aws-sdk-sagemaker 1.77.0 → 1.82.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -1237,27 +1237,27 @@ module Aws::SageMaker
1237
1237
  #
1238
1238
  # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1239
1239
  #
1240
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1240
+ # * `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1241
1241
  #
1242
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1242
+ # * `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1243
1243
  #
1244
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1244
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1245
1245
  #
1246
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1246
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1247
1247
  #
1248
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1248
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1249
1249
  #
1250
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1250
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1251
1251
  #
1252
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1252
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1253
1253
  #
1254
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1254
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1255
1255
  #
1256
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1256
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1257
1257
  #
1258
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1258
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1259
1259
  #
1260
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1260
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1261
1261
  #
1262
1262
  # **3D Point Cloud Object Tracking Adjustment** - Use this task type
1263
1263
  # when you want workers to adjust 3D cuboids around objects that
@@ -3951,7 +3951,7 @@ module Aws::SageMaker
3951
3951
  # },
3952
3952
  # output_config: { # required
3953
3953
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3954
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
3955
  # target_platform: {
3956
3956
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
3957
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -4566,6 +4566,10 @@ module Aws::SageMaker
4566
4566
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
4567
4567
  # initial_variant_weight: 1.0,
4568
4568
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
4569
+ # core_dump_config: {
4570
+ # destination_s3_uri: "DestinationS3Uri", # required
4571
+ # kms_key_id: "KmsKeyId",
4572
+ # },
4569
4573
  # },
4570
4574
  # ],
4571
4575
  # data_capture_config: {
@@ -4824,6 +4828,7 @@ module Aws::SageMaker
4824
4828
  # s3_storage_config: { # required
4825
4829
  # s3_uri: "S3Uri", # required
4826
4830
  # kms_key_id: "KmsKeyId",
4831
+ # resolved_output_s3_uri: "S3Uri",
4827
4832
  # },
4828
4833
  # disable_glue_table_creation: false,
4829
4834
  # data_catalog_config: {
@@ -5677,17 +5682,77 @@ module Aws::SageMaker
5677
5682
  # @!attribute [rw] label_attribute_name
5678
5683
  # The attribute name to use for the label in the output manifest file.
5679
5684
  # This is the key for the key/value pair formed with the label that a
5680
- # worker assigns to the object. The name can't end with
5681
- # "-metadata". If you are running a semantic segmentation labeling
5682
- # job, the attribute name must end with "-ref". If you are running
5683
- # any other kind of labeling job, the attribute name must not end with
5684
- # "-ref".
5685
+ # worker assigns to the object. The `LabelAttributeName` must meet the
5686
+ # following requirements.
5687
+ #
5688
+ # * The name can't end with "-metadata".
5689
+ #
5690
+ # * If you are using one of the following [built-in task types][1],
5691
+ # the attribute name *must* end with "-ref". If the task type you
5692
+ # are using is not listed below, the attribute name *must not* end
5693
+ # with "-ref".
5694
+ #
5695
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
5696
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
5697
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
5698
+ # type.
5699
+ #
5700
+ # * Video frame object detection (`VideoObjectDetection`), and
5701
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
5702
+ # labeling jobs for this task type.
5703
+ #
5704
+ # * Video frame object tracking (`VideoObjectTracking`), and
5705
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
5706
+ # labeling jobs for this task type.
5707
+ #
5708
+ # * 3D point cloud semantic segmentation
5709
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
5710
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
5711
+ # labeling jobs for this task type.
5712
+ #
5713
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`),
5714
+ # and adjustment and verification
5715
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
5716
+ # task type.
5717
+ #
5718
+ #
5719
+ #
5720
+ # If you are creating an adjustment or verification labeling job, you
5721
+ # must use a *different* `LabelAttributeName` than the one used in the
5722
+ # original labeling job. The original labeling job is the Ground Truth
5723
+ # labeling job that produced the labels that you want verified or
5724
+ # adjusted. To learn more about adjustment and verification labeling
5725
+ # jobs, see [Verify and Adjust Labels][2].
5726
+ #
5727
+ #
5728
+ #
5729
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5730
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
5685
5731
  # @return [String]
5686
5732
  #
5687
5733
  # @!attribute [rw] input_config
5688
5734
  # Input data for the labeling job, such as the Amazon S3 location of
5689
5735
  # the data objects and the location of the manifest file that
5690
5736
  # describes the data objects.
5737
+ #
5738
+ # You must specify at least one of the following: `S3DataSource` or
5739
+ # `SnsDataSource`.
5740
+ #
5741
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
5742
+ # labeling job. If you do not specify and SNS input topic ARN,
5743
+ # Ground Truth will create a one-time labeling job that stops after
5744
+ # all data objects in the input manifest file have been labeled.
5745
+ #
5746
+ # * Use `S3DataSource` to specify an input manifest file for both
5747
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
5748
+ # optional if you use `SnsDataSource` to create a streaming labeling
5749
+ # job.
