aws-sdk-sagemaker 1.74.0 → 1.79.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 482dcccea18e108a3ef6e62a921d7929ab98ee1bb96e50a7efdf6e0b4cd65394
4
- data.tar.gz: 361feb5c8cc143c0256191749a014b02e2dc0be0cc2aefc5da61f9875de8691d
3
+ metadata.gz: '092aef1a06f21bf8626d9a55b3b605f29ce501e799a31325663d4ac74a0b3184'
4
+ data.tar.gz: 5beebabc21620b5e7105f30374058ab7f63c9a09d8c150e0e726686097f34a68
5
5
  SHA512:
6
- metadata.gz: dafecab74abf595f392aa49f45da19ba9f4ed644f2fdeaf28e8d45a8e025dcfbc657877feac4f48b540705a007eb3dd0c60a60dc96079b10e20936053255b8b6
7
- data.tar.gz: c8550c22fa7625a7d47164d624805c22a1eed852f6fc02bd6dcd115eb3c1e4d26488ce283cd3bff071652154fd0d7259b0befe2f003230c5c65cf4c941e60a89
6
+ metadata.gz: f3938f71aab68ffcc260e9e2b574ac15d36450ab84f34054a39706174536947f0d9137072f75405c383c5a519cadb2affc2afb7ed5d8b1dd429688c204594af1
7
+ data.tar.gz: 0b370b83ccd1bb8f65ed0b720b2672c6de7f939d4e5cd171623338cd3352258a7bf765c503480b7cf6fde2c71c5b936089d548f5cf6077cc784d913b690842ab
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.74.0'
52
+ GEM_VERSION = '1.79.0'
53
53
 
54
54
  end
@@ -1300,6 +1300,7 @@ module Aws::SageMaker
1300
1300
  # s3_uri: "S3Uri", # required
1301
1301
  # data_input_config: "DataInputConfig", # required
1302
1302
  # framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET, SKLEARN
1303
+ # framework_version: "FrameworkVersion",
1303
1304
  # },
1304
1305
  # output_config: { # required
1305
1306
  # s3_output_location: "S3Uri", # required
@@ -2087,6 +2088,10 @@ module Aws::SageMaker
2087
2088
  # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
2088
2089
  # initial_variant_weight: 1.0,
2089
2090
  # accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
2091
+ # core_dump_config: {
2092
+ # destination_s3_uri: "DestinationS3Uri", # required
2093
+ # kms_key_id: "KmsKeyId",
2094
+ # },
2090
2095
  # },
2091
2096
  # ],
2092
2097
  # data_capture_config: {
@@ -2981,28 +2986,105 @@ module Aws::SageMaker
2981
2986
  # The output can be used as the manifest file for another labeling job
2982
2987
  # or as training data for your machine learning models.
2983
2988
  #
2989
+ # You can use this operation to create a static labeling job or a
2990
+ # streaming labeling job. A static labeling job stops if all data
2991
+ # objects in the input manifest file identified in `ManifestS3Uri` have
2992
+ # been labeled. A streaming labeling job runs perpetually until it is
2993
+ # manually stopped, or remains idle for 10 days. You can send new data
2994
+ # objects to an active (`InProgress`) streaming labeling job in real
2995
+ # time. To learn how to create a static labeling job, see [Create a
2996
+ # Labeling Job (API) ][3] in the Amazon SageMaker Developer Guide. To
2997
+ # learn how to create a streaming labeling job, see [Create a Streaming
2998
+ # Labeling Job][4].
2999
+ #
2984
3000
  #
2985
3001
  #
2986
3002
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
2987
3003
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html
3004
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html
3005
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html
2988
3006
  #
2989
3007
  # @option params [required, String] :labeling_job_name
2990
3008
  # The name of the labeling job. This name is used to identify the job in
2991
- # a list of labeling jobs.
3009
+ # a list of labeling jobs. Labeling job names must be unique within an
3010
+ # AWS account and region. `LabelingJobName` is not case sensitive. For
3011
+ # example, Example-job and example-job are considered the same labeling
3012
+ # job name by Ground Truth.
