module Aws::SageMaker
8107
8190
  # * {Types::DescribeEdgePackagingJobResponse#last_modified_time #last_modified_time} => Time
8108
8191
  # * {Types::DescribeEdgePackagingJobResponse#model_artifact #model_artifact} => String
8109
8192
  # * {Types::DescribeEdgePackagingJobResponse#model_signature #model_signature} => String
8193
+ # * {Types::DescribeEdgePackagingJobResponse#preset_deployment_output #preset_deployment_output} => Types::EdgePresetDeploymentOutput
8110
8194
  #
8111
8195
  # @example Request syntax with placeholder values
8112
8196
  #
@@ -8124,6 +8208,8 @@ module Aws::SageMaker
8124
8208
  # resp.role_arn #=> String
8125
8209
  # resp.output_config.s3_output_location #=> String
8126
8210
  # resp.output_config.kms_key_id #=> String
8211
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8212
+ # resp.output_config.preset_deployment_config #=> String
8127
8213
  # resp.resource_key #=> String
8128
8214
  # resp.edge_packaging_job_status #=> String, one of "STARTING", "INPROGRESS", "COMPLETED", "FAILED", "STOPPING", "STOPPED"
8129
8215
  # resp.edge_packaging_job_status_message #=> String
@@ -8131,6 +8217,10 @@ module Aws::SageMaker
8131
8217
  # resp.last_modified_time #=> Time
8132
8218
  # resp.model_artifact #=> String
8133
8219
  # resp.model_signature #=> String
8220
+ # resp.preset_deployment_output.type #=> String, one of "GreengrassV2Component"
8221
+ # resp.preset_deployment_output.artifact #=> String
8222
+ # resp.preset_deployment_output.status #=> String, one of "COMPLETED", "FAILED"
8223
+ # resp.preset_deployment_output.status_message #=> String
8134
8224
  #
8135
8225
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJob AWS API Documentation
8136
8226
  #
@@ -8972,7 +9062,8 @@ module Aws::SageMaker
8972
9062
  #
8973
9063
  # @option params [required, String] :job_definition_name
8974
9064
  # The name of the model bias job definition. The name must be unique
8975
- # within an AWS Region in the AWS account.
9065
+ # within an Amazon Web Services Region in the Amazon Web Services
9066
+ # account.
8976
9067
  #
8977
9068
  # @return [Types::DescribeModelBiasJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8978
9069
  #
@@ -9022,7 +9113,7 @@ module Aws::SageMaker
9022
9113
  # resp.model_bias_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9023
9114
  # resp.model_bias_job_output_config.kms_key_id #=> String
9024
9115
  # resp.job_resources.cluster_config.instance_count #=> Integer
9025
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9116
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9026
9117
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9027
9118
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9028
9119
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9047,7 +9138,8 @@ module Aws::SageMaker
9047
9138
  #
9048
9139
  # @option params [required, String] :job_definition_name
9049
9140
  # The name of the model explainability job definition. The name must be
9050
- # unique within an AWS Region in the AWS account.
9141
+ # unique within an Amazon Web Services Region in the Amazon Web Services
9142
+ # account.
9051
9143
  #
9052
9144
  # @return [Types::DescribeModelExplainabilityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9053
9145
  #
@@ -9096,7 +9188,7 @@ module Aws::SageMaker
9096
9188
  # resp.model_explainability_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9097
9189
  # resp.model_explainability_job_output_config.kms_key_id #=> String
9098
9190
  # resp.job_resources.cluster_config.instance_count #=> Integer
9099
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9191
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9100
9192
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9101
9193
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9102
9194
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9118,13 +9210,18 @@ module Aws::SageMaker
9118
9210
  end
9119
9211
 
9120
9212
  # Returns a description of the specified model package, which is used to
9121
- # create Amazon SageMaker models or list them on AWS Marketplace.
9213
+ # create Amazon SageMaker models or list them on Amazon Web Services
9214
+ # Marketplace.
9122
9215
  #
9123
9216
  # To create models in Amazon SageMaker, buyers can subscribe to model
9124
- # packages listed on AWS Marketplace.
9217
+ # packages listed on Amazon Web Services Marketplace.
