aws-sdk-sagemaker 1.85.0 → 1.90.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -129,6 +130,8 @@ module Aws::SageMaker
129
130
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
130
131
  Branch = Shapes::StringShape.new(name: 'Branch')
131
132
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
133
+ CallbackStepMetadata = Shapes::StructureShape.new(name: 'CallbackStepMetadata')
134
+ CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
132
135
  CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
133
136
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
134
137
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
@@ -520,9 +523,14 @@ module Aws::SageMaker
520
523
  EdgePackagingJobStatus = Shapes::StringShape.new(name: 'EdgePackagingJobStatus')
521
524
  EdgePackagingJobSummaries = Shapes::ListShape.new(name: 'EdgePackagingJobSummaries')
522
525
  EdgePackagingJobSummary = Shapes::StructureShape.new(name: 'EdgePackagingJobSummary')
526
+ EdgePresetDeploymentArtifact = Shapes::StringShape.new(name: 'EdgePresetDeploymentArtifact')
527
+ EdgePresetDeploymentOutput = Shapes::StructureShape.new(name: 'EdgePresetDeploymentOutput')
528
+ EdgePresetDeploymentStatus = Shapes::StringShape.new(name: 'EdgePresetDeploymentStatus')
529
+ EdgePresetDeploymentType = Shapes::StringShape.new(name: 'EdgePresetDeploymentType')
523
530
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
524
531
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
525
532
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
533
+ EnableIotRoleAlias = Shapes::BooleanShape.new(name: 'EnableIotRoleAlias')
526
534
  EnableSagemakerServicecatalogPortfolioInput = Shapes::StructureShape.new(name: 'EnableSagemakerServicecatalogPortfolioInput')
527
535
  EnableSagemakerServicecatalogPortfolioOutput = Shapes::StructureShape.new(name: 'EnableSagemakerServicecatalogPortfolioOutput')
528
536
  Endpoint = Shapes::StructureShape.new(name: 'Endpoint')
@@ -862,6 +870,7 @@ module Aws::SageMaker
862
870
  MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
863
871
  MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
864
872
  MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
873
+ MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
865
874
  MediaType = Shapes::StringShape.new(name: 'MediaType')
866
875
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
867
876
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
@@ -883,6 +892,8 @@ module Aws::SageMaker
883
892
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
884
893
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
885
894
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
895
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
896
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
886
897
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
887
898
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
888
899
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1012,6 +1023,8 @@ module Aws::SageMaker
1012
1023
  OrderKey = Shapes::StringShape.new(name: 'OrderKey')
1013
1024
  OutputConfig = Shapes::StructureShape.new(name: 'OutputConfig')
1014
1025
  OutputDataConfig = Shapes::StructureShape.new(name: 'OutputDataConfig')
1026
+ OutputParameter = Shapes::StructureShape.new(name: 'OutputParameter')
1027
+ OutputParameterList = Shapes::ListShape.new(name: 'OutputParameterList')
1015
1028
  PaginationToken = Shapes::StringShape.new(name: 'PaginationToken')
1016
1029
  Parameter = Shapes::StructureShape.new(name: 'Parameter')
1017
1030
  ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
@@ -1033,6 +1046,7 @@ module Aws::SageMaker
1033
1046
  PipelineExecution = Shapes::StructureShape.new(name: 'PipelineExecution')
1034
1047
  PipelineExecutionArn = Shapes::StringShape.new(name: 'PipelineExecutionArn')
1035
1048
  PipelineExecutionDescription = Shapes::StringShape.new(name: 'PipelineExecutionDescription')
1049
+ PipelineExecutionFailureReason = Shapes::StringShape.new(name: 'PipelineExecutionFailureReason')
1036
1050
  PipelineExecutionName = Shapes::StringShape.new(name: 'PipelineExecutionName')
1037
1051
  PipelineExecutionStatus = Shapes::StringShape.new(name: 'PipelineExecutionStatus')
1038
1052
  PipelineExecutionStep = Shapes::StructureShape.new(name: 'PipelineExecutionStep')
@@ -1040,6 +1054,7 @@ module Aws::SageMaker
1040
1054
  PipelineExecutionStepMetadata = Shapes::StructureShape.new(name: 'PipelineExecutionStepMetadata')
1041
1055
  PipelineExecutionSummary = Shapes::StructureShape.new(name: 'PipelineExecutionSummary')
1042
1056
  PipelineExecutionSummaryList = Shapes::ListShape.new(name: 'PipelineExecutionSummaryList')
1057
+ PipelineExperimentConfig = Shapes::StructureShape.new(name: 'PipelineExperimentConfig')
1043
1058
  PipelineName = Shapes::StringShape.new(name: 'PipelineName')
1044
1059
  PipelineParameterName = Shapes::StringShape.new(name: 'PipelineParameterName')
1045
1060
  PipelineStatus = Shapes::StringShape.new(name: 'PipelineStatus')
@@ -1152,6 +1167,7 @@ module Aws::SageMaker
1152
1167
  ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
1153
1168
  RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
1154
1169
  RetentionType = Shapes::StringShape.new(name: 'RetentionType')
1170
+ RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1155
1171
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1156
1172
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1157
1173
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
@@ -1181,6 +1197,10 @@ module Aws::SageMaker
1181
1197
  SecurityGroupId = Shapes::StringShape.new(name: 'SecurityGroupId')
1182
1198
  SecurityGroupIds = Shapes::ListShape.new(name: 'SecurityGroupIds')
1183
1199
  Seed = Shapes::IntegerShape.new(name: 'Seed')
1200
+ SendPipelineExecutionStepFailureRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureRequest')
1201
+ SendPipelineExecutionStepFailureResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureResponse')
1202
+ SendPipelineExecutionStepSuccessRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessRequest')
1203
+ SendPipelineExecutionStepSuccessResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessResponse')
1184
1204
  ServiceCatalogEntityId = Shapes::StringShape.new(name: 'ServiceCatalogEntityId')
1185
1205
  ServiceCatalogProvisionedProductDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisionedProductDetails')
1186
1206
  ServiceCatalogProvisioningDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisioningDetails')
@@ -1681,6 +1701,11 @@ module Aws::SageMaker
1681
1701
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1682
1702
  CacheHitResult.struct_class = Types::CacheHitResult
1683
1703
 
1704
+ CallbackStepMetadata.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, location_name: "CallbackToken"))
1705
+ CallbackStepMetadata.add_member(:sqs_queue_url, Shapes::ShapeRef.new(shape: String256, location_name: "SqsQueueUrl"))
1706
+ CallbackStepMetadata.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
1707
+ CallbackStepMetadata.struct_class = Types::CallbackStepMetadata
1708
+
1684
1709
  CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1685
1710
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1686
1711
 
@@ -1897,6 +1922,7 @@ module Aws::SageMaker
1897
1922
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1898
1923
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1899
1924
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1925
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1900
1926
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1901
1927
 
1902
1928
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -1952,6 +1978,7 @@ module Aws::SageMaker
1952
1978
  CreateDeviceFleetRequest.add_member(:description, Shapes::ShapeRef.new(shape: DeviceFleetDescription, location_name: "Description"))
1953
1979
  CreateDeviceFleetRequest.add_member(:output_config, Shapes::ShapeRef.new(shape: EdgeOutputConfig, required: true, location_name: "OutputConfig"))
1954
1980
  CreateDeviceFleetRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1981
+ CreateDeviceFleetRequest.add_member(:enable_iot_role_alias, Shapes::ShapeRef.new(shape: EnableIotRoleAlias, location_name: "EnableIotRoleAlias"))
1955
1982
  CreateDeviceFleetRequest.struct_class = Types::CreateDeviceFleetRequest
1956
1983
 
1957
1984
  CreateDomainRequest.add_member(:domain_name, Shapes::ShapeRef.new(shape: DomainName, required: true, location_name: "DomainName"))
@@ -2277,6 +2304,7 @@ module Aws::SageMaker
2277
2304
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2278
2305
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2279
2306
  CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2307
+ CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
2280
2308
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2281
2309
 
2282
2310
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2719,6 +2747,8 @@ module Aws::SageMaker
2719
2747
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2720
2748
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2721
2749
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2750
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2751
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2722
2752
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2723
2753
 
2724
2754
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -2850,6 +2880,7 @@ module Aws::SageMaker
2850
2880
  DescribeEdgePackagingJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
2851
2881
  DescribeEdgePackagingJobResponse.add_member(:model_artifact, Shapes::ShapeRef.new(shape: S3Uri, location_name: "ModelArtifact"))
2852
2882
  DescribeEdgePackagingJobResponse.add_member(:model_signature, Shapes::ShapeRef.new(shape: String, location_name: "ModelSignature"))
2883
+ DescribeEdgePackagingJobResponse.add_member(:preset_deployment_output, Shapes::ShapeRef.new(shape: EdgePresetDeploymentOutput, location_name: "PresetDeploymentOutput"))
2853
2884
  DescribeEdgePackagingJobResponse.struct_class = Types::DescribeEdgePackagingJobResponse
2854
2885
 
2855
2886
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -3172,6 +3203,8 @@ module Aws::SageMaker
3172
3203
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
3173
3204
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
3174
3205
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
3206
+ DescribePipelineExecutionResponse.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
3207
+ DescribePipelineExecutionResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
3175
3208
  DescribePipelineExecutionResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
3176
3209
  DescribePipelineExecutionResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
3177
3210
  DescribePipelineExecutionResponse.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -3282,6 +3315,7 @@ module Aws::SageMaker
3282
3315
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3283
3316
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3284
3317
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3318
+ DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3285
3319
  DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3286
3320
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3287
3321
 
@@ -3464,6 +3498,8 @@ module Aws::SageMaker
3464
3498
 
3465
3499
  EdgeOutputConfig.add_member(:s3_output_location, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputLocation"))
3466
3500
  EdgeOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
3501
+ EdgeOutputConfig.add_member(:preset_deployment_type, Shapes::ShapeRef.new(shape: EdgePresetDeploymentType, location_name: "PresetDeploymentType"))
3502
+ EdgeOutputConfig.add_member(:preset_deployment_config, Shapes::ShapeRef.new(shape: String, location_name: "PresetDeploymentConfig"))
3467
3503
  EdgeOutputConfig.struct_class = Types::EdgeOutputConfig
3468
3504
 
3469
3505
  EdgePackagingJobSummaries.member = Shapes::ShapeRef.new(shape: EdgePackagingJobSummary)
@@ -3478,6 +3514,12 @@ module Aws::SageMaker
3478
3514
  EdgePackagingJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
3479
3515
  EdgePackagingJobSummary.struct_class = Types::EdgePackagingJobSummary
3480
3516
 
3517
+ EdgePresetDeploymentOutput.add_member(:type, Shapes::ShapeRef.new(shape: EdgePresetDeploymentType, required: true, location_name: "Type"))
3518
+ EdgePresetDeploymentOutput.add_member(:artifact, Shapes::ShapeRef.new(shape: EdgePresetDeploymentArtifact, location_name: "Artifact"))
3519
+ EdgePresetDeploymentOutput.add_member(:status, Shapes::ShapeRef.new(shape: EdgePresetDeploymentStatus, location_name: "Status"))
3520
+ EdgePresetDeploymentOutput.add_member(:status_message, Shapes::ShapeRef.new(shape: String, location_name: "StatusMessage"))
3521
+ EdgePresetDeploymentOutput.struct_class = Types::EdgePresetDeploymentOutput
3522
+
3481
3523
  EnableSagemakerServicecatalogPortfolioInput.struct_class = Types::EnableSagemakerServicecatalogPortfolioInput
3482
3524
 
3483
3525
  EnableSagemakerServicecatalogPortfolioOutput.struct_class = Types::EnableSagemakerServicecatalogPortfolioOutput
@@ -3753,6 +3795,7 @@ module Aws::SageMaker
3753
3795
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
3754
3796
  HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
3755
3797
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
3798
+ HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3756
3799
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
3757
3800
 
3758
3801
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
@@ -4758,6 +4801,13 @@ module Aws::SageMaker
4758
4801
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4759
4802
  ModelDataQuality.struct_class = Types::ModelDataQuality
4760
4803
 
