aws-sdk-sagemaker 1.75.0 → 1.80.0

Sign up to get free protection for your applications and to get access to all the features.
data/VERSION ADDED
@@ -0,0 +1 @@
1
+ 1.80.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.75.0'
52
+ GEM_VERSION = '1.80.0'
53
53
 
54
54
  end
@@ -1300,6 +1300,7 @@ module Aws::SageMaker
1300
1300
  # s3_uri: "S3Uri", # required
1301
1301
  # data_input_config: "DataInputConfig", # required
1302
1302
  # framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET, SKLEARN
1303
+ # framework_version: "FrameworkVersion",
1303
1304
  # },
1304
1305
  # output_config: { # required
1305
1306
  # s3_output_location: "S3Uri", # required
@@ -2087,6 +2088,10 @@ module Aws::SageMaker
2087
2088
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
2088
2089
  # initial_variant_weight: 1.0,
2089
2090
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
2091
+ # core_dump_config: {
2092
+ # destination_s3_uri: "DestinationS3Uri", # required
2093
+ # kms_key_id: "KmsKeyId",
2094
+ # },
2090
2095
  # },
2091
2096
  # ],
2092
2097
  # data_capture_config: {
@@ -2336,6 +2341,7 @@ module Aws::SageMaker
2336
2341
  # s3_storage_config: { # required
2337
2342
  # s3_uri: "S3Uri", # required
2338
2343
  # kms_key_id: "KmsKeyId",
2344
+ # resolved_output_s3_uri: "S3Uri",
2339
2345
  # },
2340
2346
  # disable_glue_table_creation: false,
2341
2347
  # data_catalog_config: {
@@ -3009,16 +3015,77 @@ module Aws::SageMaker
3009
3015
  # @option params [required, String] :label_attribute_name
3010
3016
  # The attribute name to use for the label in the output manifest file.
3011
3017
  # This is the key for the key/value pair formed with the label that a
3012
- # worker assigns to the object. The name can't end with "-metadata".
3013
- # If you are running a semantic segmentation labeling job, the attribute
3014
- # name must end with "-ref". If you are running any other kind of
3015
- # labeling job, the attribute name must not end with "-ref".
3018
+ # worker assigns to the object. The `LabelAttributeName` must meet the
3019
+ # following requirements.
3020
+ #
3021
+ # * The name can't end with "-metadata".
3022
+ #
3023
+ # * If you are using one of the following [built-in task types][1], the
3024
+ # attribute name *must* end with "-ref". If the task type you are
3025
+ # using is not listed below, the attribute name *must not* end with
3026
+ # "-ref".
3027
+ #
3028
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
3029
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
3030
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
3031
+ # type.
3032
+ #
3033
+ # * Video frame object detection (`VideoObjectDetection`), and
3034
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
3035
+ # labeling jobs for this task type.
3036
+ #
3037
+ # * Video frame object tracking (`VideoObjectTracking`), and
3038
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
3039
+ # labeling jobs for this task type.
3040
+ #
3041
+ # * 3D point cloud semantic segmentation
3042
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
3043
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
3044
+ # labeling jobs for this task type.
3045
+ #
3046
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`), and
3047
+ # adjustment and verification
3048
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
3049
+ # task type.
3050
+ #
3051
+ #
3052
+ #
3053
+ # If you are creating an adjustment or verification labeling job, you
3054
+ # must use a *different* `LabelAttributeName` than the one used in the
3055
+ # original labeling job. The original labeling job is the Ground Truth
3056
+ # labeling job that produced the labels that you want verified or
3057
+ # adjusted. To learn more about adjustment and verification labeling
3058
+ # jobs, see [Verify and Adjust Labels][2].
3059
+ #
3060
+ #
3061
+ #
3062
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3063
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
3016
3064
  #
3017
3065
  # @option params [required, Types::LabelingJobInputConfig] :input_config
3018
3066
  # Input data for the labeling job, such as the Amazon S3 location of the
3019
3067
  # data objects and the location of the manifest file that describes the
3020
3068
  # data objects.
3021
3069
  #
3070
+ # You must specify at least one of the following: `S3DataSource` or
3071
+ # `SnsDataSource`.
3072
+ #
3073
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
3074
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
3075
+ # Truth will create a one-time labeling job that stops after all data
3076
+ # objects in the input manifest file have been labeled.
3077
+ #
3078
+ # * Use `S3DataSource` to specify an input manifest file for both
3079
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
3080
+ # optional if you use `SnsDataSource` to create a streaming labeling
3081
+ # job.
3082
+ #
3083
+ # If you use the Amazon Mechanical Turk workforce, your input data
3084
+ # should not include confidential information, personal information or
3085
+ # protected health information. Use `ContentClassifiers` to specify that
3086
+ # your data is free of personally identifiable information and adult
3087
+ # content.
3088
+ #
3022
3089
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3023
3090
  # The location of the output data and the AWS Key Management Service key
3024
3091
  # ID for the key used to encrypt the output data, if any.
@@ -3043,41 +3110,37 @@ module Aws::SageMaker
3043
3110
  # format. Identify the labels you want to use by replacing `label_1`,
3044
3111
  # `label_2`,`...`,`label_n` with your label categories.
3045
3112
  #
3046
- # `\{`
3047
- #
3048
- # ` "document-version": "2018-11-28"`
3113
+ # `\{ `
3049
3114
  #
3050
- # ` "labels": [`
3115
+ # `"document-version": "2018-11-28",`
3051
3116
  #
3052
- # ` \{`
3117
+ # `"labels": [\{"label": "label_1"\},\{"label":
3118
+ # "label_2"\},...\{"label": "label_n"\}]`
3053
3119
  #
3054
- # ` "label": "label_1"`
3055
- #
3056
- # ` \},`
3057
- #
3058
- # ` \{`
3059
- #
3060
- # ` "label": "label_2"`
3061
- #
3062
- # ` \},`
3063
- #
3064
- # ` ...`
3065
- #
3066
- # ` \{`
3120
+ # `\}`
3067
3121
  #
3068
- # ` "label": "label_n"`
3122
+ # Note the following about the label category configuration file:
3069
3123
  #
3070
- # ` \}`
3124
+ # * For image classification and text classification (single and
3125
+ # multi-label) you must specify at least two label categories. For all
3126
+ # other task types, the minimum number of label categories required is
3127
+ # one.
3071
3128
  #
3072
- # ` ]`
3129
+ # * Each label category must be unique, you cannot specify duplicate
3130
+ # label categories.
3073
3131
  #
3074
- # `\}`
3132
+ # * If you create a 3D point cloud or video frame adjustment or
3133
+ # verification labeling job, you must include
3134
+ # `auditLabelAttributeName` in the label category configuration. Use
3135
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
3136
+ # labeling job you want to adjust or verify annotations of.
3075
3137
  #
3076
3138
  #
3077
3139
  #
3078
3140
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3079
3141
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3080
3142
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3143
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3081
3144
  #
3082
3145
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
3083
3146
  # A set of conditions for stopping the labeling job. If any of the
@@ -3236,6 +3299,10 @@ module Aws::SageMaker
3236
3299
  # @option params [Array<Types::ContainerDefinition>] :containers
3237
3300
  # Specifies the containers in the inference pipeline.
3238
3301
  #
3302
+ # @option params [Types::InferenceExecutionConfig] :inference_execution_config
3303
+ # Specifies details of how containers in a multi-container endpoint are
3304
+ # called.
3305
+ #
3239
3306
  # @option params [required, String] :execution_role_arn
3240
3307
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3241
3308
  # can assume to access model artifacts and docker image for deployment
@@ -3320,6 +3387,9 @@ module Aws::SageMaker
3320
3387
  # },
3321
3388
  # },
3322
3389
  # ],
3390
+ # inference_execution_config: {
3391
+ # mode: "Serial", # required, accepts Serial, Direct
3392
+ # },
3323
3393
  # execution_role_arn: "RoleArn", # required
3324
3394
  # tags: [
3325
3395
  # {
@@ -4512,9 +4582,10 @@ module Aws::SageMaker
4512
4582
  # This operation can only be called when the authentication mode equals
4513
4583
  # IAM.
4514
4584
  #
4515
- # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
4516
- # valid only for 5 minutes. If you try to use the URL after the 5-minute
4517
- # limit expires, you are directed to the AWS console sign-in page.
4585
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4586
+ # default timeout of 5 minutes. You can configure this value using
4587
+ # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4588
+ # expires, you are directed to the AWS console sign-in page.
4518
4589
  #
4519
4590
  # </note>
4520
4591
  #
@@ -4525,7 +4596,12 @@ module Aws::SageMaker
4525
4596
  # The name of the UserProfile to sign-in as.
4526
4597
  #
4527
4598
  # @option params [Integer] :session_expiration_duration_in_seconds
4528
- # The session expiration duration in seconds.
4599
+ # The session expiration duration in seconds. This value defaults to
4600
+ # 43200.
4601
+ #
4602
+ # @option params [Integer] :expires_in_seconds
4603
+ # The number of seconds until the pre-signed URL expires. This value
4604
+ # defaults to 300.
4529
4605
  #
4530
4606
  # @return [Types::CreatePresignedDomainUrlResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4531
4607
  #
@@ -4537,6 +4613,7 @@ module Aws::SageMaker
4537
4613
  # domain_id: "DomainId", # required
4538
4614
  # user_profile_name: "UserProfileName", # required
4539
4615
  # session_expiration_duration_in_seconds: 1,
4616
+ # expires_in_seconds: 1,
4540
4617
  # })
4541
4618
  #
4542
4619
  # @example Response structure
@@ -4616,7 +4693,8 @@ module Aws::SageMaker
4616
4693
  # Creates a processing job.
4617
4694
  #
4618
4695
  # @option params [Array<Types::ProcessingInput>] :processing_inputs
4619
- # List of input configurations for the processing job.
4696
+ # An array of inputs configuring the data to download into the
4697
+ # processing container.
4620
4698
  #
4621
4699
  # @option params [Types::ProcessingOutputConfig] :processing_output_config
4622
4700
  # Output configuration for the processing job.
@@ -4638,10 +4716,14 @@ module Aws::SageMaker
4638
4716
  # image.
4639
4717
  #
4640
4718
  # @option params [Hash<String,String>] :environment
4641
- # Sets the environment variables in the Docker container.
4719
+ # The environment variables to set in the Docker container. Up to 100
4720
+ # key and values entries in the map are supported.
4642
4721
  #
4643
4722
  # @option params [Types::NetworkConfig] :network_config
4644
- # Networking options for a processing job.
4723
+ # Networking options for a processing job, such as whether to allow
4724
+ # inbound and outbound network calls to and from processing containers,
4725
+ # and the VPC subnets and security groups to use for VPC-enabled
4726
+ # processing jobs.
4645
4727
  #
4646
4728
  # @option params [required, String] :role_arn
4647
4729
  # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
@@ -7557,6 +7639,7 @@ module Aws::SageMaker
7557
7639
  # resp.input_config.s3_uri #=> String
7558
7640
  # resp.input_config.data_input_config #=> String
7559
7641
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7642
+ # resp.input_config.framework_version #=> String
7560
7643
  # resp.output_config.s3_output_location #=> String
7561
7644
  # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7562
7645
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
@@ -8045,6 +8128,8 @@ module Aws::SageMaker
8045
8128
  # resp.production_variants[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
8046
8129
  # resp.production_variants[0].initial_variant_weight #=> Float
8047
8130
  # resp.production_variants[0].accelerator_type #=> String, one of "ml.eia1.medium", "ml.eia1.large", "ml.eia1.xlarge", "ml.eia2.medium", "ml.eia2.large", "ml.eia2.xlarge"
8131
+ # resp.production_variants[0].core_dump_config.destination_s3_uri #=> String
8132
+ # resp.production_variants[0].core_dump_config.kms_key_id #=> String
8048
8133
  # resp.data_capture_config.enable_capture #=> Boolean
8049
8134
  # resp.data_capture_config.initial_sampling_percentage #=> Integer
8050
8135
  # resp.data_capture_config.destination_s3_uri #=> String
@@ -8165,6 +8250,7 @@ module Aws::SageMaker
8165
8250
  # resp.online_store_config.enable_online_store #=> Boolean
8166
8251
  # resp.offline_store_config.s3_storage_config.s3_uri #=> String
8167
8252
  # resp.offline_store_config.s3_storage_config.kms_key_id #=> String
8253
+ # resp.offline_store_config.s3_storage_config.resolved_output_s3_uri #=> String
8168
8254
  # resp.offline_store_config.disable_glue_table_creation #=> Boolean
8169
8255
  # resp.offline_store_config.data_catalog_config.table_name #=> String
8170
8256
  # resp.offline_store_config.data_catalog_config.catalog #=> String
@@ -8707,6 +8793,7 @@ module Aws::SageMaker
8707
8793
  # * {Types::DescribeModelOutput#model_name #model_name} => String
8708
8794
  # * {Types::DescribeModelOutput#primary_container #primary_container} => Types::ContainerDefinition
8709
8795
  # * {Types::DescribeModelOutput#containers #containers} => Array&lt;Types::ContainerDefinition&gt;
8796
+ # * {Types::DescribeModelOutput#inference_execution_config #inference_execution_config} => Types::InferenceExecutionConfig
8710
8797
  # * {Types::DescribeModelOutput#execution_role_arn #execution_role_arn} => String
8711
8798
  # * {Types::DescribeModelOutput#vpc_config #vpc_config} => Types::VpcConfig
8712
8799
  # * {Types::DescribeModelOutput#creation_time #creation_time} => Time
@@ -8741,6 +8828,7 @@ module Aws::SageMaker
8741
8828
  # resp.containers[0].environment["EnvironmentKey"] #=> String
8742
8829
  # resp.containers[0].model_package_name #=> String
8743
8830
  # resp.containers[0].multi_model_config.model_cache_setting #=> String, one of "Enabled", "Disabled"
8831
+ # resp.inference_execution_config.mode #=> String, one of "Serial", "Direct"
8744
8832
  # resp.execution_role_arn #=> String
8745
8833
  # resp.vpc_config.security_group_ids #=> Array
8746
8834
  # resp.vpc_config.security_group_ids[0] #=> String
@@ -9726,6 +9814,12 @@ module Aws::SageMaker
9726
9814
 