2992
3013
  #
2993
3014
  # @option params [required, String] :label_attribute_name
2994
3015
  # The attribute name to use for the label in the output manifest file.
2995
3016
  # This is the key for the key/value pair formed with the label that a
2996
- # worker assigns to the object. The name can't end with "-metadata".
2997
- # If you are running a semantic segmentation labeling job, the attribute
2998
- # name must end with "-ref". If you are running any other kind of
2999
- # labeling job, the attribute name must not end with "-ref".
3017
+ # worker assigns to the object. The `LabelAttributeName` must meet the
3018
+ # following requirements.
3019
+ #
3020
+ # * The name can't end with "-metadata".
3021
+ #
3022
+ # * If you are using one of the following [built-in task types][1], the
3023
+ # attribute name *must* end with "-ref". If the task type you are
3024
+ # using is not listed below, the attribute name *must not* end with
3025
+ # "-ref".
3026
+ #
3027
+ # * Image semantic segmentation (`SemanticSegmentation)`, and
3028
+ # adjustment (`AdjustmentSemanticSegmentation`) and verification
3029
+ # (`VerificationSemanticSegmentation`) labeling jobs for this task
3030
+ # type.
3031
+ #
3032
+ # * Video frame object detection (`VideoObjectDetection`), and
3033
+ # adjustment and verification (`AdjustmentVideoObjectDetection`)
3034
+ # labeling jobs for this task type.
3035
+ #
3036
+ # * Video frame object tracking (`VideoObjectTracking`), and
3037
+ # adjustment and verification (`AdjustmentVideoObjectTracking`)
3038
+ # labeling jobs for this task type.
3039
+ #
3040
+ # * 3D point cloud semantic segmentation
3041
+ # (`3DPointCloudSemanticSegmentation`), and adjustment and
3042
+ # verification (`Adjustment3DPointCloudSemanticSegmentation`)
3043
+ # labeling jobs for this task type.
3044
+ #
3045
+ # * 3D point cloud object tracking (`3DPointCloudObjectTracking`), and
3046
+ # adjustment and verification
3047
+ # (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this
3048
+ # task type.
3049
+ #
3050
+ #
3051
+ #
3052
+ # If you are creating an adjustment or verification labeling job, you
3053
+ # must use a *different* `LabelAttributeName` than the one used in the
3054
+ # original labeling job. The original labeling job is the Ground Truth
3055
+ # labeling job that produced the labels that you want verified or
3056
+ # adjusted. To learn more about adjustment and verification labeling
3057
+ # jobs, see [Verify and Adjust Labels][2].
3058
+ #
3059
+ #
3060
+ #
3061
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3062
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
3000
3063
  #
3001
3064
  # @option params [required, Types::LabelingJobInputConfig] :input_config
3002
3065
  # Input data for the labeling job, such as the Amazon S3 location of the
3003
3066
  # data objects and the location of the manifest file that describes the
3004
3067
  # data objects.
3005
3068
  #
3069
+ # You must specify at least one of the following: `S3DataSource` or
3070
+ # `SnsDataSource`.
3071
+ #
3072
+ # * Use `SnsDataSource` to specify an SNS input topic for a streaming
3073
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
3074
+ # Truth will create a one-time labeling job that stops after all data
3075
+ # objects in the input manifest file have been labeled.
3076
+ #
3077
+ # * Use `S3DataSource` to specify an input manifest file for both
3078
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
3079
+ # optional if you use `SnsDataSource` to create a streaming labeling
3080
+ # job.
3081
+ #
3082
+ # If you use the Amazon Mechanical Turk workforce, your input data
3083
+ # should not include confidential information, personal information or
3084
+ # protected health information. Use `ContentClassifiers` to specify that
3085
+ # your data is free of personally identifiable information and adult
3086
+ # content.
3087
+ #
3006
3088
  # @option params [required, Types::LabelingJobOutputConfig] :output_config
3007
3089
  # The location of the output data and the AWS Key Management Service key
3008
3090
  # ID for the key used to encrypt the output data, if any.
@@ -3014,10 +3096,12 @@ module Aws::SageMaker
3014
3096
  # successfully complete data labeling.
3015
3097
  #
3016
3098
  # @option params [String] :label_category_config_s3_uri
3017
- # The S3 URI of the file that defines the categories used to label the
3018
- # data objects.
