aws-sdk-sagemaker 1.77.0 → 1.78.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9a4337ea5c9bd1fe77ccd7d9f03b70525b2318534184d0710a9d1ff44377baa4
4
- data.tar.gz: 2371cbc87bfa2f268bb49e6f7f75edc0e57bf1d6c6114ad482a870271a30476b
3
+ metadata.gz: 10c8c0137fd509641a34e18aa37cbbc12d353bb416db3d7f64ffe0e90eeed7b1
4
+ data.tar.gz: 759e00305aa536c79c1156f1826bb237be55e7f7497d782ff1ab6cf3b90562ff
5
5
  SHA512:
6
- metadata.gz: 57b1deceadbe46e9ec02c689a2ea72893dd3a0642857a3dfd4e7906458ef42f0376a0ca62ce8daf9ac8d8db220b5e36cad420857d02561be3e2d5c8da85a7282
7
- data.tar.gz: 100c47fd1dcd39f6dab3787a9f34eded0347ce229450f366be02d013b4e9663b1649711c880228e1137a6da81243b3b5f16c12561f991d13e6db50bb6e2deb75
6
+ metadata.gz: 21b021017760e974497f52f18272593634b1ed97f6c3606e5214e09f19841aae9f08f3bec48e63b6bb9c3d2d70c8a72ec79875d1d66bf9461145223944f841b5
7
+ data.tar.gz: f933497f80190caee4fde7e5cf1d686a7d7abd8d7220cdc75cd2f2dfa9122a8e1514cbe582cbe0c5633215cf78343c3dcf257f6e85e6c66a1483b2a0f66f0702
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.77.0'
52
+ GEM_VERSION = '1.78.0'
53
53
 
54
54
  end
@@ -3010,16 +3010,77 @@ module Aws::SageMaker
3010
3010
  # @option params [required, String] :label_attribute_name
3011
3011
  # The attribute name to use for the label in the output manifest file.
3012
3012
  # This is the key for the key/value pair formed with the label that a
3013
- # worker assigns to the object. The name can't end with "-metadata".
3014
- # If you are running a semantic segmentation labeling job, the attribute
3015
- # name must end with "-ref". If you are running any other kind of
3016
- # labeling job, the attribute name must not end with "-ref".
3013
+ # worker assigns to the object. The `LabelAttributeName` must meet the
3014
+ # following requirements.
3015
+ #
3016
+ # * The name can't end with "-metadata".
3017
+ #
3018
+ # * If you are using one of the following [built-in task types][1], the
3019
+ # attribute name *must* end with "-ref". If the task type you are
3020
+ # using is not listed below, the attribute name *must not* end with
3021
+ # "-ref".
3022
+ #
3023
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
3024
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
3025
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
3026
+ # type.
3027
+ #
3028
+ # * Video frame object detection (`VideoObjectDetection`), and
3029
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
3030
+ # labeling jobs for this task type.
3031
+ #
3032
+ # * Video frame object tracking (`VideoObjectTracking`), and
3033
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
3034
+ # labeling jobs for this task type.
3035
+ #
3036
+ # * 3D point cloud semantic segmentation
3037
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
3038
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
3039
+ # labeling jobs for this task type.
3040
+ #
3041
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`), and
3042
+ # adjustment and verification
3043
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
3044
+ # task type.
3045
+ #
3046
+ #
3047
+ #
3048
+ # If you are creating an adjustment or verification labeling job, you
3049
+ # must use a *different* `LabelAttributeName` than the one used in the
3050
+ # original labeling job. The original labeling job is the Ground Truth
3051
+ # labeling job that produced the labels that you want verified or
3052
+ # adjusted. To learn more about adjustment and verification labeling
3053
+ # jobs, see [Verify and Adjust Labels][2].
3054
+ #
3055
+ #
3056
+ #
3057
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3058
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
3017
3059
  #
3018
3060
  # @option params [required, Types::LabelingJobInputConfig] :input_config
3019
3061
  # Input data for the labeling job, such as the Amazon S3 location of the
3020
3062
  # data objects and the location of the manifest file that describes the
3021
3063
  # data objects.
3022
3064
  #
3065
+ # You must specify at least one of the following: `S3DataSource` or
3066
+ # `SnsDataSource`.
3067
+ #
3068
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
3069
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
3070
+ # Truth will create a one-time labeling job that stops after all data
3071
+ # objects in the input manifest file have been labeled.
3072
+ #
3073
+ # * Use `S3DataSource` to specify an input manifest file for both
3074
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
3075
+ # optional if you use `SnsDataSource` to create a streaming labeling
3076
+ # job.
3077
+ #
3078
+ # If you use the Amazon Mechanical Turk workforce, your input data
3079
+ # should not include confidential information, personal information or
3080
+ # protected health information. Use `ContentClassifiers` to specify that
3081
+ # your data is free of personally identifiable information and adult
3082
+ # content.
