aws-sdk-sagemaker 1.79.0 → 1.84.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/VERSION ADDED
@@ -0,0 +1 @@
1
+ 1.84.0
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.79.0'
52
+ GEM_VERSION = '1.84.0'
53
53
 
54
54
  end
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -1304,7 +1304,7 @@ module Aws::SageMaker
1304
1304
  # },
1305
1305
  # output_config: { # required
1306
1306
  # s3_output_location: "S3Uri", # required
1307
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1307
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1308
1308
  # target_platform: {
1309
1309
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1310
1310
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1651,7 +1651,18 @@ module Aws::SageMaker
1651
1651
  # The mode of authentication that members use to access the domain.
1652
1652
  #
1653
1653
  # @option params [required, Types::UserSettings] :default_user_settings
1654
- # The default user settings.
1654
+ # The default settings to use to create a user profile when
1655
+ # `UserSettings` isn't specified in the call to the
1656
+ # [CreateUserProfile][1] API.
1657
+ #
1658
+ # `SecurityGroups` is aggregated when specified in both calls. For all
1659
+ # other settings in `UserSettings`, the values specified in
1660
+ # `CreateUserProfile` take precedence over those specified in
1661
+ # `CreateDomain`.
1662
+ #
1663
+ #
1664
+ #
1665
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
1655
1666
  #
1656
1667
  # @option params [required, Array<String>] :subnet_ids
1657
1668
  # The VPC subnets that Studio uses for communication.
@@ -1663,7 +1674,11 @@ module Aws::SageMaker
1663
1674
  # @option params [Array<Types::Tag>] :tags
1664
1675
  # Tags to associated with the Domain. Each tag consists of a key and an
1665
1676
  # optional value. Tag keys must be unique per resource. Tags are
1666
- # searchable using the Search API.
1677
+ # searchable using the [Search][1] API.
1678
+ #
1679
+ #
1680
+ #
1681
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
1667
1682
  #
1668
1683
  # @option params [String] :app_network_access_type
1669
1684
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -2341,6 +2356,7 @@ module Aws::SageMaker
2341
2356
  # s3_storage_config: { # required
2342
2357
  # s3_uri: "S3Uri", # required
2343
2358
  # kms_key_id: "KmsKeyId",
2359
+ # resolved_output_s3_uri: "S3Uri",
2344
2360
  # },
2345
2361
  # disable_glue_table_creation: false,
2346
2362
  # data_catalog_config: {
@@ -3357,6 +3373,9 @@ module Aws::SageMaker
3357
3373
  # image: "ContainerImage",
3358
3374
  # image_config: {
3359
3375
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3376
+ # repository_auth_config: {
3377
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3378
+ # },
3360
3379
  # },
3361
3380
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3362
3381
  # model_data_url: "Url",
@@ -3374,6 +3393,9 @@ module Aws::SageMaker
3374
3393
  # image: "ContainerImage",
3375
3394
  # image_config: {
3376
3395
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3396
+ # repository_auth_config: {
3397
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3398
+ # },
3377
3399
  # },
3378
3400
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3379
3401
  # model_data_url: "Url",
@@ -4982,6 +5004,9 @@ module Aws::SageMaker
4982
5004
  # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
4983
5005
  # for a managed spot training job to complete.
4984
5006
  #
5007
+ # * `Environment` - The environment variables to set in the Docker
5008
+ # container.
5009
+ #
4985
5010
  # For more information about Amazon SageMaker, see [How It Works][3].
4986
5011
  #
4987
5012
  #
@@ -5179,6 +5204,9 @@ module Aws::SageMaker
5179
5204
  # Configuration information for Debugger rules for profiling system and
5180
5205
  # framework metrics.
5181
5206
  #
5207
+ # @option params [Hash<String,String>] :environment
5208
+ # The environment variables to set in the Docker container.
5209
+ #
5182
5210
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5183
5211
  #
5184
5212
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5317,6 +5345,9 @@ module Aws::SageMaker
5317
5345
  # },
5318
5346
  # },
5319
5347
  # ],
5348
+ # environment: {
5349
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5350
+ # },
5320
5351
  # })
5321
5352
  #
5322
5353
  # @example Response structure
@@ -7531,7 +7562,7 @@ module Aws::SageMaker
7531
7562
  # resp.best_candidate.last_modified_time #=> Time
7532
7563
  # resp.best_candidate.failure_reason #=> String
7533
7564
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7534
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
7565
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7535
7566
  # resp.generate_candidate_definitions_only #=> Boolean
7536
7567
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7537
7568
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7640,7 +7671,7 @@ module Aws::SageMaker
7640
7671
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7641
7672
  # resp.input_config.framework_version #=> String
7642
7673
  # resp.output_config.s3_output_location #=> String
7643
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7674
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7644
7675
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7645
7676
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7646
7677
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -8249,6 +8280,7 @@ module Aws::SageMaker
8249
8280
  # resp.online_store_config.enable_online_store #=> Boolean
8250
8281
  # resp.offline_store_config.s3_storage_config.s3_uri #=> String
8251
8282
  # resp.offline_store_config.s3_storage_config.kms_key_id #=> String
8283
+ # resp.offline_store_config.s3_storage_config.resolved_output_s3_uri #=> String
8252
8284
  # resp.offline_store_config.disable_glue_table_creation #=> Boolean
8253
8285
  # resp.offline_store_config.data_catalog_config.table_name #=> String
8254
8286
  # resp.offline_store_config.data_catalog_config.catalog #=> String
@@ -8810,6 +8842,7 @@ module Aws::SageMaker
8810
8842
  # resp.primary_container.container_hostname #=> String
8811
8843
  # resp.primary_container.image #=> String
8812
8844
  # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8845
+ # resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8813
8846
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
8814
8847
  # resp.primary_container.model_data_url #=> String
8815
8848
  # resp.primary_container.environment #=> Hash
@@ -8820,6 +8853,7 @@ module Aws::SageMaker
8820
8853
  # resp.containers[0].container_hostname #=> String
8821
8854
  # resp.containers[0].image #=> String
8822
8855
  # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8856
+ # resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8823
8857
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
8824
8858
  # resp.containers[0].model_data_url #=> String
8825
8859
  # resp.containers[0].environment #=> Hash
@@ -9812,6 +9846,12 @@ module Aws::SageMaker
9812
9846
 