4804
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4805
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4806
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4807
+
4808
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4809
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4810
+
4761
4811
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4762
4812
  ModelDigests.struct_class = Types::ModelDigests
4763
4813
 
@@ -5120,6 +5170,12 @@ module Aws::SageMaker
5120
5170
  OutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
5121
5171
  OutputDataConfig.struct_class = Types::OutputDataConfig
5122
5172
 
5173
+ OutputParameter.add_member(:name, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "Name"))
5174
+ OutputParameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5175
+ OutputParameter.struct_class = Types::OutputParameter
5176
+
5177
+ OutputParameterList.member = Shapes::ShapeRef.new(shape: OutputParameter)
5178
+
5123
5179
  Parameter.add_member(:name, Shapes::ShapeRef.new(shape: PipelineParameterName, required: true, location_name: "Name"))
5124
5180
  Parameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5125
5181
  Parameter.struct_class = Types::Parameter
@@ -5168,6 +5224,8 @@ module Aws::SageMaker
5168
5224
  PipelineExecution.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
5169
5225
  PipelineExecution.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
5170
5226
  PipelineExecution.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
5227
+ PipelineExecution.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
5228
+ PipelineExecution.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
5171
5229
  PipelineExecution.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
5172
5230
  PipelineExecution.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
5173
5231
  PipelineExecution.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -5192,6 +5250,7 @@ module Aws::SageMaker
5192
5250
  PipelineExecutionStepMetadata.add_member(:model, Shapes::ShapeRef.new(shape: ModelStepMetadata, location_name: "Model"))
5193
5251
  PipelineExecutionStepMetadata.add_member(:register_model, Shapes::ShapeRef.new(shape: RegisterModelStepMetadata, location_name: "RegisterModel"))
5194
5252
  PipelineExecutionStepMetadata.add_member(:condition, Shapes::ShapeRef.new(shape: ConditionStepMetadata, location_name: "Condition"))
5253
+ PipelineExecutionStepMetadata.add_member(:callback, Shapes::ShapeRef.new(shape: CallbackStepMetadata, location_name: "Callback"))
5195
5254
  PipelineExecutionStepMetadata.struct_class = Types::PipelineExecutionStepMetadata
5196
5255
 
5197
5256
  PipelineExecutionSummary.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
@@ -5203,6 +5262,10 @@ module Aws::SageMaker
5203
5262
 
5204
5263
  PipelineExecutionSummaryList.member = Shapes::ShapeRef.new(shape: PipelineExecutionSummary)
5205
5264
 
5265
+ PipelineExperimentConfig.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
5266
+ PipelineExperimentConfig.add_member(:trial_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "TrialName"))
5267
+ PipelineExperimentConfig.struct_class = Types::PipelineExperimentConfig
5268
+
5206
5269
  PipelineSummary.add_member(:pipeline_arn, Shapes::ShapeRef.new(shape: PipelineArn, location_name: "PipelineArn"))
5207
5270
  PipelineSummary.add_member(:pipeline_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineName"))
5208
5271
  PipelineSummary.add_member(:pipeline_display_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineDisplayName"))
@@ -5477,6 +5540,9 @@ module Aws::SageMaker
5477
5540
  RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
5478
5541
  RetentionPolicy.struct_class = Types::RetentionPolicy
5479
5542
 
5543
+ RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
5544
+ RetryStrategy.struct_class = Types::RetryStrategy
5545
+
5480
5546
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
5481
5547
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
5482
5548
 
@@ -5538,6 +5604,22 @@ module Aws::SageMaker
5538
5604
 
5539
5605
  SecurityGroupIds.member = Shapes::ShapeRef.new(shape: SecurityGroupId)
5540
5606
 
5607
+ SendPipelineExecutionStepFailureRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5608
+ SendPipelineExecutionStepFailureRequest.add_member(:failure_reason, Shapes::ShapeRef.new(shape: String256, location_name: "FailureReason"))
5609
+ SendPipelineExecutionStepFailureRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5610
+ SendPipelineExecutionStepFailureRequest.struct_class = Types::SendPipelineExecutionStepFailureRequest
5611
+
5612
+ SendPipelineExecutionStepFailureResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5613
+ SendPipelineExecutionStepFailureResponse.struct_class = Types::SendPipelineExecutionStepFailureResponse
5614
+
5615
+ SendPipelineExecutionStepSuccessRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5616
+ SendPipelineExecutionStepSuccessRequest.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
5617
+ SendPipelineExecutionStepSuccessRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5618
+ SendPipelineExecutionStepSuccessRequest.struct_class = Types::SendPipelineExecutionStepSuccessRequest
5619
+
5620
+ SendPipelineExecutionStepSuccessResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5621
+ SendPipelineExecutionStepSuccessResponse.struct_class = Types::SendPipelineExecutionStepSuccessResponse
5622
+
5541
5623
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_id, Shapes::ShapeRef.new(shape: ServiceCatalogEntityId, location_name: "ProvisionedProductId"))
5542
5624
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_status_message, Shapes::ShapeRef.new(shape: ProvisionedProductStatusMessage, location_name: "ProvisionedProductStatusMessage"))
5543
5625
  ServiceCatalogProvisionedProductDetails.struct_class = Types::ServiceCatalogProvisionedProductDetails
@@ -5706,6 +5788,7 @@ module Aws::SageMaker
5706
5788
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5707
5789
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5708
5790
  TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5791
+ TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5709
5792
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5710
5793
  TrainingJob.struct_class = Types::TrainingJob
5711
5794
 
@@ -6001,6 +6084,7 @@ module Aws::SageMaker
6001
6084
  UpdateDeviceFleetRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
6002
6085
  UpdateDeviceFleetRequest.add_member(:description, Shapes::ShapeRef.new(shape: DeviceFleetDescription, location_name: "Description"))
6003
6086
  UpdateDeviceFleetRequest.add_member(:output_config, Shapes::ShapeRef.new(shape: EdgeOutputConfig, required: true, location_name: "OutputConfig"))
6087
+ UpdateDeviceFleetRequest.add_member(:enable_iot_role_alias, Shapes::ShapeRef.new(shape: EnableIotRoleAlias, location_name: "EnableIotRoleAlias"))
6004
6088
  UpdateDeviceFleetRequest.struct_class = Types::UpdateDeviceFleetRequest
6005
6089
 
6006
6090
  UpdateDevicesRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
@@ -8278,6 +8362,26 @@ module Aws::SageMaker
8278
8362
  )
8279
8363
  end)
8280
8364
 
8365
+ api.add_operation(:send_pipeline_execution_step_failure, Seahorse::Model::Operation.new.tap do |o|
8366
+ o.name = "SendPipelineExecutionStepFailure"
8367
+ o.http_method = "POST"
8368
+ o.http_request_uri = "/"
8369
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureRequest)
8370
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureResponse)
8371
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8372
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8373
+ end)
8374
+
8375
+ api.add_operation(:send_pipeline_execution_step_success, Seahorse::Model::Operation.new.tap do |o|
8376
+ o.name = "SendPipelineExecutionStepSuccess"
8377
+ o.http_method = "POST"
8378
+ o.http_request_uri = "/"
8379
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessRequest)
8380
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessResponse)
8381
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8382
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8383
+ end)
8384
+
8281
8385
  api.add_operation(:start_monitoring_schedule, Seahorse::Model::Operation.new.tap do |o|
8282
8386
  o.name = "StartMonitoringSchedule"
8283
8387
  o.http_method = "POST"
@@ -520,7 +520,7 @@ module Aws::SageMaker
520
520
  # kms_key_id: "KmsKeyId",
521
521
  # },
522
522
  # transform_resources: { # required
523
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
523
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
524
524
  # instance_count: 1, # required
525
525
  # volume_kms_key_id: "KmsKeyId",
526
526
  # },
@@ -634,7 +634,7 @@ module Aws::SageMaker
634
634
  # kms_key_id: "KmsKeyId",
635
635
  # },
636
636
  # transform_resources: { # required
637
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
637
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
638
638
  # instance_count: 1, # required
639
639
  # volume_kms_key_id: "KmsKeyId",
640
640
  # },
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1770,20 +1770,20 @@ module Aws::SageMaker
1770
1770
  include Aws::Structure
1771
1771
  end
1772
1772
 
1773
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1774
1774
  # working on.
1775
1775
  #
1776
1776
  # @!attribute [rw] candidate_step_type
1777
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1778
1778
  # step.
1779
1779
  # @return [String]
1780
1780
  #
1781
1781
  # @!attribute [rw] candidate_step_arn
1782
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1783
1783
  # @return [String]
1784
1784
  #
1785
1785
  # @!attribute [rw] candidate_step_name
1786
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1787
1787
  # @return [String]
1788
1788
  #
1789
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1848,8 +1848,8 @@ module Aws::SageMaker
1848
1848
  # @return [String]
1849
1849
  #
1850
1850
  # @!attribute [rw] environment
1851
- # Environment variables to set in the container. For more information,
1852
- # see .
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1853
1853
  # @return [Hash<String,String>]
1854
1854
  #
1855
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1890,14 +1890,14 @@ module Aws::SageMaker
1890
1890
  include Aws::Structure
1891
1891
  end
1892
1892
 
1893
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1894
1894
  #
1895
1895
  # @!attribute [rw] candidate_definition_notebook_location
1896
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1897
1897
  # @return [String]
1898
1898
  #
1899
1899
  # @!attribute [rw] data_exploration_notebook_location
1900
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1901
1901
  # @return [String]
1902
1902
  #
1903
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1926,13 +1926,12 @@ module Aws::SageMaker
1926
1926
  # @return [Integer]
1927
1927
  #
1928
1928
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
1929
- # The maximum time, in seconds, a job is allowed to run.
1929
+ # The maximum time, in seconds, a training job is allowed to run as
1930
+ # part of an AutoML job.
1930
1931
  # @return [Integer]
1931
1932
  #
1932
1933
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1933
- # The maximum time, in seconds, an AutoML job is allowed to wait for a
1934
- # trial to complete. It must be equal to or greater than
1935
- # `MaxRuntimePerTrainingJobInSeconds`.
1934
+ # The maximum runtime, in seconds, an AutoML job has to complete.
1936
1935
  # @return [Integer]
1937
1936
  #
1938
1937
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1972,7 +1971,7 @@ module Aws::SageMaker
1972
1971
  # @return [Types::AutoMLJobCompletionCriteria]
1973
1972
  #
1974
1973
  # @!attribute [rw] security_config
1975
- # Security configuration for traffic encryption or Amazon VPC
1974
+ # The security configuration for traffic encryption or Amazon VPC
1976
1975
  # settings.
1977
1976
  # @return [Types::AutoMLSecurityConfig]
1978
1977
  #
@@ -2004,23 +2003,23 @@ module Aws::SageMaker
2004
2003
  #
2005
2004
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2006
2005
  # differences between the predicted and actual values. It is used
2007
- # for regression. MSE values are always positive, the better a model
2008
- # is at predicting the actual values the smaller the MSE value. When
2009
- # the data contains outliers, they tend to dominate the MSE which
2010
- # might cause subpar prediction performance.
2011
- #
2012
- # * `Accuracy`\: The ratio of the number correctly classified items to
2013
- # the total number (correctly and incorrectly) classified. It is
2014
- # used for binary and multiclass classification. Measures how close
2015
- # the predicted class values are to the actual values. Accuracy
2016
- # values vary between zero and one, one being perfect accuracy and
2017
- # zero perfect inaccuracy.
2006
+ # for regression. MSE values are always positive: the better a model
2007
+ # is at predicting the actual values, the smaller the MSE value.
2008
+ # When the data contains outliers, they tend to dominate the MSE,
2009
+ # which might cause subpar prediction performance.
2010
+ #
2011
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2012
+ # to the total number of (correctly and incorrectly) classified
2013
+ # items. It is used for binary and multiclass classification. It
2014
+ # measures how close the predicted class values are to the actual
2015
+ # values. Accuracy values vary between zero and one: one indicates
2016
+ # perfect accuracy and zero indicates perfect inaccuracy.
2018
2017
  #
2019
2018
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2020
2019
  # recall. It is used for binary classification into classes
2021
2020
  # traditionally referred to as positive and negative. Predictions
2022
- # are said to be true when they match their actual (correct) class;
2023
- # false when they do not. Precision is the ratio of the true
2021
+ # are said to be true when they match their actual (correct) class
2022
+ # and false when they do not. Precision is the ratio of the true
2024
2023
  # positive predictions to all positive predictions (including the
2025
2024
  # false positives) in a data set and measures the quality of the
2026
2025
  # prediction when it predicts the positive class. Recall (or
@@ -2029,7 +2028,7 @@ module Aws::SageMaker
2029
2028
  # predicts the actual class members in a data set. The standard F1
2030
2029
  # score weighs precision and recall equally. But which metric is
2031
2030
  # paramount typically depends on specific aspects of a problem. F1
2032
- # scores vary between zero and one, one being the best possible
2031
+ # scores vary between zero and one: one indicates the best possible
2033
2032
  # performance and zero the worst.
2034
2033
  #
2035
2034
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2047,20 +2046,21 @@ module Aws::SageMaker
2047
2046
  # The AUC score can also be interpreted as the probability that a
2048
2047
  # randomly selected positive data point is more likely to be
2049
2048
  # predicted positive than a randomly selected negative example. AUC
2050
- # scores vary between zero and one, one being perfect accuracy and
2051
- # one half not better than a random classifier. Values less that one
2052
- # half predict worse than a random predictor and such consistently
2053
- # bad predictors can be inverted to obtain better than random
2049
+ # scores vary between zero and one: a score of one indicates perfect
2050
+ # accuracy and a score of one half indicates that the prediction is
2051
+ # not better than a random classifier. Values under one half predict
2052
+ # less accurately than a random predictor. But such consistently bad
2053
+ # predictors can simply be inverted to obtain better than random
2054
2054
  # predictors.
2055
2055
  #
2056
2056
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2057
2057
  # classification. In this context, you have multiple classes to
2058
2058
  # predict. You just calculate the precision and recall for each
2059
2059
  # class as you did for the positive class in binary classification.
2060
- # Then used these values to calculate the F1 score for each class
2060
+ # Then, use these values to calculate the F1 score for each class
2061
2061
  # and average them to obtain the F1macro score. F1macro scores vary
2062
- # between zero and one, one being the best possible performance and
2063
- # zero the worst.
2062
+ # between zero and one: one indicates the best possible performance
2063
+ # and zero the worst.
2064
2064
  #
2065
2065
  # If you do not specify a metric explicitly, the default behavior is
2066
2066
  # to automatically use:
@@ -2226,7 +2226,7 @@ module Aws::SageMaker
2226
2226
  # @return [Boolean]
2227
2227
  #
2228
2228
  # @!attribute [rw] vpc_config
2229
- # VPC configuration.
2229
+ # The VPC configuration.
2230
2230
  # @return [Types::VpcConfig]
2231
2231
  #
2232
2232
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2339,11 +2339,36 @@ module Aws::SageMaker
2339
2339
  include Aws::Structure
2340
2340
  end
2341
2341
 
