aws-sdk-sagemaker 1.77.0 → 1.78.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9a4337ea5c9bd1fe77ccd7d9f03b70525b2318534184d0710a9d1ff44377baa4
4
- data.tar.gz: 2371cbc87bfa2f268bb49e6f7f75edc0e57bf1d6c6114ad482a870271a30476b
3
+ metadata.gz: 10c8c0137fd509641a34e18aa37cbbc12d353bb416db3d7f64ffe0e90eeed7b1
4
+ data.tar.gz: 759e00305aa536c79c1156f1826bb237be55e7f7497d782ff1ab6cf3b90562ff
5
5
  SHA512:
6
- metadata.gz: 57b1deceadbe46e9ec02c689a2ea72893dd3a0642857a3dfd4e7906458ef42f0376a0ca62ce8daf9ac8d8db220b5e36cad420857d02561be3e2d5c8da85a7282
7
- data.tar.gz: 100c47fd1dcd39f6dab3787a9f34eded0347ce229450f366be02d013b4e9663b1649711c880228e1137a6da81243b3b5f16c12561f991d13e6db50bb6e2deb75
6
+ metadata.gz: 21b021017760e974497f52f18272593634b1ed97f6c3606e5214e09f19841aae9f08f3bec48e63b6bb9c3d2d70c8a72ec79875d1d66bf9461145223944f841b5
7
+ data.tar.gz: f933497f80190caee4fde7e5cf1d686a7d7abd8d7220cdc75cd2f2dfa9122a8e1514cbe582cbe0c5633215cf78343c3dcf257f6e85e6c66a1483b2a0f66f0702
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.77.0'
52
+ GEM_VERSION = '1.78.0'
53
53
 
54
54
  end
@@ -3010,16 +3010,77 @@ module Aws::SageMaker
3010
3010
  # @option params [required, String] :label_attribute_name
3011
3011
  # The attribute name to use for the label in the output manifest file.
3012
3012
  # This is the key for the key/value pair formed with the label that a
3013
- # worker assigns to the object. The name can't end with "-metadata".
3014
- # If you are running a semantic segmentation labeling job, the attribute
3015
- # name must end with "-ref". If you are running any other kind of
3016
- # labeling job, the attribute name must not end with "-ref".
3013
+ # worker assigns to the object. The `LabelAttributeName` must meet the
3014
+ # following requirements.
3015
+ #
3016
+ # * The name can't end with "-metadata".
3017
+ #
3018
+ # * If you are using one of the following [built-in task types][1], the
3019
+ # attribute name *must* end with "-ref". If the task type you are
3020
+ # using is not listed below, the attribute name *must not* end with
3021
+ # "-ref".
3022
+ #
3023
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
3024
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
3025
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
3026
+ # type.
3027
+ #
3028
+ # * Video frame object detection (`VideoObjectDetection`), and
3029
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
3030
+ # labeling jobs for this task type.
3031
+ #
3032
+ # * Video frame object tracking (`VideoObjectTracking`), and
3033
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
3034
+ # labeling jobs for this task type.
3035
+ #
3036
+ # * 3D point cloud semantic segmentation
3037
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
3038
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
3039
+ # labeling jobs for this task type.
3040
+ #
3041
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`), and
3042
+ # adjustment and verification
3043
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
3044
+ # task type.
3045
+ #
3046
+ #
3047
+ #
3048
+ # If you are creating an adjustment or verification labeling job, you
3049
+ # must use a *different* `LabelAttributeName` than the one used in the
3050
+ # original labeling job. The original labeling job is the Ground Truth
3051
+ # labeling job that produced the labels that you want verified or
3052
+ # adjusted. To learn more about adjustment and verification labeling
3053
+ # jobs, see [Verify and Adjust Labels][2].
3054
+ #
3055
+ #
3056
+ #
3057
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3058
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
3017
3059
  #
3018
3060
  # @option params [required, Types::LabelingJobInputConfig] :input_config
3019
3061
  # Input data for the labeling job, such as the Amazon S3 location of the
3020
3062
  # data objects and the location of the manifest file that describes the
3021
3063
  # data objects.
3022
3064
  #
3065
+ # You must specify at least one of the following: `S3DataSource` or
3066
+ # `SnsDataSource`.
3067
+ #
3068
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
3069
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
3070
+ # Truth will create a one-time labeling job that stops after all data
3071
+ # objects in the input manifest file have been labeled.
3072
+ #
3073
+ # * Use `S3DataSource` to specify an input manifest file for both
3074
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
3075
+ # optional if you use `SnsDataSource` to create a streaming labeling
3076
+ # job.
3077
+ #
3078
+ # If you use the Amazon Mechanical Turk workforce, your input data
3079
+ # should not include confidential information, personal information or
3080
+ # protected health information. Use `ContentClassifiers` to specify that
3081
+ # your data is free of personally identifiable information and adult
3082
+ # content.