9727
9815
  # Returns information about a training job.
9728
9816
  #
9817
+ # Some of the attributes below only appear if the training job
9818
+ # successfully starts. If the training job fails, `TrainingJobStatus` is
9819
+ # `Failed` and, depending on the `FailureReason`, attributes like
9820
+ # `TrainingStartTime`, `TrainingTimeInSeconds`, `TrainingEndTime`, and
9821
+ # `BillableTimeInSeconds` may not be present in the response.
9822
+ #
9729
9823
  # @option params [required, String] :training_job_name
9730
9824
  # The name of the training job.
9731
9825
  #
@@ -13840,6 +13934,27 @@ module Aws::SageMaker
13840
13934
 
13841
13935
  # Lists training jobs.
13842
13936
  #
13937
+ # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13938
+ # `MaxResults` number of training jobs are first retrieved ignoring the
13939
+ # `StatusEquals` parameter and then they are filtered by the
13940
+ # `StatusEquals` parameter, which is returned as a response. For
13941
+ # example, if `ListTrainingJobs` is invoked with the following
13942
+ # parameters:
13943
+ #
13944
+ # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13945
+ #
13946
+ # Then, 100 trainings jobs with any status including those other than
13947
+ # `InProgress` are selected first (sorted according the creation time,
13948
+ # from the latest to the oldest) and those with status `InProgress` are
13949
+ # returned.
13950
+ #
13951
+ # You can quickly test the API using the following AWS CLI code.
13952
+ #
13953
+ # `aws sagemaker list-training-jobs --max-results 100 --status-equals
13954
+ # InProgress`
13955
+ #
13956
+ # </note>
13957
+ #
13843
13958
  # @option params [String] :next_token
13844
13959
  # If the result of the previous `ListTrainingJobs` request was
13845
13960
  # truncated, the response includes a `NextToken`. To retrieve the next
@@ -15304,6 +15419,7 @@ module Aws::SageMaker
15304
15419
  # resp.results[0].feature_group.online_store_config.enable_online_store #=> Boolean
15305
15420
  # resp.results[0].feature_group.offline_store_config.s3_storage_config.s3_uri #=> String
15306
15421
  # resp.results[0].feature_group.offline_store_config.s3_storage_config.kms_key_id #=> String
15422
+ # resp.results[0].feature_group.offline_store_config.s3_storage_config.resolved_output_s3_uri #=> String
15307
15423
  # resp.results[0].feature_group.offline_store_config.disable_glue_table_creation #=> Boolean
15308
15424
  # resp.results[0].feature_group.offline_store_config.data_catalog_config.table_name #=> String
15309
15425
  # resp.results[0].feature_group.offline_store_config.data_catalog_config.catalog #=> String
@@ -17193,7 +17309,7 @@ module Aws::SageMaker
17193
17309
  params: params,
17194
17310
  config: config)
17195
17311
  context[:gem_name] = 'aws-sdk-sagemaker'
17196
- context[:gem_version] = '1.75.0'
17312
+ context[:gem_version] = '1.80.0'
17197
17313
  Seahorse::Client::Request.new(handlers, context)
17198
17314
  end
17199
17315
 
@@ -552,6 +552,7 @@ module Aws::SageMaker
552
552
  ExperimentSourceArn = Shapes::StringShape.new(name: 'ExperimentSourceArn')
553
553
  ExperimentSummaries = Shapes::ListShape.new(name: 'ExperimentSummaries')
554
554
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
+ ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
555
556
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
556
557
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
557
558
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
@@ -594,6 +595,7 @@ module Aws::SageMaker
594
595
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
595
596
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
596
597
  Framework = Shapes::StringShape.new(name: 'Framework')
598
+ FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
597
599
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
598
600
  GetDeviceFleetReportRequest = Shapes::StructureShape.new(name: 'GetDeviceFleetReportRequest')
599
601
  GetDeviceFleetReportResponse = Shapes::StructureShape.new(name: 'GetDeviceFleetReportResponse')
@@ -670,6 +672,8 @@ module Aws::SageMaker
670
672
  ImageVersionStatus = Shapes::StringShape.new(name: 'ImageVersionStatus')
671
673
  ImageVersions = Shapes::ListShape.new(name: 'ImageVersions')
672
674
  Images = Shapes::ListShape.new(name: 'Images')
675
+ InferenceExecutionConfig = Shapes::StructureShape.new(name: 'InferenceExecutionConfig')
676
+ InferenceExecutionMode = Shapes::StringShape.new(name: 'InferenceExecutionMode')
673
677
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
674
678
  InputConfig = Shapes::StructureShape.new(name: 'InputConfig')
675
679
  InputDataConfig = Shapes::ListShape.new(name: 'InputDataConfig')
@@ -1075,6 +1079,7 @@ module Aws::SageMaker
1075
1079
  ProductListings = Shapes::ListShape.new(name: 'ProductListings')
1076
1080
  ProductionVariant = Shapes::StructureShape.new(name: 'ProductionVariant')
1077
1081
  ProductionVariantAcceleratorType = Shapes::StringShape.new(name: 'ProductionVariantAcceleratorType')
1082
+ ProductionVariantCoreDumpConfig = Shapes::StructureShape.new(name: 'ProductionVariantCoreDumpConfig')
1078
1083
  ProductionVariantInstanceType = Shapes::StringShape.new(name: 'ProductionVariantInstanceType')
1079
1084
  ProductionVariantList = Shapes::ListShape.new(name: 'ProductionVariantList')
1080
1085
  ProductionVariantSummary = Shapes::StructureShape.new(name: 'ProductionVariantSummary')
@@ -2089,6 +2094,7 @@ module Aws::SageMaker
2089
2094
  CreateModelInput.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
2090
2095
  CreateModelInput.add_member(:primary_container, Shapes::ShapeRef.new(shape: ContainerDefinition, location_name: "PrimaryContainer"))
2091
2096
  CreateModelInput.add_member(:containers, Shapes::ShapeRef.new(shape: ContainerDefinitionList, location_name: "Containers"))
2097
+ CreateModelInput.add_member(:inference_execution_config, Shapes::ShapeRef.new(shape: InferenceExecutionConfig, location_name: "InferenceExecutionConfig"))
2092
2098
  CreateModelInput.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleArn"))
2093
2099
  CreateModelInput.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
2094
2100
  CreateModelInput.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
@@ -2188,6 +2194,7 @@ module Aws::SageMaker
2188
2194
  CreatePresignedDomainUrlRequest.add_member(:domain_id, Shapes::ShapeRef.new(shape: DomainId, required: true, location_name: "DomainId"))
2189
2195
  CreatePresignedDomainUrlRequest.add_member(:user_profile_name, Shapes::ShapeRef.new(shape: UserProfileName, required: true, location_name: "UserProfileName"))
2190
2196
  CreatePresignedDomainUrlRequest.add_member(:session_expiration_duration_in_seconds, Shapes::ShapeRef.new(shape: SessionExpirationDurationInSeconds, location_name: "SessionExpirationDurationInSeconds"))
2197
+ CreatePresignedDomainUrlRequest.add_member(:expires_in_seconds, Shapes::ShapeRef.new(shape: ExpiresInSeconds, location_name: "ExpiresInSeconds"))
2191
2198
  CreatePresignedDomainUrlRequest.struct_class = Types::CreatePresignedDomainUrlRequest
2192
2199
 
2193
2200
  CreatePresignedDomainUrlResponse.add_member(:authorized_url, Shapes::ShapeRef.new(shape: PresignedDomainUrl, location_name: "AuthorizedUrl"))
@@ -3015,6 +3022,7 @@ module Aws::SageMaker
3015
3022
  DescribeModelOutput.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
3016
3023
  DescribeModelOutput.add_member(:primary_container, Shapes::ShapeRef.new(shape: ContainerDefinition, location_name: "PrimaryContainer"))
3017
3024
  DescribeModelOutput.add_member(:containers, Shapes::ShapeRef.new(shape: ContainerDefinitionList, location_name: "Containers"))
3025
+ DescribeModelOutput.add_member(:inference_execution_config, Shapes::ShapeRef.new(shape: InferenceExecutionConfig, location_name: "InferenceExecutionConfig"))
3018
3026
  DescribeModelOutput.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleArn"))
3019
3027
  DescribeModelOutput.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
3020
3028
  DescribeModelOutput.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
@@ -3802,6 +3810,9 @@ module Aws::SageMaker
3802
3810
 
3803
3811
  Images.member = Shapes::ShapeRef.new(shape: Image)
3804
3812
 
3813
+ InferenceExecutionConfig.add_member(:mode, Shapes::ShapeRef.new(shape: InferenceExecutionMode, required: true, location_name: "Mode"))
3814
+ InferenceExecutionConfig.struct_class = Types::InferenceExecutionConfig
3815
+
3805
3816
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
3806
3817
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, location_name: "SupportedTransformInstanceTypes"))
3807
3818
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -3812,6 +3823,7 @@ module Aws::SageMaker
3812
3823
  InputConfig.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
3813
3824
  InputConfig.add_member(:data_input_config, Shapes::ShapeRef.new(shape: DataInputConfig, required: true, location_name: "DataInputConfig"))
3814
3825
  InputConfig.add_member(:framework, Shapes::ShapeRef.new(shape: Framework, required: true, location_name: "Framework"))
3826
+ InputConfig.add_member(:framework_version, Shapes::ShapeRef.new(shape: FrameworkVersion, location_name: "FrameworkVersion"))
3815
3827
  InputConfig.struct_class = Types::InputConfig
3816
3828
 