3083
+ #
3023
3084
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3024
3085
  # The location of the output data and the AWS Key Management Service key
3025
3086
  # ID for the key used to encrypt the output data, if any.
@@ -3044,41 +3105,37 @@ module Aws::SageMaker
3044
3105
  # format. Identify the labels you want to use by replacing `label_1`,
3045
3106
  # `label_2`,`...`,`label_n` with your label categories.
3046
3107
  #
3047
- # `\{`
3108
+ # `\{ `
3048
3109
  #
3049
- # ` "document-version": "2018-11-28"`
3110
+ # `"document-version": "2018-11-28",`
3050
3111
  #
3051
- # ` "labels": [`
3112
+ # `"labels": [\{"label": "label_1"\},\{"label":
3113
+ # "label_2"\},...\{"label": "label_n"\}]`
3052
3114
  #
3053
- # ` \{`
3054
- #
3055
- # ` "label": "label_1"`
3056
- #
3057
- # ` \},`
3058
- #
3059
- # ` \{`
3060
- #
3061
- # ` "label": "label_2"`
3062
- #
3063
- # ` \},`
3064
- #
3065
- # ` ...`
3066
- #
3067
- # ` \{`
3115
+ # `\}`
3068
3116
  #
3069
- # ` "label": "label_n"`
3117
+ # Note the following about the label category configuration file:
3070
3118
  #
3071
- # ` \}`
3119
+ # * For image classification and text classification (single and
3120
+ # multi-label) you must specify at least two label categories. For all
3121
+ # other task types, the minimum number of label categories required is
3122
+ # one.
3072
3123
  #
3073
- # ` ]`
3124
+ # * Each label category must be unique, you cannot specify duplicate
3125
+ # label categories.
3074
3126
  #
3075
- # `\}`
3127
+ # * If you create a 3D point cloud or video frame adjustment or
3128
+ # verification labeling job, you must include
3129
+ # `auditLabelAttributeName` in the label category configuration. Use
3130
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
3131
+ # labeling job you want to adjust or verify annotations of.
3076
3132
  #
3077
3133
  #
3078
3134
  #
3079
3135
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3080
3136
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3081
3137
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3138
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3082
3139
  #
3083
3140
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
3084
3141
  # A set of conditions for stopping the labeling job. If any of the
@@ -4513,9 +4570,10 @@ module Aws::SageMaker
4513
4570
  # This operation can only be called when the authentication mode equals
4514
4571
  # IAM.
4515
4572
  #
4516
- # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
4517
- # valid only for 5 minutes. If you try to use the URL after the 5-minute
4518
- # limit expires, you are directed to the AWS console sign-in page.
4573
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4574
+ # default timeout of 5 minutes. You can configure this value using
4575
+ # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4576
+ # expires, you are directed to the AWS console sign-in page.
4519
4577
  #
4520
4578
  # </note>
4521
4579
  #
@@ -4526,7 +4584,12 @@ module Aws::SageMaker
4526
4584
  # The name of the UserProfile to sign-in as.
4527
4585
  #
4528
4586
  # @option params [Integer] :session_expiration_duration_in_seconds
4529
- # The session expiration duration in seconds.
4587
+ # The session expiration duration in seconds. This value defaults to
4588
+ # 43200.
4589
+ #
4590
+ # @option params [Integer] :expires_in_seconds
4591
+ # The number of seconds until the pre-signed URL expires. This value
4592
+ # defaults to 300.
4530
4593
  #
4531
4594
  # @return [Types::CreatePresignedDomainUrlResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4532
4595
  #
@@ -4538,6 +4601,7 @@ module Aws::SageMaker
4538
4601
  # domain_id: "DomainId", # required
4539
4602
  # user_profile_name: "UserProfileName", # required
4540
4603
  # session_expiration_duration_in_seconds: 1,
4604
+ # expires_in_seconds: 1,
4541
4605
  # })
4542
4606
  #
4543
4607
  # @example Response structure
@@ -4617,7 +4681,8 @@ module Aws::SageMaker
4617
4681
  # Creates a processing job.
4618
4682
  #
4619
4683
  # @option params [Array<Types::ProcessingInput>] :processing_inputs
4620
- # List of input configurations for the processing job.
4684
+ # An array of inputs configuring the data to download into the
4685
+ # processing container.
4621
4686
  #
4622
4687
  # @option params [Types::ProcessingOutputConfig] :processing_output_config
4623
4688
  # Output configuration for the processing job.
@@ -4639,10 +4704,14 @@ module Aws::SageMaker
4639
4704
  # image.
4640
4705
  #
4641
4706
  # @option params [Hash<String,String>] :environment
4642
- # Sets the environment variables in the Docker container.
4707
+ # The environment variables to set in the Docker container. Up to 100
4708
+ # key and values entries in the map are supported.
4643
4709
  #
4644
4710
  # @option params [Types::NetworkConfig] :network_config
4645
- # Networking options for a processing job.