3083
+ #
3023
3084
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3024
3085
  # The location of the output data and the AWS Key Management Service key
3025
3086
  # ID for the key used to encrypt the output data, if any.
@@ -3044,41 +3105,37 @@ module Aws::SageMaker
3044
3105
  # format. Identify the labels you want to use by replacing `label_1`,
3045
3106
  # `label_2`,`...`,`label_n` with your label categories.
3046
3107
  #
3047
- # `\{`
3108
+ # `\{ `
3048
3109
  #
3049
- # ` "document-version": "2018-11-28"`
3110
+ # `"document-version": "2018-11-28",`
3050
3111
  #
3051
- # ` "labels": [`
3112
+ # `"labels": [\{"label": "label_1"\},\{"label":
3113
+ # "label_2"\},...\{"label": "label_n"\}]`
3052
3114
  #
3053
- # ` \{`
3054
- #
3055
- # ` "label": "label_1"`
3056
- #
3057
- # ` \},`
3058
- #
3059
- # ` \{`
3060
- #
3061
- # ` "label": "label_2"`
3062
- #
3063
- # ` \},`
3064
- #
3065
- # ` ...`
3066
- #
3067
- # ` \{`
3115
+ # `\}`
3068
3116
  #
3069
- # ` "label": "label_n"`
3117
+ # Note the following about the label category configuration file:
3070
3118
  #
3071
- # ` \}`
3119
+ # * For image classification and text classification (single and
3120
+ # multi-label) you must specify at least two label categories. For all
3121
+ # other task types, the minimum number of label categories required is
3122
+ # one.
3072
3123
  #
3073
- # ` ]`
3124
+ # * Each label category must be unique, you cannot specify duplicate
3125
+ # label categories.
3074
3126
  #
3075
- # `\}`
3127
+ # * If you create a 3D point cloud or video frame adjustment or
3128
+ # verification labeling job, you must include
3129
+ # `auditLabelAttributeName` in the label category configuration. Use
3130
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
3131
+ # labeling job you want to adjust or verify annotations of.
3076
3132
  #
3077
3133
  #
3078
3134
  #
3079
3135
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3080
3136
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3081
3137
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3138
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3082
3139
  #
3083
3140
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
3084
3141
  # A set of conditions for stopping the labeling job. If any of the
@@ -4513,9 +4570,10 @@ module Aws::SageMaker
4513
4570
  # This operation can only be called when the authentication mode equals
4514
4571
  # IAM.
4515
4572
  #
4516
- # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
4517
- # valid only for 5 minutes. If you try to use the URL after the 5-minute
4518
- # limit expires, you are directed to the AWS console sign-in page.
4573
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4574
+ # default timeout of 5 minutes. You can configure this value using
4575
+ # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4576
+ # expires, you are directed to the AWS console sign-in page.
4519
4577
  #
4520
4578
  # </note>
4521
4579
  #
@@ -4526,7 +4584,12 @@ module Aws::SageMaker
4526
4584
  # The name of the UserProfile to sign-in as.
4527
4585
  #
4528
4586
  # @option params [Integer] :session_expiration_duration_in_seconds
4529
- # The session expiration duration in seconds.
4587
+ # The session expiration duration in seconds. This value defaults to
4588
+ # 43200.
4589
+ #
4590
+ # @option params [Integer] :expires_in_seconds
4591
+ # The number of seconds until the pre-signed URL expires. This value
4592
+ # defaults to 300.
4530
4593
  #
4531
4594
  # @return [Types::CreatePresignedDomainUrlResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4532
4595
  #
@@ -4538,6 +4601,7 @@ module Aws::SageMaker
4538
4601
  # domain_id: "DomainId", # required
4539
4602
  # user_profile_name: "UserProfileName", # required
4540
4603
  # session_expiration_duration_in_seconds: 1,
4604
+ # expires_in_seconds: 1,
4541
4605
  # })
4542
4606
  #
4543
4607
  # @example Response structure
@@ -4617,7 +4681,8 @@ module Aws::SageMaker
4617
4681
  # Creates a processing job.
4618
4682
  #
4619
4683
  # @option params [Array<Types::ProcessingInput>] :processing_inputs
4620
- # List of input configurations for the processing job.
4684
+ # An array of inputs configuring the data to download into the
4685
+ # processing container.
4621
4686
  #
4622
4687
  # @option params [Types::ProcessingOutputConfig] :processing_output_config
4623
4688
  # Output configuration for the processing job.
@@ -4639,10 +4704,14 @@ module Aws::SageMaker
4639
4704
  # image.
4640
4705
  #
4641
4706
  # @option params [Hash<String,String>] :environment
4642
- # Sets the environment variables in the Docker container.
4707
+ # The environment variables to set in the Docker container. Up to 100
4708
+ # key and values entries in the map are supported.
4643
4709
  #
4644
4710
  # @option params [Types::NetworkConfig] :network_config
4645
- # Networking options for a processing job.