3817
3829
  InputDataConfig.member = Shapes::ShapeRef.new(shape: Channel)
@@ -5274,8 +5286,13 @@ module Aws::SageMaker
5274
5286
  ProductionVariant.add_member(:instance_type, Shapes::ShapeRef.new(shape: ProductionVariantInstanceType, required: true, location_name: "InstanceType"))
5275
5287
  ProductionVariant.add_member(:initial_variant_weight, Shapes::ShapeRef.new(shape: VariantWeight, location_name: "InitialVariantWeight"))
5276
5288
  ProductionVariant.add_member(:accelerator_type, Shapes::ShapeRef.new(shape: ProductionVariantAcceleratorType, location_name: "AcceleratorType"))
5289
+ ProductionVariant.add_member(:core_dump_config, Shapes::ShapeRef.new(shape: ProductionVariantCoreDumpConfig, location_name: "CoreDumpConfig"))
5277
5290
  ProductionVariant.struct_class = Types::ProductionVariant
5278
5291
 
5292
+ ProductionVariantCoreDumpConfig.add_member(:destination_s3_uri, Shapes::ShapeRef.new(shape: DestinationS3Uri, required: true, location_name: "DestinationS3Uri"))
5293
+ ProductionVariantCoreDumpConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
5294
+ ProductionVariantCoreDumpConfig.struct_class = Types::ProductionVariantCoreDumpConfig
5295
+
5279
5296
  ProductionVariantList.member = Shapes::ShapeRef.new(shape: ProductionVariant)
5280
5297
 
5281
5298
  ProductionVariantSummary.add_member(:variant_name, Shapes::ShapeRef.new(shape: VariantName, required: true, location_name: "VariantName"))
@@ -5441,6 +5458,7 @@ module Aws::SageMaker
5441
5458
 
5442
5459
  S3StorageConfig.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
5443
5460
  S3StorageConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
5461
+ S3StorageConfig.add_member(:resolved_output_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "ResolvedOutputS3Uri"))
5444
5462
  S3StorageConfig.struct_class = Types::S3StorageConfig
5445
5463
 