5750
+ #
5751
+ # If you use the Amazon Mechanical Turk workforce, your input data
5752
+ # should not include confidential information, personal information or
5753
+ # protected health information. Use `ContentClassifiers` to specify
5754
+ # that your data is free of personally identifiable information and
5755
+ # adult content.
5691
5756
  # @return [Types::LabelingJobInputConfig]
5692
5757
  #
5693
5758
  # @!attribute [rw] output_config
@@ -5717,41 +5782,37 @@ module Aws::SageMaker
5717
5782
  # following format. Identify the labels you want to use by replacing
5718
5783
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
5719
5784
  #
5720
- # `\{`
5721
- #
5722
- # ` "document-version": "2018-11-28"`
5723
- #
5724
- # ` "labels": [`
5725
- #
5726
- # ` \{`
5727
- #
5728
- # ` "label": "label_1"`
5729
- #
5730
- # ` \},`
5731
- #
5732
- # ` \{`
5785
+ # `\{ `
5733
5786
  #
5734
- # ` "label": "label_2"`
5787
+ # `"document-version": "2018-11-28",`
5735
5788
  #
5736
- # ` \},`
5737
- #
5738
- # ` ...`
5789
+ # `"labels": [\{"label": "label_1"\},\{"label":
5790
+ # "label_2"\},...\{"label": "label_n"\}]`
5739
5791
  #
5740
- # ` \{`
5792
+ # `\}`
5741
5793
  #
5742
- # ` "label": "label_n"`
5794
+ # Note the following about the label category configuration file:
5743
5795
  #
5744
- # ` \}`
5796
+ # * For image classification and text classification (single and
5797
+ # multi-label) you must specify at least two label categories. For
5798
+ # all other task types, the minimum number of label categories
5799
+ # required is one.
5745
5800
  #
5746
- # ` ]`
5801
+ # * Each label category must be unique, you cannot specify duplicate
5802
+ # label categories.
5747
5803
  #
5748
- # `\}`
5804
+ # * If you create a 3D point cloud or video frame adjustment or
5805
+ # verification labeling job, you must include
5806
+ # `auditLabelAttributeName` in the label category configuration. Use
5807
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
5808
+ # labeling job you want to adjust or verify annotations of.
5749
5809
  #
5750
5810
  #
5751
5811
  #
5752
5812
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
5753
5813
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5754
5814
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5815
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5755
5816
  # @return [String]
5756
5817
  #
5757
5818
  # @!attribute [rw] stopping_conditions
@@ -6155,6 +6216,9 @@ module Aws::SageMaker
6155
6216
  # },
6156
6217
  # },
6157
6218
  # ],
6219
+ # inference_execution_config: {
6220
+ # mode: "Serial", # required, accepts Serial, Direct
6221
+ # },
6158
6222
  # execution_role_arn: "RoleArn", # required
6159
6223
  # tags: [
6160
6224
  # {
@@ -6183,6 +6247,11 @@ module Aws::SageMaker
6183
6247
  # Specifies the containers in the inference pipeline.
6184
6248
  # @return [Array<Types::ContainerDefinition>]
6185
6249
  #
6250
+ # @!attribute [rw] inference_execution_config
6251
+ # Specifies details of how containers in a multi-container endpoint
6252
+ # are called.
6253
+ # @return [Types::InferenceExecutionConfig]
6254
+ #
6186
6255
  # @!attribute [rw] execution_role_arn
6187
6256
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
6188
6257
  # can assume to access model artifacts and docker image for deployment
@@ -6235,6 +6304,7 @@ module Aws::SageMaker
6235
6304
  :model_name,
6236
6305
  :primary_container,
6237
6306
  :containers,
6307
+ :inference_execution_config,
6238
6308
  :execution_role_arn,
6239
6309
  :tags,
6240
6310
  :vpc_config,
@@ -7177,6 +7247,7 @@ module Aws::SageMaker
7177
7247
  # domain_id: "DomainId", # required
7178
7248
  # user_profile_name: "UserProfileName", # required
7179
7249
  # session_expiration_duration_in_seconds: 1,
7250
+ # expires_in_seconds: 1,
7180
7251
  # }
7181
7252
  #
7182
7253
  # @!attribute [rw] domain_id
@@ -7188,7 +7259,13 @@ module Aws::SageMaker
7188
7259
  # @return [String]
7189
7260
  #
7190
7261
  # @!attribute [rw] session_expiration_duration_in_seconds
7191
- # The session expiration duration in seconds.
7262
+ # The session expiration duration in seconds. This value defaults to
7263
+ # 43200.
7264
+ # @return [Integer]
7265
+ #
7266
+ # @!attribute [rw] expires_in_seconds
7267
+ # The number of seconds until the pre-signed URL expires. This value
7268
+ # defaults to 300.