4711
+ # Networking options for a processing job, such as whether to allow
4712
+ # inbound and outbound network calls to and from processing containers,
4713
+ # and the VPC subnets and security groups to use for VPC-enabled
4714
+ # processing jobs.
4646
4715
  #
4647
4716
  # @option params [required, String] :role_arn
4648
4717
  # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
@@ -13842,6 +13911,27 @@ module Aws::SageMaker
13842
13911
 
13843
13912
  # Lists training jobs.
13844
13913
  #
13914
+ # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13915
+ # `MaxResults` number of training jobs are first retrieved ignoring the
13916
+ # `StatusEquals` parameter and then they are filtered by the
13917
+ # `StatusEquals` parameter, which is returned as a response. For
13918
+ # example, if `ListTrainingJobs` is invoked with the following
13919
+ # parameters:
13920
+ #
13921
+ # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13922
+ #
13923
+ # Then, 100 trainings jobs with any status including those other than
13924
+ # `InProgress` are selected first (sorted according the creation time,
13925
+ # from the latest to the oldest) and those with status `InProgress` are
13926
+ # returned.
13927
+ #
13928
+ # You can quickly test the API using the following AWS CLI code.
13929
+ #
13930
+ # `aws sagemaker list-training-jobs --max-results 100 --status-equals
13931
+ # InProgress`
13932
+ #
13933
+ # </note>
13934
+ #
13845
13935
  # @option params [String] :next_token
13846
13936
  # If the result of the previous `ListTrainingJobs` request was
13847
13937
  # truncated, the response includes a `NextToken`. To retrieve the next
@@ -17195,7 +17285,7 @@ module Aws::SageMaker
17195
17285
  params: params,
17196
17286
  config: config)
17197
17287
  context[:gem_name] = 'aws-sdk-sagemaker'
17198
- context[:gem_version] = '1.77.0'
17288
+ context[:gem_version] = '1.78.0'
17199
17289
  Seahorse::Client::Request.new(handlers, context)
17200
17290
  end
17201
17291
 
@@ -552,6 +552,7 @@ module Aws::SageMaker
552
552
  ExperimentSourceArn = Shapes::StringShape.new(name: 'ExperimentSourceArn')
553
553
  ExperimentSummaries = Shapes::ListShape.new(name: 'ExperimentSummaries')
554
554
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
+ ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
555
556
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
556
557
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
557
558
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
@@ -2189,6 +2190,7 @@ module Aws::SageMaker
2189
2190
  CreatePresignedDomainUrlRequest.add_member(:domain_id, Shapes::ShapeRef.new(shape: DomainId, required: true, location_name: "DomainId"))
2190
2191
  CreatePresignedDomainUrlRequest.add_member(:user_profile_name, Shapes::ShapeRef.new(shape: UserProfileName, required: true, location_name: "UserProfileName"))
2191
2192
  CreatePresignedDomainUrlRequest.add_member(:session_expiration_duration_in_seconds, Shapes::ShapeRef.new(shape: SessionExpirationDurationInSeconds, location_name: "SessionExpirationDurationInSeconds"))
2193
+ CreatePresignedDomainUrlRequest.add_member(:expires_in_seconds, Shapes::ShapeRef.new(shape: ExpiresInSeconds, location_name: "ExpiresInSeconds"))
2192
2194
  CreatePresignedDomainUrlRequest.struct_class = Types::CreatePresignedDomainUrlRequest
2193
2195
 
2194
2196
  CreatePresignedDomainUrlResponse.add_member(:authorized_url, Shapes::ShapeRef.new(shape: PresignedDomainUrl, location_name: "AuthorizedUrl"))
@@ -1237,27 +1237,27 @@ module Aws::SageMaker
1237
1237
  #
1238
1238
  # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1239
1239
  #
1240
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1240
+ # * `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1241
1241
  #
1242
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1242
+ # * `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1243
1243
  #
1244
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1244
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1245
1245
  #
1246
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1246
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1247
1247
  #
1248
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1248
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1249
1249
  #
1250
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1250
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1251
1251
  #
1252
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1252
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1253
1253
  #
1254
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1254
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1255
1255
  #
1256
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1256
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1257
1257
  #
1258
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1258
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1259
1259
  #
1260
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1260
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1261
1261
  #
1262
1262
  # **3D Point Cloud Object Tracking Adjustment** - Use this task type
1263
1263
  # when you want workers to adjust 3D cuboids around objects that
@@ -5677,17 +5677,77 @@ module Aws::SageMaker
5677
5677
  # @!attribute [rw] label_attribute_name
5678
5678
  # The attribute name to use for the label in the output manifest file.
5679
5679
  # This is the key for the key/value pair formed with the label that a
5680
- # worker assigns to the object. The name can't end with
5681
- # "-metadata". If you are running a semantic segmentation labeling
5682
- # job, the attribute name must end with "-ref". If you are running
5683
- # any other kind of labeling job, the attribute name must not end with
5684
- # "-ref".