4711
+ # Networking options for a processing job, such as whether to allow
4712
+ # inbound and outbound network calls to and from processing containers,
4713
+ # and the VPC subnets and security groups to use for VPC-enabled
4714
+ # processing jobs.
4646
4715
  #
4647
4716
  # @option params [required, String] :role_arn
4648
4717
  # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
@@ -13842,6 +13911,27 @@ module Aws::SageMaker
13842
13911
 
13843
13912
  # Lists training jobs.
13844
13913
  #
13914
+ # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13915
+ # `MaxResults` number of training jobs are first retrieved ignoring the
13916
+ # `StatusEquals` parameter and then they are filtered by the
13917
+ # `StatusEquals` parameter, which is returned as a response. For
13918
+ # example, if `ListTrainingJobs` is invoked with the following
13919
+ # parameters:
13920
+ #
13921
+ # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13922
+ #
13923
+ # Then, 100 trainings jobs with any status including those other than
13924
+ # `InProgress` are selected first (sorted according the creation time,
13925
+ # from the latest to the oldest) and those with status `InProgress` are
13926
+ # returned.
13927
+ #
13928
+ # You can quickly test the API using the following AWS CLI code.
13929
+ #
13930
+ # `aws sagemaker list-training-jobs --max-results 100 --status-equals
13931
+ # InProgress`
13932
+ #
13933
+ # </note>
13934
+ #
13845
13935
  # @option params [String] :next_token
13846
13936
  # If the result of the previous `ListTrainingJobs` request was
13847
13937
  # truncated, the response includes a `NextToken`. To retrieve the next
@@ -17195,7 +17285,7 @@ module Aws::SageMaker
17195
17285
  params: params,
17196
17286
  config: config)
17197
17287
  context[:gem_name] = 'aws-sdk-sagemaker'
17198
- context[:gem_version] = '1.77.0'
17288
+ context[:gem_version] = '1.78.0'
17199
17289
  Seahorse::Client::Request.new(handlers, context)
17200
17290
  end
17201
17291
 
@@ -552,6 +552,7 @@ module Aws::SageMaker
552
552
  ExperimentSourceArn = Shapes::StringShape.new(name: 'ExperimentSourceArn')
553
553
  ExperimentSummaries = Shapes::ListShape.new(name: 'ExperimentSummaries')
554
554
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
+ ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
555
556
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
556
557
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
557
558
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
@@ -2189,6 +2190,7 @@ module Aws::SageMaker
2189
2190
  CreatePresignedDomainUrlRequest.add_member(:domain_id, Shapes::ShapeRef.new(shape: DomainId, required: true, location_name: "DomainId"))
2190
2191
  CreatePresignedDomainUrlRequest.add_member(:user_profile_name, Shapes::ShapeRef.new(shape: UserProfileName, required: true, location_name: "UserProfileName"))
2191
2192
  CreatePresignedDomainUrlRequest.add_member(:session_expiration_duration_in_seconds, Shapes::ShapeRef.new(shape: SessionExpirationDurationInSeconds, location_name: "SessionExpirationDurationInSeconds"))
2193
+ CreatePresignedDomainUrlRequest.add_member(:expires_in_seconds, Shapes::ShapeRef.new(shape: ExpiresInSeconds, location_name: "ExpiresInSeconds"))
2192
2194
  CreatePresignedDomainUrlRequest.struct_class = Types::CreatePresignedDomainUrlRequest
2193
2195
 
2194
2196
  CreatePresignedDomainUrlResponse.add_member(:authorized_url, Shapes::ShapeRef.new(shape: PresignedDomainUrl, location_name: "AuthorizedUrl"))
@@ -1237,27 +1237,27 @@ module Aws::SageMaker
1237
1237
  #
1238
1238
  # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1239
1239
  #
1240
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1240
+ # * `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1241
1241
  #
1242
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1242
+ # * `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1243
1243
  #
1244
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1244
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1245
1245
  #
1246
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1246
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1247
1247
  #
1248
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1248
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1249
1249
  #
1250
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1250
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1251
1251
  #
1252
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1252
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1253
1253
  #
1254
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1254
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1255
1255
  #
1256
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1256
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1257
1257
  #
1258
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1258
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1259
1259
  #
1260
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1260
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1261
1261
  #
1262
1262
  # **3D Point Cloud Object Tracking Adjustment** - Use this task type
1263
1263
  # when you want workers to adjust 3D cuboids around objects that
@@ -5677,17 +5677,77 @@ module Aws::SageMaker
5677
5677
  # @!attribute [rw] label_attribute_name
5678
5678
  # The attribute name to use for the label in the output manifest file.
5679
5679
  # This is the key for the key/value pair formed with the label that a
5680
- # worker assigns to the object. The name can't end with
5681
- # "-metadata". If you are running a semantic segmentation labeling
5682
- # job, the attribute name must end with "-ref". If you are running
5683
- # any other kind of labeling job, the attribute name must not end with
5684
- # "-ref".
