aws-sdk-sagemaker 1.66.0 → 1.67.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 92ee945e491a15aaf0bb659a68e5b250b00e39bf57153cd28ff903c218ee5638
4
- data.tar.gz: 4758058370f742eee6262f6568a63e152f1621c384fa585cb94411a4308fa1ce
3
+ metadata.gz: 4ef155285a2d56e1038b5456c22b3a2c9090d3ee3945cc9d07343ecda1e801ac
4
+ data.tar.gz: 5c45e9b3ce9a6ef906ec8e385b41eac8237dffad7f6716bdd1beaf7fa5490da6
5
5
  SHA512:
6
- metadata.gz: 298268ac4279492ae6ebd60171611afe04ea09812498432d3d8394d4258e889c51cd2c1af23f78f4bcee13bfc9fbfe424f9eda2c5cdfd0903b0864fbb20150b6
7
- data.tar.gz: b94ca96f0d61dad5bd58ad01f09ae4091595052f4478a0f2b98f36c5c57161d764947ab79b253c01fedaf612f98c5603ff0407a38505370e3253ec44b444125f
6
+ metadata.gz: 8f441f1409e5b72b511be33589a1f5c6e732ed11004014bfd2285bebd39ae059e418e5d968068112bfdf79f0d81d60632d4451dbb70ec4d6c26e342936208383
7
+ data.tar.gz: e8f0f6ecb146d5c8c05fd86a3ae14d19ca365e6589c8433b6e10efdb02120be37b794709f1e45727ef4d135a6eca8c41edbedf9eaa5a1d1913b1236a9c2967c7
@@ -7,6 +7,7 @@
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
10
+
10
11
  require 'aws-sdk-core'
11
12
  require 'aws-sigv4'
12
13
 
@@ -48,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
48
49
  # @!group service
49
50
  module Aws::SageMaker
50
51
 
51
- GEM_VERSION = '1.66.0'
52
+ GEM_VERSION = '1.67.0'
52
53
 
53
54
  end
@@ -2093,6 +2093,9 @@ module Aws::SageMaker
2093
2093
  # s3_data_source: {
2094
2094
  # manifest_s3_uri: "S3Uri", # required
2095
2095
  # },
2096
+ # sns_data_source: {
2097
+ # sns_topic_arn: "SnsTopicArn", # required
2098
+ # },
2096
2099
  # },
2097
2100
  # data_attributes: {
2098
2101
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -2101,6 +2104,7 @@ module Aws::SageMaker
2101
2104
  # output_config: { # required
2102
2105
  # s3_output_path: "S3Uri", # required
2103
2106
  # kms_key_id: "KmsKeyId",
2107
+ # sns_topic_arn: "SnsTopicArn",
2104
2108
  # },
2105
2109
  # role_arn: "RoleArn", # required
2106
2110
  # label_category_config_s3_uri: "S3Uri",
@@ -5708,10 +5712,12 @@ module Aws::SageMaker
5708
5712
  # resp.labeling_job_arn #=> String
5709
5713
  # resp.label_attribute_name #=> String
5710
5714
  # resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
5715
+ # resp.input_config.data_source.sns_data_source.sns_topic_arn #=> String
5711
5716
  # resp.input_config.data_attributes.content_classifiers #=> Array
5712
5717
  # resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
5713
5718
  # resp.output_config.s3_output_path #=> String
5714
5719
  # resp.output_config.kms_key_id #=> String
5720
+ # resp.output_config.sns_topic_arn #=> String
5715
5721
  # resp.role_arn #=> String
5716
5722
  # resp.label_category_config_s3_uri #=> String
5717
5723
  # resp.stopping_conditions.max_human_labeled_object_count #=> Integer
@@ -7859,6 +7865,7 @@ module Aws::SageMaker
7859
7865
  # resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
7860
7866
  # resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
7861
7867
  # resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
7868
+ # resp.labeling_job_summary_list[0].input_config.data_source.sns_data_source.sns_topic_arn #=> String
7862
7869
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
7863
7870
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
7864
7871
  # resp.next_token #=> String
@@ -10988,7 +10995,7 @@ module Aws::SageMaker
10988
10995
  params: params,
10989
10996
  config: config)
10990
10997
  context[:gem_name] = 'aws-sdk-sagemaker'
10991
- context[:gem_version] = '1.66.0'
10998
+ context[:gem_version] = '1.67.0'
10992
10999
  Seahorse::Client::Request.new(handlers, context)
10993
11000
  end
10994
11001
 
@@ -468,6 +468,7 @@ module Aws::SageMaker
468
468
  LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
469
469
  LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
470
470
  LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
471
+ LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
471
472
  LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
472
473
  LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
473
474
  LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
@@ -770,6 +771,7 @@ module Aws::SageMaker
770
771
  SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
771
772
  ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
772
773
  SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
774
+ SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
773
775
  SortBy = Shapes::StringShape.new(name: 'SortBy')
774
776
  SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
775
777
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
@@ -2477,6 +2479,7 @@ module Aws::SageMaker
2477
2479
  LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
2478
2480
 