5680
+ # worker assigns to the object. The `LabelAttributeName` must meet the
5681
+ # following requirements.
5682
+ #
5683
+ # * The name can't end with "-metadata".
5684
+ #
5685
+ # * If you are using one of the following [built-in task types][1],
5686
+ # the attribute name *must* end with "-ref". If the task type you
5687
+ # are using is not listed below, the attribute name *must not* end
5688
+ # with "-ref".
5689
+ #
5690
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
5691
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
5692
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
5693
+ # type.
5694
+ #
5695
+ # * Video frame object detection (`VideoObjectDetection`), and
5696
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
5697
+ # labeling jobs for this task type.
5698
+ #
5699
+ # * Video frame object tracking (`VideoObjectTracking`), and
5700
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
5701
+ # labeling jobs for this task type.
5702
+ #
5703
+ # * 3D point cloud semantic segmentation
5704
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
5705
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
5706
+ # labeling jobs for this task type.
5707
+ #
5708
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`),
5709
+ # and adjustment and verification
5710
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
5711
+ # task type.
5712
+ #
5713
+ #
5714
+ #
5715
+ # If you are creating an adjustment or verification labeling job, you
5716
+ # must use a *different* `LabelAttributeName` than the one used in the
5717
+ # original labeling job. The original labeling job is the Ground Truth
5718
+ # labeling job that produced the labels that you want verified or
5719
+ # adjusted. To learn more about adjustment and verification labeling
5720
+ # jobs, see [Verify and Adjust Labels][2].
5721
+ #
5722
+ #
5723
+ #
5724
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5725
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
5685
5726
  # @return [String]
5686
5727
  #
5687
5728
  # @!attribute [rw] input_config
5688
5729
  # Input data for the labeling job, such as the Amazon S3 location of
5689
5730
  # the data objects and the location of the manifest file that
5690
5731
  # describes the data objects.
5732
+ #
5733
+ # You must specify at least one of the following: `S3DataSource` or
5734
+ # `SnsDataSource`.
5735
+ #
5736
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
5737
+ # labeling job. If you do not specify and SNS input topic ARN,
5738
+ # Ground Truth will create a one-time labeling job that stops after
5739
+ # all data objects in the input manifest file have been labeled.
5740
+ #
5741
+ # * Use `S3DataSource` to specify an input manifest file for both
5742
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
5743
+ # optional if you use `SnsDataSource` to create a streaming labeling
5744
+ # job.
5745
+ #
5746
+ # If you use the Amazon Mechanical Turk workforce, your input data
5747
+ # should not include confidential information, personal information or
5748
+ # protected health information. Use `ContentClassifiers` to specify
5749
+ # that your data is free of personally identifiable information and
5750
+ # adult content.
5691
5751
  # @return [Types::LabelingJobInputConfig]
5692
5752
  #
5693
5753
  # @!attribute [rw] output_config
@@ -5717,41 +5777,37 @@ module Aws::SageMaker
5717
5777
  # following format. Identify the labels you want to use by replacing
5718
5778
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
5719
5779
  #
5720
- # `\{`
5780
+ # `\{ `
5721
5781
  #
5722
- # ` "document-version": "2018-11-28"`
5782
+ # `"document-version": "2018-11-28",`
5723
5783
  #
5724
- # ` "labels": [`
5784
+ # `"labels": [\{"label": "label_1"\},\{"label":
5785
+ # "label_2"\},...\{"label": "label_n"\}]`
5725
5786
  #
5726
- # ` \{`
5727
- #
5728
- # ` "label": "label_1"`
5729
- #
5730
- # ` \},`
5731
- #
5732
- # ` \{`
5733
- #
5734
- # ` "label": "label_2"`
5735
- #
5736
- # ` \},`
5737
- #
5738
- # ` ...`
5787
+ # `\}`
5739
5788
  #
5740
- # ` \{`
5789
+ # Note the following about the label category configuration file:
5741
5790
  #
5742
- # ` "label": "label_n"`
5791
+ # * For image classification and text classification (single and
5792
+ # multi-label) you must specify at least two label categories. For
5793
+ # all other task types, the minimum number of label categories
5794
+ # required is one.
5743
5795
  #
5744
- # ` \}`
5745
- #
5746
- # ` ]`
5796
+ # * Each label category must be unique, you cannot specify duplicate
5797
+ # label categories.
5747
5798
  #
5748
- # `\}`
5799
+ # * If you create a 3D point cloud or video frame adjustment or
5800
+ # verification labeling job, you must include
5801
+ # `auditLabelAttributeName` in the label category configuration. Use
5802
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
5803
+ # labeling job you want to adjust or verify annotations of.
