aws-sdk-sagemaker 1.64.0 → 1.69.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -37,6 +37,7 @@ module Aws::SageMaker
37
37
  AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
38
38
  AppList = Shapes::ListShape.new(name: 'AppList')
39
39
  AppName = Shapes::StringShape.new(name: 'AppName')
40
+ AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
40
41
  AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
41
42
  AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
42
43
  AppStatus = Shapes::StringShape.new(name: 'AppStatus')
@@ -429,6 +430,7 @@ module Aws::SageMaker
429
430
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
430
431
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
431
432
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
433
+ ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
432
434
  ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
433
435
  ImageUri = Shapes::StringShape.new(name: 'ImageUri')
434
436
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
@@ -467,6 +469,7 @@ module Aws::SageMaker
467
469
  LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
468
470
  LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
469
471
  LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
472
+ LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
470
473
  LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
471
474
  LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
472
475
  LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
@@ -722,6 +725,7 @@ module Aws::SageMaker
722
725
  RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
723
726
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
724
727
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
728
+ RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
725
729
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
726
730
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
727
731
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -768,6 +772,7 @@ module Aws::SageMaker
768
772
  SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
769
773
  ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
770
774
  SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
775
+ SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
771
776
  SortBy = Shapes::StringShape.new(name: 'SortBy')
772
777
  SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
773
778
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
@@ -1199,6 +1204,7 @@ module Aws::SageMaker
1199
1204
 
1200
1205
  ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
1201
1206
  ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
1207
+ ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
1202
1208
  ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
1203
1209
  ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
1204
1210
  ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -1285,6 +1291,7 @@ module Aws::SageMaker
1285
1291
  CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
1286
1292
  CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1287
1293
  CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
1294
+ CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1288
1295
  CreateDomainRequest.struct_class = Types::CreateDomainRequest
1289
1296
 
1290
1297
  CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
@@ -1798,6 +1805,7 @@ module Aws::SageMaker
1798
1805
  DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
1799
1806
  DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
1800
1807
  DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
1808
+ DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1801
1809
  DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
1802
1810
 
1803
1811
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -2414,6 +2422,9 @@ module Aws::SageMaker
2414
2422
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
2415
2423
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
2416
2424
 
2425
+ ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
2426
+ ImageConfig.struct_class = Types::ImageConfig
2427
+
2417
2428
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
2418
2429
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
2419
2430
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -2471,6 +2482,7 @@ module Aws::SageMaker
2471
2482
  LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
2472
2483
 
2473
2484
  LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
2485
+ LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
2474
2486
  LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
2475
2487
 
2476
2488
  LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
@@ -2493,6 +2505,7 @@ module Aws::SageMaker
2493
2505
 
2494
2506
  LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
2495
2507
  LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2508
+ LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
2496
2509
  LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
2497
2510
 
2498
2511
  LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
@@ -2501,6 +2514,9 @@ module Aws::SageMaker
2501
2514
  LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
2502
2515
  LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
2503
2516
 
2517
+ LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
2518
+ LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
2519
+
2504
2520
  LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
2505
2521
  LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
2506
2522
  LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
1285
1285
  include Aws::Structure
1286
1286
  end
1287
1287
 
1288
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
1289
1289
  # candidate has futher details about the steps involed, and the status.
1290
1290
  #
1291
1291
  # @!attribute [rw] candidate_name
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
1293
1293
  # @return [String]
1294
1294
  #
1295
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
1296
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
1297
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1298
1298
  #
1299
1299
  # @!attribute [rw] objective_status
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
1440
1440
  include Aws::Structure
1441
1441
  end
1442
1442
 
1443
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1444
1444
  #
1445
1445
  # @note When making an API call, you may pass AutoMLDataSource
1446
1446
  # data as a hash:
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
1455
1455
  # @!attribute [rw] s3_data_source
1456
1456
  # The Amazon S3 location of the input data.
1457
1457
  #
1458
- # <note markdown="1"> The input data must be in CSV format and contain at least 1000 rows.
1458
+ # <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
1459
1459
  #
1460
1460
  # </note>
1461
1461
  # @return [Types::AutoMLS3DataSource]
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
1563
1563
  include Aws::Structure
1564
1564
  end
1565
1565
 