5680
+ # worker assigns to the object. The `LabelAttributeName` must meet the
5681
+ # following requirements.
5682
+ #
5683
+ # * The name can't end with "-metadata".
5684
+ #
5685
+ # * If you are using one of the following [built-in task types][1],
5686
+ # the attribute name *must* end with "-ref". If the task type you
5687
+ # are using is not listed below, the attribute name *must not* end
5688
+ # with "-ref".
5689
+ #
5690
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
5691
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
5692
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
5693
+ # type.
5694
+ #
5695
+ # * Video frame object detection (`VideoObjectDetection`), and
5696
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
5697
+ # labeling jobs for this task type.
5698
+ #
5699
+ # * Video frame object tracking (`VideoObjectTracking`), and
5700
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
5701
+ # labeling jobs for this task type.
5702
+ #
5703
+ # * 3D point cloud semantic segmentation
5704
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
5705
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
5706
+ # labeling jobs for this task type.
5707
+ #
5708
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`),
5709
+ # and adjustment and verification
5710
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
5711
+ # task type.
5712
+ #
5713
+ #
5714
+ #
5715
+ # If you are creating an adjustment or verification labeling job, you
5716
+ # must use a *different* `LabelAttributeName` than the one used in the
5717
+ # original labeling job. The original labeling job is the Ground Truth
5718
+ # labeling job that produced the labels that you want verified or
5719
+ # adjusted. To learn more about adjustment and verification labeling
5720
+ # jobs, see [Verify and Adjust Labels][2].
5721
+ #
5722
+ #
5723
+ #
5724
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5725
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
5685
5726
  # @return [String]
5686
5727
  #
5687
5728
  # @!attribute [rw] input_config
5688
5729
  # Input data for the labeling job, such as the Amazon S3 location of
5689
5730
  # the data objects and the location of the manifest file that
5690
5731
  # describes the data objects.
5732
+ #
5733
+ # You must specify at least one of the following: `S3DataSource` or
5734
+ # `SnsDataSource`.
5735
+ #
5736
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
5737
+ # labeling job. If you do not specify and SNS input topic ARN,
5738
+ # Ground Truth will create a one-time labeling job that stops after
5739
+ # all data objects in the input manifest file have been labeled.
5740
+ #
5741
+ # * Use `S3DataSource` to specify an input manifest file for both
5742
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
5743
+ # optional if you use `SnsDataSource` to create a streaming labeling
5744
+ # job.
5745
+ #
5746
+ # If you use the Amazon Mechanical Turk workforce, your input data
5747
+ # should not include confidential information, personal information or
5748
+ # protected health information. Use `ContentClassifiers` to specify
5749
+ # that your data is free of personally identifiable information and
5750
+ # adult content.
5691
5751
  # @return [Types::LabelingJobInputConfig]
5692
5752
  #
5693
5753
  # @!attribute [rw] output_config
@@ -5717,41 +5777,37 @@ module Aws::SageMaker
5717
5777
  # following format. Identify the labels you want to use by replacing
5718
5778
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
5719
5779
  #
5720
- # `\{`
5780
+ # `\{ `
5721
5781
  #
5722
- # ` "document-version": "2018-11-28"`
5782
+ # `"document-version": "2018-11-28",`
5723
5783
  #
5724
- # ` "labels": [`
5784
+ # `"labels": [\{"label": "label_1"\},\{"label":
5785
+ # "label_2"\},...\{"label": "label_n"\}]`
5725
5786
  #
5726
- # ` \{`
5727
- #
5728
- # ` "label": "label_1"`
5729
- #
5730
- # ` \},`
5731
- #
5732
- # ` \{`
5733
- #
5734
- # ` "label": "label_2"`
5735
- #
5736
- # ` \},`
5737
- #
5738
- # ` ...`
5787
+ # `\}`
5739
5788
  #
5740
- # ` \{`
5789
+ # Note the following about the label category configuration file:
5741
5790
  #
5742
- # ` "label": "label_n"`
5791
+ # * For image classification and text classification (single and
5792
+ # multi-label) you must specify at least two label categories. For
5793
+ # all other task types, the minimum number of label categories
5794
+ # required is one.
5743
5795
  #
5744
- # ` \}`
5745
- #
5746
- # ` ]`
5796
+ # * Each label category must be unique, you cannot specify duplicate
5797
+ # label categories.
5747
5798
  #
5748
- # `\}`
5799
+ # * If you create a 3D point cloud or video frame adjustment or
5800
+ # verification labeling job, you must include
5801
+ # `auditLabelAttributeName` in the label category configuration. Use
5802
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
5803
+ # labeling job you want to adjust or verify annotations of.