3099
+ # The S3 URI of the file, referred to as a *label category configuration
3100
+ # file*, that defines the categories used to label the data objects.
3019
3101
  #
3020
- # For 3D point cloud task types, see [Create a Labeling Category
3102
+ # For 3D point cloud and video frame task types, you can add label
3103
+ # category attributes and frame attributes to your label category
3104
+ # configuration file. To learn how, see [Create a Labeling Category
3021
3105
  # Configuration File for 3D Point Cloud Labeling Jobs][1].
3022
3106
  #
3023
3107
  # For all other [built-in task types][2] and [custom tasks][3], your
@@ -3025,41 +3109,37 @@ module Aws::SageMaker
3025
3109
  # format. Identify the labels you want to use by replacing `label_1`,
3026
3110
  # `label_2`,`...`,`label_n` with your label categories.
3027
3111
  #
3028
- # `\{`
3112
+ # `\{ `
3029
3113
  #
3030
- # ` "document-version": "2018-11-28"`
3114
+ # `"document-version": "2018-11-28",`
3031
3115
  #
3032
- # ` "labels": [`
3116
+ # `"labels": [\{"label": "label_1"\},\{"label":
3117
+ # "label_2"\},...\{"label": "label_n"\}]`
3033
3118
  #
3034
- # ` \{`
3035
- #
3036
- # ` "label": "label_1"`
3037
- #
3038
- # ` \},`
3039
- #
3040
- # ` \{`
3041
- #
3042
- # ` "label": "label_2"`
3043
- #
3044
- # ` \},`
3045
- #
3046
- # ` ...`
3047
- #
3048
- # ` \{`
3119
+ # `\}`
3049
3120
  #
3050
- # ` "label": "label_n"`
3121
+ # Note the following about the label category configuration file:
3051
3122
  #
3052
- # ` \}`
3123
+ # * For image classification and text classification (single and
3124
+ # multi-label) you must specify at least two label categories. For all
3125
+ # other task types, the minimum number of label categories required is
3126
+ # one.
3053
3127
  #
3054
- # ` ]`
3128
+ # * Each label category must be unique, you cannot specify duplicate
3129
+ # label categories.
3055
3130
  #
3056
- # `\}`
3131
+ # * If you create a 3D point cloud or video frame adjustment or
3132
+ # verification labeling job, you must include
3133
+ # `auditLabelAttributeName` in the label category configuration. Use
3134
+ # this parameter to enter the [ `LabelAttributeName` ][4] of the
3135
+ # labeling job you want to adjust or verify annotations of.
3057
3136
  #
3058
3137
  #
3059
3138
  #
3060
3139
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3061
3140
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3062
3141
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3142
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
3063
3143
  #
3064
3144
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
3065
3145
  # A set of conditions for stopping the labeling job. If any of the
@@ -3218,6 +3298,10 @@ module Aws::SageMaker
3218
3298
  # @option params [Array<Types::ContainerDefinition>] :containers
3219
3299
  # Specifies the containers in the inference pipeline.
3220
3300
  #
3301
+ # @option params [Types::InferenceExecutionConfig] :inference_execution_config
3302
+ # Specifies details of how containers in a multi-container endpoint are
3303
+ # called.