9813
9847
  # Returns information about a training job.
9814
9848
  #
9849
+ # Some of the attributes below only appear if the training job
9850
+ # successfully starts. If the training job fails, `TrainingJobStatus` is
9851
+ # `Failed` and, depending on the `FailureReason`, attributes like
9852
+ # `TrainingStartTime`, `TrainingTimeInSeconds`, `TrainingEndTime`, and
9853
+ # `BillableTimeInSeconds` may not be present in the response.
9854
+ #
9815
9855
  # @option params [required, String] :training_job_name
9816
9856
  # The name of the training job.
9817
9857
  #
@@ -9855,6 +9895,7 @@ module Aws::SageMaker
9855
9895
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9856
9896
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9857
9897
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
9898
+ # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9858
9899
  #
9859
9900
  # @example Request syntax with placeholder values
9860
9901
  #
@@ -9979,6 +10020,8 @@ module Aws::SageMaker
9979
10020
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
9980
10021
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
9981
10022
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10023
+ # resp.environment #=> Hash
10024
+ # resp.environment["TrainingEnvironmentKey"] #=> String
9982
10025
  #
9983
10026
  #
9984
10027
  # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
@@ -11119,7 +11162,7 @@ module Aws::SageMaker
11119
11162
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11120
11163
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11121
11164
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11122
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
11165
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11123
11166
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11124
11167
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11125
11168
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -11364,7 +11407,7 @@ module Aws::SageMaker
11364
11407
  # resp.compilation_job_summaries[0].creation_time #=> Time
11365
11408
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11366
11409
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11367
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11410
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11368
11411
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11369
11412
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11370
11413
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -14870,6 +14913,8 @@ module Aws::SageMaker
14870
14913
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
14871
14914
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
14872
14915
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
14916
+ # resp.results[0].training_job.environment #=> Hash
14917
+ # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
14873
14918
  # resp.results[0].training_job.tags #=> Array
14874
14919
  # resp.results[0].training_job.tags[0].key #=> String
14875
14920
  # resp.results[0].training_job.tags[0].value #=> String
@@ -15056,6 +15101,8 @@ module Aws::SageMaker
15056
15101
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
15057
15102
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
15058
15103
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15104
+ # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15105
+ # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15059
15106
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15060
15107
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15061
15108
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -15411,6 +15458,7 @@ module Aws::SageMaker
15411
15458
  # resp.results[0].feature_group.online_store_config.enable_online_store #=> Boolean
15412
15459
  # resp.results[0].feature_group.offline_store_config.s3_storage_config.s3_uri #=> String
15413
15460
  # resp.results[0].feature_group.offline_store_config.s3_storage_config.kms_key_id #=> String
15461
+ # resp.results[0].feature_group.offline_store_config.s3_storage_config.resolved_output_s3_uri #=> String
15414
15462
  # resp.results[0].feature_group.offline_store_config.disable_glue_table_creation #=> Boolean
15415
15463
  # resp.results[0].feature_group.offline_store_config.data_catalog_config.table_name #=> String
15416
15464
  # resp.results[0].feature_group.offline_store_config.data_catalog_config.catalog #=> String
@@ -17300,7 +17348,7 @@ module Aws::SageMaker
17300
17348
  params: params,
17301
17349
  config: config)
17302
17350
  context[:gem_name] = 'aws-sdk-sagemaker'
17303
- context[:gem_version] = '1.79.0'
17351
+ context[:gem_version] = '1.84.0'
17304
17352
  Seahorse::Client::Request.new(handlers, context)
17305
17353
  end
17306
17354
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -1130,6 +1130,8 @@ module Aws::SageMaker
1130
1130
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
1131
1131
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
1132
1132
  RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
1133
+ RepositoryAuthConfig = Shapes::StructureShape.new(name: 'RepositoryAuthConfig')
1134
+ RepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'RepositoryCredentialsProviderArn')
1133
1135
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
1134
1136
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
1135
1137
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1266,6 +1268,9 @@ module Aws::SageMaker
1266
1268
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1267
1269
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1268
1270
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1271
+ TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1272
+ TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1273
+ TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1269
1274
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1270
1275
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1271
1276
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -2253,6 +2258,7 @@ module Aws::SageMaker
2253
2258
  CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
2254
2259
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2255
2260
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2261
+ CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2256
2262
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2257
2263
 