5446
5464
  ScheduleConfig.add_member(:schedule_expression, Shapes::ShapeRef.new(shape: ScheduleExpression, required: true, location_name: "ScheduleExpression"))
@@ -1237,27 +1237,27 @@ module Aws::SageMaker
1237
1237
  #
1238
1238
  # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1239
1239
  #
1240
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1240
+ # * `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1241
1241
  #
1242
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1242
+ # * `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1243
1243
  #
1244
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1244
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1245
1245
  #
1246
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1246
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1247
1247
  #
1248
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1248
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1249
1249
  #
1250
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1250
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1251
1251
  #
1252
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1252
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1253
1253
  #
1254
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1254
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1255
1255
  #
1256
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1256
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1257
1257
  #
1258
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1258
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1259
1259
  #
1260
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1260
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1261
1261
  #
1262
1262
  # **3D Point Cloud Object Tracking Adjustment** - Use this task type
1263
1263
  # when you want workers to adjust 3D cuboids around objects that
@@ -3947,6 +3947,7 @@ module Aws::SageMaker
3947
3947
  # s3_uri: "S3Uri", # required
3948
3948
  # data_input_config: "DataInputConfig", # required
3949
3949
  # framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET, SKLEARN
3950
+ # framework_version: "FrameworkVersion",
3950
3951
  # },
3951
3952
  # output_config: { # required
3952
3953
  # s3_output_location: "S3Uri", # required
@@ -4565,6 +4566,10 @@ module Aws::SageMaker
4565
4566
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
4566
4567
  # initial_variant_weight: 1.0,
4567
4568
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
4569
+ # core_dump_config: {
4570
+ # destination_s3_uri: "DestinationS3Uri", # required
4571
+ # kms_key_id: "KmsKeyId",
4572
+ # },
4568
4573
  # },
4569
4574
  # ],
4570
4575
  # data_capture_config: {
@@ -4823,6 +4828,7 @@ module Aws::SageMaker
4823
4828
  # s3_storage_config: { # required
4824
4829
  # s3_uri: "S3Uri", # required
4825
4830
  # kms_key_id: "KmsKeyId",
4831
+ # resolved_output_s3_uri: "S3Uri",
4826
4832
  # },
4827
4833
  # disable_glue_table_creation: false,
4828
4834
  # data_catalog_config: {
@@ -5676,17 +5682,77 @@ module Aws::SageMaker
5676
5682
  # @!attribute [rw] label_attribute_name
5677
5683
  # The attribute name to use for the label in the output manifest file.
5678
5684
  # This is the key for the key/value pair formed with the label that a
5679
- # worker assigns to the object. The name can't end with
5680
- # "-metadata". If you are running a semantic segmentation labeling
5681
- # job, the attribute name must end with "-ref". If you are running
5682
- # any other kind of labeling job, the attribute name must not end with
5683
- # "-ref".
5685
+ # worker assigns to the object. The `LabelAttributeName` must meet the
5686
+ # following requirements.
5687
+ #
5688
+ # * The name can't end with "-metadata".
5689
+ #
5690
+ # * If you are using one of the following [built-in task types][1],
5691
+ # the attribute name *must* end with "-ref". If the task type you
5692
+ # are using is not listed below, the attribute name *must not* end
5693
+ # with "-ref".
5694
+ #
5695
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
5696
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
5697
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
5698
+ # type.
5699
+ #
5700
+ # * Video frame object detection (`VideoObjectDetection`), and
5701
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
5702
+ # labeling jobs for this task type.
5703
+ #
5704
+ # * Video frame object tracking (`VideoObjectTracking`), and
5705
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
5706
+ # labeling jobs for this task type.
5707
+ #
5708
+ # * 3D point cloud semantic segmentation
5709
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
5710
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
5711
+ # labeling jobs for this task type.
5712
+ #
5713
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`),
5714
+ # and adjustment and verification
5715
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
5716
+ # task type.
5717
+ #
5718
+ #
5719
+ #
5720
+ # If you are creating an adjustment or verification labeling job, you
5721
+ # must use a *different* `LabelAttributeName` than the one used in the
5722
+ # original labeling job. The original labeling job is the Ground Truth
5723
+ # labeling job that produced the labels that you want verified or
5724
+ # adjusted. To learn more about adjustment and verification labeling
5725
+ # jobs, see [Verify and Adjust Labels][2].
5726
+ #
5727
+ #
5728
+ #
5729
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5730
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
5684
5731
  # @return [String]
5685
5732
  #
5686
5733
  # @!attribute [rw] input_config
5687
5734
  # Input data for the labeling job, such as the Amazon S3 location of
5688
5735
  # the data objects and the location of the manifest file that
5689
5736
  # describes the data objects.
5737
+ #
5738
+ # You must specify at least one of the following: `S3DataSource` or
5739
+ # `SnsDataSource`.
5740
+ #
5741
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
5742
+ # labeling job. If you do not specify and SNS input topic ARN,
5743
+ # Ground Truth will create a one-time labeling job that stops after
5744
+ # all data objects in the input manifest file have been labeled.
5745
+ #
5746
+ # * Use `S3DataSource` to specify an input manifest file for both
5747
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
5748
+ # optional if you use `SnsDataSource` to create a streaming labeling
5749
+ # job.
5750
+ #
5751
+ # If you use the Amazon Mechanical Turk workforce, your input data
5752
+ # should not include confidential information, personal information or
5753
+ # protected health information. Use `ContentClassifiers` to specify
5754
+ # that your data is free of personally identifiable information and
5755
+ # adult content.
5690
5756
  # @return [Types::LabelingJobInputConfig]
5691
5757
  #
5692
5758
  # @!attribute [rw] output_config
@@ -5716,41 +5782,37 @@ module Aws::SageMaker
5716
5782
  # following format. Identify the labels you want to use by replacing
5717
5783
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
5718
5784
  #
5719
- # `\{`
5785
+ # `\{ `
5720
5786
  #
5721
- # ` "document-version": "2018-11-28"`
5787
+ # `"document-version": "2018-11-28",`
5722
5788
  #
5723
- # ` "labels": [`
5724
- #
5725
- # ` \{`
5726
- #
5727
- # ` "label": "label_1"`
5728
- #
5729
- # ` \},`
5730
- #
5731
- # ` \{`
5732
- #
5733
- # ` "label": "label_2"`
5734
- #
5735
- # ` \},`
5789
+ # `"labels": [\{"label": "label_1"\},\{"label":
5790
+ # "label_2"\},...\{"label": "label_n"\}]`
5736
5791
  #
5737
- # ` ...`
5792
+ # `\}`
5738
5793
  #
5739
- # ` \{`
5794
+ # Note the following about the label category configuration file:
5740
5795
  #
5741
- # ` "label": "label_n"`
5796
+ # * For image classification and text classification (single and
5797
+ # multi-label) you must specify at least two label categories. For
5798
+ # all other task types, the minimum number of label categories
5799
+ # required is one.
5742
5800
  #
5743
- # ` \}`
5801
+ # * Each label category must be unique, you cannot specify duplicate
5802
+ # label categories.
5744
5803
  #
5745
- # ` ]`
5746
- #
5747
- # `\}`
5804
+ # * If you create a 3D point cloud or video frame adjustment or
5805
+ # verification labeling job, you must include
5806
+ # `auditLabelAttributeName` in the label category configuration. Use
5807
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
5808
+ # labeling job you want to adjust or verify annotations of.
5748
5809
  #
5749
5810
  #
5750
5811
  #
5751
5812
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
5752
5813
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
5753
5814
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
5815
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
5754
5816
  # @return [String]
5755
5817
  #
5756
5818
  # @!attribute [rw] stopping_conditions
@@ -6154,6 +6216,9 @@ module Aws::SageMaker
6154
6216
  # },
6155
6217
  # },
6156
6218
  # ],
6219
+ # inference_execution_config: {
6220
+ # mode: "Serial", # required, accepts Serial, Direct
6221
+ # },
6157
6222
  # execution_role_arn: "RoleArn", # required
6158
6223
  # tags: [
6159
6224
  # {
@@ -6182,6 +6247,11 @@ module Aws::SageMaker
6182
6247
  # Specifies the containers in the inference pipeline.
6183
6248
  # @return [Array<Types::ContainerDefinition>]
6184
6249
  #
6250
+ # @!attribute [rw] inference_execution_config
6251
+ # Specifies details of how containers in a multi-container endpoint
6252
+ # are called.
6253
+ # @return [Types::InferenceExecutionConfig]
6254
+ #
6185
6255
  # @!attribute [rw] execution_role_arn
6186
6256
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
6187
6257
  # can assume to access model artifacts and docker image for deployment
@@ -6234,6 +6304,7 @@ module Aws::SageMaker
6234
6304
  :model_name,
6235