1566
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1567
1567
  #
1568
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1569
1569
  # data as a hash:
1570
1570
  #
1571
1571
  # {
1572
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1573
1573
  # }
1574
1574
  #
1575
1575
  # @!attribute [rw] metric_name
1576
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1577
1651
  # @return [String]
1578
1652
  #
1579
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
1607
1681
  # @return [Time]
1608
1682
  #
1609
1683
  # @!attribute [rw] end_time
1610
- # The end time.
1684
+ # The end time of an AutoML job.
1611
1685
  # @return [Time]
1612
1686
  #
1613
1687
  # @!attribute [rw] last_modified_time
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
1615
1689
  # @return [Time]
1616
1690
  #
1617
1691
  # @!attribute [rw] failure_reason
1618
- # The failure reason.
1692
+ # The failure reason of a job.
1619
1693
  # @return [String]
1620
1694
  #
1621
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
2249
2323
  # {
2250
2324
  # container_hostname: "ContainerHostname",
2251
2325
  # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
2252
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2253
2330
  # model_data_url: "Url",
2254
2331
  # environment: {
@@ -2279,19 +2356,33 @@ module Aws::SageMaker
2279
2356
  # @return [String]
2280
2357
  #
2281
2358
  # @!attribute [rw] image
2282
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2283
- # code is stored. If you are using your own custom algorithm instead
2284
- # of an algorithm provided by Amazon SageMaker, the inference code
2285
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2286
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2287
- # image path formats. For more information, see [Using Your Own
2288
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2289
2368
  #
2290
2369
  #
2291
2370
  #
2292
2371
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
2293
2372
  # @return [String]
2294
2373
  #
2374
+ # @!attribute [rw] image_config
2375
+ # Specifies whether the model container is in Amazon ECR or a private
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2379
+ # Containers][1]
2380
+ #
2381
+ #
2382
+ #
2383
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2384
+ # @return [Types::ImageConfig]
2385
+ #
2295
2386
  # @!attribute [rw] mode
2296
2387
  # Whether the container hosts a single model or multiple models.
2297
2388
  # @return [String]
@@ -2304,6 +2395,11 @@ module Aws::SageMaker
2304
2395
  # algorithms. For more information on built-in algorithms, see [Common
2305
2396
  # Parameters][1].
2306
2397
  #
2398
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
2399
+ # region as the model or endpoint you are creating.
2400
+ #
2401
+ # </note>
2402
+ #
2307
2403
  # If you provide a value for this parameter, Amazon SageMaker uses AWS
2308
2404
  # Security Token Service to download model artifacts from the S3 path
2309
2405
  # you provide. AWS STS is activated in your IAM user account by
@@ -2338,6 +2434,7 @@ module Aws::SageMaker
2338
2434
  class ContainerDefinition < Struct.new(
2339
2435
  :container_hostname,
2340
2436
  :image,
2437
+ :image_config,
2341
2438
  :mode,
2342
2439
  :model_data_url,
2343
2440
  :environment,
@@ -2783,7 +2880,7 @@ module Aws::SageMaker
2783
2880
  # },
2784
2881
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2785
2882
  # auto_ml_job_objective: {
2786
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2883
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2787
2884
  # },
2788
2885
  # auto_ml_job_config: {
2789
2886
  # completion_criteria: {
@@ -2811,13 +2908,13 @@ module Aws::SageMaker
2811
2908
  # }
2812
2909
  #
2813
2910
  # @!attribute [rw] auto_ml_job_name
2814
- # Identifies an AutoPilot job. Must be unique to your account and is
2911
+ # Identifies an Autopilot job. Must be unique to your account and is
2815
2912
  # case-insensitive.
2816
2913
  # @return [String]
2817
2914
  #
2818
2915
  # @!attribute [rw] input_data_config
2819
2916
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
2820
- # CSV. Minimum of 1000 rows.
2917
+ # CSV. Minimum of 500 rows.
2821
2918
  # @return [Array<Types::AutoMLChannel>]
2822
2919
  #
2823
2920
  # @!attribute [rw] output_data_config
@@ -2832,9 +2929,11 @@ module Aws::SageMaker
2832
2929
  # @return [String]
2833
2930
  #
2834
2931
  # @!attribute [rw] auto_ml_job_objective
2835
- # Defines the job's objective. You provide a MetricName and AutoML
2836
- # will infer minimize or maximize. If this is not provided, the most
2837
- # commonly used ObjectiveMetric for problem type will be selected.
2932
+ # Defines the objective of a an AutoML job. You provide a
2933
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2934
+ # minimize or maximize it. If a metric is not specified, the most
2935
+ # commonly used ObjectiveMetric for problem type is automaically
2936
+ # selected.
2838
2937
  # @return [Types::AutoMLJobObjective]
2839
2938
  #
2840
2939
  # @!attribute [rw] auto_ml_job_config
@@ -2842,13 +2941,13 @@ module Aws::SageMaker
2842
2941
  # @return [Types::AutoMLJobConfig]
2843
2942
  #
2844
2943
  # @!attribute [rw] role_arn
2845
- # The ARN of the role that will be used to access the data.
2944
+ # The ARN of the role that is used to access the data.
2846
2945
  # @return [String]
2847
2946
  #
2848
2947
  # @!attribute [rw] generate_candidate_definitions_only
2849
- # This will generate possible candidates without training a model. A
2850
- # candidate is a combination of data preprocessors, algorithms, and
2851
- # algorithm parameter settings.
2948
+ # Generates possible candidates without training a model. A candidate
2949
+ # is a combination of data preprocessors, algorithms, and algorithm
2950
+ # parameter settings.
2852
2951
  # @return [Boolean]
2853
2952
  #
2854
2953
  # @!attribute [rw] tags
@@ -3074,6 +3173,7 @@ module Aws::SageMaker
3074
3173
  # },
3075
3174
  # ],
3076
3175
  # home_efs_file_system_kms_key_id: "KmsKeyId",
3176
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
3077
3177
  # }
3078
3178
  #
3079
3179
  # @!attribute [rw] domain_name
@@ -3089,12 +3189,12 @@ module Aws::SageMaker
3089
3189
  # @return [Types::UserSettings]
3090
3190
  #
3091
3191
  # @!attribute [rw] subnet_ids
3092
- # The VPC subnets to use for communication with the EFS volume.
3192
+ # The VPC subnets that Studio uses for communication.
3093
3193
  # @return [Array<String>]
3094
3194
  #
3095
3195
  # @!attribute [rw] vpc_id
3096
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
3097
- # communication with the EFS volume.
3196
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
3197
+ # for communication.
3098
3198
  # @return [String]
3099
3199
  #
3100
3200
  # @!attribute [rw] tags
@@ -3108,6 +3208,17 @@ module Aws::SageMaker