2258
2264
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -3257,6 +3263,7 @@ module Aws::SageMaker
3257
3263
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3258
3264
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3259
3265
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3266
+ DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3260
3267
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3261
3268
 
3262
3269
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -3793,6 +3800,7 @@ module Aws::SageMaker
3793
3800
  Image.struct_class = Types::Image
3794
3801
 
3795
3802
  ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
3803
+ ImageConfig.add_member(:repository_auth_config, Shapes::ShapeRef.new(shape: RepositoryAuthConfig, location_name: "RepositoryAuthConfig"))
3796
3804
  ImageConfig.struct_class = Types::ImageConfig
3797
3805
 
3798
3806
  ImageDeletePropertyList.member = Shapes::ShapeRef.new(shape: ImageDeleteProperty)
@@ -5413,6 +5421,9 @@ module Aws::SageMaker
5413
5421
 
5414
5422
  RenderingErrorList.member = Shapes::ShapeRef.new(shape: RenderingError)
5415
5423
 
5424
+ RepositoryAuthConfig.add_member(:repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: RepositoryCredentialsProviderArn, required: true, location_name: "RepositoryCredentialsProviderArn"))
5425
+ RepositoryAuthConfig.struct_class = Types::RepositoryAuthConfig
5426
+
5416
5427
  ResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
5417
5428
  ResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
5418
5429
  ResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
@@ -5458,6 +5469,7 @@ module Aws::SageMaker
5458
5469
 
5459
5470
  S3StorageConfig.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
5460
5471
  S3StorageConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
5472
+ S3StorageConfig.add_member(:resolved_output_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "ResolvedOutputS3Uri"))
5461
5473
  S3StorageConfig.struct_class = Types::S3StorageConfig
5462
5474
 
5463
5475
  ScheduleConfig.add_member(:schedule_expression, Shapes::ShapeRef.new(shape: ScheduleExpression, required: true, location_name: "ScheduleExpression"))
@@ -5635,6 +5647,9 @@ module Aws::SageMaker
5635
5647
  TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
5636
5648
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
5637
5649
 
5650
+ TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
5651
+ TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
5652
+
5638
5653
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
5639
5654
 