9125
9218
  #
9126
9219
  # @option params [required, String] :model_package_name
9127
- # The name of the model package to describe.
9220
+ # The name or Amazon Resource Name (ARN) of the model package to
9221
+ # describe.
9222
+ #
9223
+ # When you specify a name, the name must have 1 to 63 characters. Valid
9224
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
9128
9225
  #
9129
9226
  # @return [Types::DescribeModelPackageOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9130
9227
  #
@@ -9168,8 +9265,10 @@ module Aws::SageMaker
9168
9265
  # resp.inference_specification.containers[0].image_digest #=> String
9169
9266
  # resp.inference_specification.containers[0].model_data_url #=> String
9170
9267
  # resp.inference_specification.containers[0].product_id #=> String
9268
+ # resp.inference_specification.containers[0].environment #=> Hash
9269
+ # resp.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
9171
9270
  # resp.inference_specification.supported_transform_instance_types #=> Array
9172
- # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9271
+ # resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9173
9272
  # resp.inference_specification.supported_realtime_inference_instance_types #=> Array
9174
9273
  # resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
9175
9274
  # resp.inference_specification.supported_content_types #=> Array
@@ -9196,7 +9295,7 @@ module Aws::SageMaker
9196
9295
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
9197
9296
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
9198
9297
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
9199
- # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9298
+ # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9200
9299
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
9201
9300
  # resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
9202
9301
  # resp.model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -9294,7 +9393,7 @@ module Aws::SageMaker
9294
9393
  #
9295
9394
  # @option params [required, String] :job_definition_name
9296
9395
  # The name of the model quality job. The name must be unique within an
9297
- # AWS Region in the AWS account.
9396
+ # Amazon Web Services Region in the Amazon Web Services account.
9298
9397
  #
9299
9398
  # @return [Types::DescribeModelQualityJobDefinitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9300
9399
  #
@@ -9350,7 +9449,7 @@ module Aws::SageMaker
9350
9449
  # resp.model_quality_job_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9351
9450
  # resp.model_quality_job_output_config.kms_key_id #=> String
9352
9451
  # resp.job_resources.cluster_config.instance_count #=> Integer
9353
- # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9452
+ # resp.job_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9354
9453
  # resp.job_resources.cluster_config.volume_size_in_gb #=> Integer
9355
9454
  # resp.job_resources.cluster_config.volume_kms_key_id #=> String
9356
9455
  # resp.network_config.enable_inter_container_traffic_encryption #=> Boolean
@@ -9425,7 +9524,7 @@ module Aws::SageMaker
9425
9524
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
9426
9525
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.kms_key_id #=> String
9427
9526
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_count #=> Integer
9428
- # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9527
+ # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9429
9528
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_size_in_gb #=> Integer
9430
9529
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_kms_key_id #=> String
9431
9530
  # resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.image_uri #=> String
@@ -9687,6 +9786,8 @@ module Aws::SageMaker
9687
9786
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_display_name #pipeline_execution_display_name} => String
9688
9787
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_status #pipeline_execution_status} => String
9689
9788
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_description #pipeline_execution_description} => String
9789
+ # * {Types::DescribePipelineExecutionResponse#pipeline_experiment_config #pipeline_experiment_config} => Types::PipelineExperimentConfig
9790
+ # * {Types::DescribePipelineExecutionResponse#failure_reason #failure_reason} => String
9690
9791
  # * {Types::DescribePipelineExecutionResponse#creation_time #creation_time} => Time
9691
9792
  # * {Types::DescribePipelineExecutionResponse#last_modified_time #last_modified_time} => Time
9692
9793
  # * {Types::DescribePipelineExecutionResponse#created_by #created_by} => Types::UserContext
@@ -9705,6 +9806,9 @@ module Aws::SageMaker
9705
9806
  # resp.pipeline_execution_display_name #=> String
9706
9807
  # resp.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
9707
9808
  # resp.pipeline_execution_description #=> String
9809
+ # resp.pipeline_experiment_config.experiment_name #=> String
9810
+ # resp.pipeline_experiment_config.trial_name #=> String
9811
+ # resp.failure_reason #=> String
9708
9812
  # resp.creation_time #=> Time
9709
9813
  # resp.last_modified_time #=> Time
9710
9814
  # resp.created_by.user_profile_arn #=> String
@@ -9726,8 +9830,8 @@ module Aws::SageMaker
9726
9830
  # Returns a description of a processing job.
9727
9831
  #
9728
9832
  # @option params [required, String] :processing_job_name
9729
- # The name of the processing job. The name must be unique within an AWS
9730
- # Region in the AWS account.