3304
+ #
3221
3305
  # @option params [required, String] :execution_role_arn
3222
3306
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3223
3307
  # can assume to access model artifacts and docker image for deployment
@@ -3280,6 +3364,9 @@ module Aws::SageMaker
3280
3364
  # "EnvironmentKey" => "EnvironmentValue",
3281
3365
  # },
3282
3366
  # model_package_name: "VersionedArnOrName",
3367
+ # multi_model_config: {
3368
+ # model_cache_setting: "Enabled", # accepts Enabled, Disabled
3369
+ # },
3283
3370
  # },
3284
3371
  # containers: [
3285
3372
  # {
@@ -3294,8 +3381,14 @@ module Aws::SageMaker
3294
3381
  # "EnvironmentKey" => "EnvironmentValue",
3295
3382
  # },
3296
3383
  # model_package_name: "VersionedArnOrName",
3384
+ # multi_model_config: {
3385
+ # model_cache_setting: "Enabled", # accepts Enabled, Disabled
3386
+ # },
3297
3387
  # },
3298
3388
  # ],
3389
+ # inference_execution_config: {
3390
+ # mode: "Serial", # required, accepts Serial, Direct
3391
+ # },
3299
3392
  # execution_role_arn: "RoleArn", # required
3300
3393
  # tags: [
3301
3394
  # {
@@ -4488,9 +4581,10 @@ module Aws::SageMaker
4488
4581
  # This operation can only be called when the authentication mode equals
4489
4582
  # IAM.
4490
4583
  #
4491
- # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
4492
- # valid only for 5 minutes. If you try to use the URL after the 5-minute
4493
- # limit expires, you are directed to the AWS console sign-in page.
4584
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` has a
4585
+ # default timeout of 5 minutes. You can configure this value using
4586
+ # `ExpiresInSeconds`. If you try to use the URL after the timeout limit
4587
+ # expires, you are directed to the AWS console sign-in page.
4494
4588
  #
4495
4589
  # </note>
4496
4590
  #
@@ -4501,7 +4595,12 @@ module Aws::SageMaker
4501
4595
  # The name of the UserProfile to sign-in as.
4502
4596
  #
4503
4597
  # @option params [Integer] :session_expiration_duration_in_seconds
4504
- # The session expiration duration in seconds.
4598
+ # The session expiration duration in seconds. This value defaults to
4599
+ # 43200.
4600
+ #
4601
+ # @option params [Integer] :expires_in_seconds
4602
+ # The number of seconds until the pre-signed URL expires. This value
4603
+ # defaults to 300.
4505
4604
  #
4506
4605
  # @return [Types::CreatePresignedDomainUrlResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
4507
4606
  #
@@ -4513,6 +4612,7 @@ module Aws::SageMaker
4513
4612
  # domain_id: "DomainId", # required
4514
4613
  # user_profile_name: "UserProfileName", # required
4515
4614
  # session_expiration_duration_in_seconds: 1,
4615
+ # expires_in_seconds: 1,
4516
4616
  # })
4517
4617
  #
4518
4618
  # @example Response structure
@@ -4592,7 +4692,8 @@ module Aws::SageMaker
4592
4692
  # Creates a processing job.
4593
4693
  #
4594
4694
  # @option params [Array<Types::ProcessingInput>] :processing_inputs
4595
- # List of input configurations for the processing job.
4695
+ # An array of inputs configuring the data to download into the
4696
+ # processing container.
4596
4697
  #
4597
4698
  # @option params [Types::ProcessingOutputConfig] :processing_output_config
4598
4699
  # Output configuration for the processing job.
@@ -4614,10 +4715,14 @@ module Aws::SageMaker
4614
4715
  # image.
4615
4716
  #
4616
4717
  # @option params [Hash<String,String>] :environment
4617
- # Sets the environment variables in the Docker container.
4718
+ # The environment variables to set in the Docker container. Up to 100
4719
+ # key and values entries in the map are supported.
4618
4720
  #
4619
4721
  # @option params [Types::NetworkConfig] :network_config
4620
- # Networking options for a processing job.
4722
+ # Networking options for a processing job, such as whether to allow
4723
+ # inbound and outbound network calls to and from processing containers,
4724
+ # and the VPC subnets and security groups to use for VPC-enabled
4725
+ # processing jobs.