2342
- # Location of artifacts for an AutoML candidate job.
2342
+ # Metadata about a callback step.
2343
+ #
2344
+ # @!attribute [rw] callback_token
2345
+ # The pipeline generated token from the Amazon SQS queue.
2346
+ # @return [String]
2347
+ #
2348
+ # @!attribute [rw] sqs_queue_url
2349
+ # The URL of the Amazon Simple Queue Service (Amazon SQS) queue used
2350
+ # by the callback step.
2351
+ # @return [String]
2352
+ #
2353
+ # @!attribute [rw] output_parameters
2354
+ # A list of the output parameters of the callback step.
2355
+ # @return [Array<Types::OutputParameter>]
2356
+ #
2357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CallbackStepMetadata AWS API Documentation
2358
+ #
2359
+ class CallbackStepMetadata < Struct.new(
2360
+ :callback_token,
2361
+ :sqs_queue_url,
2362
+ :output_parameters)
2363
+ SENSITIVE = []
2364
+ include Aws::Structure
2365
+ end
2366
+
2367
+ # The location of artifacts for an AutoML candidate job.
2343
2368
  #
2344
2369
  # @!attribute [rw] explainability
2345
- # The S3 prefix to the explainability artifacts generated for the
2346
- # AutoML candidate.
2370
+ # The Amazon S3 prefix to the explainability artifacts generated for
2371
+ # the AutoML candidate.
2347
2372
  # @return [String]
2348
2373
  #
2349
2374
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
@@ -2357,7 +2382,8 @@ module Aws::SageMaker
2357
2382
  # The properties of an AutoML candidate job.
2358
2383
  #
2359
2384
  # @!attribute [rw] candidate_artifact_locations
2360
- # The S3 prefix to the artifacts generated for an AutoML candidate.
2385
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2386
+ # candidate.
2361
2387
  # @return [Types::CandidateArtifactLocations]
2362
2388
  #
2363
2389
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
@@ -2912,8 +2938,8 @@ module Aws::SageMaker
2912
2938
  include Aws::Structure
2913
2939
  end
2914
2940
 