3108
3208
  # with a customer master key (CMK) is not supported.
3109
3209
  # @return [String]
3110
3210
  #
3211
+ # @!attribute [rw] app_network_access_type
3212
+ # Specifies the VPC used for non-EFS traffic. The default value is
3213
+ # `PublicInternetOnly`.
3214
+ #
3215
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
3216
+ # Amazon SageMaker, which allows direct internet access
3217
+ #
3218
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
3219
+ # subnets
3220
+ # @return [String]
3221
+ #
3111
3222
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
3112
3223
  #
3113
3224
  class CreateDomainRequest < Struct.new(
@@ -3117,7 +3228,8 @@ module Aws::SageMaker
3117
3228
  :subnet_ids,
3118
3229
  :vpc_id,
3119
3230
  :tags,
3120
- :home_efs_file_system_kms_key_id)
3231
+ :home_efs_file_system_kms_key_id,
3232
+ :app_network_access_type)
3121
3233
  SENSITIVE = []
3122
3234
  include Aws::Structure
3123
3235
  end
@@ -3906,6 +4018,9 @@ module Aws::SageMaker
3906
4018
  # s3_data_source: {
3907
4019
  # manifest_s3_uri: "S3Uri", # required
3908
4020
  # },
4021
+ # sns_data_source: {
4022
+ # sns_topic_arn: "SnsTopicArn", # required
4023
+ # },
3909
4024
  # },
3910
4025
  # data_attributes: {
3911
4026
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -3914,6 +4029,7 @@ module Aws::SageMaker
3914
4029
  # output_config: { # required
3915
4030
  # s3_output_path: "S3Uri", # required
3916
4031
  # kms_key_id: "KmsKeyId",
4032
+ # sns_topic_arn: "SnsTopicArn",
3917
4033
  # },
3918
4034
  # role_arn: "RoleArn", # required
3919
4035
  # label_category_config_s3_uri: "S3Uri",
@@ -4108,6 +4224,9 @@ module Aws::SageMaker
4108
4224
  # primary_container: {
4109
4225
  # container_hostname: "ContainerHostname",
4110
4226
  # image: "ContainerImage",
4227
+ # image_config: {
4228
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4229
+ # },
4111
4230
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4112
4231
  # model_data_url: "Url",
4113
4232
  # environment: {
@@ -4119,6 +4238,9 @@ module Aws::SageMaker
4119
4238
  # {
4120
4239
  # container_hostname: "ContainerHostname",
4121
4240
  # image: "ContainerImage",
4241
+ # image_config: {
4242
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4243
+ # },
4122
4244
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4123
4245
  # model_data_url: "Url",
4124
4246
  # environment: {
@@ -5844,14 +5966,17 @@ module Aws::SageMaker
5844
5966
  #
5845
5967
  # @!attribute [rw] oidc_config
5846
5968
  # Use this parameter to configure a private workforce using your own
5847
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
5848
- # values for `OidcConfig`.
5969
+ # OIDC Identity Provider.
5970
+ #
5971
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5849
5972
  # @return [Types::OidcConfig]
5850
5973
  #
5851
5974
  # @!attribute [rw] source_ip_config
5852
5975
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5853
- # list of IP addresses for a private workforce. For more information,
5854
- # see .
5976
+ # list of IP addresses for a private workforce. Workers will only be
5977
+ # able to login to their worker portal from an IP address within this
5978
+ # range. By default, a workforce isn't restricted to specific IP
5979
+ # addresses.
5855
5980
  #
5856
5981
  #
5857
5982
  #
@@ -5932,11 +6057,25 @@ module Aws::SageMaker
5932
6057
  #
5933
6058
  # @!attribute [rw] member_definitions
5934
6059
  # A list of `MemberDefinition` objects that contains objects that
5935
- # identify the Amazon Cognito user pool that makes up the work team.
5936
- # For more information, see [Amazon Cognito User Pools][1].
6060
+ # identify the workers that make up the work team.
6061
+ #
6062
+ # Workforces can be created using Amazon Cognito or your own OIDC
6063
+ # Identity Provider (IdP). For private workforces created using Amazon
6064
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6065
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6066
+ # not provide input for both of these parameters in a single request.
5937
6067
  #
5938
- # All of the `CognitoMemberDefinition` objects that make up the member
5939
- # definition must have the same `ClientId` and `UserPool` values.
6068
+ # For workforces created using Amazon Cognito, private work teams
6069
+ # correspond to Amazon Cognito *user groups* within the user pool used
6070
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6071
+ # that make up the member definition must have the same `ClientId` and
6072
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6073
+ # worker pool, see [Adding groups to a User Pool](). For more
6074
+ # information about user pools, see [Amazon Cognito User Pools][1].
6075
+ #
6076
+ # For workforces created using your own OIDC IdP, specify the user
6077
+ # groups that you want to include in your private work team in
6078
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5940
6079
  #
5941
6080
  #
5942
6081
  #
@@ -7402,7 +7541,7 @@ module Aws::SageMaker
7402
7541
  # @return [String]
7403
7542
  #
7404
7543
  # @!attribute [rw] subnet_ids
7405
- # Security setting to limit to a set of subnets.
7544
+ # The VPC subnets that Studio uses for communication.
7406
7545
  # @return [Array<String>]
7407
7546
  #
7408
7547
  # @!attribute [rw] url
@@ -7410,7 +7549,19 @@ module Aws::SageMaker
7410
7549
  # @return [String]
7411
7550
  #
7412
7551
  # @!attribute [rw] vpc_id
7413
- # The ID of the Amazon Virtual Private Cloud.
7552
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
7553
+ # for communication.
7554
+ # @return [String]
7555
+ #
7556
+ # @!attribute [rw] app_network_access_type
7557
+ # Specifies the VPC used for non-EFS traffic. The default value is
7558
+ # `PublicInternetOnly`.
7559
+ #
7560
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
7561
+ # Amazon SageMaker, which allows direct internet access
7562
+ #
7563
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
7564
+ # subnets
7414
7565
  # @return [String]
7415
7566
  #
7416
7567
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
@@ -7430,7 +7581,8 @@ module Aws::SageMaker
7430
7581
  :home_efs_file_system_kms_key_id,
7431
7582
  :subnet_ids,
7432
7583
  :url,
7433
- :vpc_id)
7584
+ :vpc_id,
7585
+ :app_network_access_type)
7434
7586
  SENSITIVE = []
7435
7587
  include Aws::Structure
7436
7588
  end
@@ -8841,7 +8993,7 @@ module Aws::SageMaker
8841
8993
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8842
8994
  # maximum allowed runtime.
8843
8995
  #
8844
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8996
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8845
8997
  # maximum allowed wait time.
8846
8998
  #
8847
8999
  # * `Stopped` - The training job has stopped.
@@ -10210,18 +10362,19 @@ module Aws::SageMaker
10210
10362
  include Aws::Structure
10211
10363
  end
10212
10364
 