6305
  :primary_container,
6236
6306
  :containers,
6307
+ :inference_execution_config,
6237
6308
  :execution_role_arn,
6238
6309
  :tags,
6239
6310
  :vpc_config,
@@ -7176,6 +7247,7 @@ module Aws::SageMaker
7176
7247
  # domain_id: "DomainId", # required
7177
7248
  # user_profile_name: "UserProfileName", # required
7178
7249
  # session_expiration_duration_in_seconds: 1,
7250
+ # expires_in_seconds: 1,
7179
7251
  # }
7180
7252
  #
7181
7253
  # @!attribute [rw] domain_id
@@ -7187,7 +7259,13 @@ module Aws::SageMaker
7187
7259
  # @return [String]
7188
7260
  #
7189
7261
  # @!attribute [rw] session_expiration_duration_in_seconds
7190
- # The session expiration duration in seconds.
7262
+ # The session expiration duration in seconds. This value defaults to
7263
+ # 43200.
7264
+ # @return [Integer]
7265
+ #
7266
+ # @!attribute [rw] expires_in_seconds
7267
+ # The number of seconds until the pre-signed URL expires. This value
7268
+ # defaults to 300.
7191
7269
  # @return [Integer]
7192
7270
  #
7193
7271
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedDomainUrlRequest AWS API Documentation
@@ -7195,7 +7273,8 @@ module Aws::SageMaker
7195
7273
  class CreatePresignedDomainUrlRequest < Struct.new(
7196
7274
  :domain_id,
7197
7275
  :user_profile_name,
7198
- :session_expiration_duration_in_seconds)
7276
+ :session_expiration_duration_in_seconds,
7277
+ :expires_in_seconds)
7199
7278
  SENSITIVE = []
7200
7279
  include Aws::Structure
7201
7280
  end
@@ -7353,7 +7432,8 @@ module Aws::SageMaker
7353
7432
  # }
7354
7433
  #
7355
7434
  # @!attribute [rw] processing_inputs
7356
- # List of input configurations for the processing job.
7435
+ # An array of inputs configuring the data to download into the
7436
+ # processing container.
7357
7437
  # @return [Array<Types::ProcessingInput>]
7358
7438
  #
7359
7439
  # @!attribute [rw] processing_output_config
@@ -7381,11 +7461,15 @@ module Aws::SageMaker
7381
7461
  # @return [Types::AppSpecification]
7382
7462
  #
7383
7463
  # @!attribute [rw] environment
7384
- # Sets the environment variables in the Docker container.
7464
+ # The environment variables to set in the Docker container. Up to 100
7465
+ # key and values entries in the map are supported.
7385
7466
  # @return [Hash<String,String>]
7386
7467
  #
7387
7468
  # @!attribute [rw] network_config
7388
- # Networking options for a processing job.
7469
+ # Networking options for a processing job, such as whether to allow
7470
+ # inbound and outbound network calls to and from processing
7471
+ # containers, and the VPC subnets and security groups to use for
7472
+ # VPC-enabled processing jobs.
7389
7473
  # @return [Types::NetworkConfig]
7390
7474
  #
7391
7475
  # @!attribute [rw] role_arn
@@ -10912,8 +10996,7 @@ module Aws::SageMaker
10912
10996
  # @return [String]
10913
10997
  #
10914
10998
  # @!attribute [rw] compilation_job_arn
10915
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
10916
- # assumes to perform the model compilation job.
10999
+ # The Amazon Resource Name (ARN) of the model compilation job.
10917
11000
  # @return [String]
10918
11001
  #
10919
11002
  # @!attribute [rw] compilation_job_status
@@ -10968,7 +11051,8 @@ module Aws::SageMaker
10968
11051
  # @return [Types::ModelDigests]
10969
11052
  #
10970
11053
  # @!attribute [rw] role_arn
10971
- # The Amazon Resource Name (ARN) of the model compilation job.
11054
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
11055
+ # assumes to perform the model compilation job.
10972
11056
  # @return [String]
10973
11057
  #
10974
11058
  # @!attribute [rw] input_config
@@ -12692,6 +12776,11 @@ module Aws::SageMaker
12692
12776
  # The containers in the inference pipeline.
12693
12777
  # @return [Array<Types::ContainerDefinition>]
12694
12778
  #
12779
+ # @!attribute [rw] inference_execution_config
12780
+ # Specifies details of how containers in a multi-container endpoint
12781
+ # are called.
12782
+ # @return [Types::InferenceExecutionConfig]
12783
+ #
12695
12784
  # @!attribute [rw] execution_role_arn
12696
12785
  # The Amazon Resource Name (ARN) of the IAM role that you specified
12697
12786
  # for the model.
@@ -12726,6 +12815,7 @@ module Aws::SageMaker
12726
12815
  :model_name,
12727
12816
  :primary_container,
12728
12817
  :containers,
12818
+ :inference_execution_config,
12729
12819
  :execution_role_arn,
12730
12820
  :vpc_config,
12731
12821
  :creation_time,
@@ -14043,7 +14133,13 @@ module Aws::SageMaker
14043
14133
  # @return [Integer]
14044
14134
  #
14045
14135
  # @!attribute [rw] billable_time_in_seconds
14046
- # The billable time in seconds.
14136
+ # The billable time in seconds. Billable time refers to the absolute
14137
+ # wall-clock time.
14138
+ #
14139
+ # Multiply `BillableTimeInSeconds` by the number of instances
14140
+ # (`InstanceCount`) in your training cluster to get the total compute
14141
+ # time Amazon SageMaker will bill you if you run distributed training.
14142
+ # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14047
14143
  #
14048
14144
  # You can calculate the savings from using managed spot training using
14049
14145
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16066,6 +16162,13 @@ module Aws::SageMaker
16066
16162
  # @!attribute [rw] s3_output_path
16067
16163
  # The Amazon S3 path where the object containing human output will be
16068
16164
  # made available.
16165
+ #
16166
+ # To learn more about the format of Amazon A2I output data, see
16167
+ # [Amazon A2I Output Data][1].
16168
+ #
16169
+ #
16170
+ #
16171
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html
16069
16172
  # @return [String]
16070
16173
  #
16071
16174
  # @!attribute [rw] kms_key_id
@@ -16423,11 +16526,33 @@ module Aws::SageMaker
16423
16526
  # }
16424
16527
  #
16425
16528
  # @!attribute [rw] workteam_arn
16426
- # Amazon Resource Name (ARN) of a team of workers.
16529
+ # Amazon Resource Name (ARN) of a team of workers. To learn more about
16530
+ # the types of workforces and work teams you can create and use with
16531
+ # Amazon A2I, see [Create and Manage Workforces][1].
16532
+ #
16533
+ #
16534
+ #
16535
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
16427
16536
  # @return [String]
16428
16537
  #
16429
16538
  # @!attribute [rw] human_task_ui_arn
16430
16539
  # The Amazon Resource Name (ARN) of the human task user interface.
16540
+ #
16541
+ # You can use standard HTML and Crowd HTML Elements to create a custom
16542
+ # worker task template. You use this template to create a human task
16543
+ # UI.
16544
+ #
16545
+ # To learn how to create a custom HTML template, see [Create Custom
16546
+ # Worker Task Template][1].
16547
+ #
16548
+ # To learn how to create a human task UI, which is a worker task
16549
+ # template that can be used in a flow definition, see [Create and
16550
+ # Delete a Worker Task Templates][2].
16551
+ #
16552
+ #
16553
+ #
16554
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html
16555
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html
16431
16556
  # @return [String]
16432
16557
  #
16433
16558
  # @!attribute [rw] task_title
@@ -16452,7 +16577,7 @@ module Aws::SageMaker
16452
16577
  #
16453
16578
  # @!attribute [rw] task_time_limit_in_seconds
16454
16579
  # The amount of time that a worker has to complete a task. The default
16455
- # value is 3,600 seconds (1 hour)
16580
+ # value is 3,600 seconds (1 hour).
16456
16581
  # @return [Integer]
16457
16582
  #
16458
16583
  # @!attribute [rw] task_keywords
@@ -17423,14 +17548,41 @@ module Aws::SageMaker
17423
17548
  #
17424
17549
  # @!attribute [rw] task_time_limit_in_seconds
17425
17550
  # The amount of time that a worker has to complete a task.
17551
+ #
17552
+ # If you create a custom labeling job, the maximum value for this
17553
+ # parameter is 8 hours (28,800 seconds).
17554
+ #
17555
+ # If you create a labeling job using a [built-in task type][1] the
17556
+ # maximum for this parameter depends on the task type you use:
17557
+ #
17558
+ # * For [image][2] and [text][3] labeling jobs, the maximum is 8 hours
17559
+ # (28,800 seconds).
17560
+ #
17561
+ # * For [3D point cloud][4] and [video frame][5] labeling jobs, the
17562
+ # maximum is 7 days (604,800 seconds). If you want to change these
17563
+ # limits, contact AWS Support.
17564
+ #
17565
+ #
17566
+ #
17567
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
17568
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html
17569
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html
17570
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
17571
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html
17426
17572
  # @return [Integer]
17427
17573
  #
17428
17574
  # @!attribute [rw] task_availability_lifetime_in_seconds
17429
17575
  # The length of time that a task remains available for labeling by
17430
- # human workers. **If you choose the Amazon Mechanical Turk workforce,
17431
- # the maximum is 12 hours (43200)**. The default value is 864000
17432
- # seconds (10 days). For private and vendor workforces, the maximum is
17433
- # as listed.
17576
+ # human workers. The default and maximum values for this parameter
17577
+ # depend on the type of workforce you use.
17578
+ #
17579
+ # * If you choose the Amazon Mechanical Turk workforce, the maximum is
17580
+ # 12 hours (43,200 seconds). The default is 6 hours (21,600
17581
+ # seconds).
17582
+ #
17583
+ # * If you choose a private or vendor workforce, the default value is
17584
+ # 10 days (864,000 seconds). For most users, the maximum is also 10
17585
+ # days. If you want to change this limit, contact AWS Support.
17434
17586
  # @return [Integer]
17435
17587
  #
17436
17588
  # @!attribute [rw] max_concurrent_task_count
@@ -18395,6 +18547,33 @@ module Aws::SageMaker
18395
18547
  include Aws::Structure
18396
18548
  end
18397
18549
 