5749
5804
  #
5750
5805
  #
5751
5806
  #
5752
5807
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
5753
5808
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5754
5809
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5810
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5755
5811
  # @return [String]
5756
5812
  #
5757
5813
  # @!attribute [rw] stopping_conditions
@@ -7177,6 +7233,7 @@ module Aws::SageMaker
7177
7233
  # domain_id: "DomainId", # required
7178
7234
  # user_profile_name: "UserProfileName", # required
7179
7235
  # session_expiration_duration_in_seconds: 1,
7236
+ # expires_in_seconds: 1,
7180
7237
  # }
7181
7238
  #
7182
7239
  # @!attribute [rw] domain_id
@@ -7188,7 +7245,13 @@ module Aws::SageMaker
7188
7245
  # @return [String]
7189
7246
  #
7190
7247
  # @!attribute [rw] session_expiration_duration_in_seconds
7191
- # The session expiration duration in seconds.
7248
+ # The session expiration duration in seconds. This value defaults to
7249
+ # 43200.
7250
+ # @return [Integer]
7251
+ #
7252
+ # @!attribute [rw] expires_in_seconds
7253
+ # The number of seconds until the pre-signed URL expires. This value
7254
+ # defaults to 300.
7192
7255
  # @return [Integer]
7193
7256
  #
7194
7257
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedDomainUrlRequest AWS API Documentation
@@ -7196,7 +7259,8 @@ module Aws::SageMaker
7196
7259
  class CreatePresignedDomainUrlRequest < Struct.new(
7197
7260
  :domain_id,
7198
7261
  :user_profile_name,
7199
- :session_expiration_duration_in_seconds)
7262
+ :session_expiration_duration_in_seconds,
7263
+ :expires_in_seconds)
7200
7264
  SENSITIVE = []
7201
7265
  include Aws::Structure
7202
7266
  end
@@ -7354,7 +7418,8 @@ module Aws::SageMaker
7354
7418
  # }
7355
7419
  #
7356
7420
  # @!attribute [rw] processing_inputs
7357
- # List of input configurations for the processing job.
7421
+ # An array of inputs configuring the data to download into the
7422
+ # processing container.
7358
7423
  # @return [Array<Types::ProcessingInput>]
7359
7424
  #
7360
7425
  # @!attribute [rw] processing_output_config
@@ -7382,11 +7447,15 @@ module Aws::SageMaker
7382
7447
  # @return [Types::AppSpecification]
7383
7448
  #
7384
7449
  # @!attribute [rw] environment
7385
- # Sets the environment variables in the Docker container.
7450
+ # The environment variables to set in the Docker container. Up to 100
7451
+ # key and values entries in the map are supported.
7386
7452
  # @return [Hash<String,String>]
7387
7453
  #
7388
7454
  # @!attribute [rw] network_config
7389
- # Networking options for a processing job.
7455
+ # Networking options for a processing job, such as whether to allow
7456
+ # inbound and outbound network calls to and from processing
7457
+ # containers, and the VPC subnets and security groups to use for
7458
+ # VPC-enabled processing jobs.
7390
7459
  # @return [Types::NetworkConfig]
7391
7460
  #
7392
7461
  # @!attribute [rw] role_arn
@@ -10913,8 +10982,7 @@ module Aws::SageMaker
10913
10982
  # @return [String]
10914
10983
  #
10915
10984
  # @!attribute [rw] compilation_job_arn
10916
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
10917
- # assumes to perform the model compilation job.
10985
+ # The Amazon Resource Name (ARN) of the model compilation job.
10918
10986
  # @return [String]
10919
10987
  #
10920
10988
  # @!attribute [rw] compilation_job_status
@@ -10969,7 +11037,8 @@ module Aws::SageMaker
10969
11037
  # @return [Types::ModelDigests]
10970
11038
  #
10971
11039
  # @!attribute [rw] role_arn
10972
- # The Amazon Resource Name (ARN) of the model compilation job.
11040
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
11041
+ # assumes to perform the model compilation job.
10973
11042
  # @return [String]
10974
11043
  #
10975
11044
  # @!attribute [rw] input_config
@@ -14044,7 +14113,13 @@ module Aws::SageMaker
14044
14113
  # @return [Integer]
14045
14114
  #
14046
14115
  # @!attribute [rw] billable_time_in_seconds
14047
- # The billable time in seconds.
14116
+ # The billable time in seconds. Billable time refers to the absolute
14117
+ # wall-clock time.
14118
+ #
14119
+ # Multiply `BillableTimeInSeconds` by the number of instances
14120
+ # (`InstanceCount`) in your training cluster to get the total compute
14121
+ # time Amazon SageMaker will bill you if you run distributed training.
14122
+ # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14048
14123
  #
14049
14124
  # You can calculate the savings from using managed spot training using
14050
14125
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16067,6 +16142,13 @@ module Aws::SageMaker
16067
16142
  # @!attribute [rw] s3_output_path
16068
16143
  # The Amazon S3 path where the object containing human output will be
16069
16144
  # made available.
16145
+ #
16146
+ # To learn more about the format of Amazon A2I output data, see
16147
+ # [Amazon A2I Output Data][1].