9833
+ # The name of the processing job. The name must be unique within an
9834
+ # Amazon Web Services Region in the Amazon Web Services account.
9731
9835
  #
9732
9836
  # @return [Types::DescribeProcessingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9733
9837
  #
@@ -9800,7 +9904,7 @@ module Aws::SageMaker
9800
9904
  # resp.processing_output_config.kms_key_id #=> String
9801
9905
  # resp.processing_job_name #=> String
9802
9906
  # resp.processing_resources.cluster_config.instance_count #=> Integer
9803
- # resp.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
9907
+ # resp.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
9804
9908
  # resp.processing_resources.cluster_config.volume_size_in_gb #=> Integer
9805
9909
  # resp.processing_resources.cluster_config.volume_kms_key_id #=> String
9806
9910
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
@@ -9900,7 +10004,8 @@ module Aws::SageMaker
9900
10004
  end
9901
10005
 
9902
10006
  # Gets information about a work team provided by a vendor. It returns
9903
- # details about the subscription with a vendor in the AWS Marketplace.
10007
+ # details about the subscription with a vendor in the Amazon Web
10008
+ # Services Marketplace.
9904
10009
  #
9905
10010
  # @option params [required, String] :workteam_arn
9906
10011
  # The Amazon Resource Name (ARN) of the subscribed work team to
@@ -10078,7 +10183,7 @@ module Aws::SageMaker
10078
10183
  # resp.debug_rule_configurations[0].local_path #=> String
10079
10184
  # resp.debug_rule_configurations[0].s3_output_path #=> String
10080
10185
  # resp.debug_rule_configurations[0].rule_evaluator_image #=> String
10081
- # resp.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
10186
+ # resp.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10082
10187
  # resp.debug_rule_configurations[0].volume_size_in_gb #=> Integer
10083
10188
  # resp.debug_rule_configurations[0].rule_parameters #=> Hash
10084
10189
  # resp.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -10099,7 +10204,7 @@ module Aws::SageMaker
10099
10204
  # resp.profiler_rule_configurations[0].local_path #=> String
10100
10205
  # resp.profiler_rule_configurations[0].s3_output_path #=> String
10101
10206
  # resp.profiler_rule_configurations[0].rule_evaluator_image #=> String
10102
- # resp.profiler_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
10207
+ # resp.profiler_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10103
10208
  # resp.profiler_rule_configurations[0].volume_size_in_gb #=> Integer
10104
10209
  # resp.profiler_rule_configurations[0].rule_parameters #=> Hash
10105
10210
  # resp.profiler_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -10185,7 +10290,7 @@ module Aws::SageMaker
10185
10290
  # resp.transform_output.accept #=> String
10186
10291
  # resp.transform_output.assemble_with #=> String, one of "None", "Line"
10187
10292
  # resp.transform_output.kms_key_id #=> String
10188
- # resp.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
10293
+ # resp.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
10189
10294
  # resp.transform_resources.instance_count #=> Integer
10190
10295
  # resp.transform_resources.volume_kms_key_id #=> String
10191
10296
  # resp.creation_time #=> Time
@@ -10619,6 +10724,8 @@ module Aws::SageMaker
10619
10724
  # resp.device_fleet_name #=> String
10620
10725
  # resp.output_config.s3_output_location #=> String
10621
10726
  # resp.output_config.kms_key_id #=> String
10727
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
10728
+ # resp.output_config.preset_deployment_config #=> String
10622
10729
  # resp.description #=> String
10623
10730
  # resp.report_generated #=> Time
10624
10731
  # resp.device_stats.connected_device_count #=> Integer
@@ -10645,8 +10752,8 @@ module Aws::SageMaker
10645
10752
 
10646
10753
  # Gets a resource policy that manages access for a model group. For
10647
10754
  # information about resource policies, see [Identity-based policies and
10648
- # resource-based policies][1] in the *AWS Identity and Access Management
10649
- # User Guide.*.