7192
7269
  # @return [Integer]
7193
7270
  #
7194
7271
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedDomainUrlRequest AWS API Documentation
@@ -7196,7 +7273,8 @@ module Aws::SageMaker
7196
7273
  class CreatePresignedDomainUrlRequest < Struct.new(
7197
7274
  :domain_id,
7198
7275
  :user_profile_name,
7199
- :session_expiration_duration_in_seconds)
7276
+ :session_expiration_duration_in_seconds,
7277
+ :expires_in_seconds)
7200
7278
  SENSITIVE = []
7201
7279
  include Aws::Structure
7202
7280
  end
@@ -7354,7 +7432,8 @@ module Aws::SageMaker
7354
7432
  # }
7355
7433
  #
7356
7434
  # @!attribute [rw] processing_inputs
7357
- # List of input configurations for the processing job.
7435
+ # An array of inputs configuring the data to download into the
7436
+ # processing container.
7358
7437
  # @return [Array<Types::ProcessingInput>]
7359
7438
  #
7360
7439
  # @!attribute [rw] processing_output_config
@@ -7382,11 +7461,15 @@ module Aws::SageMaker
7382
7461
  # @return [Types::AppSpecification]
7383
7462
  #
7384
7463
  # @!attribute [rw] environment
7385
- # Sets the environment variables in the Docker container.
7464
+ # The environment variables to set in the Docker container. Up to 100
7465
+ # key and values entries in the map are supported.
7386
7466
  # @return [Hash<String,String>]
7387
7467
  #
7388
7468
  # @!attribute [rw] network_config
7389
- # Networking options for a processing job.
7469
+ # Networking options for a processing job, such as whether to allow
7470
+ # inbound and outbound network calls to and from processing
7471
+ # containers, and the VPC subnets and security groups to use for
7472
+ # VPC-enabled processing jobs.
7390
7473
  # @return [Types::NetworkConfig]
7391
7474
  #
7392
7475
  # @!attribute [rw] role_arn
@@ -10913,8 +10996,7 @@ module Aws::SageMaker
10913
10996
  # @return [String]
10914
10997
  #
10915
10998
  # @!attribute [rw] compilation_job_arn
10916
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
10917
- # assumes to perform the model compilation job.
10999
+ # The Amazon Resource Name (ARN) of the model compilation job.
10918
11000
  # @return [String]
10919
11001
  #
10920
11002
  # @!attribute [rw] compilation_job_status
@@ -10969,7 +11051,8 @@ module Aws::SageMaker
10969
11051
  # @return [Types::ModelDigests]
10970
11052
  #
10971
11053
  # @!attribute [rw] role_arn
10972
- # The Amazon Resource Name (ARN) of the model compilation job.
11054
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
11055
+ # assumes to perform the model compilation job.
10973
11056
  # @return [String]
10974
11057
  #
10975
11058
  # @!attribute [rw] input_config
@@ -12693,6 +12776,11 @@ module Aws::SageMaker
12693
12776
  # The containers in the inference pipeline.
12694
12777
  # @return [Array<Types::ContainerDefinition>]
12695
12778
  #
12779
+ # @!attribute [rw] inference_execution_config
12780
+ # Specifies details of how containers in a multi-container endpoint
12781
+ # are called.
12782
+ # @return [Types::InferenceExecutionConfig]
12783
+ #
12696
12784
  # @!attribute [rw] execution_role_arn
12697
12785
  # The Amazon Resource Name (ARN) of the IAM role that you specified
12698
12786
  # for the model.
@@ -12727,6 +12815,7 @@ module Aws::SageMaker
12727
12815
  :model_name,
12728
12816
  :primary_container,
12729
12817
  :containers,
12818
+ :inference_execution_config,
12730
12819
  :execution_role_arn,
12731
12820
  :vpc_config,
12732
12821
  :creation_time,
@@ -14044,7 +14133,13 @@ module Aws::SageMaker
14044
14133
  # @return [Integer]
14045
14134
  #
14046
14135
  # @!attribute [rw] billable_time_in_seconds
14047
- # The billable time in seconds.
14136
+ # The billable time in seconds. Billable time refers to the absolute
14137
+ # wall-clock time.
14138
+ #
14139
+ # Multiply `BillableTimeInSeconds` by the number of instances
14140
+ # (`InstanceCount`) in your training cluster to get the total compute
14141
+ # time Amazon SageMaker will bill you if you run distributed training.
14142
+ # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14048
14143
  #
14049
14144
  # You can calculate the savings from using managed spot training using
14050
14145
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16067,6 +16162,13 @@ module Aws::SageMaker
16067
16162
  # @!attribute [rw] s3_output_path
16068
16163
  # The Amazon S3 path where the object containing human output will be
16069
16164
  # made available.
16165
+ #
16166
+ # To learn more about the format of Amazon A2I output data, see
16167
+ # [Amazon A2I Output Data][1].