5749
5804
  #
5750
5805
  #
5751
5806
  #
5752
5807
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
5753
5808
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5754
5809
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5810
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5755
5811
  # @return [String]
5756
5812
  #
5757
5813
  # @!attribute [rw] stopping_conditions
@@ -7177,6 +7233,7 @@ module Aws::SageMaker
7177
7233
  # domain_id: "DomainId", # required
7178
7234
  # user_profile_name: "UserProfileName", # required
7179
7235
  # session_expiration_duration_in_seconds: 1,
7236
+ # expires_in_seconds: 1,
7180
7237
  # }
7181
7238
  #
7182
7239
  # @!attribute [rw] domain_id
@@ -7188,7 +7245,13 @@ module Aws::SageMaker
7188
7245
  # @return [String]
7189
7246
  #
7190
7247
  # @!attribute [rw] session_expiration_duration_in_seconds
7191
- # The session expiration duration in seconds.
7248
+ # The session expiration duration in seconds. This value defaults to
7249
+ # 43200.
7250
+ # @return [Integer]
7251
+ #
7252
+ # @!attribute [rw] expires_in_seconds
7253
+ # The number of seconds until the pre-signed URL expires. This value
7254
+ # defaults to 300.
7192
7255
  # @return [Integer]
7193
7256
  #
7194
7257
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedDomainUrlRequest AWS API Documentation
@@ -7196,7 +7259,8 @@ module Aws::SageMaker
7196
7259
  class CreatePresignedDomainUrlRequest < Struct.new(
7197
7260
  :domain_id,
7198
7261
  :user_profile_name,
7199
- :session_expiration_duration_in_seconds)
7262
+ :session_expiration_duration_in_seconds,
7263
+ :expires_in_seconds)
7200
7264
  SENSITIVE = []
7201
7265
  include Aws::Structure
7202
7266
  end
@@ -7354,7 +7418,8 @@ module Aws::SageMaker
7354
7418
  # }
7355
7419
  #
7356
7420
  # @!attribute [rw] processing_inputs
7357
- # List of input configurations for the processing job.
7421
+ # An array of inputs configuring the data to download into the
7422
+ # processing container.
7358
7423
  # @return [Array<Types::ProcessingInput>]
7359
7424
  #
7360
7425
  # @!attribute [rw] processing_output_config
@@ -7382,11 +7447,15 @@ module Aws::SageMaker
7382
7447
  # @return [Types::AppSpecification]
7383
7448
  #
7384
7449
  # @!attribute [rw] environment
7385
- # Sets the environment variables in the Docker container.
7450
+ # The environment variables to set in the Docker container. Up to 100
7451
+ # key and values entries in the map are supported.
7386
7452
  # @return [Hash<String,String>]
7387
7453
  #
7388
7454
  # @!attribute [rw] network_config
7389
- # Networking options for a processing job.
7455
+ # Networking options for a processing job, such as whether to allow
7456
+ # inbound and outbound network calls to and from processing
7457
+ # containers, and the VPC subnets and security groups to use for
7458
+ # VPC-enabled processing jobs.
7390
7459
  # @return [Types::NetworkConfig]
7391
7460
  #
7392
7461
  # @!attribute [rw] role_arn
@@ -10913,8 +10982,7 @@ module Aws::SageMaker
10913
10982
  # @return [String]
10914
10983
  #
10915
10984
  # @!attribute [rw] compilation_job_arn
10916
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
10917
- # assumes to perform the model compilation job.
10985
+ # The Amazon Resource Name (ARN) of the model compilation job.
10918
10986
  # @return [String]
10919
10987
  #
10920
10988
  # @!attribute [rw] compilation_job_status
@@ -10969,7 +11037,8 @@ module Aws::SageMaker
10969
11037
  # @return [Types::ModelDigests]
10970
11038
  #
10971
11039
  # @!attribute [rw] role_arn
10972
- # The Amazon Resource Name (ARN) of the model compilation job.
11040
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
11041
+ # assumes to perform the model compilation job.
10973
11042
  # @return [String]
10974
11043
  #
10975
11044
  # @!attribute [rw] input_config
@@ -14044,7 +14113,13 @@ module Aws::SageMaker
14044
14113
  # @return [Integer]
14045
14114
  #
14046
14115
  # @!attribute [rw] billable_time_in_seconds
14047
- # The billable time in seconds.
14116
+ # The billable time in seconds. Billable time refers to the absolute
14117
+ # wall-clock time.
14118
+ #
14119
+ # Multiply `BillableTimeInSeconds` by the number of instances
14120
+ # (`InstanceCount`) in your training cluster to get the total compute
14121
+ # time Amazon SageMaker will bill you if you run distributed training.
14122
+ # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14048
14123
  #
14049
14124
  # You can calculate the savings from using managed spot training using
14050
14125
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16067,6 +16142,13 @@ module Aws::SageMaker
16067
16142
  # @!attribute [rw] s3_output_path
16068
16143
  # The Amazon S3 path where the object containing human output will be
16069
16144
  # made available.
16145
+ #
16146
+ # To learn more about the format of Amazon A2I output data, see
16147
+ # [Amazon A2I Output Data][1].