16148
+ #
16149
+ #
16150
+ #
16151
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html
16070
16152
  # @return [String]
16071
16153
  #
16072
16154
  # @!attribute [rw] kms_key_id
@@ -16424,11 +16506,33 @@ module Aws::SageMaker
16424
16506
  # }
16425
16507
  #
16426
16508
  # @!attribute [rw] workteam_arn
16427
- # Amazon Resource Name (ARN) of a team of workers.
16509
+ # Amazon Resource Name (ARN) of a team of workers. To learn more about
16510
+ # the types of workforces and work teams you can create and use with
16511
+ # Amazon A2I, see [Create and Manage Workforces][1].
16512
+ #
16513
+ #
16514
+ #
16515
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
16428
16516
  # @return [String]
16429
16517
  #
16430
16518
  # @!attribute [rw] human_task_ui_arn
16431
16519
  # The Amazon Resource Name (ARN) of the human task user interface.
16520
+ #
16521
+ # You can use standard HTML and Crowd HTML Elements to create a custom
16522
+ # worker task template. You use this template to create a human task
16523
+ # UI.
16524
+ #
16525
+ # To learn how to create a custom HTML template, see [Create Custom
16526
+ # Worker Task Template][1].
16527
+ #
16528
+ # To learn how to create a human task UI, which is a worker task
16529
+ # template that can be used in a flow definition, see [Create and
16530
+ # Delete a Worker Task Templates][2].
16531
+ #
16532
+ #
16533
+ #
16534
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html
16535
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html
16432
16536
  # @return [String]
16433
16537
  #
16434
16538
  # @!attribute [rw] task_title
@@ -16453,7 +16557,7 @@ module Aws::SageMaker
16453
16557
  #
16454
16558
  # @!attribute [rw] task_time_limit_in_seconds
16455
16559
  # The amount of time that a worker has to complete a task. The default
16456
- # value is 3,600 seconds (1 hour)
16560
+ # value is 3,600 seconds (1 hour).
16457
16561
  # @return [Integer]
16458
16562
  #
16459
16563
  # @!attribute [rw] task_keywords
@@ -17424,14 +17528,40 @@ module Aws::SageMaker
17424
17528
  #
17425
17529
  # @!attribute [rw] task_time_limit_in_seconds
17426
17530
  # The amount of time that a worker has to complete a task.
17531
+ #
17532
+ # If you create a custom labeling job, the maximum value for this
17533
+ # parameter is 8 hours (28,800 seconds).
17534
+ #
17535
+ # If you create a labeling job using a [built-in task type][1] the
17536
+ # maximum for this parameter depends on the task type you use:
17537
+ #
17538
+ # * For [image][2] and [text][3] labeling jobs, the maximum is 8 hours
17539
+ # (28,800 seconds).
17540
+ #
17541
+ # * For [3D point cloud][4] and [video frame][5] labeling jobs, the
17542
+ # maximum is 7 days (604,800 seconds).
17543
+ #
17544
+ #
17545
+ #
17546
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
17547
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html
17548
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html
17549
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
17550
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html
17427
17551
  # @return [Integer]
17428
17552
  #
17429
17553
  # @!attribute [rw] task_availability_lifetime_in_seconds
17430
17554
  # The length of time that a task remains available for labeling by
17431
- # human workers. **If you choose the Amazon Mechanical Turk workforce,
17432
- # the maximum is 12 hours (43200)**. The default value is 864000
17433
- # seconds (10 days). For private and vendor workforces, the maximum is
17434
- # as listed.
17555
+ # human workers. The default and maximum values for this parameter
17556
+ # depend on the type of workforce you use.
17557
+ #
17558
+ # * If you choose the Amazon Mechanical Turk workforce, the maximum is
17559
+ # 12 hours (43,200 seconds). The default is 6 hours (21,600
17560
+ # seconds).
17561
+ #
17562
+ # * If you choose a private or vendor workforce, the default value is
17563
+ # 10 days (864,000 seconds). For most users, the maximum is also 10
17564
+ # days.
17435
17565
  # @return [Integer]
17436
17566
  #
17437
17567
  # @!attribute [rw] max_concurrent_task_count
@@ -19274,6 +19404,25 @@ module Aws::SageMaker
19274
19404
  # @!attribute [rw] manifest_s3_uri
19275
19405
  # The Amazon S3 location of the manifest file that describes the input
19276
19406
  # data objects.
19407
+ #
19408
+ # The input manifest file referenced in `ManifestS3Uri` must contain
19409
+ # one of the following keys: `source-ref` or `source`. The value of
19410
+ # the keys are interpreted as follows:
19411
+ #
19412
+ # * `source-ref`\: The source of the object is the Amazon S3 object
19413
+ # specified in the value. Use this value when the object is a binary
19414
+ # object, such as an image.
19415
+ #
19416
+ # * `source`\: The source of the object is the value. Use this value
19417
+ # when the object is a text value.
19418
+ #
19419
+ # If you are a new user of Ground Truth, it is recommended you review
19420
+ # [Use an Input Manifest File ][1] in the Amazon SageMaker Developer
19421
+ # Guide to learn how to create an input manifest file.