10213
- # The candidate result from a job.
10365
+ # The best candidate result from an AutoML training job.
10214
10366
  #
10215
10367
  # @!attribute [rw] type
10216
- # The metric type used.
10368
+ # The type of metric with the best result.
10217
10369
  # @return [String]
10218
10370
  #
10219
10371
  # @!attribute [rw] metric_name
10220
- # The name of the metric.
10372
+ # The name of the metric with the best result. For a description of
10373
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
10221
10374
  # @return [String]
10222
10375
  #
10223
10376
  # @!attribute [rw] value
10224
- # The value of the metric.
10377
+ # The value of the metric with the best result.
10225
10378
  # @return [Float]
10226
10379
  #
10227
10380
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -10539,12 +10692,13 @@ module Aws::SageMaker
10539
10692
  # @return [Integer]
10540
10693
  #
10541
10694
  # @!attribute [rw] task_availability_lifetime_in_seconds
10542
- # The length of time that a task remains available for labeling by
10543
- # human workers.
10695
+ # The length of time that a task remains available for review by human
10696
+ # workers.
10544
10697
  # @return [Integer]
10545
10698
  #
10546
10699
  # @!attribute [rw] task_time_limit_in_seconds
10547
- # The amount of time that a worker has to complete a task.
10700
+ # The amount of time that a worker has to complete a task. The default
10701
+ # value is 3,600 seconds (1 hour)
10548
10702
  # @return [Integer]
10549
10703
  #
10550
10704
  # @!attribute [rw] task_keywords
@@ -12362,6 +12516,34 @@ module Aws::SageMaker
12362
12516
  include Aws::Structure
12363
12517
  end
12364
12518
 