2915
- # There was a conflict when you attempted to modify an experiment,
2916
- # trial, or trial component.
2941
+ # There was a conflict when you attempted to modify a SageMaker entity
2942
+ # such as an `Experiment` or `Artifact`.
2917
2943
  #
2918
2944
  # @!attribute [rw] message
2919
2945
  # @return [String]
@@ -3398,7 +3424,7 @@ module Aws::SageMaker
3398
3424
  # product_id: "ProductId",
3399
3425
  # },
3400
3426
  # ],
3401
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3427
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3402
3428
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
3403
3429
  # supported_content_types: ["ContentType"], # required
3404
3430
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -3479,7 +3505,7 @@ module Aws::SageMaker
3479
3505
  # kms_key_id: "KmsKeyId",
3480
3506
  # },
3481
3507
  # transform_resources: { # required
3482
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
3508
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3483
3509
  # instance_count: 1, # required
3484
3510
  # volume_kms_key_id: "KmsKeyId",
3485
3511
  # },
@@ -3853,6 +3879,10 @@ module Aws::SageMaker
3853
3879
  # value: "TagValue", # required
3854
3880
  # },
3855
3881
  # ],
3882
+ # model_deploy_config: {
3883
+ # auto_generate_endpoint_name: false,
3884
+ # endpoint_name: "EndpointName",
3885
+ # },
3856
3886
  # }
3857
3887
  #
3858
3888
  # @!attribute [rw] auto_ml_job_name
@@ -3875,9 +3905,9 @@ module Aws::SageMaker
3875
3905
  #
3876
3906
  # @!attribute [rw] problem_type
3877
3907
  # Defines the type of supervised learning available for the
3878
- # candidates. Options include: BinaryClassification,
3879
- # MulticlassClassification, and Regression. For more information, see
3880
- # [ Amazon SageMaker Autopilot problem types and algorithm
3908
+ # candidates. Options include: `BinaryClassification`,
3909
+ # `MulticlassClassification`, and `Regression`. For more information,
3910
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3881
3911
  # support][1].
3882
3912
  #
3883
3913
  #
@@ -3887,12 +3917,12 @@ module Aws::SageMaker
3887
3917
  #
3888
3918
  # @!attribute [rw] auto_ml_job_objective
3889
3919
  # Defines the objective metric used to measure the predictive quality
3890
- # of an AutoML job. You provide a AutoMLJobObjective$MetricName and
3920
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3891
3921
  # Autopilot infers whether to minimize or maximize it.
3892
3922
  # @return [Types::AutoMLJobObjective]
3893
3923
  #
3894
3924
  # @!attribute [rw] auto_ml_job_config
3895
- # Contains CompletionCriteria and SecurityConfig settings for the
3925
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3896
3926
  # AutoML job.
3897
3927
  # @return [Types::AutoMLJobConfig]
3898
3928
  #
@@ -3911,6 +3941,11 @@ module Aws::SageMaker
3911
3941
  # unique per resource.
3912
3942
  # @return [Array<Types::Tag>]
3913
3943
  #
3944
+ # @!attribute [rw] model_deploy_config
3945
+ # Specifies how to generate the endpoint name for an automatic
3946
+ # one-click Autopilot model deployment.
3947
+ # @return [Types::ModelDeployConfig]
3948
+ #
3914
3949
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3915
3950
  #
3916
3951
  class CreateAutoMLJobRequest < Struct.new(
@@ -3922,7 +3957,8 @@ module Aws::SageMaker
3922
3957
  :auto_ml_job_config,
3923
3958
  :role_arn,
3924
3959
  :generate_candidate_definitions_only,
3925
- :tags)
3960
+ :tags,
3961
+ :model_deploy_config)
3926
3962
  SENSITIVE = []
3927
3963
  include Aws::Structure
3928
3964
  end
@@ -4250,7 +4286,7 @@ module Aws::SageMaker
4250
4286
  # job_resources: { # required
4251
4287
  # cluster_config: { # required
4252
4288
  # instance_count: 1, # required
4253
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4289
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
4254
4290
  # volume_size_in_gb: 1, # required
4255
4291
  # volume_kms_key_id: "KmsKeyId",
4256
4292
  # },
@@ -4363,6 +4399,8 @@ module Aws::SageMaker
4363
4399
  # output_config: { # required
4364
4400
  # s3_output_location: "S3Uri", # required
4365
4401
  # kms_key_id: "KmsKeyId",
4402
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
4403
+ # preset_deployment_config: "String",
4366
4404
  # },
4367
4405
  # tags: [
4368
4406
  # {
@@ -4370,6 +4408,7 @@ module Aws::SageMaker
4370
4408
  # value: "TagValue", # required
4371
4409
  # },
4372
4410
  # ],
4411
+ # enable_iot_role_alias: false,
4373
4412
  # }
4374
4413
  #
4375
4414
  # @!attribute [rw] device_fleet_name
@@ -4394,6 +4433,15 @@ module Aws::SageMaker
4394
4433
  # Creates tags for the specified fleet.
4395
4434
  # @return [Array<Types::Tag>]
4396
4435
  #
4436
+ # @!attribute [rw] enable_iot_role_alias
4437
+ # Whether to create an AWS IoT Role Alias during device fleet
4438
+ # creation. The name of the role alias generated will match this
4439
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
4440
+ #
4441
+ # For example, if your device fleet is called "demo-fleet", the name
4442
+ # of the role alias will be "SageMakerEdge-demo-fleet".
4443
+ # @return [Boolean]
4444
+ #
4397
4445
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleetRequest AWS API Documentation
4398
4446
  #
4399
4447
  class CreateDeviceFleetRequest < Struct.new(
@@ -4401,7 +4449,8 @@ module Aws::SageMaker
4401
4449
  :role_arn,
4402
4450
  :description,
4403
4451
  :output_config,
4404
- :tags)
4452
+ :tags,
4453
+ :enable_iot_role_alias)
4405
4454
  SENSITIVE = []
4406
4455
  include Aws::Structure
4407
4456
  end
@@ -4494,6 +4543,9 @@ module Aws::SageMaker
4494
4543
  # Tags to associated with the Domain. Each tag consists of a key and
4495
4544
  # an optional value. Tag keys must be unique per resource. Tags are
4496
4545
  # searchable using the `Search` API.
4546
+ #
4547
+ # Tags that you specify for the Domain are also added to all Apps that
4548
+ # the Domain launches.
4497
4549
  # @return [Array<Types::Tag>]
4498
4550
  #
4499
4551
  # @!attribute [rw] app_network_access_type
@@ -4562,6 +4614,8 @@ module Aws::SageMaker
4562
4614
  # output_config: { # required
4563
4615
  # s3_output_location: "S3Uri", # required
4564
4616
  # kms_key_id: "KmsKeyId",
4617
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
4618
+ # preset_deployment_config: "String",
4565
4619
  # },
4566
4620
  # resource_key: "KmsKeyId",
4567
4621
  # tags: [
@@ -5348,6 +5402,9 @@ module Aws::SageMaker
5348
5402
  # s3_uri: "S3Uri", # required
5349
5403
  # local_path: "DirectoryPath",
5350
5404
  # },
5405
+ # retry_strategy: {
5406
+ # maximum_retry_attempts: 1, # required
5407
+ # },
5351
5408
  # },
5352
5409
  # training_job_definitions: [
5353
5410
  # {
@@ -5446,6 +5503,9 @@ module Aws::SageMaker
5446
5503
  # s3_uri: "S3Uri", # required
5447
5504
  # local_path: "DirectoryPath",
5448
5505
  # },
5506
+ # retry_strategy: {
5507
+ # maximum_retry_attempts: 1, # required
5508
+ # },
5449
5509
  # },
5450
5510
  # ],
5451
5511
  # warm_start_config: {
@@ -5993,7 +6053,7 @@ module Aws::SageMaker
5993
6053
  # job_resources: { # required
5994
6054
  # cluster_config: { # required
5995
6055
  # instance_count: 1, # required
5996
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6056
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5997
6057
  # volume_size_in_gb: 1, # required
5998
6058
  # volume_kms_key_id: "KmsKeyId",
5999
6059
  # },
@@ -6144,7 +6204,7 @@ module Aws::SageMaker
6144
6204
  # job_resources: { # required
6145
6205
  # cluster_config: { # required
6146
6206
  # instance_count: 1, # required
6147
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6207
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
6148
6208
  # volume_size_in_gb: 1, # required
6149
6209
  # volume_kms_key_id: "KmsKeyId",
6150
6210
  # },
@@ -6473,7 +6533,7 @@ module Aws::SageMaker
6473
6533
  # product_id: "ProductId",
6474
6534
  # },
6475
6535
  # ],
6476
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
6536
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
6477
6537
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
6478
6538
  # supported_content_types: ["ContentType"], # required
6479
6539
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -6508,7 +6568,7 @@ module Aws::SageMaker
6508
6568
  # kms_key_id: "KmsKeyId",
6509
6569
  # },
6510
6570
  # transform_resources: { # required
6511
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
6571
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
6512
6572
  # instance_count: 1, # required
6513
6573
  # volume_kms_key_id: "KmsKeyId",
6514
6574
  # },
@@ -6753,7 +6813,7 @@ module Aws::SageMaker
6753
6813
  # job_resources: { # required
6754
6814
  # cluster_config: { # required
6755
6815
  # instance_count: 1, # required
6756
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6816
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
6757
6817
  # volume_size_in_gb: 1, # required
6758
6818
  # volume_kms_key_id: "KmsKeyId",
6759
6819
  # },
@@ -6906,7 +6966,7 @@ module Aws::SageMaker
6906
6966
  # monitoring_resources: { # required
6907
6967
  # cluster_config: { # required
6908
6968
  # instance_count: 1, # required
6909
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6969
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
6910
6970
  # volume_size_in_gb: 1, # required
6911
6971
  # volume_kms_key_id: "KmsKeyId",
6912
6972
  # },
@@ -7081,9 +7141,9 @@ module Aws::SageMaker
7081
7141
  # @!attribute [rw] direct_internet_access
7082
7142
  # Sets whether Amazon SageMaker provides internet access to the
7083
7143
  # notebook instance. If you set this to `Disabled` this notebook
7084
- # instance will be able to access resources only in your VPC, and will
7085
- # not be able to connect to Amazon SageMaker training and endpoint
7086
- # services unless your configure a NAT Gateway in your VPC.
7144
+ # instance is able to access resources only in your VPC, and is not be
7145
+ # able to connect to Amazon SageMaker training and endpoint services
7146
+ # unless you configure a NAT Gateway in your VPC.
7087
7147
  #
7088
7148
  # For more information, see [Notebook Instances Are Internet-Enabled
7089
7149
  # by Default][1]. You can set the value of this parameter to
@@ -7470,7 +7530,7 @@ module Aws::SageMaker
7470
7530
  # processing_resources: { # required
7471
7531
  # cluster_config: { # required
7472
7532
  # instance_count: 1, # required
7473
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
7533
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
7474
7534
  # volume_size_in_gb: 1, # required
7475
7535
  # volume_kms_key_id: "KmsKeyId",
7476
7536
  # },
@@ -7784,7 +7844,7 @@ module Aws::SageMaker
7784
7844
  # local_path: "DirectoryPath",
7785
7845
  # s3_output_path: "S3Uri",
7786
7846
  # rule_evaluator_image: "AlgorithmImage", # required
7787
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
7847
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
7788
7848
  # volume_size_in_gb: 1,
7789
7849
  # rule_parameters: {
7790
7850
  # "ConfigKey" => "ConfigValue",
@@ -7813,7 +7873,7 @@ module Aws::SageMaker
7813
7873
  # local_path: "DirectoryPath",
7814
7874
  # s3_output_path: "S3Uri",
7815
7875
  # rule_evaluator_image: "AlgorithmImage", # required
7816
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
7876
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
7817
7877
  # volume_size_in_gb: 1,
7818
7878
  # rule_parameters: {
7819
7879
  # "ConfigKey" => "ConfigValue",
@@ -7823,6 +7883,9 @@ module Aws::SageMaker
7823
7883
  # environment: {
7824
7884
  # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7825
7885
  # },
7886
+ # retry_strategy: {
7887
+ # maximum_retry_attempts: 1, # required
7888
+ # },
7826
7889
  # }
7827
7890
  #
7828
7891
  # @!attribute [rw] training_job_name
@@ -7929,9 +7992,10 @@ module Aws::SageMaker
7929
7992
  # @return [Types::VpcConfig]
7930
7993
  #
7931
7994
  # @!attribute [rw] stopping_condition
7932
- # Specifies a limit to how long a model training job can run. When the
7933
- # job reaches the time limit, Amazon SageMaker ends the training job.
7934
- # Use this API to cap model training costs.
7995
+ # Specifies a limit to how long a model training job can run. It also
7996
+ # specifies how long a managed Spot training job has to complete. When
7997
+ # the job reaches the time limit, Amazon SageMaker ends the training
7998
+ # job. Use this API to cap model training costs.
7935
7999
  #
7936
8000
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
7937
8001
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -8040,6 +8104,11 @@ module Aws::SageMaker
8040
8104
  # The environment variables to set in the Docker container.
8041
8105
  # @return [Hash<String,String>]
8042
8106
  #
8107
+ # @!attribute [rw] retry_strategy
8108
+ # The number of times to retry the job when the job fails due to an
8109
+ # `InternalServerError`.
8110
+ # @return [Types::RetryStrategy]
8111
+ #
8043
8112
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
8044
8113
  #
8045
8114
  class CreateTrainingJobRequest < Struct.new(
@@ -8063,7 +8132,8 @@ module Aws::SageMaker
8063
8132
  :experiment_config,
8064
8133
  :profiler_config,
8065
8134
  :profiler_rule_configurations,
8066
- :environment)
8135
+ :environment,
8136
+ :retry_strategy)
8067
8137
  SENSITIVE = []
8068
8138
  include Aws::Structure
8069
8139
  end
@@ -8114,7 +8184,7 @@ module Aws::SageMaker
8114
8184
  # kms_key_id: "KmsKeyId",
8115
8185
  # },
8116
8186
  # transform_resources: { # required
8117
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
8187
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
8118
8188
  # instance_count: 1, # required
8119
8189
  # volume_kms_key_id: "KmsKeyId",
8120
8190
  # },
@@ -8541,7 +8611,7 @@ module Aws::SageMaker
8541
8611
  # @return [String]
8542
8612
  #
8543
8613
  # @!attribute [rw] user_profile_name
8544
- # A name for the UserProfile.
8614
+ # A name for the UserProfile. This value is not case sensitive.
8545
8615
  # @return [String]
8546
8616
  #
8547
8617
  # @!attribute [rw] single_sign_on_user_identifier
@@ -8563,6 +8633,9 @@ module Aws::SageMaker
8563
8633
  # @!attribute [rw] tags
8564
8634
  # Each tag consists of a key and an optional value. Tag keys must be
8565
8635
  # unique per resource.
8636
+ #
8637
+ # Tags that you specify for the User Profile are also added to all
8638
+ # Apps that the User Profile launches.
8566
8639
  # @return [Array<Types::Tag>]
8567
8640
  #
8568
8641
  # @!attribute [rw] user_settings
@@ -9007,7 +9080,9 @@ module Aws::SageMaker
9007
9080
  # The valid values are `None` and `Input`. The default value is
9008
9081
  # `None`, which specifies not to join the input with the transformed
9009
9082
  # data. If you want the batch transform job to join the original input
9010
- # data with the transformed data, set `JoinSource` to `Input`.
9083
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9084
+ # specify `OutputFilter` as an additional filter to select a portion
9085
+ # of the joined dataset and store it in the output file.
9011
9086
  #
9012
9087
  # For JSON or JSONLines objects, such as a JSON array, Amazon
9013
9088
  # SageMaker adds the transformed data to the input JSON object in an
@@ -9017,10 +9092,18 @@ module Aws::SageMaker
9017
9092
  # file, and the input data is stored under the `SageMakerInput` key
9018
9093
  # and the results are stored in `SageMakerOutput`.
9019
9094
  #
9020
- # For CSV files, Amazon SageMaker combines the transformed data with
9021
- # the input data at the end of the input data and stores it in the
9022
- # output file. The joined data has the joined input data followed by
9023
- # the transformed data and the output is a CSV file.
9095
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9096
+ # joins the transformed data with the input by appending each
9097
+ # transformed row to the end of the input. The joined data has the
9098
+ # original input data followed by the transformed data and the output
9099
+ # is a CSV file.
9100
+ #
9101
+ # For information on how joining in applied, see [Workflow for
9102
+ # Associating Inferences with Input Records][1].
9103
+ #
9104
+ #
9105
+ #
9106
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
9024
9107
  # @return [String]
9025
9108
  #
9026
9109
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -9361,7 +9444,7 @@ module Aws::SageMaker
9361
9444
  # local_path: "DirectoryPath",
9362
9445
  # s3_output_path: "S3Uri",
9363
9446
  # rule_evaluator_image: "AlgorithmImage", # required
9364
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
9447
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9365
9448
  # volume_size_in_gb: 1,
9366
9449
  # rule_parameters: {
9367
9450
  # "ConfigKey" => "ConfigValue",
@@ -10051,8 +10134,11 @@ module Aws::SageMaker
10051
10134
  # }
10052
10135
  #
10053
10136
  # @!attribute [rw] model_package_name
10054
- # The name of the model package. The name must have 1 to 63
10055
- # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
10137
+ # The name or Amazon Resource Name (ARN) of the model package to
10138
+ # delete.
10139
+ #
10140
+ # When you specify a name, the name must have 1 to 63 characters.
10141
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
10056
10142
  # @return [String]
10057
10143
  #
10058
10144
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelPackageInput AWS API Documentation
@@ -10946,7 +11032,7 @@ module Aws::SageMaker
10946
11032
  # @return [Time]
10947
11033
  #
10948
11034
  # @!attribute [rw] failure_reason
10949
- # Returns the job's FailureReason.
11035
+ # Returns the failure reason for an AutoML job, when applicable.
10950
11036
  # @return [String]
10951
11037
  #
10952
11038
  # @!attribute [rw] partial_failure_reasons
@@ -10954,11 +11040,11 @@ module Aws::SageMaker
10954
11040
  # @return [Array<Types::AutoMLPartialFailureReason>]
10955
11041
  #
10956
11042
  # @!attribute [rw] best_candidate
10957
- # Returns the job's BestCandidate.
11043
+ # Returns the job's best `AutoMLCandidate`.
10958
11044
  # @return [Types::AutoMLCandidate]
10959
11045
  #
10960
11046
  # @!attribute [rw] auto_ml_job_status
10961
- # Returns the status of the AutoML job's AutoMLJobStatus.
11047
+ # Returns the status of the AutoML job.
10962
11048
  # @return [String]
10963
11049
  #
10964
11050
  # @!attribute [rw] auto_ml_job_secondary_status
@@ -10966,21 +11052,31 @@ module Aws::SageMaker
10966
11052
  # @return [String]
10967
11053
  #
10968
11054
  # @!attribute [rw] generate_candidate_definitions_only
10969
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11055
+ # Indicates whether the output for an AutoML job generates candidate
11056
+ # definitions only.
10970
11057
  # @return [Boolean]
10971
11058
  #
10972
11059
  # @!attribute [rw] auto_ml_job_artifacts
10973
11060
  # Returns information on the job's artifacts found in
10974
- # AutoMLJobArtifacts.
11061
+ # `AutoMLJobArtifacts`.
10975
11062
  # @return [Types::AutoMLJobArtifacts]
10976
11063
  #
10977
11064
  # @!attribute [rw] resolved_attributes
10978
- # This contains ProblemType, AutoMLJobObjective and
10979
- # CompletionCriteria. If you do not provide these values, they are
10980
- # auto-inferred. If you do provide them, they are the values you
10981
- # provide.
11065
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11066
+ # `CompletionCriteria`. If you do not provide these values, they are
11067
+ # auto-inferred. If you do provide them, the values used are the ones
11068
+ # you provide.
10982
11069
  # @return [Types::ResolvedAttributes]
10983
11070
  #
11071
+ # @!attribute [rw] model_deploy_config
11072
+ # Indicates whether the model was deployed automatically to an
11073
+ # endpoint and the name of that endpoint if deployed automatically.
11074
+ # @return [Types::ModelDeployConfig]
11075
+ #
11076
+ # @!attribute [rw] model_deploy_result
11077
+ # Provides information about endpoint for the model deployment.
11078
+ # @return [Types::ModelDeployResult]
11079
+ #
10984
11080
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
10985
11081
  #
10986
11082
  class DescribeAutoMLJobResponse < Struct.new(
@@ -11002,7 +11098,9 @@ module Aws::SageMaker
11002
11098
  :auto_ml_job_secondary_status,
11003
11099
  :generate_candidate_definitions_only,
11004
11100
  :auto_ml_job_artifacts,
11005
- :resolved_attributes)
11101
+ :resolved_attributes,
11102
+ :model_deploy_config,
11103
+ :model_deploy_result)
11006
11104
  SENSITIVE = []
11007
11105
  include Aws::Structure
11008
11106
  end
@@ -11701,6 +11799,10 @@ module Aws::SageMaker
11701
11799
  # The signature document of files in the model artifact.
11702
11800
  # @return [String]
11703
11801
  #
11802
+ # @!attribute [rw] preset_deployment_output
11803
+ # The output of a SageMaker Edge Manager deployable resource.
11804
+ # @return [Types::EdgePresetDeploymentOutput]
11805
+ #
11704
11806
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJobResponse AWS API Documentation
11705
11807
  #
11706
11808
  class DescribeEdgePackagingJobResponse < Struct.new(
@@ -11717,7 +11819,8 @@ module Aws::SageMaker
11717
11819
  :creation_time,
11718
11820
  :last_modified_time,
11719
11821
  :model_artifact,
11720
- :model_signature)
11822
+ :model_signature,
11823
+ :preset_deployment_output)
11721
11824
  SENSITIVE = []
11722
11825
  include Aws::Structure
11723
11826
  end
@@ -12980,7 +13083,11 @@ module Aws::SageMaker
12980
13083
  # }
12981
13084
  #
12982
13085
  # @!attribute [rw] model_package_name
12983
- # The name of the model package to describe.
13086
+ # The name or Amazon Resource Name (ARN) of the model package to
13087
+ # describe.
13088
+ #
13089
+ # When you specify a name, the name must have 1 to 63 characters.
13090
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
12984
13091
  # @return [String]
12985
13092
  #
12986
13093
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageInput AWS API Documentation
@@ -13598,6 +13705,15 @@ module Aws::SageMaker
13598
13705
  # The description of the pipeline execution.
13599
13706
  # @return [String]
13600
13707
  #
13708
+ # @!attribute [rw] pipeline_experiment_config
13709
+ # Specifies the names of the experiment and trial created by a
13710
+ # pipeline.
13711
+ # @return [Types::PipelineExperimentConfig]
13712
+ #
13713
+ # @!attribute [rw] failure_reason
13714
+ # If the execution failed, a message describing why.
13715
+ # @return [String]
13716
+ #
13601
13717
  # @!attribute [rw] creation_time
13602
13718
  # The time when the pipeline execution was created.
13603
13719
  # @return [Time]
@@ -13624,6 +13740,8 @@ module Aws::SageMaker
13624
13740
  :pipeline_execution_display_name,
13625
13741
  :pipeline_execution_status,
13626
13742
  :pipeline_execution_description,
13743
+ :pipeline_experiment_config,
13744
+ :failure_reason,
13627
13745
  :creation_time,
13628
13746
  :last_modified_time,
13629
13747
  :created_by,
@@ -14090,7 +14208,7 @@ module Aws::SageMaker
14090
14208
  #
14091
14209
  # * `LaunchingMLInstances`
14092
14210
  #
14093
- # * `PreparingTrainingStack`
14211
+ # * `PreparingTraining`
14094
14212
  #
14095
14213
  # * `DownloadingTrainingImage`
14096
14214
  # @return [String]
@@ -14141,9 +14259,9 @@ module Aws::SageMaker
14141
14259
  #
14142
14260
  # @!attribute [rw] stopping_condition
14143
14261
  # Specifies a limit to how long a model training job can run. It also
14144
- # specifies the maximum time to wait for a spot instance. When the job
14145
- # reaches the time limit, Amazon SageMaker ends the training job. Use
14146
- # this API to cap model training costs.
14262
+ # specifies how long a managed Spot training job has to complete. When
14263
+ # the job reaches the time limit, Amazon SageMaker ends the training
14264
+ # job. Use this API to cap model training costs.
14147
14265
  #
14148
14266
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
14149
14267
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -14292,6 +14410,11 @@ module Aws::SageMaker
14292
14410
  # Profiling status of a training job.
14293
14411
  # @return [String]
14294
14412
  #
14413
+ # @!attribute [rw] retry_strategy
14414
+ # The number of times to retry the job when the job fails due to an
14415
+ # `InternalServerError`.
14416
+ # @return [Types::RetryStrategy]
14417
+ #
14295
14418
  # @!attribute [rw] environment
14296
14419
  # The environment variables to set in the Docker container.
14297
14420
  # @return [Hash<String,String>]
@@ -14337,6 +14460,7 @@ module Aws::SageMaker
14337
14460
  :profiler_rule_configurations,
14338
14461
  :profiler_rule_evaluation_statuses,
14339
14462
  :profiling_status,
14463
+ :retry_strategy,
14340
14464
  :environment)
14341
14465
  SENSITIVE = []
14342
14466
  include Aws::Structure
@@ -14719,7 +14843,7 @@ module Aws::SageMaker
14719
14843
  # @return [String]
14720
14844
  #
14721
14845
  # @!attribute [rw] user_profile_name
14722
- # The user profile name.
14846
+ # The user profile name. This value is not case sensitive.
14723
14847
  # @return [String]
14724
14848
  #
14725
14849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
@@ -15226,6 +15350,8 @@ module Aws::SageMaker
15226
15350
  # {
15227
15351
  # s3_output_location: "S3Uri", # required
15228
15352
  # kms_key_id: "KmsKeyId",
15353
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
15354
+ # preset_deployment_config: "String",
15229
15355
  # }
15230
15356
  #
15231
15357
  # @!attribute [rw] s3_output_location
@@ -15239,11 +15365,57 @@ module Aws::SageMaker
15239
15365
  # KMS key for Amazon S3 for your role's account.
15240
15366
  # @return [String]
15241
15367
  #
15368
+ # @!attribute [rw] preset_deployment_type
15369
+ # The deployment type SageMaker Edge Manager will create. Currently
15370
+ # only supports AWS IoT Greengrass Version 2 components.
15371
+ # @return [String]
15372
+ #
15373
+ # @!attribute [rw] preset_deployment_config
15374
+ # The configuration used to create deployment artifacts. Specify
15375
+ # configuration options with a JSON string. The available
15376
+ # configuration options for each type are:
15377
+ #
15378
+ # * `ComponentName` (optional) - Name of the GreenGrass V2 component.
15379
+ # If not specified, the default name generated consists of
15380
+ # "SagemakerEdgeManager" and the name of your SageMaker Edge
15381
+ # Manager packaging job.
15382
+ #
15383
+ # * `ComponentDescription` (optional) - Description of the component.
15384
+ #
15385
+ # * `ComponentVersion` (optional) - The version of the component.
15386
+ #
15387
+ # <note markdown="1"> AWS IoT Greengrass uses semantic versions for components. Semantic
15388
+ # versions follow a<i> major.minor.patch</i> number system. For
15389
+ # example, version 1.0.0 represents the first major release for a
15390
+ # component. For more information, see the [semantic version
15391
+ # specification][1].
15392
+ #
15393
+ # </note>
15394
+ #
15395
+ # * `PlatformOS` (optional) - The name of the operating system for the
15396
+ # platform. Supported platforms include Windows and Linux.
15397
+ #
15398
+ # * `PlatformArchitecture` (optional) - The processor architecture for
15399
+ # the platform.
15400
+ #
15401
+ # Supported architectures Windows include: Windows32\_x86,
15402
+ # Windows64\_x64.
15403
+ #
15404
+ # Supported architectures for Linux include: Linux x86\_64, Linux
15405
+ # ARMV8.
15406
+ #
15407
+ #
15408
+ #
15409
+ # [1]: https://semver.org/
15410
+ # @return [String]
15411
+ #
15242
15412
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EdgeOutputConfig AWS API Documentation
15243
15413
  #
15244
15414
  class EdgeOutputConfig < Struct.new(
15245
15415
  :s3_output_location,
15246
- :kms_key_id)
15416
+ :kms_key_id,
15417
+ :preset_deployment_type,
15418
+ :preset_deployment_config)
15247
15419
  SENSITIVE = []
15248
15420
  include Aws::Structure
15249
15421
  end
@@ -15297,6 +15469,36 @@ module Aws::SageMaker
15297
15469
  include Aws::Structure
15298
15470
  end
15299
15471
 