5640
5655
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -5671,6 +5686,7 @@ module Aws::SageMaker
5671
5686
  TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
5672
5687
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5673
5688
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5689
+ TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5674
5690
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5675
5691
  TrainingJob.struct_class = Types::TrainingJob
5676
5692
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -2885,6 +2885,9 @@ module Aws::SageMaker
2885
2885
  # image: "ContainerImage",
2886
2886
  # image_config: {
2887
2887
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2888
+ # repository_auth_config: {
2889
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
2890
+ # },
2888
2891
  # },
2889
2892
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2890
2893
  # model_data_url: "Url",
@@ -3951,7 +3954,7 @@ module Aws::SageMaker
3951
3954
  # },
3952
3955
  # output_config: { # required
3953
3956
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3957
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
3958
  # target_platform: {
3956
3959
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
3960
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -4407,7 +4410,18 @@ module Aws::SageMaker
4407
4410
  # @return [String]
4408
4411
  #
4409
4412
  # @!attribute [rw] default_user_settings
4410
- # The default user settings.
4413
+ # The default settings to use to create a user profile when
4414
+ # `UserSettings` isn't specified in the call to the
4415
+ # [CreateUserProfile][1] API.
4416
+ #
4417
+ # `SecurityGroups` is aggregated when specified in both calls. For all
4418
+ # other settings in `UserSettings`, the values specified in
4419
+ # `CreateUserProfile` take precedence over those specified in
4420
+ # `CreateDomain`.
4421
+ #
4422
+ #
4423
+ #
4424
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
4411
4425
  # @return [Types::UserSettings]
4412
4426
  #
4413
4427
  # @!attribute [rw] subnet_ids
@@ -4422,7 +4436,11 @@ module Aws::SageMaker
4422
4436
  # @!attribute [rw] tags
4423
4437
  # Tags to associated with the Domain. Each tag consists of a key and
4424
4438
  # an optional value. Tag keys must be unique per resource. Tags are
4425
- # searchable using the Search API.
4439
+ # searchable using the [Search][1] API.
4440
+ #
4441
+ #
4442
+ #
4443
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
4426
4444
  # @return [Array<Types::Tag>]
4427
4445
  #
4428
4446
  # @!attribute [rw] app_network_access_type
@@ -4828,6 +4846,7 @@ module Aws::SageMaker
4828
4846
  # s3_storage_config: { # required
4829
4847
  # s3_uri: "S3Uri", # required
4830
4848
  # kms_key_id: "KmsKeyId",
4849
+ # resolved_output_s3_uri: "S3Uri",
4831
4850
  # },
4832
4851
  # disable_glue_table_creation: false,
4833
4852
  # data_catalog_config: {
@@ -6186,6 +6205,9 @@ module Aws::SageMaker
6186
6205
  # image: "ContainerImage",
6187
6206
  # image_config: {
6188
6207
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6208
+ # repository_auth_config: {
6209
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6210
+ # },
6189
6211
  # },
6190
6212
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6191
6213
  # model_data_url: "Url",
@@ -6203,6 +6225,9 @@ module Aws::SageMaker
6203
6225
  # image: "ContainerImage",
6204
6226
  # image_config: {
6205
6227
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6228
+ # repository_auth_config: {
6229
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6230
+ # },
6206
6231
  # },
6207
6232
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6208
6233
  # model_data_url: "Url",
@@ -7742,6 +7767,9 @@ module Aws::SageMaker
7742
7767
  # },
7743
7768
  # },
7744
7769
  # ],
7770
+ # environment: {
7771
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7772
+ # },
7745
7773
  # }
7746
7774
  #
7747
7775
  # @!attribute [rw] training_job_name
@@ -7955,6 +7983,10 @@ module Aws::SageMaker
7955
7983
  # and framework metrics.
7956
7984
  # @return [Array<Types::ProfilerRuleConfiguration>]
7957
7985
  #
7986
+ # @!attribute [rw] environment
7987
+ # The environment variables to set in the Docker container.
7988
+ # @return [Hash<String,String>]
7989
+ #
7958
7990
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7959
7991
  #
7960
7992
  class CreateTrainingJobRequest < Struct.new(
@@ -7977,7 +8009,8 @@ module Aws::SageMaker
7977
8009
  :tensor_board_output_config,
7978
8010
  :experiment_config,
7979
8011
  :profiler_config,
7980
- :profiler_rule_configurations)
8012
+ :profiler_rule_configurations,
8013
+ :environment)
7981
8014
  SENSITIVE = []
7982
8015
  include Aws::Structure
7983
8016
  end
@@ -11471,7 +11504,7 @@ module Aws::SageMaker
11471
11504
  # @return [String]
11472
11505
  #
11473
11506
  # @!attribute [rw] default_user_settings
11474
- # Settings which are applied to all UserProfiles in this domain, if
11507
+ # Settings which are applied to UserProfiles in this domain if
11475
11508
  # settings are not explicitly specified in a given UserProfile.
11476
11509
  # @return [Types::UserSettings]
11477
11510
  #
@@ -14201,6 +14234,10 @@ module Aws::SageMaker
14201
14234
  # Profiling status of a training job.
14202
14235
  # @return [String]
14203
14236
  #
14237
+ # @!attribute [rw] environment
14238
+ # The environment variables to set in the Docker container.
14239
+ # @return [Hash<String,String>]
14240
+ #
14204
14241
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
14205
14242
  #
14206
14243
  class DescribeTrainingJobResponse < Struct.new(
@@ -14241,7 +14278,8 @@ module Aws::SageMaker
14241
14278
  :profiler_config,
14242
14279
  :profiler_rule_configurations,
14243
14280
  :profiler_rule_evaluation_statuses,
14244
- :profiling_status)
14281
+ :profiling_status,
14282
+ :environment)
14245
14283
  SENSITIVE = []
14246
14284
  include Aws::Structure
14247
14285
  end
@@ -18482,6 +18520,9 @@ module Aws::SageMaker
18482
18520
  #
18483
18521
  # {
18484
18522
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
18523
+ # repository_auth_config: {
18524
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
18525
+ # },
18485
18526
  # }
18486
18527
  #
18487
18528
  # @!attribute [rw] repository_access_mode
@@ -18493,10 +18534,19 @@ module Aws::SageMaker
18493
18534
  # your VPC.
18494
18535
  # @return [String]
18495
18536
  #
18537
+ # @!attribute [rw] repository_auth_config
18538
+ # (Optional) Specifies an authentication configuration for the private
18539
+ # docker registry where your model image is hosted. Specify a value
18540
+ # for this property only if you specified `Vpc` as the value for the
18541
+ # `RepositoryAccessMode` field, and the private Docker registry where
18542
+ # the model image is hosted requires authentication.
18543
+ # @return [Types::RepositoryAuthConfig]
18544
+ #
18496
18545
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
18497
18546
  #
18498
18547
  class ImageConfig < Struct.new(
18499
- :repository_access_mode)
18548
+ :repository_access_mode,
18549
+ :repository_auth_config)
18500
18550
  SENSITIVE = []
18501
18551
  include Aws::Structure
18502
18552
  end
@@ -18546,7 +18596,8 @@ module Aws::SageMaker
18546
18596
  include Aws::Structure
18547
18597
  end
18548
18598
 