12519
+ # Specifies whether the model container is in Amazon ECR or a private
12520
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12521
+ # (VPC).
12522
+ #
12523
+ # @note When making an API call, you may pass ImageConfig
12524
+ # data as a hash:
12525
+ #
12526
+ # {
12527
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12528
+ # }
12529
+ #
12530
+ # @!attribute [rw] repository_access_mode
12531
+ # Set this to one of the following values:
12532
+ #
12533
+ # * `Platform` - The model image is hosted in Amazon ECR.
12534
+ #
12535
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12536
+ # your VPC.
12537
+ # @return [String]
12538
+ #
12539
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12540
+ #
12541
+ class ImageConfig < Struct.new(
12542
+ :repository_access_mode)
12543
+ SENSITIVE = []
12544
+ include Aws::Structure
12545
+ end
12546
+
12365
12547
  # Defines how to perform inference generation after a training job is
12366
12548
  # run.
12367
12549
  #
@@ -12785,10 +12967,10 @@ module Aws::SageMaker
12785
12967
  # @return [String]
12786
12968
  #
12787
12969
  # @!attribute [rw] initial_active_learning_model_arn
12788
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12789
- # the Amazon Resource Nam (ARN) of the final model used for
12790
- # auto-labeling. You can use this model as the starting point for
12791
- # subsequent similar jobs by providing the ARN of the model here.
12970
+ # At the end of an auto-label job Ground Truth sends the Amazon
12971
+ # Resource Name (ARN) of the final model used for auto-labeling. You
12972
+ # can use this model as the starting point for subsequent similar jobs
12973
+ # by providing the ARN of the model here.
12792
12974
  # @return [String]
12793
12975
  #
12794
12976
  # @!attribute [rw] labeling_job_resource_config
@@ -12832,6 +13014,18 @@ module Aws::SageMaker
12832
13014
 