16148
+ #
16149
+ #
16150
+ #
16151
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html
16070
16152
  # @return [String]
16071
16153
  #
16072
16154
  # @!attribute [rw] kms_key_id
@@ -16424,11 +16506,33 @@ module Aws::SageMaker
16424
16506
  # }
16425
16507
  #
16426
16508
  # @!attribute [rw] workteam_arn
16427
- # Amazon Resource Name (ARN) of a team of workers.
16509
+ # Amazon Resource Name (ARN) of a team of workers. To learn more about
16510
+ # the types of workforces and work teams you can create and use with
16511
+ # Amazon A2I, see [Create and Manage Workforces][1].
16512
+ #
16513
+ #
16514
+ #
16515
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
16428
16516
  # @return [String]
16429
16517
  #
16430
16518
  # @!attribute [rw] human_task_ui_arn
16431
16519
  # The Amazon Resource Name (ARN) of the human task user interface.
16520
+ #
16521
+ # You can use standard HTML and Crowd HTML Elements to create a custom
16522
+ # worker task template. You use this template to create a human task
16523
+ # UI.
16524
+ #
16525
+ # To learn how to create a custom HTML template, see [Create Custom
16526
+ # Worker Task Template][1].
16527
+ #
16528
+ # To learn how to create a human task UI, which is a worker task
16529
+ # template that can be used in a flow definition, see [Create and
16530
+ # Delete a Worker Task Templates][2].
16531
+ #
16532
+ #
16533
+ #
16534
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html
16535
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html
16432
16536
  # @return [String]
16433
16537
  #
16434
16538
  # @!attribute [rw] task_title
@@ -16453,7 +16557,7 @@ module Aws::SageMaker
16453
16557
  #
16454
16558
  # @!attribute [rw] task_time_limit_in_seconds
16455
16559
  # The amount of time that a worker has to complete a task. The default
16456
- # value is 3,600 seconds (1 hour)
16560
+ # value is 3,600 seconds (1 hour).
16457
16561
  # @return [Integer]
16458
16562
  #
16459
16563
  # @!attribute [rw] task_keywords
@@ -17424,14 +17528,40 @@ module Aws::SageMaker
17424
17528
  #
17425
17529
  # @!attribute [rw] task_time_limit_in_seconds
17426
17530
  # The amount of time that a worker has to complete a task.
17531
+ #
17532
+ # If you create a custom labeling job, the maximum value for this
17533
+ # parameter is 8 hours (28,800 seconds).
17534
+ #
17535
+ # If you create a labeling job using a [built-in task type][1] the
17536
+ # maximum for this parameter depends on the task type you use:
17537
+ #
17538
+ # * For [image][2] and [text][3] labeling jobs, the maximum is 8 hours
17539
+ # (28,800 seconds).
17540
+ #
17541
+ # * For [3D point cloud][4] and [video frame][5] labeling jobs, the
17542
+ # maximum is 7 days (604,800 seconds).
17543
+ #
17544
+ #
17545
+ #
17546
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
17547
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html
17548
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html
17549
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
17550
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html
17427
17551
  # @return [Integer]
17428
17552
  #
17429
17553
  # @!attribute [rw] task_availability_lifetime_in_seconds
17430
17554
  # The length of time that a task remains available for labeling by
17431
- # human workers. **If you choose the Amazon Mechanical Turk workforce,
17432
- # the maximum is 12 hours (43200)**. The default value is 864000
17433
- # seconds (10 days). For private and vendor workforces, the maximum is
17434
- # as listed.
17555
+ # human workers. The default and maximum values for this parameter
17556
+ # depend on the type of workforce you use.
17557
+ #
17558
+ # * If you choose the Amazon Mechanical Turk workforce, the maximum is
17559
+ # 12 hours (43,200 seconds). The default is 6 hours (21,600
17560
+ # seconds).
17561
+ #
17562
+ # * If you choose a private or vendor workforce, the default value is
17563
+ # 10 days (864,000 seconds). For most users, the maximum is also 10
17564
+ # days.
17435
17565
  # @return [Integer]
17436
17566
  #
17437
17567
  # @!attribute [rw] max_concurrent_task_count
@@ -19274,6 +19404,25 @@ module Aws::SageMaker
19274
19404
  # @!attribute [rw] manifest_s3_uri
19275
19405
  # The Amazon S3 location of the manifest file that describes the input
19276
19406
  # data objects.
19407
+ #
19408
+ # The input manifest file referenced in `ManifestS3Uri` must contain
19409
+ # one of the following keys: `source-ref` or `source`. The value of
19410
+ # the keys are interpreted as follows:
19411
+ #
19412
+ # * `source-ref`\: The source of the object is the Amazon S3 object
19413
+ # specified in the value. Use this value when the object is a binary
19414
+ # object, such as an image.
19415
+ #
19416
+ # * `source`\: The source of the object is the value. Use this value
19417
+ # when the object is a text value.
19418
+ #
19419
+ # If you are a new user of Ground Truth, it is recommended you review
19420
+ # [Use an Input Manifest File ][1] in the Amazon SageMaker Developer
19421
+ # Guide to learn how to create an input manifest file.