2479
2481
  LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
2482
+ LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
2480
2483
  LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
2481
2484
 
2482
2485
  LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
@@ -2499,6 +2502,7 @@ module Aws::SageMaker
2499
2502
 
2500
2503
  LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
2501
2504
  LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2505
+ LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
2502
2506
  LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
2503
2507
 
2504
2508
  LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
@@ -2507,6 +2511,9 @@ module Aws::SageMaker
2507
2511
  LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
2508
2512
  LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
2509
2513
 
2514
+ LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
2515
+ LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
2516
+
2510
2517
  LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
2511
2518
  LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
2512
2519
  LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
@@ -2356,13 +2356,15 @@ module Aws::SageMaker
2356
2356
  # @return [String]
2357
2357
  #
2358
2358
  # @!attribute [rw] image
2359
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2360
- # code is stored. If you are using your own custom algorithm instead
2361
- # of an algorithm provided by Amazon SageMaker, the inference code
2362
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2363
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2364
- # image path formats. For more information, see [Using Your Own
2365
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2366
2368
  #
2367
2369
  #
2368
2370
  #
@@ -2371,9 +2373,9 @@ module Aws::SageMaker
2371
2373
  #
2372
2374
  # @!attribute [rw] image_config
2373
2375
  # Specifies whether the model container is in Amazon ECR or a private
2374
- # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
- # information about storing containers in a private Docker registry,
2376
- # see [Use a Private Docker Registry for Real-Time Inference
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2377
2379
  # Containers][1]
2378
2380
  #
2379
2381
  #
@@ -3998,6 +4000,9 @@ module Aws::SageMaker
3998
4000
  # s3_data_source: {
3999
4001
  # manifest_s3_uri: "S3Uri", # required
4000
4002
  # },
4003
+ # sns_data_source: {
4004
+ # sns_topic_arn: "SnsTopicArn", # required
4005
+ # },
4001
4006
  # },
4002
4007
  # data_attributes: {
4003
4008
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -4006,6 +4011,7 @@ module Aws::SageMaker
4006
4011
  # output_config: { # required
4007
4012
  # s3_output_path: "S3Uri", # required
4008
4013
  # kms_key_id: "KmsKeyId",
4014
+ # sns_topic_arn: "SnsTopicArn",
4009
4015
  # },
4010
4016
  # role_arn: "RoleArn", # required
4011
4017
  # label_category_config_s3_uri: "S3Uri",
@@ -10655,12 +10661,13 @@ module Aws::SageMaker
10655
10661
  # @return [Integer]
10656
10662
  #
10657
10663
  # @!attribute [rw] task_availability_lifetime_in_seconds
10658
- # The length of time that a task remains available for labeling by
10659
- # human workers.
10664
+ # The length of time that a task remains available for review by human
10665
+ # workers.
10660
10666
  # @return [Integer]
10661
10667
  #
10662
10668
  # @!attribute [rw] task_time_limit_in_seconds
10663
- # The amount of time that a worker has to complete a task.
10669
+ # The amount of time that a worker has to complete a task. The default
10670
+ # value is 3,600 seconds (1 hour)
10664
10671
  # @return [Integer]
10665
10672
  #
10666
10673
  # @!attribute [rw] task_keywords
@@ -12479,7 +12486,8 @@ module Aws::SageMaker
12479
12486
  end
12480
12487
 
12481
12488
  # Specifies whether the model container is in Amazon ECR or a private
12482
- # Docker registry in your Amazon Virtual Private Cloud (VPC).
12489
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12490
+ # (VPC).
12483
12491
  #
12484
12492
  # @note When making an API call, you may pass ImageConfig
12485
12493
  # data as a hash:
@@ -12493,7 +12501,7 @@ module Aws::SageMaker
12493
12501
  #
12494
12502
  # * `Platform` - The model image is hosted in Amazon ECR.
12495
12503
  #
12496
- # * `VPC` - The model image is hosted in a private Docker registry in
12504
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12497
12505
  # your VPC.
12498
12506
  # @return [String]
12499
12507
  #
@@ -12928,10 +12936,10 @@ module Aws::SageMaker
12928
12936
  # @return [String]
12929
12937
  #
12930
12938
  # @!attribute [rw] initial_active_learning_model_arn
12931
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12932
- # the Amazon Resource Nam (ARN) of the final model used for
12933
- # auto-labeling. You can use this model as the starting point for
12934
- # subsequent similar jobs by providing the ARN of the model here.
12939
+ # At the end of an auto-label job Ground Truth sends the Amazon
12940
+ # Resource Name (ARN) of the final model used for auto-labeling. You
12941
+ # can use this model as the starting point for subsequent similar jobs
12942
+ # by providing the ARN of the model here.
12935
12943
  # @return [String]
12936
12944
  #
12937
12945
  # @!attribute [rw] labeling_job_resource_config
@@ -12975,6 +12983,18 @@ module Aws::SageMaker
12975
12983
 