15472
+ # The output of a SageMaker Edge Manager deployable resource.
15473
+ #
15474
+ # @!attribute [rw] type
15475
+ # The deployment type created by SageMaker Edge Manager. Currently
15476
+ # only supports AWS IoT Greengrass Version 2 components.
15477
+ # @return [String]
15478
+ #
15479
+ # @!attribute [rw] artifact
15480
+ # The Amazon Resource Name (ARN) of the generated deployable resource.
15481
+ # @return [String]
15482
+ #
15483
+ # @!attribute [rw] status
15484
+ # The status of the deployable resource.
15485
+ # @return [String]
15486
+ #
15487
+ # @!attribute [rw] status_message
15488
+ # Returns a message describing the status of the deployed resource.
15489
+ # @return [String]
15490
+ #
15491
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EdgePresetDeploymentOutput AWS API Documentation
15492
+ #
15493
+ class EdgePresetDeploymentOutput < Struct.new(
15494
+ :type,
15495
+ :artifact,
15496
+ :status,
15497
+ :status_message)
15498
+ SENSITIVE = []
15499
+ include Aws::Structure
15500
+ end
15501
+
15300
15502
  # @api private
15301
15503
  #
15302
15504
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
@@ -15443,7 +15645,7 @@ module Aws::SageMaker
15443
15645
  #
15444
15646
  # @!attribute [rw] s3_data_distribution_type
15445
15647
  # Whether input data distributed in Amazon S3 is fully replicated or
15446
- # sharded by an S3 key. Defauts to `FullyReplicated`
15648
+ # sharded by an S3 key. Defaults to `FullyReplicated`
15447
15649
  # @return [String]
15448
15650
  #
15449
15651
  # @!attribute [rw] features_attribute
@@ -17989,6 +18191,9 @@ module Aws::SageMaker
17989
18191
  # s3_uri: "S3Uri", # required
17990
18192
  # local_path: "DirectoryPath",
17991
18193
  # },
18194
+ # retry_strategy: {
18195
+ # maximum_retry_attempts: 1, # required
18196
+ # },
17992
18197
  # }
17993
18198
  #
17994
18199
  # @!attribute [rw] definition_name
@@ -18070,10 +18275,9 @@ module Aws::SageMaker
18070
18275
  #
18071
18276
  # @!attribute [rw] stopping_condition
18072
18277
  # Specifies a limit to how long a model hyperparameter training job
18073
- # can run. It also specifies how long you are willing to wait for a
18074
- # managed spot training job to complete. When the job reaches the a
18075
- # limit, Amazon SageMaker ends the training job. Use this API to cap
18076
- # model training costs.
18278
+ # can run. It also specifies how long a managed spot training job has
18279
+ # to complete. When the job reaches the time limit, Amazon SageMaker
18280
+ # ends the training job. Use this API to cap model training costs.
18077
18281
  # @return [Types::StoppingCondition]
18078
18282
  #
18079
18283
  # @!attribute [rw] enable_network_isolation
@@ -18105,6 +18309,11 @@ module Aws::SageMaker
18105
18309
  # training checkpoint data.
18106
18310
  # @return [Types::CheckpointConfig]
18107
18311
  #
18312
+ # @!attribute [rw] retry_strategy
18313
+ # The number of times to retry the job when the job fails due to an
18314
+ # `InternalServerError`.
18315
+ # @return [Types::RetryStrategy]
18316
+ #
18108
18317
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18109
18318
  #
18110
18319
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18122,7 +18331,8 @@ module Aws::SageMaker
18122
18331
  :enable_network_isolation,
18123
18332
  :enable_inter_container_traffic_encryption,
18124
18333
  :enable_managed_spot_training,
18125
- :checkpoint_config)
18334
+ :checkpoint_config,
18335
+ :retry_strategy)
18126
18336
  SENSITIVE = []
18127
18337
  include Aws::Structure
18128
18338
  end
@@ -18697,7 +18907,7 @@ module Aws::SageMaker
18697
18907
  # product_id: "ProductId",
18698
18908
  # },
18699
18909
  # ],
18700
- # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
18910
+ # supported_transform_instance_types: ["ml.m4.xlarge"], # accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
18701
18911
  # supported_realtime_inference_instance_types: ["ml.t2.medium"], # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
18702
18912
  # supported_content_types: ["ContentType"], # required
18703
18913
  # supported_response_mime_types: ["ResponseMIMEType"], # required
@@ -19184,7 +19394,8 @@ module Aws::SageMaker
19184
19394
  # }
19185
19395
  #
19186
19396
  # @!attribute [rw] name
19187
- # The name of the kernel.
19397
+ # The name of the Jupyter kernel in the image. This value is case
19398
+ # sensitive.
19188
19399
  # @return [String]
19189
19400
  #
19190
19401
  # @!attribute [rw] display_name
@@ -19402,6 +19613,7 @@ module Aws::SageMaker
19402
19613
  # @return [String]
19403
19614
  #
19404
19615
  # @!attribute [rw] work_requester_account_id
19616
+ # The AWS account ID of the account used to start the labeling job.
19405
19617
  # @return [String]
19406
19618
  #
19407
19619
  # @!attribute [rw] creation_time
@@ -19526,6 +19738,9 @@ module Aws::SageMaker
19526
19738
  #
19527
19739
  # @!attribute [rw] sns_topic_arn
19528
19740
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19741
+ # Provide a `SnsTopicArn` if you want to do real time chaining to
19742
+ # another streaming job and receive an Amazon SNS notifications each
19743
+ # time a data object is submitted by a worker.
19529
19744
  #
19530
19745
  # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19531
19746
  # complete labeling tasks, Ground Truth will send labeling task output
@@ -20333,12 +20548,11 @@ module Aws::SageMaker
20333
20548
  # @return [String]
20334
20549
  #
20335
20550
  # @!attribute [rw] sort_order
20336
- # The sort order for the results. The default is Descending.
20551
+ # The sort order for the results. The default is `Descending`.
20337
20552
  # @return [String]
20338
20553
  #
20339
20554
  # @!attribute [rw] sort_by
20340
- # The parameter by which to sort the results. The default is
20341
- # AutoMLJobName.
20555
+ # The parameter by which to sort the results. The default is `Name`.
20342
20556
  # @return [String]
20343
20557
  #
20344
20558
  # @!attribute [rw] max_results
@@ -20444,7 +20658,7 @@ module Aws::SageMaker
20444
20658
  end
20445
20659
 