4621
4726
  #
4622
4727
  # @option params [required, String] :role_arn
4623
4728
  # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
@@ -4867,7 +4972,7 @@ module Aws::SageMaker
4867
4972
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
4868
4973
  # more information, see [Managed Spot Training][2].
4869
4974
  #
4870
- # * `RoleArn` - The Amazon Resource Number (ARN) that Amazon SageMaker
4975
+ # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
4871
4976
  # assumes to perform tasks on your behalf during model training. You
4872
4977
  # must grant this role the necessary permissions so that Amazon
4873
4978
  # SageMaker can successfully complete model training.
@@ -7533,6 +7638,7 @@ module Aws::SageMaker
7533
7638
  # resp.input_config.s3_uri #=> String
7534
7639
  # resp.input_config.data_input_config #=> String
7535
7640
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7641
+ # resp.input_config.framework_version #=> String
7536
7642
  # resp.output_config.s3_output_location #=> String
7537
7643
  # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7538
7644
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
@@ -8021,6 +8127,8 @@ module Aws::SageMaker
8021
8127
  # resp.production_variants[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
8022
8128
  # resp.production_variants[0].initial_variant_weight #=> Float
8023
8129
  # resp.production_variants[0].accelerator_type #=> String, one of "ml.eia1.medium", "ml.eia1.large", "ml.eia1.xlarge", "ml.eia2.medium", "ml.eia2.large", "ml.eia2.xlarge"
8130
+ # resp.production_variants[0].core_dump_config.destination_s3_uri #=> String
8131
+ # resp.production_variants[0].core_dump_config.kms_key_id #=> String
8024
8132
  # resp.data_capture_config.enable_capture #=> Boolean
8025
8133
  # resp.data_capture_config.initial_sampling_percentage #=> Integer
8026
8134
  # resp.data_capture_config.destination_s3_uri #=> String
@@ -8683,6 +8791,7 @@ module Aws::SageMaker
8683
8791
  # * {Types::DescribeModelOutput#model_name #model_name} => String
8684
8792
  # * {Types::DescribeModelOutput#primary_container #primary_container} => Types::ContainerDefinition
8685
8793
  # * {Types::DescribeModelOutput#containers #containers} => Array&lt;Types::ContainerDefinition&gt;
8794
+ # * {Types::DescribeModelOutput#inference_execution_config #inference_execution_config} => Types::InferenceExecutionConfig
8686
8795
  # * {Types::DescribeModelOutput#execution_role_arn #execution_role_arn} => String
8687
8796
  # * {Types::DescribeModelOutput#vpc_config #vpc_config} => Types::VpcConfig
8688
8797
  # * {Types::DescribeModelOutput#creation_time #creation_time} => Time
@@ -8706,6 +8815,7 @@ module Aws::SageMaker
8706
8815
  # resp.primary_container.environment #=> Hash
8707
8816
  # resp.primary_container.environment["EnvironmentKey"] #=> String
8708
8817
  # resp.primary_container.model_package_name #=> String
8818
+ # resp.primary_container.multi_model_config.model_cache_setting #=> String, one of "Enabled", "Disabled"
8709
8819
  # resp.containers #=> Array
8710
8820
  # resp.containers[0].container_hostname #=> String
8711
8821
  # resp.containers[0].image #=> String
@@ -8715,6 +8825,8 @@ module Aws::SageMaker
8715
8825
  # resp.containers[0].environment #=> Hash
8716
8826
  # resp.containers[0].environment["EnvironmentKey"] #=> String
8717
8827
  # resp.containers[0].model_package_name #=> String
8828
+ # resp.containers[0].multi_model_config.model_cache_setting #=> String, one of "Enabled", "Disabled"
8829
+ # resp.inference_execution_config.mode #=> String, one of "Serial", "Direct"
8718
8830
  # resp.execution_role_arn #=> String
8719
8831
  # resp.vpc_config.security_group_ids #=> Array
8720
8832
  # resp.vpc_config.security_group_ids[0] #=> String
@@ -13814,6 +13926,27 @@ module Aws::SageMaker
13814
13926
 
13815
13927
  # Lists training jobs.
13816
13928
  #
13929
+ # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13930
+ # `MaxResults` number of training jobs are first retrieved ignoring the
13931
+ # `StatusEquals` parameter and then they are filtered by the
13932
+ # `StatusEquals` parameter, which is returned as a response. For
13933
+ # example, if `ListTrainingJobs` is invoked with the following
13934
+ # parameters:
13935
+ #
13936
+ # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13937
+ #
13938
+ # Then, 100 trainings jobs with any status including those other than
13939
+ # `InProgress` are selected first (sorted according the creation time,
13940
+ # from the latest to the oldest) and those with status `InProgress` are
13941
+ # returned.