18549
- # Specifies details about how containers in a multi-container are run.
18599
+ # Specifies details about how containers in a multi-container endpoint
18600
+ # are run.
18550
18601
  #
18551
18602
  # @note When making an API call, you may pass InferenceExecutionConfig
18552
18603
  # data as a hash:
@@ -18816,6 +18867,33 @@ module Aws::SageMaker
18816
18867
  #
18817
18868
  # * `"CompilerOptions": \{"class_labels":
18818
18869
  # "imagenet_labels_1000.txt"\}`
18870
+ #
18871
+ # Depending on the model format, `DataInputConfig` requires the
18872
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18873
+ #
18874
+ # * For TensorFlow models saved in the SavedModel format, specify the
18875
+ # input names from `signature_def_key` and the input model shapes
18876
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18877
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18878
+ # TensorFlow's default signature def key. For example:
18879
+ #
18880
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18881
+ #
18882
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18883
+ #
18884
+ # * For TensorFlow models saved as a frozen graph, specify the input
18885
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18886
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18887
+ # For example:
18888
+ #
18889
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18890
+ #
18891
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18892
+ #
18893
+ #
18894
+ #
18895
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18896
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18819
18897
  # @return [String]
18820
18898
  #
18821
18899
  # @!attribute [rw] framework
@@ -19237,7 +19315,12 @@ module Aws::SageMaker
19237
19315
  # @return [Types::LabelingJobS3DataSource]
19238
19316
  #
19239
19317
  # @!attribute [rw] sns_data_source
19240
- # An Amazon SNS data source used for streaming labeling jobs.
19318
+ # An Amazon SNS data source used for streaming labeling jobs. To learn
19319
+ # more, see [Send Data to a Streaming Labeling Job][1].
19320
+ #
19321
+ #
19322
+ #
19323
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
19241
19324
  # @return [Types::LabelingJobSnsDataSource]
19242
19325
  #
19243
19326
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
@@ -19363,37 +19446,39 @@ module Aws::SageMaker
19363
19446
  # The AWS Key Management Service ID of the key used to encrypt the
19364
19447
  # output data, if any.
19365
19448
  #
19366
- # If you use a KMS key ID or an alias of your master key, the Amazon
19367
- # SageMaker execution role must include permissions to call
19368
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
19369
- # uses the default KMS key for Amazon S3 for your role's account.
19370
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
19371
- # for `LabelingJobOutputConfig`. If you use a bucket policy with an
19372
- # `s3:PutObject` permission that only allows objects with server-side
19373
- # encryption, set the condition key of
19374
- # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19375
- # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
19376
- # Simple Storage Service Developer Guide.*
19449
+ # If you provide your own KMS key ID, you must add the required
19450
+ # permissions to your KMS key described in [Encrypt Output Data and
19451
+ # Storage Volume with AWS KMS][1].
19377
19452
  #
19378
- # The KMS key policy must grant permission to the IAM role that you
19379
- # specify in your `CreateLabelingJob` request. For more information,
19380
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
19381
- # Service Developer Guide*.
19453
+ # If you don't provide a KMS key ID, Amazon SageMaker uses the
19454
+ # default AWS KMS key for Amazon S3 for your role's account to
19455
+ # encrypt your output data.
19382
19456
  #
19457
+ # If you use a bucket policy with an `s3:PutObject` permission that
19458
+ # only allows objects with server-side encryption, set the condition
19459
+ # key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19460
+ # information, see [KMS-Managed Encryption Keys][2] in the *Amazon
19461
+ # Simple Storage Service Developer Guide.*
19383
19462
  #
19384
19463
  #
19385
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19386
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
19464
+ #
19465
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
19466
+ # [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19387
19467
  # @return [String]
19388
19468
  #
19389
19469
  # @!attribute [rw] sns_topic_arn
19390
19470
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19391
19471
  #
19392
- # When workers complete labeling tasks, Ground Truth will send
19393
- # labeling task output data to the SNS output topic you specify here.
19472
+ # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19473
+ # complete labeling tasks, Ground Truth will send labeling task output
19474
+ # data to the SNS output topic you specify here.
19475
+ #
19476
+ # To learn more, see [Receive Output Data from a Streaming Labeling
19477
+ # Job][1].
19478
+ #
19394
19479
  #
19395
- # You must provide a value for this parameter if you provide an Amazon
19396
- # SNS input topic in `SnsDataSource` in `InputConfig`.
19480
+ #
19481
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
19397
19482
  # @return [String]
19398
19483
  #
19399
19484
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -19406,7 +19491,9 @@ module Aws::SageMaker
19406
19491
  include Aws::Structure
19407
19492
  end
19408
19493
 