10755
+ # resource-based policies][1] in the *Amazon Web Services Identity and
10756
+ # Access Management User Guide.*.
10650
10757
  #
10651
10758
  #
10652
10759
  #
@@ -11501,7 +11608,7 @@ module Aws::SageMaker
11501
11608
  # resp.compilation_job_summaries[0].creation_time #=> Time
11502
11609
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11503
11610
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11504
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11611
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "amba_cv25", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11505
11612
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11506
11613
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11507
11614
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -12889,7 +12996,7 @@ module Aws::SageMaker
12889
12996
  req.send_request(options)
12890
12997
  end
12891
12998
 
12892
- # Gets a list of the model groups in your AWS account.
12999
+ # Gets a list of the model groups in your Amazon Web Services account.
12893
13000
  #
12894
13001
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
12895
13002
  # A filter that returns only model groups created after the specified
@@ -13120,7 +13227,7 @@ module Aws::SageMaker
13120
13227
  req.send_request(options)
13121
13228
  end
13122
13229
 
13123
- # Lists models created with the CreateModel API.
13230
+ # Lists models created with the `CreateModel` API.
13124
13231
  #
13125
13232
  # @option params [String] :sort_by
13126
13233
  # Sorts the list of results. The default is `CreationTime`.
@@ -13466,7 +13573,7 @@ module Aws::SageMaker
13466
13573
  end
13467
13574
 
13468
13575
  # Returns a list of the Amazon SageMaker notebook instances in the
13469
- # requester's account in an AWS Region.
13576
+ # requester's account in an Amazon Web Services Region.
13470
13577
  #
13471
13578
  # @option params [String] :next_token
13472
13579
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -13627,6 +13734,11 @@ module Aws::SageMaker
13627
13734
  # resp.pipeline_execution_steps[0].metadata.model.arn #=> String
13628
13735
  # resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
13629
13736
  # resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
13737
+ # resp.pipeline_execution_steps[0].metadata.callback.callback_token #=> String
13738
+ # resp.pipeline_execution_steps[0].metadata.callback.sqs_queue_url #=> String
13739
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters #=> Array
13740
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].name #=> String
13741
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].value #=> String
13630
13742
  # resp.next_token #=> String
13631
13743
  #
13632
13744
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListPipelineExecutionSteps AWS API Documentation
@@ -13899,7 +14011,7 @@ module Aws::SageMaker
13899
14011
  req.send_request(options)
13900
14012
  end
13901
14013
 
13902
- # Gets a list of the projects in an AWS account.
14014
+ # Gets a list of the projects in an Amazon Web Services account.
13903
14015
  #
13904
14016
  # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
13905
14017
  # A filter that returns the projects that were created after a specified
@@ -13966,9 +14078,9 @@ module Aws::SageMaker
13966
14078
  req.send_request(options)
13967
14079
  end
13968
14080
 
13969
- # Gets a list of the work teams that you are subscribed to in the AWS
13970
- # Marketplace. The list may be empty if no work team satisfies the
13971
- # filter specified in the `NameContains` parameter.
14081
+ # Gets a list of the work teams that you are subscribed to in the Amazon
14082
+ # Web Services Marketplace. The list may be empty if no work team
14083
+ # satisfies the filter specified in the `NameContains` parameter.
13972
14084
  #
13973
14085
  # @option params [String] :name_contains
13974
14086
  # A string in the work team name. This filter returns only work teams
@@ -14079,7 +14191,8 @@ module Aws::SageMaker
14079
14191
  # from the most current to the oldest). Next, those with a status of
14080
14192
  # `InProgress` are returned.
14081
14193
  #
14082
- # You can quickly test the API using the following AWS CLI code.
14194
+ # You can quickly test the API using the following Amazon Web Services
14195
+ # CLI code.
14083
14196
  #
14084
14197
  # `aws sagemaker list-training-jobs --max-results 100 --status-equals
14085
14198
  # InProgress`
@@ -14561,9 +14674,9 @@ module Aws::SageMaker
14561
14674
  req.send_request(options)
14562
14675
  end
14563
14676
 
14564
- # Use this operation to list all private and vendor workforces in an AWS
14565
- # Region. Note that you can only have one private workforce per AWS
14566
- # Region.