12976
12984
  # Provides information about the location of input data.
12977
12985
  #
12986
+ # You must specify at least one of the following: `S3DataSource` or
12987
+ # `SnsDataSource`.
12988
+ #
12989
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
12990
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
12991
+ # Truth will create a one-time labeling job.
12992
+ #
12993
+ # Use `S3DataSource` to specify an input manifest file for both
12994
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
12995
+ # optional if you use `SnsDataSource` to create a streaming labeling
12996
+ # job.
12997
+ #
12978
12998
  # @note When making an API call, you may pass LabelingJobDataSource
12979
12999
  # data as a hash:
12980
13000
  #
@@ -12982,16 +13002,24 @@ module Aws::SageMaker
12982
13002
  # s3_data_source: {
12983
13003
  # manifest_s3_uri: "S3Uri", # required
12984
13004
  # },
13005
+ # sns_data_source: {
13006
+ # sns_topic_arn: "SnsTopicArn", # required
13007
+ # },
12985
13008
  # }
12986
13009
  #
12987
13010
  # @!attribute [rw] s3_data_source
12988
13011
  # The Amazon S3 location of the input data objects.
12989
13012
  # @return [Types::LabelingJobS3DataSource]
12990
13013
  #
13014
+ # @!attribute [rw] sns_data_source
13015
+ # An Amazon SNS data source used for streaming labeling jobs.
13016
+ # @return [Types::LabelingJobSnsDataSource]
13017
+ #
12991
13018
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12992
13019
  #
12993
13020
  class LabelingJobDataSource < Struct.new(
12994
- :s3_data_source)
13021
+ :s3_data_source,
13022
+ :sns_data_source)
12995
13023
  SENSITIVE = []
12996
13024
  include Aws::Structure
12997
13025
  end
@@ -13045,6 +13073,9 @@ module Aws::SageMaker
13045
13073
  # s3_data_source: {
13046
13074
  # manifest_s3_uri: "S3Uri", # required
13047
13075
  # },
13076
+ # sns_data_source: {
13077
+ # sns_topic_arn: "SnsTopicArn", # required
13078
+ # },
13048
13079
  # },
13049
13080
  # data_attributes: {
13050
13081
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -13096,6 +13127,7 @@ module Aws::SageMaker
13096
13127
  # {
13097
13128
  # s3_output_path: "S3Uri", # required
13098
13129
  # kms_key_id: "KmsKeyId",
13130
+ # sns_topic_arn: "SnsTopicArn",
13099
13131
  # }
13100
13132
  #
13101
13133
  # @!attribute [rw] s3_output_path
@@ -13129,11 +13161,22 @@ module Aws::SageMaker
13129
13161
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
13130
13162
  # @return [String]
13131
13163
  #
13164
+ # @!attribute [rw] sns_topic_arn
13165
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13166
+ #
13167
+ # When workers complete labeling tasks, Ground Truth will send
13168
+ # labeling task output data to the SNS output topic you specify here.
13169
+ #
13170
+ # You must provide a value for this parameter if you provide an Amazon
13171
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13172
+ # @return [String]
13173
+ #
13132
13174
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
13133
13175
  #
13134
13176
  class LabelingJobOutputConfig < Struct.new(
13135
13177
  :s3_output_path,
13136
- :kms_key_id)
13178
+ :kms_key_id,
13179
+ :sns_topic_arn)
13137
13180
  SENSITIVE = []
13138
13181
  include Aws::Structure
13139
13182
  end
@@ -13192,6 +13235,32 @@ module Aws::SageMaker
13192
13235
  include Aws::Structure
13193
13236
  end
13194
13237
 
13238
+ # An Amazon SNS data source used for streaming labeling jobs.
13239
+ #
13240
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13241
+ # data as a hash:
13242
+ #
13243
+ # {
13244
+ # sns_topic_arn: "SnsTopicArn", # required
13245
+ # }
13246
+ #
13247
+ # @!attribute [rw] sns_topic_arn
13248
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13249
+ # ARN of the input topic you will use to send new data objects to a
13250
+ # streaming labeling job.
13251
+ #
13252
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13253
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13254
+ # @return [String]
13255
+ #
13256
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13257
+ #
13258
+ class LabelingJobSnsDataSource < Struct.new(
13259
+ :sns_topic_arn)
13260
+ SENSITIVE = []
13261
+ include Aws::Structure
13262
+ end
13263
+
13195
13264
  # A set of conditions for stopping a labeling job. If any of the
13196
13265
  # conditions are met, the job is automatically stopped. You can use
13197
13266
  # these conditions to control the cost of data labeling.
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.66.0
4
+ version: 1.67.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-08-25 00:00:00.000000000 Z
11
+ date: 2020-09-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core