13942
+ #
13943
+ # You can quickly test the API using the following AWS CLI code.
13944
+ #
13945
+ # `aws sagemaker list-training-jobs --max-results 100 --status-equals
13946
+ # InProgress`
13947
+ #
13948
+ # </note>
13949
+ #
13817
13950
  # @option params [String] :next_token
13818
13951
  # If the result of the previous `ListTrainingJobs` request was
13819
13952
  # truncated, the response includes a `NextToken`. To retrieve the next
@@ -17167,7 +17300,7 @@ module Aws::SageMaker
17167
17300
  params: params,
17168
17301
  config: config)
17169
17302
  context[:gem_name] = 'aws-sdk-sagemaker'
17170
- context[:gem_version] = '1.74.0'
17303
+ context[:gem_version] = '1.79.0'
17171
17304
  Seahorse::Client::Request.new(handlers, context)
17172
17305
  end
17173
17306
 
@@ -552,6 +552,7 @@ module Aws::SageMaker
552
552
  ExperimentSourceArn = Shapes::StringShape.new(name: 'ExperimentSourceArn')
553
553
  ExperimentSummaries = Shapes::ListShape.new(name: 'ExperimentSummaries')
554
554
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
+ ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
555
556
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
556
557
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
557
558
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
@@ -594,6 +595,7 @@ module Aws::SageMaker
594
595
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
595
596
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
596
597
  Framework = Shapes::StringShape.new(name: 'Framework')
598
+ FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
597
599
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
598
600
  GetDeviceFleetReportRequest = Shapes::StructureShape.new(name: 'GetDeviceFleetReportRequest')
599
601
  GetDeviceFleetReportResponse = Shapes::StructureShape.new(name: 'GetDeviceFleetReportResponse')
@@ -670,6 +672,8 @@ module Aws::SageMaker
670
672
  ImageVersionStatus = Shapes::StringShape.new(name: 'ImageVersionStatus')
671
673
  ImageVersions = Shapes::ListShape.new(name: 'ImageVersions')
672
674
  Images = Shapes::ListShape.new(name: 'Images')
675
+ InferenceExecutionConfig = Shapes::StructureShape.new(name: 'InferenceExecutionConfig')
676
+ InferenceExecutionMode = Shapes::StringShape.new(name: 'InferenceExecutionMode')
673
677
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
674
678
  InputConfig = Shapes::StructureShape.new(name: 'InputConfig')
675
679
  InputDataConfig = Shapes::ListShape.new(name: 'InputDataConfig')
@@ -871,6 +875,7 @@ module Aws::SageMaker
871
875
  ModelBiasAppSpecification = Shapes::StructureShape.new(name: 'ModelBiasAppSpecification')
872
876
  ModelBiasBaselineConfig = Shapes::StructureShape.new(name: 'ModelBiasBaselineConfig')
873
877
  ModelBiasJobInput = Shapes::StructureShape.new(name: 'ModelBiasJobInput')
878
+ ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
874
879
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
875
880
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
876
881
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
@@ -950,6 +955,7 @@ module Aws::SageMaker
950
955
  MonitoringTimeOffsetString = Shapes::StringShape.new(name: 'MonitoringTimeOffsetString')
951
956
  MonitoringType = Shapes::StringShape.new(name: 'MonitoringType')
952
957
  MountPath = Shapes::StringShape.new(name: 'MountPath')
958
+ MultiModelConfig = Shapes::StructureShape.new(name: 'MultiModelConfig')
953
959
  NameContains = Shapes::StringShape.new(name: 'NameContains')
954
960
  NestedFilters = Shapes::StructureShape.new(name: 'NestedFilters')
955
961
  NestedFiltersList = Shapes::ListShape.new(name: 'NestedFiltersList')
@@ -1073,6 +1079,7 @@ module Aws::SageMaker
1073
1079