14677
+ # Use this operation to list all private and vendor workforces in an
14678
+ # Amazon Web Services Region. Note that you can only have one private
14679
+ # workforce per Amazon Web Services Region.
14567
14680
  #
14568
14681
  # @option params [String] :sort_by
14569
14682
  # Sort workforces using the workforce name or creation date.
@@ -14700,8 +14813,8 @@ module Aws::SageMaker
14700
14813
 
14701
14814
  # Adds a resouce policy to control access to a model group. For
14702
14815
  # information about resoure policies, see [Identity-based policies and
14703
- # resource-based policies][1] in the *AWS Identity and Access Management
14704
- # User Guide.*.
14816
+ # resource-based policies][1] in the *Amazon Web Services Identity and
14817
+ # Access Management User Guide.*.
14705
14818
  #
14706
14819
  #
14707
14820
  #
@@ -14997,7 +15110,7 @@ module Aws::SageMaker
14997
15110
  # resp.results[0].training_job.debug_rule_configurations[0].local_path #=> String
14998
15111
  # resp.results[0].training_job.debug_rule_configurations[0].s3_output_path #=> String
14999
15112
  # resp.results[0].training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
15000
- # resp.results[0].training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15113
+ # resp.results[0].training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15001
15114
  # resp.results[0].training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
15002
15115
  # resp.results[0].training_job.debug_rule_configurations[0].rule_parameters #=> Hash
15003
15116
  # resp.results[0].training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -15186,7 +15299,7 @@ module Aws::SageMaker
15186
15299
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].local_path #=> String
15187
15300
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].s3_output_path #=> String
15188
15301
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
15189
- # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15302
+ # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15190
15303
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
15191
15304
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters #=> Hash
15192
15305
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
@@ -15243,7 +15356,7 @@ module Aws::SageMaker
15243
15356
  # resp.results[0].trial_component.source_detail.processing_job.processing_output_config.kms_key_id #=> String
15244
15357
  # resp.results[0].trial_component.source_detail.processing_job.processing_job_name #=> String
15245
15358
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_count #=> Integer
15246
- # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15359
+ # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15247
15360
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.volume_size_in_gb #=> Integer
15248
15361
  # resp.results[0].trial_component.source_detail.processing_job.processing_resources.cluster_config.volume_kms_key_id #=> String
15249
15362
  # resp.results[0].trial_component.source_detail.processing_job.stopping_condition.max_runtime_in_seconds #=> Integer
@@ -15299,7 +15412,7 @@ module Aws::SageMaker
15299
15412
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.accept #=> String
15300
15413
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.assemble_with #=> String, one of "None", "Line"
15301
15414
  # resp.results[0].trial_component.source_detail.transform_job.transform_output.kms_key_id #=> String
15302
- # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15415
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15303
15416
  # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_count #=> Integer
15304
15417
  # resp.results[0].trial_component.source_detail.transform_job.transform_resources.volume_kms_key_id #=> String
15305
15418
  # resp.results[0].trial_component.source_detail.transform_job.creation_time #=> Time
@@ -15373,7 +15486,7 @@ module Aws::SageMaker
15373
15486
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
15374
15487
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.kms_key_id #=> String
15375
15488
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_count #=> Integer
15376
- # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
15489
+ # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15377
15490
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_size_in_gb #=> Integer
15378
15491
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_kms_key_id #=> String
15379
15492
  # resp.results[0].endpoint.monitoring_schedules[0].monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.image_uri #=> String
@@ -15424,8 +15537,10 @@ module Aws::SageMaker
15424
15537
  # resp.results[0].model_package.inference_specification.containers[0].image_digest #=> String
15425
15538
  # resp.results[0].model_package.inference_specification.containers[0].model_data_url #=> String
15426
15539
  # resp.results[0].model_package.inference_specification.containers[0].product_id #=> String
15540