19422
+ #
19423
+ #
19424
+ #
19425
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html
19277
19426
  # @return [String]
19278
19427
  #
19279
19428
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobS3DataSource AWS API Documentation
@@ -27622,7 +27771,8 @@ module Aws::SageMaker
27622
27771
  #
27623
27772
  # @!attribute [rw] feature_group_name
27624
27773
  # The name of the Amazon SageMaker FeatureGroup to use as the
27625
- # destination for processing job output.
27774
+ # destination for processing job output. Note that your processing
27775
+ # script is responsible for putting records into your Feature Store.
27626
27776
  # @return [String]
27627
27777
  #
27628
27778
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingFeatureStoreOutput AWS API Documentation
@@ -27679,7 +27829,7 @@ module Aws::SageMaker
27679
27829
  # }
27680
27830
  #
27681
27831
  # @!attribute [rw] input_name
27682
- # The name of the inputs for the processing job.
27832
+ # The name for the processing job input.
27683
27833
  # @return [String]
27684
27834
  #
27685
27835
  # @!attribute [rw] app_managed
@@ -27689,7 +27839,8 @@ module Aws::SageMaker
27689
27839
  # @return [Boolean]
27690
27840
  #
27691
27841
  # @!attribute [rw] s3_input
27692
- # Configuration for processing job inputs in Amazon S3.
27842
+ # Configuration for downloading input data from Amazon S3 into the
27843
+ # processing container.
27693
27844
  # @return [Types::ProcessingS3Input]
27694
27845
  #
27695
27846
  # @!attribute [rw] dataset_definition
@@ -27720,7 +27871,7 @@ module Aws::SageMaker
27720
27871
  # @return [Array<Types::ProcessingInput>]
27721
27872
  #
27722
27873
  # @!attribute [rw] processing_output_config
27723
- # The output configuration for the processing job.
27874
+ # Configuration for uploading output from the processing container.
27724
27875
  # @return [Types::ProcessingOutputConfig]
27725
27876
  #
27726
27877
  # @!attribute [rw] processing_job_name
@@ -27734,8 +27885,9 @@ module Aws::SageMaker
27734
27885
  # @return [Types::ProcessingResources]
27735
27886
  #
27736
27887
  # @!attribute [rw] stopping_condition
27737
- # Specifies a time limit for how long the processing job is allowed to
27738
- # run.
27888
+ # Configures conditions under which the processing job should be
27889
+ # stopped, such as how long the processing job has been running. After
27890
+ # the condition is met, the processing job is stopped.
27739
27891
  # @return [Types::ProcessingStoppingCondition]
27740
27892
  #
27741
27893
  # @!attribute [rw] app_specification
@@ -27973,7 +28125,7 @@ module Aws::SageMaker
27973
28125
  include Aws::Structure
27974
28126
  end
27975
28127
 
27976
- # The output configuration for the processing job.
28128
+ # Configuration for uploading output from the processing container.
27977
28129
  #
27978
28130
  # @note When making an API call, you may pass ProcessingOutputConfig
27979
28131
  # data as a hash:
@@ -27997,7 +28149,8 @@ module Aws::SageMaker
27997
28149
  # }
27998
28150
  #
27999
28151
  # @!attribute [rw] outputs
28000
- # List of output configurations for the processing job.
28152
+ # An array of outputs configuring the data to upload from the
28153
+ # processing container.
28001
28154
  # @return [Array<Types::ProcessingOutput>]
28002
28155
  #
28003
28156
  # @!attribute [rw] kms_key_id
@@ -28045,7 +28198,8 @@ module Aws::SageMaker
28045
28198
  include Aws::Structure
28046
28199
  end
28047
28200
 
28048
- # Configuration for processing job inputs in Amazon S3.
28201
+ # Configuration for downloading input data from Amazon S3 into the
28202
+ # processing container.
28049
28203
  #
28050
28204
  # @note When making an API call, you may pass ProcessingS3Input
28051
28205
  # data as a hash:
@@ -28060,14 +28214,14 @@ module Aws::SageMaker
28060
28214
  # }
28061
28215
  #
28062
28216
  # @!attribute [rw] s3_uri
28063
- # The URI for the Amazon S3 storage where you want Amazon SageMaker to
28064
- # download the artifacts needed to run a processing job.
28217
+ # The URI of the Amazon S3 prefix Amazon SageMaker downloads data
28218
+ # required to run a processing job.
28065
28219
  # @return [String]
28066
28220
  #
28067
28221
  # @!attribute [rw] local_path
28068
- # The local path to the Amazon S3 bucket where you want Amazon
28069
- # SageMaker to download the inputs to run a processing job.