20446
20660
  # @!attribute [rw] candidates
20447
- # Summaries about the Candidates.
20661
+ # Summaries about the `AutoMLCandidates`.
20448
20662
  # @return [Array<Types::AutoMLCandidate>]
20449
20663
  #
20450
20664
  # @!attribute [rw] next_token
@@ -21245,7 +21459,8 @@ module Aws::SageMaker
21245
21459
  # @return [String]
21246
21460
  #
21247
21461
  # @!attribute [rw] max_results
21248
- # The maximum number of endpoints to return in the response.
21462
+ # The maximum number of endpoints to return in the response. This
21463
+ # value defaults to 10.
21249
21464
  # @return [Integer]
21250
21465
  #
21251
21466
  # @!attribute [rw] name_contains
@@ -24411,7 +24626,7 @@ module Aws::SageMaker
24411
24626
  end
24412
24627
 
24413
24628
  # Specifies a metric that the training algorithm writes to `stderr` or
24414
- # `stdout` . Amazon SageMakerhyperparameter tuning captures all defined
24629
+ # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
24415
24630
  # metrics. You specify one metric that a hyperparameter tuning job uses
24416
24631
  # as its objective metric to choose the best training job.
24417
24632
  #
@@ -24480,7 +24695,7 @@ module Aws::SageMaker
24480
24695
  #
24481
24696
  # Model artifacts are the output that results from training a model, and
24482
24697
  # typically consist of trained parameters, a model defintion that
24483
- # desribes how to compute inferences, and other metadata.
24698
+ # describes how to compute inferences, and other metadata.
24484
24699
  #
24485
24700
  # @!attribute [rw] s3_model_artifacts
24486
24701
  # The path of the S3 object that contains the model artifacts. For
@@ -24668,6 +24883,66 @@ module Aws::SageMaker
24668
24883
  include Aws::Structure
24669
24884
  end
24670
24885
 
24886
+ # Specifies how to generate the endpoint name for an automatic one-click
24887
+ # Autopilot model deployment.
24888
+ #
24889
+ # @note When making an API call, you may pass ModelDeployConfig
24890
+ # data as a hash:
24891
+ #
24892
+ # {
24893
+ # auto_generate_endpoint_name: false,
24894
+ # endpoint_name: "EndpointName",
24895
+ # }
24896
+ #
24897
+ # @!attribute [rw] auto_generate_endpoint_name
24898
+ # Set to `True` to automatically generate an endpoint name for a
24899
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24900
+ # default value is `False`.
24901
+ #
24902
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24903
+ # `EndpointName`; otherwise a 400 error is thrown.
24904
+ #
24905
+ # </note>
24906
+ # @return [Boolean]
24907
+ #
24908
+ # @!attribute [rw] endpoint_name
24909
+ # Specifies the endpoint name to use for a one-click Autopilot model
24910
+ # deployment if the endpoint name is not generated automatically.
24911
+ #
24912
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24913
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24914
+ # thrown.
24915
+ #
24916
+ # </note>
24917
+ # @return [String]
24918
+ #
24919
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24920
+ #
24921
+ class ModelDeployConfig < Struct.new(
24922
+ :auto_generate_endpoint_name,
24923
+ :endpoint_name)
24924
+ SENSITIVE = []
24925
+ include Aws::Structure
24926
+ end
24927
+
24928
+ # Provides information about the endpoint of the model deployment.
24929
+ #
24930
+ # @!attribute [rw] endpoint_name
24931
+ # The name of the endpoint to which the model has been deployed.
24932
+ #
24933
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24934
+ #
24935
+ # </note>
24936
+ # @return [String]
24937
+ #
24938
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24939
+ #
24940
+ class ModelDeployResult < Struct.new(
24941
+ :endpoint_name)
24942
+ SENSITIVE = []
24943
+ include Aws::Structure
24944
+ end
24945
+
24671
24946
  # Provides information to verify the integrity of stored model
24672
24947
  # artifacts.
24673
24948
  #
@@ -25311,7 +25586,7 @@ module Aws::SageMaker
25311
25586
  # kms_key_id: "KmsKeyId",
25312
25587
  # },
25313
25588
  # transform_resources: { # required
25314
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
25589
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
25315
25590
  # instance_count: 1, # required
25316
25591
  # volume_kms_key_id: "KmsKeyId",
25317
25592
  # },
@@ -25372,7 +25647,7 @@ module Aws::SageMaker
25372
25647
  # kms_key_id: "KmsKeyId",
25373
25648
  # },
25374
25649
  # transform_resources: { # required
25375
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
25650
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
25376
25651
  # instance_count: 1, # required
25377
25652
  # volume_kms_key_id: "KmsKeyId",
25378
25653
  # },
@@ -25715,7 +25990,7 @@ module Aws::SageMaker
25715
25990
  #
25716
25991
  # {
25717
25992
  # instance_count: 1, # required
25718
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
25993
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
25719
25994
  # volume_size_in_gb: 1, # required
25720
25995
  # volume_kms_key_id: "KmsKeyId",
25721
25996
  # }
@@ -25932,7 +26207,7 @@ module Aws::SageMaker
25932
26207
  # monitoring_resources: { # required
25933
26208
  # cluster_config: { # required
25934
26209
  # instance_count: 1, # required
25935
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
26210
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
25936
26211
  # volume_size_in_gb: 1, # required
25937
26212
  # volume_kms_key_id: "KmsKeyId",
25938
26213
  # },
@@ -26171,7 +26446,7 @@ module Aws::SageMaker
26171
26446
  # {
26172
26447
  # cluster_config: { # required
26173
26448
  # instance_count: 1, # required
26174
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
26449
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
26175
26450
  # volume_size_in_gb: 1, # required
26176
26451
  # volume_kms_key_id: "KmsKeyId",
26177
26452
  # },
@@ -26362,7 +26637,7 @@ module Aws::SageMaker
26362
26637
  # monitoring_resources: { # required
26363
26638
  # cluster_config: { # required
26364
26639
  # instance_count: 1, # required
26365
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
26640
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
26366
26641
  # volume_size_in_gb: 1, # required
26367
26642
  # volume_kms_key_id: "KmsKeyId",
26368
26643
  # },
@@ -26503,6 +26778,13 @@ module Aws::SageMaker
26503
26778
  #
26504
26779
  # @!attribute [rw] max_runtime_in_seconds
26505
26780
  # The maximum runtime allowed in seconds.
26781
+ #
26782
+ # <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
26783
+ # For data quality and model explainability, this can be up to 3600
26784
+ # seconds for an hourly schedule. For model bias and model quality
26785
+ # hourly schedules, this can be up to 1800 seconds.
26786
+ #
26787
+ # </note>
26506
26788
  # @return [Integer]
26507
26789
  #
26508
26790
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
@@ -27440,7 +27722,7 @@ module Aws::SageMaker
27440
27722
  #
27441
27723
  #
27442
27724
  #
27443
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27725
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27444
27726
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27445
27727
  # @return [String]
27446
27728
  #
@@ -27458,6 +27740,33 @@ module Aws::SageMaker
27458
27740
  include Aws::Structure
27459
27741
  end
27460
27742
 