16168
+ #
16169
+ #
16170
+ #
16171
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html
16070
16172
  # @return [String]
16071
16173
  #
16072
16174
  # @!attribute [rw] kms_key_id
@@ -16424,11 +16526,33 @@ module Aws::SageMaker
16424
16526
  # }
16425
16527
  #
16426
16528
  # @!attribute [rw] workteam_arn
16427
- # Amazon Resource Name (ARN) of a team of workers.
16529
+ # Amazon Resource Name (ARN) of a team of workers. To learn more about
16530
+ # the types of workforces and work teams you can create and use with
16531
+ # Amazon A2I, see [Create and Manage Workforces][1].
16532
+ #
16533
+ #
16534
+ #
16535
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
16428
16536
  # @return [String]
16429
16537
  #
16430
16538
  # @!attribute [rw] human_task_ui_arn
16431
16539
  # The Amazon Resource Name (ARN) of the human task user interface.
16540
+ #
16541
+ # You can use standard HTML and Crowd HTML Elements to create a custom
16542
+ # worker task template. You use this template to create a human task
16543
+ # UI.
16544
+ #
16545
+ # To learn how to create a custom HTML template, see [Create Custom
16546
+ # Worker Task Template][1].
16547
+ #
16548
+ # To learn how to create a human task UI, which is a worker task
16549
+ # template that can be used in a flow definition, see [Create and
16550
+ # Delete a Worker Task Templates][2].
16551
+ #
16552
+ #
16553
+ #
16554
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html
16555
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html
16432
16556
  # @return [String]
16433
16557
  #
16434
16558
  # @!attribute [rw] task_title
@@ -16453,7 +16577,7 @@ module Aws::SageMaker
16453
16577
  #
16454
16578
  # @!attribute [rw] task_time_limit_in_seconds
16455
16579
  # The amount of time that a worker has to complete a task. The default
16456
- # value is 3,600 seconds (1 hour)
16580
+ # value is 3,600 seconds (1 hour).
16457
16581
  # @return [Integer]
16458
16582
  #
16459
16583
  # @!attribute [rw] task_keywords
@@ -17424,14 +17548,41 @@ module Aws::SageMaker
17424
17548
  #
17425
17549
  # @!attribute [rw] task_time_limit_in_seconds
17426
17550
  # The amount of time that a worker has to complete a task.
17551
+ #
17552
+ # If you create a custom labeling job, the maximum value for this
17553
+ # parameter is 8 hours (28,800 seconds).
17554
+ #
17555
+ # If you create a labeling job using a [built-in task type][1] the
17556
+ # maximum for this parameter depends on the task type you use:
17557
+ #
17558
+ # * For [image][2] and [text][3] labeling jobs, the maximum is 8 hours
17559
+ # (28,800 seconds).
17560
+ #
17561
+ # * For [3D point cloud][4] and [video frame][5] labeling jobs, the
17562
+ # maximum is 7 days (604,800 seconds). If you want to change these
17563
+ # limits, contact AWS Support.
17564
+ #
17565
+ #
17566
+ #
17567
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
17568
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html
17569
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html
17570
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
17571
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html
17427
17572
  # @return [Integer]
17428
17573
  #
17429
17574
  # @!attribute [rw] task_availability_lifetime_in_seconds
17430
17575
  # The length of time that a task remains available for labeling by
17431
- # human workers. **If you choose the Amazon Mechanical Turk workforce,
17432
- # the maximum is 12 hours (43200)**. The default value is 864000
17433
- # seconds (10 days). For private and vendor workforces, the maximum is
17434
- # as listed.
17576
+ # human workers. The default and maximum values for this parameter
17577
+ # depend on the type of workforce you use.
17578
+ #
17579
+ # * If you choose the Amazon Mechanical Turk workforce, the maximum is
17580
+ # 12 hours (43,200 seconds). The default is 6 hours (21,600
17581
+ # seconds).
17582
+ #
17583
+ # * If you choose a private or vendor workforce, the default value is
17584
+ # 10 days (864,000 seconds). For most users, the maximum is also 10
17585
+ # days. If you want to change this limit, contact AWS Support.
17435
17586
  # @return [Integer]
17436
17587
  #
17437
17588
  # @!attribute [rw] max_concurrent_task_count
@@ -18396,6 +18547,33 @@ module Aws::SageMaker
18396
18547
  include Aws::Structure
18397
18548
  end
18398
18549
 
18550
+ # Specifies details about how containers in a multi-container endpoint
18551
+ # are run.
18552
+ #
18553
+ # @note When making an API call, you may pass InferenceExecutionConfig
18554
+ # data as a hash:
18555
+ #
18556
+ # {
18557
+ # mode: "Serial", # required, accepts Serial, Direct
18558
+ # }
18559
+ #
18560
+ # @!attribute [rw] mode
18561
+ # How containers in a multi-container are run. The following values
18562
+ # are valid.