18550
+ # Specifies details about how containers in a multi-container endpoint
18551
+ # are run.
18552
+ #
18553
+ # @note When making an API call, you may pass InferenceExecutionConfig
18554
+ # data as a hash:
18555
+ #
18556
+ # {
18557
+ # mode: "Serial", # required, accepts Serial, Direct
18558
+ # }
18559
+ #
18560
+ # @!attribute [rw] mode
18561
+ # How containers in a multi-container are run. The following values
18562
+ # are valid.
18563
+ #
18564
+ # * `SERIAL` - Containers run as a serial pipeline.
18565
+ #
18566
+ # * `DIRECT` - Only the individual container that you specify is run.
18567
+ # @return [String]
18568
+ #
18569
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceExecutionConfig AWS API Documentation
18570
+ #
18571
+ class InferenceExecutionConfig < Struct.new(
18572
+ :mode)
18573
+ SENSITIVE = []
18574
+ include Aws::Structure
18575
+ end
18576
+
18398
18577
  # Defines how to perform inference generation after a training job is
18399
18578
  # run.
18400
18579
  #
@@ -18469,6 +18648,7 @@ module Aws::SageMaker
18469
18648
  # s3_uri: "S3Uri", # required
18470
18649
  # data_input_config: "DataInputConfig", # required
18471
18650
  # framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET, SKLEARN
18651
+ # framework_version: "FrameworkVersion",
18472
18652
  # }
18473
18653
  #
18474
18654
  # @!attribute [rw] s3_uri
@@ -18645,12 +18825,21 @@ module Aws::SageMaker
18645
18825
  # example: TENSORFLOW.
18646
18826
  # @return [String]
18647
18827
  #
18828
+ # @!attribute [rw] framework_version
18829
+ # Specifies the framework version to use.
18830
+ #
18831
+ # This API field is only supported for PyTorch framework versions
18832
+ # `1.4`, `1.5`, and `1.6` for cloud instance target devices: `ml_c4`,
18833
+ # `ml_c5`, `ml_m4`, `ml_m5`, `ml_p2`, `ml_p3`, and `ml_g4dn`.
18834
+ # @return [String]
18835
+ #
18648
18836
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InputConfig AWS API Documentation
18649
18837
  #
18650
18838
  class InputConfig < Struct.new(
18651
18839
  :s3_uri,
18652
18840
  :data_input_config,
18653
- :framework)
18841
+ :framework,
18842
+ :framework_version)
18654
18843
  SENSITIVE = []
18655
18844
  include Aws::Structure
18656
18845
  end
@@ -19263,6 +19452,25 @@ module Aws::SageMaker
19263
19452
  # @!attribute [rw] manifest_s3_uri
19264
19453
  # The Amazon S3 location of the manifest file that describes the input
19265
19454
  # data objects.
19455
+ #
19456
+ # The input manifest file referenced in `ManifestS3Uri` must contain
19457
+ # one of the following keys: `source-ref` or `source`. The value of
19458
+ # the keys are interpreted as follows:
19459
+ #
19460
+ # * `source-ref`\: The source of the object is the Amazon S3 object
19461
+ # specified in the value. Use this value when the object is a binary
19462
+ # object, such as an image.
19463
+ #
19464
+ # * `source`\: The source of the object is the value. Use this value
19465
+ # when the object is a text value.
19466
+ #
19467
+ # If you are a new user of Ground Truth, it is recommended you review
19468
+ # [Use an Input Manifest File ][1] in the Amazon SageMaker Developer
19469
+ # Guide to learn how to create an input manifest file.
19470
+ #
19471
+ #
19472
+ #
19473
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html
19266
19474
  # @return [String]
19267
19475
  #
19268
19476
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobS3DataSource AWS API Documentation
@@ -26518,6 +26726,7 @@ module Aws::SageMaker
26518
26726
  # s3_storage_config: { # required
26519
26727
  # s3_uri: "S3Uri", # required
26520
26728
  # kms_key_id: "KmsKeyId",
26729
+ # resolved_output_s3_uri: "S3Uri",
26521
26730
  # },
26522
26731
  # disable_glue_table_creation: false,
26523
26732
  # data_catalog_config: {
@@ -27047,8 +27256,8 @@ module Aws::SageMaker
27047
27256
  #
27048
27257
  #
27049
27258
  #
27050
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
27051
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27259
+ # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27260
+ # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27052
27261
  # @return [String]
27053
27262
  #
27054
27263
  # @!attribute [rw] s3_output_path
@@ -27611,7 +27820,8 @@ module Aws::SageMaker
27611
27820
  #
27612
27821
  # @!attribute [rw] feature_group_name
27613
27822
  # The name of the Amazon SageMaker FeatureGroup to use as the
27614
- # destination for processing job output.
27823
+ # destination for processing job output. Note that your processing
27824
+ # script is responsible for putting records into your Feature Store.
27615
27825
  # @return [String]
27616
27826
  #
27617
27827
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingFeatureStoreOutput AWS API Documentation
@@ -27668,7 +27878,7 @@ module Aws::SageMaker
27668
27878
  # }
27669
27879
  #
27670
27880
  # @!attribute [rw] input_name
27671
- # The name of the inputs for the processing job.
27881
+ # The name for the processing job input.
27672
27882
  # @return [String]
27673
27883
  #
27674
27884
  # @!attribute [rw] app_managed
@@ -27678,7 +27888,8 @@ module Aws::SageMaker
27678
27888
  # @return [Boolean]
27679
27889
  #
27680
27890
  # @!attribute [rw] s3_input
27681
- # Configuration for processing job inputs in Amazon S3.
27891
+ # Configuration for downloading input data from Amazon S3 into the
27892
+ # processing container.
27682
27893
  # @return [Types::ProcessingS3Input]
27683
27894
  #
27684
27895
  # @!attribute [rw] dataset_definition
@@ -27709,7 +27920,7 @@ module Aws::SageMaker
27709
27920
  # @return [Array<Types::ProcessingInput>]
27710
27921
  #
27711
27922
  # @!attribute [rw] processing_output_config
27712
- # The output configuration for the processing job.
27923
+ # Configuration for uploading output from the processing container.
27713
27924
  # @return [Types::ProcessingOutputConfig]
27714
27925
  #
27715
27926
  # @!attribute [rw] processing_job_name
@@ -27723,8 +27934,9 @@ module Aws::SageMaker
27723
27934
  # @return [Types::ProcessingResources]
27724
27935
  #
27725
27936
  # @!attribute [rw] stopping_condition
27726
- # Specifies a time limit for how long the processing job is allowed to
27727
- # run.
27937
+ # Configures conditions under which the processing job should be
27938
+ # stopped, such as how long the processing job has been running. After
27939
+ # the condition is met, the processing job is stopped.
27728
27940
  # @return [Types::ProcessingStoppingCondition]
27729
27941
  #
27730
27942
  # @!attribute [rw] app_specification
@@ -27962,7 +28174,7 @@ module Aws::SageMaker
27962
28174
  include Aws::Structure
27963
28175
  end
27964
28176
 