  ProductListings = Shapes::ListShape.new(name: 'ProductListings')
1074
1080
  ProductionVariant = Shapes::StructureShape.new(name: 'ProductionVariant')
1075
1081
  ProductionVariantAcceleratorType = Shapes::StringShape.new(name: 'ProductionVariantAcceleratorType')
1082
+ ProductionVariantCoreDumpConfig = Shapes::StructureShape.new(name: 'ProductionVariantCoreDumpConfig')
1076
1083
  ProductionVariantInstanceType = Shapes::StringShape.new(name: 'ProductionVariantInstanceType')
1077
1084
  ProductionVariantList = Shapes::ListShape.new(name: 'ProductionVariantList')
1078
1085
  ProductionVariantSummary = Shapes::StructureShape.new(name: 'ProductionVariantSummary')
@@ -1765,6 +1772,7 @@ module Aws::SageMaker
1765
1772
  ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
1766
1773
  ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
1767
1774
  ContainerDefinition.add_member(:model_package_name, Shapes::ShapeRef.new(shape: VersionedArnOrName, location_name: "ModelPackageName"))
1775
+ ContainerDefinition.add_member(:multi_model_config, Shapes::ShapeRef.new(shape: MultiModelConfig, location_name: "MultiModelConfig"))
1768
1776
  ContainerDefinition.struct_class = Types::ContainerDefinition
1769
1777
 
1770
1778
  ContainerDefinitionList.member = Shapes::ShapeRef.new(shape: ContainerDefinition)
@@ -2086,6 +2094,7 @@ module Aws::SageMaker
2086
2094
  CreateModelInput.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
2087
2095
  CreateModelInput.add_member(:primary_container, Shapes::ShapeRef.new(shape: ContainerDefinition, location_name: "PrimaryContainer"))
2088
2096
  CreateModelInput.add_member(:containers, Shapes::ShapeRef.new(shape: ContainerDefinitionList, location_name: "Containers"))
2097
+ CreateModelInput.add_member(:inference_execution_config, Shapes::ShapeRef.new(shape: InferenceExecutionConfig, location_name: "InferenceExecutionConfig"))
2089
2098
  CreateModelInput.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleArn"))
2090
2099
  CreateModelInput.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
2091
2100
  CreateModelInput.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
@@ -2185,6 +2194,7 @@ module Aws::SageMaker
2185
2194
  CreatePresignedDomainUrlRequest.add_member(:domain_id, Shapes::ShapeRef.new(shape: DomainId, required: true, location_name: "DomainId"))
2186
2195
  CreatePresignedDomainUrlRequest.add_member(:user_profile_name, Shapes::ShapeRef.new(shape: UserProfileName, required: true, location_name: "UserProfileName"))
2187
2196
  CreatePresignedDomainUrlRequest.add_member(:session_expiration_duration_in_seconds, Shapes::ShapeRef.new(shape: SessionExpirationDurationInSeconds, location_name: "SessionExpirationDurationInSeconds"))
2197
+ CreatePresignedDomainUrlRequest.add_member(:expires_in_seconds, Shapes::ShapeRef.new(shape: ExpiresInSeconds, location_name: "ExpiresInSeconds"))
2188
2198
  CreatePresignedDomainUrlRequest.struct_class = Types::CreatePresignedDomainUrlRequest
2189
2199
 
2190
2200
  CreatePresignedDomainUrlResponse.add_member(:authorized_url, Shapes::ShapeRef.new(shape: PresignedDomainUrl, location_name: "AuthorizedUrl"))
@@ -3012,6 +3022,7 @@ module Aws::SageMaker
3012
3022
  DescribeModelOutput.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
3013
3023
  DescribeModelOutput.add_member(:primary_container, Shapes::ShapeRef.new(shape: ContainerDefinition, location_name: "PrimaryContainer"))
3014
3024
  DescribeModelOutput.add_member(:containers, Shapes::ShapeRef.new(shape: ContainerDefinitionList, location_name: "Containers"))
3025
+ DescribeModelOutput.add_member(:inference_execution_config, Shapes::ShapeRef.new(shape: InferenceExecutionConfig, location_name: "InferenceExecutionConfig"))
3015
3026