19409
- # Provides configuration information for labeling jobs.
19494
+ # Configure encryption on the storage volume attached to the ML compute
19495
+ # instance used to run automated data labeling model training and
19496
+ # inference.
19410
19497
  #
19411
19498
  # @note When making an API call, you may pass LabelingJobResourceConfig
19412
19499
  # data as a hash:
@@ -19418,16 +19505,30 @@ module Aws::SageMaker
19418
19505
  # @!attribute [rw] volume_kms_key_id
19419
19506
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
19420
19507
  # uses to encrypt data on the storage volume attached to the ML
19421
- # compute instance(s) that run the training job. The `VolumeKmsKeyId`
19422
- # can be any of the following formats:
19508
+ # compute instance(s) that run the training and inference jobs used
19509
+ # for automated data labeling.
19423
19510
  #
19424
- # * // KMS Key ID
19511
+ # You can only specify a `VolumeKmsKeyId` when you create a labeling
19512
+ # job with automated data labeling enabled using the API operation
19513
+ # `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
19514
+ # CMK to encrypt the storage volume used for automated data labeling
19515
+ # model training and inference when you create a labeling job using
19516
+ # the console. To learn more, see [Output Data and Storage Volume
19517
+ # Encryption][1].
19518
+ #
19519
+ # The `VolumeKmsKeyId` can be any of the following formats:
19520
+ #
19521
+ # * KMS Key ID
19425
19522
  #
19426
19523
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
19427
19524
  #
19428
- # * // Amazon Resource Name (ARN) of a KMS Key
19525
+ # * Amazon Resource Name (ARN) of a KMS Key
19429
19526
  #
19430
19527
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
19528
+ #
19529
+ #
19530
+ #
19531
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
19431
19532
  # @return [String]
19432
19533
  #
19433
19534
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -19492,9 +19593,6 @@ module Aws::SageMaker
19492
19593
  # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
19493
19594
  # ARN of the input topic you will use to send new data objects to a
19494
19595
  # streaming labeling job.
19495
- #
19496
- # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
19497
- # you must specify a value for `SnsTopicArn` in `OutputConfig`.
19498
19596
  # @return [String]
19499
19597
  #
19500
19598
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
@@ -26724,6 +26822,7 @@ module Aws::SageMaker
26724
26822
  # s3_storage_config: { # required
26725
26823
  # s3_uri: "S3Uri", # required
26726
26824
  # kms_key_id: "KmsKeyId",
26825
+ # resolved_output_s3_uri: "S3Uri",
26727
26826
  # },
26728
26827
  # disable_glue_table_creation: false,
26729
26828
  # data_catalog_config: {
@@ -27029,7 +27128,7 @@ module Aws::SageMaker
27029
27128
  #
27030
27129
  # {
27031
27130
  # s3_output_location: "S3Uri", # required
27032
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27131
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27033
27132
  # target_platform: {
27034
27133
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27035
27134
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -27107,6 +27206,18 @@ module Aws::SageMaker
27107
27206
  # for NVIDIA accelerators and highly recommended for CPU compilations.
27108
27207
  # For any other cases, it is optional to specify `CompilerOptions.`
27109
27208
  #
27209
+ # * `DTYPE`\: Specifies the data type for the input. When compiling
27210
+ # for `ml_*` (except for `ml_inf`) instances using PyTorch
27211
+ # framework, provide the data type (dtype) of the model's input.
27212
+ # `"float32"` is used if `"DTYPE"` is not specified. Options for
27213
+ # data type are:
27214
+ #
27215
+ # * float32: Use either `"float"` or `"float32"`.
27216
+ #
27217
+ # * int64: Use either `"int64"` or `"long"`.
27218
+ #
27219
+ # For example, `\{"dtype" : "float32"\}`.
27220
+ #
27110
27221
  # * `CPU`\: Compilation for CPU supports the following compiler
27111
27222
  # options.
27112
27223
  #
@@ -27164,6 +27275,24 @@ module Aws::SageMaker
27164
27275
  #
27165
27276
  # ^
27166
27277
  #
27278
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27279
+ # the following compiler options:
27280
+ #
27281
+ # * `precision_mode`\: Specifies the precision of compiled
27282
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27283
+ # is `"FP32"`.
27284
+ #
27285
+ # * `signature_def_key`\: Specifies the signature to use for models
27286
+ # in SavedModel format. Defaults is TensorFlow's default
27287
+ # signature def key.
27288
+ #
27289
+ # * `output_names`\: Specifies a list of output tensor names for
27290
+ # models in FrozenGraph format. Set at most one API field, either:
27291
+ # `signature_def_key` or `output_names`.
27292
+ #
27293
+ # For example: `\{"precision_mode": "FP32", "output_names":
27294
+ # ["output:0"]\}`
27295
+ #
27167
27296
  #
27168
27297
  #
27169
27298
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
@@ -29393,6 +29522,40 @@ module Aws::SageMaker
29393
29522
  include Aws::Structure
29394
29523
  end
29395
29524
 