27965
- # The output configuration for the processing job.
28177
+ # Configuration for uploading output from the processing container.
27966
28178
  #
27967
28179
  # @note When making an API call, you may pass ProcessingOutputConfig
27968
28180
  # data as a hash:
@@ -27986,7 +28198,8 @@ module Aws::SageMaker
27986
28198
  # }
27987
28199
  #
27988
28200
  # @!attribute [rw] outputs
27989
- # List of output configurations for the processing job.
28201
+ # An array of outputs configuring the data to upload from the
28202
+ # processing container.
27990
28203
  # @return [Array<Types::ProcessingOutput>]
27991
28204
  #
27992
28205
  # @!attribute [rw] kms_key_id
@@ -28034,7 +28247,8 @@ module Aws::SageMaker
28034
28247
  include Aws::Structure
28035
28248
  end
28036
28249
 
28037
- # Configuration for processing job inputs in Amazon S3.
28250
+ # Configuration for downloading input data from Amazon S3 into the
28251
+ # processing container.
28038
28252
  #
28039
28253
  # @note When making an API call, you may pass ProcessingS3Input
28040
28254
  # data as a hash:
@@ -28049,14 +28263,14 @@ module Aws::SageMaker
28049
28263
  # }
28050
28264
  #
28051
28265
  # @!attribute [rw] s3_uri
28052
- # The URI for the Amazon S3 storage where you want Amazon SageMaker to
28053
- # download the artifacts needed to run a processing job.
28266
+ # The URI of the Amazon S3 prefix Amazon SageMaker downloads data
28267
+ # required to run a processing job.
28054
28268
  # @return [String]
28055
28269
  #
28056
28270
  # @!attribute [rw] local_path
28057
- # The local path to the Amazon S3 bucket where you want Amazon
28058
- # SageMaker to download the inputs to run a processing job.
28059
- # `LocalPath` is an absolute path to the input data. This is a
28271
+ # The local path in your container where you want Amazon SageMaker to
28272
+ # write input data to. `LocalPath` is an absolute path to the input
28273
+ # data and must begin with `/opt/ml/processing/`. `LocalPath` is a
28060
28274
  # required parameter when `AppManaged` is `False` (default).
28061
28275
  # @return [String]
28062
28276
  #
@@ -28071,22 +28285,27 @@ module Aws::SageMaker
28071
28285
  # @return [String]
28072
28286
  #
28073
28287
  # @!attribute [rw] s3_input_mode
28074
- # Whether to use `File` or `Pipe` input mode. In `File` mode, Amazon
28075
- # SageMaker copies the data from the input source onto the local
28076
- # Amazon Elastic Block Store (Amazon EBS) volumes before starting your
28077
- # training algorithm. This is the most commonly used input mode. In
28078
- # `Pipe` mode, Amazon SageMaker streams input data from the source
28079
- # directly to your algorithm without using the EBS volume.This is a
28080
- # required parameter when `AppManaged` is `False` (default).
28288
+ # Whether to use `File` or `Pipe` input mode. In File mode, Amazon
28289
+ # SageMaker copies the data from the input source onto the local ML
28290
+ # storage volume before starting your processing container. This is
28291
+ # the most commonly used input mode. In `Pipe` mode, Amazon SageMaker
28292
+ # streams input data from the source directly to your processing
28293
+ # container into named pipes without using the ML storage volume.
28081
28294
  # @return [String]
28082
28295
  #
28083
28296
  # @!attribute [rw] s3_data_distribution_type
28084
- # Whether the data stored in Amazon S3 is `FullyReplicated` or
28085
- # `ShardedByS3Key`.
28297
+ # Whether to distribute the data from Amazon S3 to all processing
28298
+ # instances with `FullyReplicated`, or whether the data from Amazon S3
28299
+ # is shared by Amazon S3 key, downloading one shard of data to each
28300
+ # processing instance.
28086
28301
  # @return [String]
28087
28302
  #
28088
28303
  # @!attribute [rw] s3_compression_type
28089
- # Whether to use `Gzip` compression for Amazon S3 storage.
28304
+ # Whether to GZIP-decompress the data in Amazon S3 as it is streamed
28305
+ # into the processing container. `Gzip` can only be used when `Pipe`
28306
+ # mode is specified as the `S3InputMode`. In `Pipe` mode, Amazon
28307
+ # SageMaker streams input data from the source directly to your
28308
+ # container without using the EBS volume.
28090
28309
  # @return [String]
28091
28310
  #
28092
28311
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProcessingS3Input AWS API Documentation
@@ -28102,7 +28321,8 @@ module Aws::SageMaker
28102
28321
  include Aws::Structure
28103
28322
  end
28104
28323
 