18563
+ #
18564
+ # * `SERIAL` - Containers run as a serial pipeline.
18565
+ #
18566
+ # * `DIRECT` - Only the individual container that you specify is run.
18567
+ # @return [String]
18568
+ #
18569
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceExecutionConfig AWS API Documentation
18570
+ #
18571
+ class InferenceExecutionConfig < Struct.new(
18572
+ :mode)
18573
+ SENSITIVE = []
18574
+ include Aws::Structure
18575
+ end
18576
+
18399
18577
  # Defines how to perform inference generation after a training job is
18400
18578
  # run.
18401
18579
  #
@@ -18640,6 +18818,33 @@ module Aws::SageMaker
18640
18818
  #
18641
18819
  # * `"CompilerOptions": \{"class_labels":
18642
18820
  # "imagenet_labels_1000.txt"\}`
18821
+ #
18822
+ # Depending on the model format, `DataInputConfig` requires the
18823
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18824
+ #
18825
+ # * For TensorFlow models saved in the SavedModel format, specify the
18826
+ # input names from `signature_def_key` and the input model shapes
18827
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18828
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18829
+ # TensorFlow's default signature def key. For example:
18830
+ #
18831
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18832
+ #
18833
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18834
+ #
18835
+ # * For TensorFlow models saved as a frozen graph, specify the input
18836
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18837
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18838
+ # For example:
18839
+ #
18840
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18841
+ #
18842
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18843
+ #
18844
+ #
18845
+ #
18846
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18847
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18643
18848
  # @return [String]
18644
18849
  #
18645
18850
  # @!attribute [rw] framework
@@ -19274,6 +19479,25 @@ module Aws::SageMaker
19274
19479
  # @!attribute [rw] manifest_s3_uri
19275
19480
  # The Amazon S3 location of the manifest file that describes the input
19276
19481
  # data objects.
19482
+ #
19483
+ # The input manifest file referenced in `ManifestS3Uri` must contain
19484
+ # one of the following keys: `source-ref` or `source`. The value of
19485
+ # the keys are interpreted as follows:
19486
+ #
19487
+ # * `source-ref`\: The source of the object is the Amazon S3 object
19488
+ # specified in the value. Use this value when the object is a binary
19489
+ # object, such as an image.
19490
+ #
19491
+ # * `source`\: The source of the object is the value. Use this value
19492
+ # when the object is a text value.
19493
+ #
19494
+ # If you are a new user of Ground Truth, it is recommended you review
19495
+ # [Use an Input Manifest File ][1] in the Amazon SageMaker Developer
19496
+ # Guide to learn how to create an input manifest file.
19497
+ #
19498
+ #
19499
+ #
19500
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html
19277
19501
  # @return [String]
19278
19502
  #
19279
19503
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobS3DataSource AWS API Documentation
@@ -26529,6 +26753,7 @@ module Aws::SageMaker
26529
26753
  # s3_storage_config: { # required
26530
26754
  # s3_uri: "S3Uri", # required
26531
26755
  # kms_key_id: "KmsKeyId",
26756
+ # resolved_output_s3_uri: "S3Uri",
26532
26757
  # },
26533
26758
  # disable_glue_table_creation: false,
26534
26759
  # data_catalog_config: {
@@ -26834,7 +27059,7 @@ module Aws::SageMaker
26834
27059
  #
26835
27060
  # {
26836
27061
  # s3_output_location: "S3Uri", # required
26837
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27062
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
26838
27063
  # target_platform: {
26839
27064
  # os: "ANDROID", # required, accepts ANDROID, LINUX
26840
27065
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -26969,6 +27194,24 @@ module Aws::SageMaker
26969
27194
  #
26970
27195
  # ^
26971
27196
  #
27197
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27198
+ # the following compiler options:
27199
+ #
27200
+ # * `precision_mode`\: Specifies the precision of compiled
27201
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27202
+ # is `"FP32"`.
27203
+ #
27204
+ # * `signature_def_key`\: Specifies the signature to use for models
27205
+ # in SavedModel format. Defaults is TensorFlow's default
27206
+ # signature def key.
27207
+ #
27208
+ # * `output_names`\: Specifies a list of output tensor names for
27209
+ # models in FrozenGraph format. Set at most one API field, either:
27210
+ # `signature_def_key` or `output_names`.
27211
+ #
27212
+ # For example: `\{"precision_mode": "FP32", "output_names":
27213
+ # ["output:0"]\}`
27214
+ #
26972
27215
  #
26973
27216
  #
26974
27217
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
@@ -27058,8 +27301,8 @@ module Aws::SageMaker
27058
27301
  #
27059
27302
  #
27060
27303
  #
27061
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
27062
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27304
+ # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27305
+ # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27063
27306
  # @return [String]
27064
27307
  #
27065
27308
  # @!attribute [rw] s3_output_path
@@ -27622,7 +27865,8 @@ module Aws::SageMaker
27622
27865
  #
27623
27866
  # @!attribute [rw] feature_group_name
27624
27867
  # The name of the Amazon SageMaker FeatureGroup to use as the
27625
- # destination for processing job output.