29525
+ # Specifies an authentication configuration for the private docker
29526
+ # registry where your model image is hosted. Specify a value for this
29527
+ # property only if you specified `Vpc` as the value for the
29528
+ # `RepositoryAccessMode` field of the `ImageConfig` object that you
29529
+ # passed to a call to CreateModel and the private Docker registry where
29530
+ # the model image is hosted requires authentication.
29531
+ #
29532
+ # @note When making an API call, you may pass RepositoryAuthConfig
29533
+ # data as a hash:
29534
+ #
29535
+ # {
29536
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
29537
+ # }
29538
+ #
29539
+ # @!attribute [rw] repository_credentials_provider_arn
29540
+ # The Amazon Resource Name (ARN) of an AWS Lambda function that
29541
+ # provides credentials to authenticate to the private Docker registry
29542
+ # where your model image is hosted. For information about how to
29543
+ # create an AWS Lambda function, see [Create a Lambda function with
29544
+ # the console][1] in the *AWS Lambda Developer Guide*.
29545
+ #
29546
+ #
29547
+ #
29548
+ # [1]: https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
29549
+ # @return [String]
29550
+ #
29551
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RepositoryAuthConfig AWS API Documentation
29552
+ #
29553
+ class RepositoryAuthConfig < Struct.new(
29554
+ :repository_credentials_provider_arn)
29555
+ SENSITIVE = []
29556
+ include Aws::Structure
29557
+ end
29558
+
29396
29559
  # The resolved attributes.
29397
29560
  #
29398
29561
  # @!attribute [rw] auto_ml_job_objective
@@ -29775,6 +29938,7 @@ module Aws::SageMaker
29775
29938
  # {
29776
29939
  # s3_uri: "S3Uri", # required
29777
29940
  # kms_key_id: "KmsKeyId",
29941
+ # resolved_output_s3_uri: "S3Uri",
29778
29942
  # }
29779
29943
  #
29780
29944
  # @!attribute [rw] s3_uri
@@ -29796,11 +29960,16 @@ module Aws::SageMaker
29796
29960
  # ^
29797
29961
  # @return [String]
29798
29962
  #
29963
+ # @!attribute [rw] resolved_output_s3_uri
29964
+ # The S3 path where offline records are written.
29965
+ # @return [String]
29966
+ #
29799
29967
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3StorageConfig AWS API Documentation
29800
29968
  #
29801
29969
  class S3StorageConfig < Struct.new(
29802
29970
  :s3_uri,
29803
- :kms_key_id)
29971
+ :kms_key_id,
29972
+ :resolved_output_s3_uri)
29804
29973
  SENSITIVE = []
29805
29974
  include Aws::Structure
29806
29975
  end
@@ -30357,10 +30526,16 @@ module Aws::SageMaker
30357
30526
  include Aws::Structure
30358
30527
  end
30359
30528
 