19422
+ #
19423
+ #
19424
+ #
19425
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html
19277
19426
  # @return [String]
19278
19427
  #
19279
19428
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobS3DataSource AWS API Documentation
@@ -27622,7 +27771,8 @@ module Aws::SageMaker
27622
27771
  #
27623
27772
  # @!attribute [rw] feature_group_name
27624
27773
  # The name of the Amazon SageMaker FeatureGroup to use as the
27625
- # destination for processing job output.
27774
+ # destination for processing job output. Note that your processing
27775
+ # script is responsible for putting records into your Feature Store.
27626
27776
  # @return [String]
27627
27777
  #
27628
27778
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingFeatureStoreOutput AWS API Documentation
@@ -27679,7 +27829,7 @@ module Aws::SageMaker
27679
27829
  # }
27680
27830
  #
27681
27831
  # @!attribute [rw] input_name
27682
- # The name of the inputs for the processing job.
27832
+ # The name for the processing job input.
27683
27833
  # @return [String]
27684
27834
  #
27685
27835
  # @!attribute [rw] app_managed
@@ -27689,7 +27839,8 @@ module Aws::SageMaker
27689
27839
  # @return [Boolean]
27690
27840
  #
27691
27841
  # @!attribute [rw] s3_input
27692
- # Configuration for processing job inputs in Amazon S3.
27842
+ # Configuration for downloading input data from Amazon S3 into the
27843
+ # processing container.
27693
27844
  # @return [Types::ProcessingS3Input]
27694
27845
  #
27695
27846
  # @!attribute [rw] dataset_definition
@@ -27720,7 +27871,7 @@ module Aws::SageMaker
27720
27871
  # @return [Array<Types::ProcessingInput>]
27721
27872
  #
27722
27873
  # @!attribute [rw] processing_output_config
27723
- # The output configuration for the processing job.
27874
+ # Configuration for uploading output from the processing container.
27724
27875
  # @return [Types::ProcessingOutputConfig]
27725
27876
  #
27726
27877
  # @!attribute [rw] processing_job_name
@@ -27734,8 +27885,9 @@ module Aws::SageMaker
27734
27885
  # @return [Types::ProcessingResources]
27735
27886
  #
27736
27887
  # @!attribute [rw] stopping_condition
27737
- # Specifies a time limit for how long the processing job is allowed to
27738
- # run.
27888
+ # Configures conditions under which the processing job should be
27889
+ # stopped, such as how long the processing job has been running. After
27890
+ # the condition is met, the processing job is stopped.
27739
27891
  # @return [Types::ProcessingStoppingCondition]
27740
27892
  #
27741
27893
  # @!attribute [rw] app_specification
@@ -27973,7 +28125,7 @@ module Aws::SageMaker
27973
28125
  include Aws::Structure
27974
28126
  end
27975
28127
 
27976
- # The output configuration for the processing job.
28128
+ # Configuration for uploading output from the processing container.
27977
28129
  #
27978
28130
  # @note When making an API call, you may pass ProcessingOutputConfig
27979
28131
  # data as a hash:
@@ -27997,7 +28149,8 @@ module Aws::SageMaker
27997
28149
  # }
27998
28150
  #
27999
28151
  # @!attribute [rw] outputs
28000
- # List of output configurations for the processing job.
28152
+ # An array of outputs configuring the data to upload from the
28153
+ # processing container.
28001
28154
  # @return [Array<Types::ProcessingOutput>]
28002
28155
  #
28003
28156
  # @!attribute [rw] kms_key_id
@@ -28045,7 +28198,8 @@ module Aws::SageMaker
28045
28198
  include Aws::Structure
28046
28199
  end
28047
28200
 
28048
- # Configuration for processing job inputs in Amazon S3.
28201
+ # Configuration for downloading input data from Amazon S3 into the
28202
+ # processing container.
28049
28203
  #
28050
28204
  # @note When making an API call, you may pass ProcessingS3Input
28051
28205
  # data as a hash:
@@ -28060,14 +28214,14 @@ module Aws::SageMaker
28060
28214
  # }
28061
28215
  #
28062
28216
  # @!attribute [rw] s3_uri
28063
- # The URI for the Amazon S3 storage where you want Amazon SageMaker to
28064
- # download the artifacts needed to run a processing job.
28217
+ # The URI of the Amazon S3 prefix Amazon SageMaker downloads data
28218
+ # required to run a processing job.
28065
28219
  # @return [String]
28066
28220
  #
28067
28221
  # @!attribute [rw] local_path
28068
- # The local path to the Amazon S3 bucket where you want Amazon
28069
- # SageMaker to download the inputs to run a processing job.