27743
+ # An output parameter of a pipeline step.
27744
+ #
27745
+ # @note When making an API call, you may pass OutputParameter
27746
+ # data as a hash:
27747
+ #
27748
+ # {
27749
+ # name: "String256", # required
27750
+ # value: "String1024", # required
27751
+ # }
27752
+ #
27753
+ # @!attribute [rw] name
27754
+ # The name of the output parameter.
27755
+ # @return [String]
27756
+ #
27757
+ # @!attribute [rw] value
27758
+ # The value of the output parameter.
27759
+ # @return [String]
27760
+ #
27761
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputParameter AWS API Documentation
27762
+ #
27763
+ class OutputParameter < Struct.new(
27764
+ :name,
27765
+ :value)
27766
+ SENSITIVE = []
27767
+ include Aws::Structure
27768
+ end
27769
+
27461
27770
  # Assigns a value to a named Pipeline parameter.
27462
27771
  #
27463
27772
  # @note When making an API call, you may pass Parameter
@@ -27737,6 +28046,15 @@ module Aws::SageMaker
27737
28046
  # The description of the pipeline execution.
27738
28047
  # @return [String]
27739
28048
  #
28049
+ # @!attribute [rw] pipeline_experiment_config
28050
+ # Specifies the names of the experiment and trial created by a
28051
+ # pipeline.
28052
+ # @return [Types::PipelineExperimentConfig]
28053
+ #
28054
+ # @!attribute [rw] failure_reason
28055
+ # If the execution failed, a message describing why.
28056
+ # @return [String]
28057
+ #
27740
28058
  # @!attribute [rw] creation_time
27741
28059
  # The creation time of the pipeline execution.
27742
28060
  # @return [Time]
@@ -27767,6 +28085,8 @@ module Aws::SageMaker
27767
28085
  :pipeline_execution_display_name,
27768
28086
  :pipeline_execution_status,
27769
28087
  :pipeline_execution_description,
28088
+ :pipeline_experiment_config,
28089
+ :failure_reason,
27770
28090
  :creation_time,
27771
28091
  :last_modified_time,
27772
28092
  :created_by,
@@ -27805,7 +28125,7 @@ module Aws::SageMaker
27805
28125
  # @return [String]
27806
28126
  #
27807
28127
  # @!attribute [rw] metadata
27808
- # The metadata for the step execution.
28128
+ # Metadata for the step execution.
27809
28129
  # @return [Types::PipelineExecutionStepMetadata]
27810
28130
  #
27811
28131
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStep AWS API Documentation
@@ -27852,6 +28172,10 @@ module Aws::SageMaker
27852
28172
  # condition.
27853
28173
  # @return [Types::ConditionStepMetadata]
27854
28174
  #
28175
+ # @!attribute [rw] callback
28176
+ # Metadata about a callback step.
28177
+ # @return [Types::CallbackStepMetadata]
28178
+ #
27855
28179
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStepMetadata AWS API Documentation
27856
28180
  #
27857
28181
  class PipelineExecutionStepMetadata < Struct.new(
@@ -27860,7 +28184,8 @@ module Aws::SageMaker
27860
28184
  :transform_job,
27861
28185
  :model,
27862
28186
  :register_model,
27863
- :condition)
28187
+ :condition,
28188
+ :callback)
27864
28189
  SENSITIVE = []
27865
28190
  include Aws::Structure
27866
28191
  end
@@ -27899,6 +28224,25 @@ module Aws::SageMaker
27899
28224
  include Aws::Structure
27900
28225
  end
27901
28226
 
28227
+ # Specifies the names of the experiment and trial created by a pipeline.
28228
+ #
28229
+ # @!attribute [rw] experiment_name
28230
+ # The name of the experiment.
28231
+ # @return [String]
28232
+ #
28233
+ # @!attribute [rw] trial_name
28234
+ # The name of the trial.
28235
+ # @return [String]
28236
+ #
28237
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExperimentConfig AWS API Documentation
28238
+ #
28239
+ class PipelineExperimentConfig < Struct.new(
28240
+ :experiment_name,
28241
+ :trial_name)
28242
+ SENSITIVE = []
28243
+ include Aws::Structure
28244
+ end
28245
+
27902
28246
  # A summary of a pipeline.
27903
28247
  #
27904
28248
  # @!attribute [rw] pipeline_arn
@@ -27955,7 +28299,7 @@ module Aws::SageMaker
27955
28299
  #
27956
28300
  # {
27957
28301
  # instance_count: 1, # required
27958
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
28302
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
27959
28303
  # volume_size_in_gb: 1, # required
27960
28304
  # volume_kms_key_id: "KmsKeyId",
27961
28305
  # }
@@ -27973,12 +28317,47 @@ module Aws::SageMaker
27973
28317
  # @!attribute [rw] volume_size_in_gb
27974
28318
  # The size of the ML storage volume in gigabytes that you want to
27975
28319
  # provision. You must specify sufficient ML storage for your scenario.
28320
+ #
28321
+ # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
28322
+ # total size, dependent on the instance type. When using these
28323
+ # instances for processing, Amazon SageMaker mounts the local instance
28324
+ # storage instead of Amazon EBS gp2 storage. You can't request a
28325
+ # `VolumeSizeInGB` greater than the total size of the local instance
28326
+ # storage.
28327
+ #
28328
+ # For a list of instance types that support local instance storage,
28329
+ # including the total size per instance type, see [Instance Store
28330
+ # Volumes][1].
28331
+ #
28332
+ # </note>
28333
+ #
28334
+ #
28335
+ #
28336
+ # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
27976
28337
  # @return [Integer]
27977
28338
  #
27978
28339
  # @!attribute [rw] volume_kms_key_id
27979
28340
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
27980
28341
  # uses to encrypt data on the storage volume attached to the ML
27981
28342
  # compute instance(s) that run the processing job.
28343
+ #
28344
+ # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
28345
+ # the instance type. Local storage volumes are encrypted using a
28346
+ # hardware module on the instance. You can't request a
28347
+ # `VolumeKmsKeyId` when using an instance type with local storage.
28348
+ #
28349
+ # For a list of instance types that support local instance storage,
28350
+ # see [Instance Store Volumes][1].
28351
+ #
28352
+ # For more information about local instance storage encryption, see
28353
+ # [SSD Instance Store Volumes][2].
28354
+ #
28355
+ # </note>
28356
+ #
28357
+ #
28358
+ #
28359
+ # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
28360
+ # [2]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
27982
28361
  # @return [String]
27983
28362
  #
27984
28363
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingClusterConfig AWS API Documentation
@@ -28412,7 +28791,7 @@ module Aws::SageMaker
28412
28791
  # {
28413
28792
  # cluster_config: { # required
28414
28793
  # instance_count: 1, # required
28415
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
28794
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
28416
28795
  # volume_size_in_gb: 1, # required
28417
28796
  # volume_kms_key_id: "KmsKeyId",
28418
28797
  # },
@@ -28568,10 +28947,10 @@ module Aws::SageMaker
28568
28947
  include Aws::Structure
28569
28948
  end
28570
28949
 
28571
- # Identifies a model that you want to host and the resources to deploy
28572
- # for hosting it. If you are deploying multiple models, tell Amazon
28573
- # SageMaker how to distribute traffic among the models by specifying
28574
- # variant weights.
28950
+ # Identifies a model that you want to host and the resources chosen to
28951
+ # deploy for hosting it. If you are deploying multiple models, tell
28952
+ # Amazon SageMaker how to distribute traffic among the models by
28953
+ # specifying variant weights.
28575
28954
  #
28576
28955
  # @note When making an API call, you may pass ProductionVariant
28577
28956
  # data as a hash:
@@ -28876,7 +29255,7 @@ module Aws::SageMaker
28876
29255
  # local_path: "DirectoryPath",
28877
29256
  # s3_output_path: "S3Uri",
28878
29257
  # rule_evaluator_image: "AlgorithmImage", # required
28879
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
29258
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
28880
29259
  # volume_size_in_gb: 1,
28881
29260
  # rule_parameters: {
28882
29261
  # "ConfigKey" => "ConfigValue",
@@ -29870,6 +30249,32 @@ module Aws::SageMaker
29870
30249
  include Aws::Structure
29871
30250
  end
29872
30251
 
30252
+ # The retry strategy to use when a training job fails due to an
30253
+ # `InternalServerError`. `RetryStrategy` is specified as part of the
30254
+ # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
30255
+ # can add the `StoppingCondition` parameter to the request to limit the
30256
+ # training time for the complete job.
30257
+ #
30258
+ # @note When making an API call, you may pass RetryStrategy
30259
+ # data as a hash:
30260
+ #
30261
+ # {
30262
+ # maximum_retry_attempts: 1, # required
30263
+ # }
30264
+ #
30265
+ # @!attribute [rw] maximum_retry_attempts
30266
+ # The number of times to retry the job. When the job is retried, it's
30267
+ # `SecondaryStatus` is changed to `STARTING`.
30268
+ # @return [Integer]
30269
+ #
30270
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
30271
+ #
30272
+ class RetryStrategy < Struct.new(
30273
+ :maximum_retry_attempts)
30274
+ SENSITIVE = []
30275
+ include Aws::Structure
30276
+ end
30277
+
29873
30278
  # Describes the S3 data source.
29874
30279
  #
29875
30280
  # @note When making an API call, you may pass S3DataSource
@@ -30484,6 +30889,107 @@ module Aws::SageMaker
30484
30889
  include Aws::Structure
30485
30890
  end
30486
30891
 
30892
+ # @note When making an API call, you may pass SendPipelineExecutionStepFailureRequest
30893
+ # data as a hash:
30894
+ #
30895
+ # {
30896
+ # callback_token: "CallbackToken", # required
30897
+ # failure_reason: "String256",
30898
+ # client_request_token: "IdempotencyToken",
30899
+ # }
30900
+ #
30901
+ # @!attribute [rw] callback_token
30902
+ # The pipeline generated token from the Amazon SQS queue.
30903
+ # @return [String]
30904
+ #
30905
+ # @!attribute [rw] failure_reason
30906
+ # A message describing why the step failed.
30907
+ # @return [String]
30908
+ #
30909
+ # @!attribute [rw] client_request_token
30910
+ # A unique, case-sensitive identifier that you provide to ensure the
30911
+ # idempotency of the operation. An idempotent operation completes no
30912
+ # more than one time.
30913
+ #
30914
+ # **A suitable default value is auto-generated.** You should normally
30915
+ # not need to pass this option.
30916
+ # @return [String]
30917
+ #
30918
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureRequest AWS API Documentation
30919
+ #
30920
+ class SendPipelineExecutionStepFailureRequest < Struct.new(
30921
+ :callback_token,
30922
+ :failure_reason,
30923
+ :client_request_token)
30924
+ SENSITIVE = []
30925
+ include Aws::Structure
30926
+ end
30927
+
30928
+ # @!attribute [rw] pipeline_execution_arn
30929
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30930
+ # @return [String]
30931
+ #
30932
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureResponse AWS API Documentation
30933
+ #
30934
+ class SendPipelineExecutionStepFailureResponse < Struct.new(
30935
+ :pipeline_execution_arn)
30936
+ SENSITIVE = []
30937
+ include Aws::Structure
30938
+ end
30939
+
30940
+ # @note When making an API call, you may pass SendPipelineExecutionStepSuccessRequest
30941
+ # data as a hash:
30942
+ #
30943
+ # {
30944
+ # callback_token: "CallbackToken", # required
30945
+ # output_parameters: [
30946
+ # {
30947
+ # name: "String256", # required
30948
+ # value: "String1024", # required
30949
+ # },
30950
+ # ],
30951
+ # client_request_token: "IdempotencyToken",
30952
+ # }
30953
+ #
30954
+ # @!attribute [rw] callback_token
30955
+ # The pipeline generated token from the Amazon SQS queue.
30956
+ # @return [String]
30957
+ #
30958
+ # @!attribute [rw] output_parameters
30959
+ # A list of the output parameters of the callback step.
30960
+ # @return [Array<Types::OutputParameter>]
30961
+ #
30962
+ # @!attribute [rw] client_request_token
30963
+ # A unique, case-sensitive identifier that you provide to ensure the
30964
+ # idempotency of the operation. An idempotent operation completes no
30965
+ # more than one time.
30966
+ #
30967
+ # **A suitable default value is auto-generated.** You should normally
30968
+ # not need to pass this option.
30969
+ # @return [String]
30970
+ #
30971
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessRequest AWS API Documentation
30972
+ #
30973
+ class SendPipelineExecutionStepSuccessRequest < Struct.new(
30974
+ :callback_token,
30975
+ :output_parameters,
30976
+ :client_request_token)
30977
+ SENSITIVE = []
30978
+ include Aws::Structure
30979
+ end
30980
+
30981
+ # @!attribute [rw] pipeline_execution_arn
30982
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30983
+ # @return [String]
30984
+ #
30985
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessResponse AWS API Documentation
30986
+ #
30987
+ class SendPipelineExecutionStepSuccessResponse < Struct.new(
30988
+ :pipeline_execution_arn)
30989
+ SENSITIVE = []
30990
+ include Aws::Structure
30991
+ end
30992
+
30487
30993
  # Details of a provisioned service catalog product. For information
30488
30994
  # about service catalog, see [What is AWS Service Catalog][1].
30489
30995
  #
@@ -31102,11 +31608,11 @@ module Aws::SageMaker
31102
31608
  include Aws::Structure
31103
31609
  end
31104
31610
 