  DescribeModelOutput.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleArn"))
3016
3027
  DescribeModelOutput.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
3017
3028
  DescribeModelOutput.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
@@ -3799,6 +3810,9 @@ module Aws::SageMaker
3799
3810
 
3800
3811
  Images.member = Shapes::ShapeRef.new(shape: Image)
3801
3812
 
3813
+ InferenceExecutionConfig.add_member(:mode, Shapes::ShapeRef.new(shape: InferenceExecutionMode, required: true, location_name: "Mode"))
3814
+ InferenceExecutionConfig.struct_class = Types::InferenceExecutionConfig
3815
+
3802
3816
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
3803
3817
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, location_name: "SupportedTransformInstanceTypes"))
3804
3818
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -3809,6 +3823,7 @@ module Aws::SageMaker
3809
3823
  InputConfig.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
3810
3824
  InputConfig.add_member(:data_input_config, Shapes::ShapeRef.new(shape: DataInputConfig, required: true, location_name: "DataInputConfig"))
3811
3825
  InputConfig.add_member(:framework, Shapes::ShapeRef.new(shape: Framework, required: true, location_name: "Framework"))
3826
+ InputConfig.add_member(:framework_version, Shapes::ShapeRef.new(shape: FrameworkVersion, location_name: "FrameworkVersion"))
3812
3827
  InputConfig.struct_class = Types::InputConfig
3813
3828
 
3814
3829
  InputDataConfig.member = Shapes::ShapeRef.new(shape: Channel)
@@ -4978,6 +4993,9 @@ module Aws::SageMaker
4978
4993
  MonitoringStoppingCondition.add_member(:max_runtime_in_seconds, Shapes::ShapeRef.new(shape: MonitoringMaxRuntimeInSeconds, required: true, location_name: "MaxRuntimeInSeconds"))
4979
4994
  MonitoringStoppingCondition.struct_class = Types::MonitoringStoppingCondition
4980
4995
 
4996
+ MultiModelConfig.add_member(:model_cache_setting, Shapes::ShapeRef.new(shape: ModelCacheSetting, location_name: "ModelCacheSetting"))
4997
+ MultiModelConfig.struct_class = Types::MultiModelConfig
4998
+
4981
4999
  NestedFilters.add_member(:nested_property_name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "NestedPropertyName"))
4982
5000
  NestedFilters.add_member(:filters, Shapes::ShapeRef.new(shape: FilterList, required: true, location_name: "Filters"))
4983
5001
  NestedFilters.struct_class = Types::NestedFilters
@@ -5268,8 +5286,13 @@ module Aws::SageMaker
5268
5286
  ProductionVariant.add_member(:instance_type, Shapes::ShapeRef.new(shape: ProductionVariantInstanceType, required: true, location_name: "InstanceType"))
5269
5287
  ProductionVariant.add_member(:initial_variant_weight, Shapes::ShapeRef.new(shape: VariantWeight, location_name: "InitialVariantWeight"))
5270
5288
  ProductionVariant.add_member(:accelerator_type, Shapes::ShapeRef.new(shape: ProductionVariantAcceleratorType, location_name: "AcceleratorType"))
5289
+ ProductionVariant.add_member(:core_dump_config, Shapes::ShapeRef.new(shape: ProductionVariantCoreDumpConfig, location_name: "CoreDumpConfig"))
5271
5290
  ProductionVariant.struct_class = Types::ProductionVariant
5272
5291
 
5292
+ ProductionVariantCoreDumpConfig.add_member(:destination_s3_uri, Shapes::ShapeRef.new(shape: DestinationS3Uri, required: true, location_name: "DestinationS3Uri"))
5293
+ ProductionVariantCoreDumpConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
5294
+ ProductionVariantCoreDumpConfig.struct_class = Types::ProductionVariantCoreDumpConfig
5295
+
5273
5296
  ProductionVariantList.member = Shapes::ShapeRef.new(shape: ProductionVariant)
5274
5297
 
5275
5298
  ProductionVariantSummary.add_member(:variant_name, Shapes::ShapeRef.new(shape: VariantName, required: true, location_name: "VariantName"))