28105
- # Configuration for processing job outputs in Amazon S3.
28324
+ # Configuration for uploading output data to Amazon S3 from the
28325
+ # processing container.
28106
28326
  #
28107
28327
  # @note When making an API call, you may pass ProcessingS3Output
28108
28328
  # data as a hash:
@@ -28119,9 +28339,11 @@ module Aws::SageMaker
28119
28339
  # @return [String]
28120
28340
  #
28121
28341
  # @!attribute [rw] local_path
28122
- # The local path to the Amazon S3 bucket where you want Amazon
28123
- # SageMaker to save the results of an processing job. `LocalPath` is
28124
- # an absolute path to the input data.
28342
+ # The local path of a directory where you want Amazon SageMaker to
28343
+ # upload its contents to Amazon S3. `LocalPath` is an absolute path to
28344
+ # a directory containing output files. This directory will be created
28345
+ # by the platform and exist when your container's entrypoint is
28346
+ # invoked.
28125
28347
  # @return [String]
28126
28348
  #
28127
28349
  # @!attribute [rw] s3_upload_mode
@@ -28139,8 +28361,9 @@ module Aws::SageMaker
28139
28361
  include Aws::Structure
28140
28362
  end
28141
28363
 
28142
- # Specifies a time limit for how long the processing job is allowed to
28143
- # run.
28364
+ # Configures conditions under which the processing job should be
28365
+ # stopped, such as how long the processing job has been running. After
28366
+ # the condition is met, the processing job is stopped.
28144
28367
  #
28145
28368
  # @note When making an API call, you may pass ProcessingStoppingCondition
28146
28369
  # data as a hash:
@@ -28176,6 +28399,10 @@ module Aws::SageMaker
28176
28399
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
28177
28400
  # initial_variant_weight: 1.0,
28178
28401
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
28402
+ # core_dump_config: {
28403
+ # destination_s3_uri: "DestinationS3Uri", # required
28404
+ # kms_key_id: "KmsKeyId",
28405
+ # },
28179
28406
  # }
28180
28407
  #
28181
28408
  # @!attribute [rw] variant_name
@@ -28214,6 +28441,11 @@ module Aws::SageMaker
28214
28441
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
28215
28442
  # @return [String]
28216
28443
  #
28444
+ # @!attribute [rw] core_dump_config
28445
+ # Specifies configuration for a core dump from the model container
28446
+ # when the process crashes.
28447
+ # @return [Types::ProductionVariantCoreDumpConfig]
28448
+ #
28217
28449
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
28218
28450
  #
28219
28451
  class ProductionVariant < Struct.new(
@@ -28222,7 +28454,77 @@ module Aws::SageMaker
28222
28454
  :initial_instance_count,
28223
28455
  :instance_type,
28224
28456
  :initial_variant_weight,
28225
- :accelerator_type)
28457
+ :accelerator_type,
28458
+ :core_dump_config)
28459
+ SENSITIVE = []
28460
+ include Aws::Structure
28461
+ end
28462
+
28463
+ # Specifies configuration for a core dump from the model container when
28464
+ # the process crashes.
28465
+ #
28466
+ # @note When making an API call, you may pass ProductionVariantCoreDumpConfig
28467
+ # data as a hash:
28468
+ #
28469
+ # {
28470
+ # destination_s3_uri: "DestinationS3Uri", # required
28471
+ # kms_key_id: "KmsKeyId",
28472
+ # }
28473
+ #
28474
+ # @!attribute [rw] destination_s3_uri
28475
+ # The Amazon S3 bucket to send the core dump to.
28476
+ # @return [String]
28477
+ #
28478
+ # @!attribute [rw] kms_key_id
28479
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
28480
+ # uses to encrypt the core dump data at rest using Amazon S3
28481
+ # server-side encryption. The `KmsKeyId` can be any of the following
28482
+ # formats:
28483
+ #
28484
+ # * // KMS Key ID
28485
+ #
28486
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
28487
+ #
28488
+ # * // Amazon Resource Name (ARN) of a KMS Key
28489
+ #
28490
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
28491
+ #
28492
+ # * // KMS Key Alias
28493
+ #
28494
+ # `"alias/ExampleAlias"`
28495
+ #
28496
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
28497
+ #
28498
+ # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
28499
+ #
28500
+ # If you use a KMS key ID or an alias of your master key, the Amazon
28501
+ # SageMaker execution role must include permissions to call
28502
+ # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
28503
+ # uses the default KMS key for Amazon S3 for your role's account.
28504
+ # Amazon SageMaker uses server-side encryption with KMS-managed keys
28505
+ # for `OutputDataConfig`. If you use a bucket policy with an
28506
+ # `s3:PutObject` permission that only allows objects with server-side
28507
+ # encryption, set the condition key of
28508
+ # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
28509
+ # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
28510
+ # Simple Storage Service Developer Guide.*
28511
+ #
28512
+ # The KMS key policy must grant permission to the IAM role that you
28513
+ # specify in your `CreateEndpoint` and `UpdateEndpoint` requests. For
28514
+ # more information, see [Using Key Policies in AWS KMS][2] in the *AWS
28515
+ # Key Management Service Developer Guide*.
28516
+ #
28517
+ #
28518
+ #
28519
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
28520
+ # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
28521
+ # @return [String]
28522
+ #
28523
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantCoreDumpConfig AWS API Documentation
28524
+ #
28525
+ class ProductionVariantCoreDumpConfig < Struct.new(
28526
+ :destination_s3_uri,
28527
+ :kms_key_id)
28226
28528
  SENSITIVE = []
28227
28529
  include Aws::Structure
28228
28530
  end
@@ -29476,6 +29778,7 @@ module Aws::SageMaker
29476
29778
  # {
29477
29779
  # s3_uri: "S3Uri", # required
29478
29780
  # kms_key_id: "KmsKeyId",
29781
+ # resolved_output_s3_uri: "S3Uri",
29479
29782
  # }
29480
29783
  #
29481
29784
  # @!attribute [rw] s3_uri
@@ -29497,11 +29800,16 @@ module Aws::SageMaker
29497
29800
  # ^
29498
29801
  # @return [String]
29499
29802
  #
29803
+ # @!attribute [rw] resolved_output_s3_uri
29804
+ # The S3 path where offline records are written.
29805
+ # @return [String]
29806
+ #
29500
29807
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3StorageConfig AWS API Documentation
29501
29808
  #
29502
29809
  class S3StorageConfig < Struct.new(
29503
29810
  :s3_uri,
29504
- :kms_key_id)
29811
+ :kms_key_id,
29812
+ :resolved_output_s3_uri)
29505
29813
  SENSITIVE = []
29506
29814
  include Aws::Structure
29507
29815
  end
@@ -32820,7 +33128,7 @@ module Aws::SageMaker
32820
33128
  #
32821
33129
  # Use this parameter when you are creating a labeling job for 3D point
32822
33130
  # cloud and video fram labeling jobs. Use your labeling job task type
32823
- # to select one of the following ARN's and use it with this parameter
33131
+ # to select one of the following ARNs and use it with this parameter
32824
33132
  # when you create a labeling job. Replace `aws-region` with the AWS
32825
33133
  # region you are creating your labeling job in.
32826
33134
  #