30360
- # Specifies options when sharing an Amazon SageMaker Studio notebook.
30361
- # These settings are specified as part of `DefaultUserSettings` when the
30362
- # CreateDomain API is called, and as part of `UserSettings` when the
30363
- # CreateUserProfile API is called.
30529
+ # Specifies options for sharing SageMaker Studio notebooks. These
30530
+ # settings are specified as part of `DefaultUserSettings` when the
30531
+ # [CreateDomain][1] API is called, and as part of `UserSettings` when
30532
+ # the [CreateUserProfile][2] API is called. When `SharingSettings` is
30533
+ # not specified, notebook sharing isn't allowed.
30534
+ #
30535
+ #
30536
+ #
30537
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
30538
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
30364
30539
  #
30365
30540
  # @note When making an API call, you may pass SharingSettings
30366
30541
  # data as a hash:
@@ -31437,6 +31612,10 @@ module Aws::SageMaker
31437
31612
  # training job.
31438
31613
  # @return [Array<Types::DebugRuleEvaluationStatus>]
31439
31614
  #
31615
+ # @!attribute [rw] environment
31616
+ # The environment variables to set in the Docker container.
31617
+ # @return [Hash<String,String>]
31618
+ #
31440
31619
  # @!attribute [rw] tags
31441
31620
  # An array of key-value pairs. You can use tags to categorize your AWS
31442
31621
  # resources in different ways, for example, by purpose, owner, or
@@ -31484,6 +31663,7 @@ module Aws::SageMaker
31484
31663
  :debug_rule_configurations,
31485
31664
  :tensor_board_output_config,
31486
31665
  :debug_rule_evaluation_statuses,
31666
+ :environment,
31487
31667
  :tags)
31488
31668
  SENSITIVE = []
31489
31669
  include Aws::Structure
@@ -34836,15 +35016,20 @@ module Aws::SageMaker
34836
35016
  end
34837
35017
 
34838
35018
  # A collection of settings that apply to users of Amazon SageMaker
34839
- # Studio. These settings are specified when the CreateUserProfile API is
34840
- # called, and as `DefaultUserSettings` when the CreateDomain API is
34841
- # called.
35019
+ # Studio. These settings are specified when the [CreateUserProfile][1]
35020
+ # API is called, and as `DefaultUserSettings` when the [CreateDomain][2]
35021
+ # API is called.
34842
35022
  #
34843
35023
  # `SecurityGroups` is aggregated when specified in both calls. For all
34844
35024
  # other settings in `UserSettings`, the values specified in
34845
35025
  # `CreateUserProfile` take precedence over those specified in
34846
35026
  # `CreateDomain`.
34847
35027
  #
35028
+ #
35029
+ #
35030
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
35031
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
35032
+ #
34848
35033
  # @note When making an API call, you may pass UserSettings
34849
35034
  # data as a hash:
34850
35035
  #
@@ -34906,7 +35091,7 @@ module Aws::SageMaker
34906
35091
  # @return [Array<String>]
34907
35092
  #
34908
35093
  # @!attribute [rw] sharing_settings
34909
- # The sharing settings.
35094
+ # Specifies options for sharing SageMaker Studio notebooks.
34910
35095
  # @return [Types::SharingSettings]
34911
35096
  #
34912
35097
  # @!attribute [rw] jupyter_server_app_settings