27868
+ # destination for processing job output. Note that your processing
27869
+ # script is responsible for putting records into your Feature Store.
27626
27870
  # @return [String]
27627
27871
  #
27628
27872
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingFeatureStoreOutput AWS API Documentation
@@ -27679,7 +27923,7 @@ module Aws::SageMaker
27679
27923
  # }
27680
27924
  #
27681
27925
  # @!attribute [rw] input_name
27682
- # The name of the inputs for the processing job.
27926
+ # The name for the processing job input.
27683
27927
  # @return [String]
27684
27928
  #
27685
27929
  # @!attribute [rw] app_managed
@@ -27689,7 +27933,8 @@ module Aws::SageMaker
27689
27933
  # @return [Boolean]
27690
27934
  #
27691
27935
  # @!attribute [rw] s3_input
27692
- # Configuration for processing job inputs in Amazon S3.
27936
+ # Configuration for downloading input data from Amazon S3 into the
27937
+ # processing container.
27693
27938
  # @return [Types::ProcessingS3Input]
27694
27939
  #
27695
27940
  # @!attribute [rw] dataset_definition
@@ -27720,7 +27965,7 @@ module Aws::SageMaker
27720
27965
  # @return [Array<Types::ProcessingInput>]
27721
27966
  #
27722
27967
  # @!attribute [rw] processing_output_config
27723
- # The output configuration for the processing job.
27968
+ # Configuration for uploading output from the processing container.
27724
27969
  # @return [Types::ProcessingOutputConfig]
27725
27970
  #
27726
27971
  # @!attribute [rw] processing_job_name
@@ -27734,8 +27979,9 @@ module Aws::SageMaker
27734
27979
  # @return [Types::ProcessingResources]
27735
27980
  #
27736
27981
  # @!attribute [rw] stopping_condition
27737
- # Specifies a time limit for how long the processing job is allowed to
27738
- # run.
27982
+ # Configures conditions under which the processing job should be
27983
+ # stopped, such as how long the processing job has been running. After
27984
+ # the condition is met, the processing job is stopped.
27739
27985
  # @return [Types::ProcessingStoppingCondition]
27740
27986
  #
27741
27987
  # @!attribute [rw] app_specification
@@ -27973,7 +28219,7 @@ module Aws::SageMaker
27973
28219
  include Aws::Structure
27974
28220
  end
27975
28221
 
27976
- # The output configuration for the processing job.
28222
+ # Configuration for uploading output from the processing container.
27977
28223
  #
27978
28224
  # @note When making an API call, you may pass ProcessingOutputConfig
27979
28225
  # data as a hash:
@@ -27997,7 +28243,8 @@ module Aws::SageMaker
27997
28243
  # }
27998
28244
  #
27999
28245
  # @!attribute [rw] outputs
28000
- # List of output configurations for the processing job.
28246
+ # An array of outputs configuring the data to upload from the
28247
+ # processing container.
28001
28248
  # @return [Array<Types::ProcessingOutput>]
28002
28249
  #
28003
28250
  # @!attribute [rw] kms_key_id
@@ -28045,7 +28292,8 @@ module Aws::SageMaker
28045
28292
  include Aws::Structure
28046
28293
  end
28047
28294
 
28048
- # Configuration for processing job inputs in Amazon S3.
28295
+ # Configuration for downloading input data from Amazon S3 into the
28296
+ # processing container.
28049
28297
  #
28050
28298
  # @note When making an API call, you may pass ProcessingS3Input
28051
28299
  # data as a hash:
@@ -28060,14 +28308,14 @@ module Aws::SageMaker
28060
28308
  # }
28061
28309
  #
28062
28310
  # @!attribute [rw] s3_uri
28063
- # The URI for the Amazon S3 storage where you want Amazon SageMaker to
28064
- # download the artifacts needed to run a processing job.
28311
+ # The URI of the Amazon S3 prefix Amazon SageMaker downloads data
28312
+ # required to run a processing job.
28065
28313
  # @return [String]
28066
28314
  #
28067
28315
  # @!attribute [rw] local_path
28068
- # The local path to the Amazon S3 bucket where you want Amazon
28069
- # SageMaker to download the inputs to run a processing job.