+ # resp.results[0].model_package.inference_specification.containers[0].environment #=> Hash
15541
+ # resp.results[0].model_package.inference_specification.containers[0].environment["EnvironmentKey"] #=> String
15427
15542
  # resp.results[0].model_package.inference_specification.supported_transform_instance_types #=> Array
15428
- # resp.results[0].model_package.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15543
+ # resp.results[0].model_package.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15429
15544
  # resp.results[0].model_package.inference_specification.supported_realtime_inference_instance_types #=> Array
15430
15545
  # resp.results[0].model_package.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
15431
15546
  # resp.results[0].model_package.inference_specification.supported_content_types #=> Array
@@ -15452,7 +15567,7 @@ module Aws::SageMaker
15452
15567
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
15453
15568
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
15454
15569
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
15455
- # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
15570
+ # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
15456
15571
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
15457
15572
  # resp.results[0].model_package.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
15458
15573
  # resp.results[0].model_package.model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
@@ -15533,6 +15648,9 @@ module Aws::SageMaker
15533
15648
  # resp.results[0].pipeline_execution.pipeline_execution_display_name #=> String
15534
15649
  # resp.results[0].pipeline_execution.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
15535
15650
  # resp.results[0].pipeline_execution.pipeline_execution_description #=> String
15651
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.experiment_name #=> String
15652
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.trial_name #=> String
15653
+ # resp.results[0].pipeline_execution.failure_reason #=> String
15536
15654
  # resp.results[0].pipeline_execution.creation_time #=> Time
15537
15655
  # resp.results[0].pipeline_execution.last_modified_time #=> Time
15538
15656
  # resp.results[0].pipeline_execution.created_by.user_profile_arn #=> String
@@ -15581,6 +15699,99 @@ module Aws::SageMaker
15581
15699
  req.send_request(options)
15582
15700
  end
15583
15701
 
15702
+ # Notifies the pipeline that the execution of a callback step failed,
15703
+ # along with a message describing why. When a callback step is run, the
15704
+ # pipeline generates a callback token and includes the token in a
15705
+ # message sent to Amazon Simple Queue Service (Amazon SQS).
15706
+ #
15707
+ # @option params [required, String] :callback_token
15708
+ # The pipeline generated token from the Amazon SQS queue.
15709
+ #
15710
+ # @option params [String] :failure_reason
15711
+ # A message describing why the step failed.
15712
+ #
15713
+ # @option params [String] :client_request_token
15714
+ # A unique, case-sensitive identifier that you provide to ensure the
15715
+ # idempotency of the operation. An idempotent operation completes no
15716
+ # more than one time.
15717
+ #
15718
+ # **A suitable default value is auto-generated.** You should normally
15719
+ # not need to pass this option.**
15720
+ #
15721
+ # @return [Types::SendPipelineExecutionStepFailureResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15722
+ #
15723
+ # * {Types::SendPipelineExecutionStepFailureResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15724
+ #
15725
+ # @example Request syntax with placeholder values
15726
+ #
15727
+ # resp = client.send_pipeline_execution_step_failure({
15728
+ # callback_token: "CallbackToken", # required
15729
+ # failure_reason: "String256",
15730
+ # client_request_token: "IdempotencyToken",
15731
+ # })
15732
+ #
15733
+ # @example Response structure
15734
+ #
15735
+ # resp.pipeline_execution_arn #=> String
15736
+ #
15737
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailure AWS API Documentation
15738
+ #
15739
+ # @overload send_pipeline_execution_step_failure(params = {})
15740
+ # @param [Hash] params ({})
15741
+ def send_pipeline_execution_step_failure(params = {}, options = {})
15742
+ req = build_request(:send_pipeline_execution_step_failure, params)
15743
+ req.send_request(options)
15744
+ end
15745
+
15746
+ # Notifies the pipeline that the execution of a callback step succeeded
15747
+ # and provides a list of the step's output parameters. When a callback
15748
+ # step is run, the pipeline generates a callback token and includes the
15749
+ # token in a message sent to Amazon Simple Queue Service (Amazon SQS).
15750
+ #
15751
+ # @option params [required, String] :callback_token
15752
+ # The pipeline generated token from the Amazon SQS queue.
15753
+ #
15754
+ # @option params [Array<Types::OutputParameter>] :output_parameters
15755
+ # A list of the output parameters of the callback step.