31105
- # Specifies a limit to how long a model training or compilation job can
31106
- # run. It also specifies how long you are willing to wait for a managed
31107
- # spot training job to complete. When the job reaches the time limit,
31108
- # Amazon SageMaker ends the training or compilation job. Use this API to
31109
- # cap model training costs.
31611
+ # Specifies a limit to how long a model training job, model compilation
31612
+ # job, or hyperparameter tuning job can run. It also specifies how long
31613
+ # a managed Spot training job has to complete. When the job reaches the
31614
+ # time limit, Amazon SageMaker ends the training or compilation job. Use
31615
+ # this API to cap model training costs.
31110
31616
  #
31111
31617
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31112
31618
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31136,18 +31642,27 @@ module Aws::SageMaker
31136
31642
  # }
31137
31643
  #
31138
31644
  # @!attribute [rw] max_runtime_in_seconds
31139
- # The maximum length of time, in seconds, that the training or
31140
- # compilation job can run. If job does not complete during this time,
31141
- # Amazon SageMaker ends the job. If value is not specified, default
31142
- # value is 1 day. The maximum value is 28 days.
31645
+ # The maximum length of time, in seconds, that a training or
31646
+ # compilation job can run. If the job does not complete during this
31647
+ # time, Amazon SageMaker ends the job.
31648
+ #
31649
+ # When `RetryStrategy` is specified in the job request,
31650
+ # `MaxRuntimeInSeconds` specifies the maximum time for all of the
31651
+ # attempts in total, not each individual attempt.
31652
+ #
31653
+ # The default value is 1 day. The maximum value is 28 days.
31143
31654
  # @return [Integer]
31144
31655
  #
31145
31656
  # @!attribute [rw] max_wait_time_in_seconds
31146
- # The maximum length of time, in seconds, how long you are willing to
31147
- # wait for a managed spot training job to complete. It is the amount
31148
- # of time spent waiting for Spot capacity plus the amount of time the
31149
- # training job runs. It must be equal to or greater than
31150
- # `MaxRuntimeInSeconds`.
31657
+ # The maximum length of time, in seconds, that a managed Spot training
31658
+ # job has to complete. It is the amount of time spent waiting for Spot
31659
+ # capacity plus the amount of time the job can run. It must be equal
31660
+ # to or greater than `MaxRuntimeInSeconds`. If the job does not
31661
+ # complete during this time, Amazon SageMaker ends the job.
31662
+ #
31663
+ # When `RetryStrategy` is specified in the job request,
31664
+ # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
31665
+ # attempts in total, not each individual attempt.
31151
31666
  # @return [Integer]
31152
31667
  #
31153
31668
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -31220,7 +31735,23 @@ module Aws::SageMaker
31220
31735
  include Aws::Structure
31221
31736
  end
31222
31737
 
31223
- # Describes a tag.
31738
+ # A tag object that consists of a key and an optional value, used to
31739
+ # manage metadata for Amazon SageMaker AWS resources.
31740
+ #
31741
+ # You can add tags to notebook instances, training jobs, hyperparameter
31742
+ # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
31743
+ # endpoint configurations, and endpoints. For more information on adding
31744
+ # tags to Amazon SageMaker resources, see AddTags.
31745
+ #
31746
+ # For more information on adding metadata to your AWS resources with
31747
+ # tagging, see [Tagging AWS resources][1]. For advice on best practices
31748
+ # for managing AWS resources with tagging, see [Tagging Best Practices:
31749
+ # Implement an Effective AWS Resource Tagging Strategy][2].
31750
+ #
31751
+ #
31752
+ #
31753
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
31754
+ # [2]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
31224
31755
  #
31225
31756
  # @note When making an API call, you may pass Tag
31226
31757
  # data as a hash:
@@ -31231,7 +31762,7 @@ module Aws::SageMaker
31231
31762
  # }
31232
31763
  #
31233
31764
  # @!attribute [rw] key
31234
- # The tag key.
31765
+ # The tag key. Tag keys must be unique per resource.
31235
31766
  # @return [String]
31236
31767
  #
31237
31768
  # @!attribute [rw] value
@@ -31542,9 +32073,10 @@ module Aws::SageMaker
31542
32073
  # @return [Types::VpcConfig]
31543
32074
  #
31544
32075
  # @!attribute [rw] stopping_condition
31545
- # Specifies a limit to how long a model training job can run. When the
31546
- # job reaches the time limit, Amazon SageMaker ends the training job.
31547
- # Use this API to cap model training costs.
32076
+ # Specifies a limit to how long a model training job can run. It also
32077
+ # specifies how long a managed Spot training job has to complete. When
32078
+ # the job reaches the time limit, Amazon SageMaker ends the training
32079
+ # job. Use this API to cap model training costs.
31548
32080
  #
31549
32081
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31550
32082
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31669,6 +32201,11 @@ module Aws::SageMaker
31669
32201
  # The environment variables to set in the Docker container.
31670
32202
  # @return [Hash<String,String>]
31671
32203
  #
32204
+ # @!attribute [rw] retry_strategy
32205
+ # The number of times to retry the job when the job fails due to an
32206
+ # `InternalServerError`.
32207
+ # @return [Types::RetryStrategy]
32208
+ #
31672
32209
  # @!attribute [rw] tags
31673
32210
  # An array of key-value pairs. You can use tags to categorize your AWS
31674
32211
  # resources in different ways, for example, by purpose, owner, or
@@ -31717,6 +32254,7 @@ module Aws::SageMaker
31717
32254
  :tensor_board_output_config,
31718
32255
  :debug_rule_evaluation_statuses,
31719
32256
  :environment,
32257
+ :retry_strategy,
31720
32258
  :tags)
31721
32259
  SENSITIVE = []
31722
32260
  include Aws::Structure
@@ -31810,9 +32348,10 @@ module Aws::SageMaker
31810
32348
  # @return [Types::ResourceConfig]
31811
32349
  #
31812
32350
  # @!attribute [rw] stopping_condition
31813
- # Specifies a limit to how long a model training job can run. When the
31814
- # job reaches the time limit, Amazon SageMaker ends the training job.
31815
- # Use this API to cap model training costs.
32351
+ # Specifies a limit to how long a model training job can run. It also
32352
+ # specifies how long a managed Spot training job has to complete. When
32353
+ # the job reaches the time limit, Amazon SageMaker ends the training
32354
+ # job. Use this API to cap model training costs.
31816
32355
  #
31817
32356
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
31818
32357
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -32145,7 +32684,7 @@ module Aws::SageMaker
32145
32684
  #
32146
32685
  #
32147
32686
  # [1]: https://mxnet.apache.org/api/faq/recordio
32148
- # [2]: https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
32687
+ # [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
32149
32688
  # @return [String]
32150
32689
  #
32151
32690
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
@@ -32370,7 +32909,7 @@ module Aws::SageMaker
32370
32909
  # kms_key_id: "KmsKeyId",
32371
32910
  # },
32372
32911
  # transform_resources: { # required
32373
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
32912
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
32374
32913
  # instance_count: 1, # required
32375
32914
  # volume_kms_key_id: "KmsKeyId",
32376
32915
  # },
@@ -32589,7 +33128,7 @@ module Aws::SageMaker
32589
33128
  # data as a hash:
32590
33129
  #
32591
33130
  # {
32592
- # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
33131
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
32593
33132
  # instance_count: 1, # required
32594
33133
  # volume_kms_key_id: "KmsKeyId",
32595
33134
  # }
@@ -32597,7 +33136,7 @@ module Aws::SageMaker
32597
33136
  # @!attribute [rw] instance_type
32598
33137
  # The ML compute instance type for the transform job. If you are using
32599
33138
  # built-in algorithms to transform moderately sized datasets, we
32600
- # recommend using ml.m4.xlarge or `ml.m5.large` instance types.
33139
+ # recommend using ml.m4.xlarge or `ml.m5.large`instance types.
32601
33140
  # @return [String]
32602
33141
  #
32603
33142
  # @!attribute [rw] instance_count
@@ -32609,8 +33148,22 @@ module Aws::SageMaker
32609
33148
  # @!attribute [rw] volume_kms_key_id
32610
33149
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
32611
33150
  # uses to encrypt model data on the storage volume attached to the ML
32612
- # compute instance(s) that run the batch transform job. The
32613
- # `VolumeKmsKeyId` can be any of the following formats:
33151
+ # compute instance(s) that run the batch transform job.
33152
+ #
33153
+ # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
33154
+ # the instance type. Local storage volumes are encrypted using a
33155
+ # hardware module on the instance. You can't request a
33156
+ # `VolumeKmsKeyId` when using an instance type with local storage.
33157
+ #
33158
+ # For a list of instance types that support local instance storage,
33159
+ # see [Instance Store Volumes][1].
33160
+ #
33161
+ # For more information about local instance storage encryption, see
33162
+ # [SSD Instance Store Volumes][2].
33163
+ #
33164
+ # </note>
33165
+ #
33166
+ # The `VolumeKmsKeyId` can be any of the following formats:
32614
33167
  #
32615
33168
  # * Key ID: `1234abcd-12ab-34cd-56ef-1234567890ab`
32616
33169
  #
@@ -32621,6 +33174,11 @@ module Aws::SageMaker
32621
33174
  #
32622
33175
  # * Alias name ARN:
32623
33176
  # `arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias`
33177
+ #
33178
+ #
33179
+ #
33180
+ # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
33181
+ # [2]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
32624
33182
  # @return [String]
32625
33183
  #
32626
33184
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformResources AWS API Documentation
@@ -33290,7 +33848,7 @@ module Aws::SageMaker
33290
33848
  include Aws::Structure
33291
33849
  end
33292
33850
 
33293
- # Represents an amount of money in United States dollars/
33851
+ # Represents an amount of money in United States dollars.
33294
33852
  #
33295
33853
  # @note When making an API call, you may pass USD
33296
33854
  # data as a hash:
@@ -33708,7 +34266,10 @@ module Aws::SageMaker
33708
34266
  # output_config: { # required
33709
34267
  # s3_output_location: "S3Uri", # required
33710
34268
  # kms_key_id: "KmsKeyId",
34269
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
34270
+ # preset_deployment_config: "String",
33711
34271
  # },
34272
+ # enable_iot_role_alias: false,
33712
34273
  # }
33713
34274
  #
33714
34275
  # @!attribute [rw] device_fleet_name
@@ -33727,13 +34288,23 @@ module Aws::SageMaker
33727
34288
  # Output configuration for storing sample data collected by the fleet.
33728
34289
  # @return [Types::EdgeOutputConfig]
33729
34290
  #
34291
+ # @!attribute [rw] enable_iot_role_alias
34292
+ # Whether to create an AWS IoT Role Alias during device fleet
34293
+ # creation. The name of the role alias generated will match this
34294
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
34295
+ #
34296
+ # For example, if your device fleet is called "demo-fleet", the name
34297
+ # of the role alias will be "SageMakerEdge-demo-fleet".
34298
+ # @return [Boolean]
34299
+ #
33730
34300
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleetRequest AWS API Documentation
33731
34301
  #
33732
34302
  class UpdateDeviceFleetRequest < Struct.new(
33733
34303
  :device_fleet_name,
33734
34304
  :role_arn,
33735
34305
  :description,
33736
- :output_config)
34306
+ :output_config,
34307
+ :enable_iot_role_alias)
33737
34308
  SENSITIVE = []
33738
34309
  include Aws::Structure
33739
34310
  end
@@ -34175,7 +34746,7 @@ module Aws::SageMaker
34175
34746
  # monitoring_resources: { # required
34176
34747
  # cluster_config: { # required
34177
34748
  # instance_count: 1, # required
34178
- # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
34749
+ # instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
34179
34750
  # volume_size_in_gb: 1, # required
34180
34751
  # volume_kms_key_id: "KmsKeyId",
34181
34752
  # },
@@ -34570,7 +35141,7 @@ module Aws::SageMaker
34570
35141
  # local_path: "DirectoryPath",
34571
35142
  # s3_output_path: "S3Uri",
34572
35143
  # rule_evaluator_image: "AlgorithmImage", # required
34573
- # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
35144
+ # instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
34574
35145
  # volume_size_in_gb: 1,
34575
35146
  # rule_parameters: {
34576
35147
  # "ConfigKey" => "ConfigValue",