28070
- # `LocalPath` is an absolute path to the input data. This is a
28316
+ # The local path in your container where you want Amazon SageMaker to
28317
+ # write input data to. `LocalPath` is an absolute path to the input
28318
+ # data and must begin with `/opt/ml/processing/`. `LocalPath` is a
28071
28319
  # required parameter when `AppManaged` is `False` (default).
28072
28320
  # @return [String]
28073
28321
  #
@@ -28082,22 +28330,27 @@ module Aws::SageMaker
28082
28330
  # @return [String]
28083
28331
  #
28084
28332
  # @!attribute [rw] s3_input_mode
28085
- # Whether to use `File` or `Pipe` input mode. In `File` mode, Amazon
28086
- # SageMaker copies the data from the input source onto the local
28087
- # Amazon Elastic Block Store (Amazon EBS) volumes before starting your
28088
- # training algorithm. This is the most commonly used input mode. In
28089
- # `Pipe` mode, Amazon SageMaker streams input data from the source
28090
- # directly to your algorithm without using the EBS volume.This is a
28091
- # required parameter when `AppManaged` is `False` (default).
28333
+ # Whether to use `File` or `Pipe` input mode. In File mode, Amazon
28334
+ # SageMaker copies the data from the input source onto the local ML
28335
+ # storage volume before starting your processing container. This is
28336
+ # the most commonly used input mode. In `Pipe` mode, Amazon SageMaker
28337
+ # streams input data from the source directly to your processing
28338
+ # container into named pipes without using the ML storage volume.
28092
28339
  # @return [String]
28093
28340
  #
28094
28341
  # @!attribute [rw] s3_data_distribution_type
28095
- # Whether the data stored in Amazon S3 is `FullyReplicated` or
28096
- # `ShardedByS3Key`.
28342
+ # Whether to distribute the data from Amazon S3 to all processing
28343
+ # instances with `FullyReplicated`, or whether the data from Amazon S3
28344
+ # is shared by Amazon S3 key, downloading one shard of data to each
28345
+ # processing instance.
28097
28346
  # @return [String]
28098
28347
  #
28099
28348
  # @!attribute [rw] s3_compression_type
28100
- # Whether to use `Gzip` compression for Amazon S3 storage.
28349
+ # Whether to GZIP-decompress the data in Amazon S3 as it is streamed
28350
+ # into the processing container. `Gzip` can only be used when `Pipe`
28351
+ # mode is specified as the `S3InputMode`. In `Pipe` mode, Amazon
28352
+ # SageMaker streams input data from the source directly to your
28353
+ # container without using the EBS volume.
28101
28354
  # @return [String]
28102
28355
  #
28103
28356
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingS3Input AWS API Documentation
@@ -28113,7 +28366,8 @@ module Aws::SageMaker
28113
28366
  include Aws::Structure
28114
28367
  end
28115
28368
 
28116
- # Configuration for processing job outputs in Amazon S3.
28369
+ # Configuration for uploading output data to Amazon S3 from the
28370
+ # processing container.
28117
28371
  #
28118
28372
  # @note When making an API call, you may pass ProcessingS3Output
28119
28373
  # data as a hash:
@@ -28130,9 +28384,11 @@ module Aws::SageMaker
28130
28384
  # @return [String]
28131
28385
  #
28132
28386
  # @!attribute [rw] local_path
28133
- # The local path to the Amazon S3 bucket where you want Amazon
28134
- # SageMaker to save the results of an processing job. `LocalPath` is
28135
- # an absolute path to the input data.
28387
+ # The local path of a directory where you want Amazon SageMaker to
28388
+ # upload its contents to Amazon S3. `LocalPath` is an absolute path to
28389
+ # a directory containing output files. This directory will be created
28390
+ # by the platform and exist when your container's entrypoint is
28391
+ # invoked.
28136
28392
  # @return [String]
28137
28393
  #
28138
28394
  # @!attribute [rw] s3_upload_mode
@@ -28150,8 +28406,9 @@ module Aws::SageMaker
28150
28406
  include Aws::Structure
28151
28407
  end
28152
28408
 
28153
- # Specifies a time limit for how long the processing job is allowed to
28154
- # run.
28409
+ # Configures conditions under which the processing job should be
28410
+ # stopped, such as how long the processing job has been running. After
28411
+ # the condition is met, the processing job is stopped.
28155
28412
  #
28156
28413
  # @note When making an API call, you may pass ProcessingStoppingCondition
28157
28414
  # data as a hash:
@@ -28187,6 +28444,10 @@ module Aws::SageMaker
28187
28444
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
28188
28445
  # initial_variant_weight: 1.0,
28189
28446
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
28447
+ # core_dump_config: {
28448
+ # destination_s3_uri: "DestinationS3Uri", # required
28449
+ # kms_key_id: "KmsKeyId",
28450
+ # },
28190
28451
  # }
28191
28452
  #
28192
28453
  # @!attribute [rw] variant_name
@@ -28225,6 +28486,11 @@ module Aws::SageMaker
28225
28486
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
28226
28487
  # @return [String]
28227
28488
  #
28489
+ # @!attribute [rw] core_dump_config
28490
+ # Specifies configuration for a core dump from the model container
28491
+ # when the process crashes.