15756
+ #
15757
+ # @option params [String] :client_request_token
15758
+ # A unique, case-sensitive identifier that you provide to ensure the
15759
+ # idempotency of the operation. An idempotent operation completes no
15760
+ # more than one time.
15761
+ #
15762
+ # **A suitable default value is auto-generated.** You should normally
15763
+ # not need to pass this option.**
15764
+ #
15765
+ # @return [Types::SendPipelineExecutionStepSuccessResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15766
+ #
15767
+ # * {Types::SendPipelineExecutionStepSuccessResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15768
+ #
15769
+ # @example Request syntax with placeholder values
15770
+ #
15771
+ # resp = client.send_pipeline_execution_step_success({
15772
+ # callback_token: "CallbackToken", # required
15773
+ # output_parameters: [
15774
+ # {
15775
+ # name: "String256", # required
15776
+ # value: "String1024", # required
15777
+ # },
15778
+ # ],
15779
+ # client_request_token: "IdempotencyToken",
15780
+ # })
15781
+ #
15782
+ # @example Response structure
15783
+ #
15784
+ # resp.pipeline_execution_arn #=> String
15785
+ #
15786
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccess AWS API Documentation
15787
+ #
15788
+ # @overload send_pipeline_execution_step_success(params = {})
15789
+ # @param [Hash] params ({})
15790
+ def send_pipeline_execution_step_success(params = {}, options = {})
15791
+ req = build_request(:send_pipeline_execution_step_success, params)
15792
+ req.send_request(options)
15793
+ end
15794
+
15584
15795
  # Starts a previously stopped monitoring schedule.
15585
15796
  #
15586
15797
  # <note markdown="1"> By default, when you successfully create a new schedule, the status of
@@ -15872,6 +16083,20 @@ module Aws::SageMaker
15872
16083
 
15873
16084
  # Stops a pipeline execution.
15874
16085
  #
16086
+ # A pipeline execution won't stop while a callback step is running.
16087
+ # When you call `StopPipelineExecution` on a pipeline execution with a
16088
+ # running callback step, SageMaker Pipelines sends an additional Amazon
16089
+ # SQS message to the specified SQS queue. The body of the SQS message
16090
+ # contains a "Status" field which is set to "Stopping".
16091
+ #
16092
+ # You should add logic to your Amazon SQS message consumer to take any
16093
+ # needed action (for example, resource cleanup) upon receipt of the
16094
+ # message followed by a call to `SendPipelineExecutionStepSuccess` or
16095
+ # `SendPipelineExecutionStepFailure`.
16096
+ #
16097
+ # Only when SageMaker Pipelines receives one of these calls will it stop
16098
+ # the pipeline execution.
16099
+ #
15875
16100
  # @option params [required, String] :pipeline_execution_arn
15876
16101
  # The Amazon Resource Name (ARN) of the pipeline execution.
15877
16102
  #
@@ -16125,10 +16350,10 @@ module Aws::SageMaker
16125
16350
  #
16126
16351
  # @option params [Types::GitConfigForUpdate] :git_config
16127
16352
  # The configuration of the git repository, including the URL and the
16128
- # Amazon Resource Name (ARN) of the AWS Secrets Manager secret that
16129
- # contains the credentials used to access the repository. The secret
16130
- # must have a staging label of `AWSCURRENT` and must be in the following
16131
- # format:
16353
+ # Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
16354
+ # secret that contains the credentials used to access the repository.
16355
+ # The secret must have a staging label of `AWSCURRENT` and must be in
16356
+ # the following format:
16132
16357
  #
16133
16358
  # `\{"username": UserName, "password": Password\}`
16134
16359
  #
@@ -16214,6 +16439,14 @@ module Aws::SageMaker
16214
16439
  # @option params [required, Types::EdgeOutputConfig] :output_config
16215
16440
  # Output configuration for storing sample data collected by the fleet.
16216
16441
  #
16442
+ # @option params [Boolean] :enable_iot_role_alias
16443
+ # Whether to create an Amazon Web Services IoT Role Alias during device
16444
+ # fleet creation. The name of the role alias generated will match this
16445
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
16446
+ #
16447
+ # For example, if your device fleet is called "demo-fleet", the name
16448
+ # of the role alias will be "SageMakerEdge-demo-fleet".