28070
- # `LocalPath` is an absolute path to the input data. This is a
28222
+ # The local path in your container where you want Amazon SageMaker to
28223
+ # write input data to. `LocalPath` is an absolute path to the input
28224
+ # data and must begin with `/opt/ml/processing/`. `LocalPath` is a
28071
28225
  # required parameter when `AppManaged` is `False` (default).
28072
28226
  # @return [String]
28073
28227
  #
@@ -28082,22 +28236,27 @@ module Aws::SageMaker
28082
28236
  # @return [String]
28083
28237
  #
28084
28238
  # @!attribute [rw] s3_input_mode
28085
- # Whether to use `File` or `Pipe` input mode. In `File` mode, Amazon
28086
- # SageMaker copies the data from the input source onto the local
28087
- # Amazon Elastic Block Store (Amazon EBS) volumes before starting your
28088
- # training algorithm. This is the most commonly used input mode. In
28089
- # `Pipe` mode, Amazon SageMaker streams input data from the source
28090
- # directly to your algorithm without using the EBS volume.This is a
28091
- # required parameter when `AppManaged` is `False` (default).
28239
+ # Whether to use `File` or `Pipe` input mode. In File mode, Amazon
28240
+ # SageMaker copies the data from the input source onto the local ML
28241
+ # storage volume before starting your processing container. This is
28242
+ # the most commonly used input mode. In `Pipe` mode, Amazon SageMaker
28243
+ # streams input data from the source directly to your processing
28244
+ # container into named pipes without using the ML storage volume.
28092
28245
  # @return [String]
28093
28246
  #
28094
28247
  # @!attribute [rw] s3_data_distribution_type
28095
- # Whether the data stored in Amazon S3 is `FullyReplicated` or
28096
- # `ShardedByS3Key`.
28248
+ # Whether to distribute the data from Amazon S3 to all processing
28249
+ # instances with `FullyReplicated`, or whether the data from Amazon S3
28250
+ # is shared by Amazon S3 key, downloading one shard of data to each
28251
+ # processing instance.
28097
28252
  # @return [String]
28098
28253
  #
28099
28254
  # @!attribute [rw] s3_compression_type
28100
- # Whether to use `Gzip` compression for Amazon S3 storage.
28255
+ # Whether to GZIP-decompress the data in Amazon S3 as it is streamed
28256
+ # into the processing container. `Gzip` can only be used when `Pipe`
28257
+ # mode is specified as the `S3InputMode`. In `Pipe` mode, Amazon
28258
+ # SageMaker streams input data from the source directly to your
28259
+ # container without using the EBS volume.
28101
28260
  # @return [String]
28102
28261
  #
28103
28262
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingS3Input AWS API Documentation
@@ -28113,7 +28272,8 @@ module Aws::SageMaker
28113
28272
  include Aws::Structure
28114
28273
  end
28115
28274
 
28116
- # Configuration for processing job outputs in Amazon S3.
28275
+ # Configuration for uploading output data to Amazon S3 from the
28276
+ # processing container.
28117
28277
  #
28118
28278
  # @note When making an API call, you may pass ProcessingS3Output
28119
28279
  # data as a hash:
@@ -28130,9 +28290,11 @@ module Aws::SageMaker
28130
28290
  # @return [String]
28131
28291
  #
28132
28292
  # @!attribute [rw] local_path
28133
- # The local path to the Amazon S3 bucket where you want Amazon
28134
- # SageMaker to save the results of an processing job. `LocalPath` is
28135
- # an absolute path to the input data.
28293
+ # The local path of a directory where you want Amazon SageMaker to
28294
+ # upload its contents to Amazon S3. `LocalPath` is an absolute path to
28295
+ # a directory containing output files. This directory will be created
28296
+ # by the platform and exist when your container's entrypoint is
28297
+ # invoked.
28136
28298
  # @return [String]
28137
28299
  #
28138
28300
  # @!attribute [rw] s3_upload_mode
@@ -28150,8 +28312,9 @@ module Aws::SageMaker
28150
28312
  include Aws::Structure
28151
28313
  end
28152
28314
 
28153
- # Specifies a time limit for how long the processing job is allowed to
28154
- # run.
28315
+ # Configures conditions under which the processing job should be
28316
+ # stopped, such as how long the processing job has been running. After
28317
+ # the condition is met, the processing job is stopped.
28155
28318
  #
28156
28319
  # @note When making an API call, you may pass ProcessingStoppingCondition
28157
28320
  # data as a hash:
@@ -32831,7 +32994,7 @@ module Aws::SageMaker
32831
32994
  #
32832
32995
  # Use this parameter when you are creating a labeling job for 3D point
32833
32996
  # cloud and video fram labeling jobs. Use your labeling job task type
32834
- # to select one of the following ARN's and use it with this parameter
32997
+ # to select one of the following ARNs and use it with this parameter
32835
32998
  # when you create a labeling job. Replace `aws-region` with the AWS
32836
32999
  # region you are creating your labeling job in.
32837
33000
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.77.0
4
+ version: 1.78.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-02-09 00:00:00.000000000 Z
11
+ date: 2021-02-18 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core