28492
+ # @return [Types::ProductionVariantCoreDumpConfig]
28493
+ #
28228
28494
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
28229
28495
  #
28230
28496
  class ProductionVariant < Struct.new(
@@ -28233,7 +28499,77 @@ module Aws::SageMaker
28233
28499
  :initial_instance_count,
28234
28500
  :instance_type,
28235
28501
  :initial_variant_weight,
28236
- :accelerator_type)
28502
+ :accelerator_type,
28503
+ :core_dump_config)
28504
+ SENSITIVE = []
28505
+ include Aws::Structure
28506
+ end
28507
+
28508
+ # Specifies configuration for a core dump from the model container when
28509
+ # the process crashes.
28510
+ #
28511
+ # @note When making an API call, you may pass ProductionVariantCoreDumpConfig
28512
+ # data as a hash:
28513
+ #
28514
+ # {
28515
+ # destination_s3_uri: "DestinationS3Uri", # required
28516
+ # kms_key_id: "KmsKeyId",
28517
+ # }
28518
+ #
28519
+ # @!attribute [rw] destination_s3_uri
28520
+ # The Amazon S3 bucket to send the core dump to.
28521
+ # @return [String]
28522
+ #
28523
+ # @!attribute [rw] kms_key_id
28524
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
28525
+ # uses to encrypt the core dump data at rest using Amazon S3
28526
+ # server-side encryption. The `KmsKeyId` can be any of the following
28527
+ # formats:
28528
+ #
28529
+ # * // KMS Key ID
28530
+ #
28531
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
28532
+ #
28533
+ # * // Amazon Resource Name (ARN) of a KMS Key
28534
+ #
28535
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
28536
+ #
28537
+ # * // KMS Key Alias
28538
+ #
28539
+ # `"alias/ExampleAlias"`
28540
+ #
28541
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
28542
+ #
28543
+ # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
28544
+ #
28545
+ # If you use a KMS key ID or an alias of your master key, the Amazon
28546
+ # SageMaker execution role must include permissions to call
28547
+ # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
28548
+ # uses the default KMS key for Amazon S3 for your role's account.
28549
+ # Amazon SageMaker uses server-side encryption with KMS-managed keys
28550
+ # for `OutputDataConfig`. If you use a bucket policy with an
28551
+ # `s3:PutObject` permission that only allows objects with server-side
28552
+ # encryption, set the condition key of
28553
+ # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
28554
+ # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
28555
+ # Simple Storage Service Developer Guide.*
28556
+ #
28557
+ # The KMS key policy must grant permission to the IAM role that you
28558
+ # specify in your `CreateEndpoint` and `UpdateEndpoint` requests. For
28559
+ # more information, see [Using Key Policies in AWS KMS][2] in the *AWS
28560
+ # Key Management Service Developer Guide*.
28561
+ #
28562
+ #
28563
+ #
28564
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
28565
+ # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
28566
+ # @return [String]
28567
+ #
28568
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantCoreDumpConfig AWS API Documentation
28569
+ #
28570
+ class ProductionVariantCoreDumpConfig < Struct.new(
28571
+ :destination_s3_uri,
28572
+ :kms_key_id)
28237
28573
  SENSITIVE = []
28238
28574
  include Aws::Structure
28239
28575
  end
@@ -29487,6 +29823,7 @@ module Aws::SageMaker
29487
29823
  # {
29488
29824
  # s3_uri: "S3Uri", # required
29489
29825
  # kms_key_id: "KmsKeyId",
29826
+ # resolved_output_s3_uri: "S3Uri",
29490
29827
  # }
29491
29828
  #
29492
29829
  # @!attribute [rw] s3_uri
@@ -29508,11 +29845,16 @@ module Aws::SageMaker
29508
29845
  # ^
29509
29846
  # @return [String]
29510
29847
  #
29848
+ # @!attribute [rw] resolved_output_s3_uri
29849
+ # The S3 path where offline records are written.
29850
+ # @return [String]
29851
+ #
29511
29852
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3StorageConfig AWS API Documentation
29512
29853
  #
29513
29854
  class S3StorageConfig < Struct.new(
29514
29855
  :s3_uri,
29515
- :kms_key_id)
29856
+ :kms_key_id,
29857
+ :resolved_output_s3_uri)
29516
29858
  SENSITIVE = []
29517
29859
  include Aws::Structure
29518
29860
  end
@@ -32831,7 +33173,7 @@ module Aws::SageMaker
32831
33173
  #
32832
33174
  # Use this parameter when you are creating a labeling job for 3D point
32833
33175
  # cloud and video fram labeling jobs. Use your labeling job task type
32834
- # to select one of the following ARN's and use it with this parameter
33176
+ # to select one of the following ARNs and use it with this parameter
32835
33177
  # when you create a labeling job. Replace `aws-region` with the AWS
32836
33178
  # region you are creating your labeling job in.
32837
33179
  #