16449
+ #
16217
16450
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
16218
16451
  #
16219
16452
  # @example Request syntax with placeholder values
@@ -16225,7 +16458,10 @@ module Aws::SageMaker
16225
16458
  # output_config: { # required
16226
16459
  # s3_output_location: "S3Uri", # required
16227
16460
  # kms_key_id: "KmsKeyId",
16461
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
16462
+ # preset_deployment_config: "String",
16228
16463
  # },
16464
+ # enable_iot_role_alias: false,
16229
16465
  # })
16230
16466
  #
16231
16467
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleet AWS API Documentation
@@ -16609,7 +16845,7 @@ module Aws::SageMaker
16609
16845
  #
16610
16846
  # @option params [required, String] :monitoring_schedule_name
16611
16847
  # The name of the monitoring schedule. The name must be unique within an
16612
- # AWS Region within an AWS account.
16848
+ # Amazon Web Services Region within an Amazon Web Services account.
16613
16849
  #
16614
16850
  # @option params [required, Types::MonitoringScheduleConfig] :monitoring_schedule_config
16615
16851
  # The configuration object that specifies the monitoring schedule and
@@ -16668,7 +16904,7 @@ module Aws::SageMaker
16668
16904
  # monitoring_resources: { # required
16669
16905
  # cluster_config: { # required
16670
16906
  # instance_count: 1, # required
16671
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
16907
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
16672
16908
  # volume_size_in_gb: 1, # required
16673
16909
  # volume_kms_key_id: "KmsKeyId",
16674
16910
  # },
@@ -16768,10 +17004,11 @@ module Aws::SageMaker
16768
17004
  # The Git repository to associate with the notebook instance as its
16769
17005
  # default code repository. This can be either the name of a Git
16770
17006
  # repository stored as a resource in your account, or the URL of a Git
16771
- # repository in [AWS CodeCommit][1] or in any other Git repository. When
16772
- # you open a notebook instance, it opens in the directory that contains
16773
- # this repository. For more information, see [Associating Git
16774
- # Repositories with Amazon SageMaker Notebook Instances][2].
17007
+ # repository in [Amazon Web Services CodeCommit][1] or in any other Git
17008
+ # repository. When you open a notebook instance, it opens in the
17009
+ # directory that contains this repository. For more information, see
17010
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17011
+ # Instances][2].
16775
17012
  #
16776
17013
  #
16777
17014
  #
@@ -16782,10 +17019,11 @@ module Aws::SageMaker
16782
17019
  # An array of up to three Git repositories to associate with the
16783
17020
  # notebook instance. These can be either the names of Git repositories
16784
17021
  # stored as resources in your account, or the URL of Git repositories in
16785
- # [AWS CodeCommit][1] or in any other Git repository. These repositories
16786
- # are cloned at the same level as the default repository of your
16787
- # notebook instance. For more information, see [Associating Git
16788
- # Repositories with Amazon SageMaker Notebook Instances][2].
17022
+ # [Amazon Web Services CodeCommit][1] or in any other Git repository.
17023
+ # These repositories are cloned at the same level as the default
17024
+ # repository of your notebook instance. For more information, see
17025
+ # [Associating Git Repositories with Amazon SageMaker Notebook
17026
+ # Instances][2].
16789
17027
  #
16790
17028
  #
16791
17029
  #
@@ -17018,7 +17256,7 @@ module Aws::SageMaker
17018
17256
  # local_path: "DirectoryPath",
17019
17257
  # s3_output_path: "S3Uri",
17020
17258
  # rule_evaluator_image: "AlgorithmImage", # required
17021
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
17259
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
17022
17260
  # volume_size_in_gb: 1,
17023
17261
  # rule_parameters: {
17024
17262
  # "ConfigKey" => "ConfigValue",
@@ -17446,7 +17684,7 @@ module Aws::SageMaker
17446
17684
  params: params,
17447
17685
  config: config)
17448
17686
  context[:gem_name] = 'aws-sdk-sagemaker'
17449
- context[:gem_version] = '1.87.0'
17687
+ context[:gem_version] = '1.92.0'
17450
17688
  Seahorse::Client::Request.new(handlers, context)
17451
17689
  end
17452
17690