28070
- # `LocalPath` is an absolute path to the input data. This is a
28222
+ # The local path in your container where you want Amazon SageMaker to
28223
+ # write input data to. `LocalPath` is an absolute path to the input
28224
+ # data and must begin with `/opt/ml/processing/`. `LocalPath` is a
28071
28225
  # required parameter when `AppManaged` is `False` (default).
28072
28226
  # @return [String]
28073
28227
  #
@@ -28082,22 +28236,27 @@ module Aws::SageMaker
28082
28236
  # @return [String]
28083
28237
  #
28084
28238
  # @!attribute [rw] s3_input_mode
28085
- # Whether to use `File` or `Pipe` input mode. In `File` mode, Amazon
28086
- # SageMaker copies the data from the input source onto the local
28087
- # Amazon Elastic Block Store (Amazon EBS) volumes before starting your
28088
- # training algorithm. This is the most commonly used input mode. In
28089
- # `Pipe` mode, Amazon SageMaker streams input data from the source
28090
- # directly to your algorithm without using the EBS volume.This is a
28091
- # required parameter when `AppManaged` is `False` (default).
28239
+ # Whether to use `File` or `Pipe` input mode. In File mode, Amazon
28240
+ # SageMaker copies the data from the input source onto the local ML
28241
+ # storage volume before starting your processing container. This is
28242
+ # the most commonly used input mode. In `Pipe` mode, Amazon SageMaker
28243
+ # streams input data from the source directly to your processing
28244
+ # container into named pipes without using the ML storage volume.
28092
28245
  # @return [String]
28093
28246
  #
28094
28247
  # @!attribute [rw] s3_data_distribution_type
28095
- # Whether the data stored in Amazon S3 is `FullyReplicated` or
28096
- # `ShardedByS3Key`.
28248
+ # Whether to distribute the data from Amazon S3 to all processing
28249
+ # instances with `FullyReplicated`, or whether the data from Amazon S3
28250
+ # is shared by Amazon S3 key, downloading one shard of data to each
28251
+ # processing instance.
28097
28252
  # @return [String]
28098
28253
  #
28099
28254
  # @!attribute [rw] s3_compression_type
28100
- # Whether to use `Gzip` compression for Amazon S3 storage.
28255
+ # Whether to GZIP-decompress the data in Amazon S3 as it is streamed
28256
+ # into the processing container. `Gzip` can only be used when `Pipe`
28257
+ # mode is specified as the `S3InputMode`. In `Pipe` mode, Amazon
28258
+ # SageMaker streams input data from the source directly to your
28259
+ # container without using the EBS volume.
28101
28260
  # @return [String]
28102
28261
  #
28103
28262
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingS3Input AWS API Documentation
@@ -28113,7 +28272,8 @@ module Aws::SageMaker
28113
28272
  include Aws::Structure
28114
28273
  end
28115
28274
 
28116
- # Configuration for processing job outputs in Amazon S3.
28275
+ # Configuration for uploading output data to Amazon S3 from the
28276
+ # processing container.
28117
28277
  #
28118
28278
  # @note When making an API call, you may pass ProcessingS3Output
28119
28279
  # data as a hash:
@@ -28130,9 +28290,11 @@ module Aws::SageMaker
28130
28290
  # @return [String]
28131
28291
  #
28132
28292
  # @!attribute [rw] local_path
28133
- # The local path to the Amazon S3 bucket where you want Amazon
28134
- # SageMaker to save the results of an processing job. `LocalPath` is
28135
- # an absolute path to the input data.
28293
+ # The local path of a directory where you want Amazon SageMaker to
28294
+ # upload its contents to Amazon S3. `LocalPath` is an absolute path to
28295
+ # a directory containing output files. This directory will be created
28296
+ # by the platform and exist when your container's entrypoint is
28297
+ # invoked.
28136
28298
  # @return [String]
28137
28299
  #
28138
28300
  # @!attribute [rw] s3_upload_mode
@@ -28150,8 +28312,9 @@ module Aws::SageMaker
28150
28312
  include Aws::Structure
28151
28313
  end
28152
28314
 
28153
- # Specifies a time limit for how long the processing job is allowed to
28154
- # run.
28315
+ # Configures conditions under which the processing job should be
28316
+ # stopped, such as how long the processing job has been running. After
28317
+ # the condition is met, the processing job is stopped.
28155
28318
  #
28156
28319
  # @note When making an API call, you may pass ProcessingStoppingCondition
28157
28320
  # data as a hash:
@@ -32831,7 +32994,7 @@ module Aws::SageMaker
32831
32994
  #
32832
32995
  # Use this parameter when you are creating a labeling job for 3D point
32833
32996
  # cloud and video fram labeling jobs. Use your labeling job task type
32834
- # to select one of the following ARN's and use it with this parameter
32997
+ # to select one of the following ARNs and use it with this parameter
32835
32998
  # when you create a labeling job. Replace `aws-region` with the AWS
32836
32999
  # region you are creating your labeling job in.
32837
33000
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.77.0
4
+ version: 1.78.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-02-09 00:00:00.000000000 Z
11
+ date: 2021-02-18 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core