12833
13015
  # Provides information about the location of input data.
12834
13016
  #
13017
+ # You must specify at least one of the following: `S3DataSource` or
13018
+ # `SnsDataSource`.
13019
+ #
13020
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
13021
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
13022
+ # Truth will create a one-time labeling job.
13023
+ #
13024
+ # Use `S3DataSource` to specify an input manifest file for both
13025
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
13026
+ # optional if you use `SnsDataSource` to create a streaming labeling
13027
+ # job.
13028
+ #
12835
13029
  # @note When making an API call, you may pass LabelingJobDataSource
12836
13030
  # data as a hash:
12837
13031
  #
@@ -12839,16 +13033,24 @@ module Aws::SageMaker
12839
13033
  # s3_data_source: {
12840
13034
  # manifest_s3_uri: "S3Uri", # required
12841
13035
  # },
13036
+ # sns_data_source: {
13037
+ # sns_topic_arn: "SnsTopicArn", # required
13038
+ # },
12842
13039
  # }
12843
13040
  #
12844
13041
  # @!attribute [rw] s3_data_source
12845
13042
  # The Amazon S3 location of the input data objects.
12846
13043
  # @return [Types::LabelingJobS3DataSource]
12847
13044
  #
13045
+ # @!attribute [rw] sns_data_source
13046
+ # An Amazon SNS data source used for streaming labeling jobs.
13047
+ # @return [Types::LabelingJobSnsDataSource]
13048
+ #
12848
13049
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12849
13050
  #
12850
13051
  class LabelingJobDataSource < Struct.new(
12851
- :s3_data_source)
13052
+ :s3_data_source,
13053
+ :sns_data_source)
12852
13054
  SENSITIVE = []
12853
13055
  include Aws::Structure
12854
13056
  end
@@ -12902,6 +13104,9 @@ module Aws::SageMaker
12902
13104
  # s3_data_source: {
12903
13105
  # manifest_s3_uri: "S3Uri", # required
12904
13106
  # },
13107
+ # sns_data_source: {
13108
+ # sns_topic_arn: "SnsTopicArn", # required
13109
+ # },
12905
13110
  # },
12906
13111
  # data_attributes: {
12907
13112
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -12953,6 +13158,7 @@ module Aws::SageMaker
12953
13158
  # {
12954
13159
  # s3_output_path: "S3Uri", # required
12955
13160
  # kms_key_id: "KmsKeyId",
13161
+ # sns_topic_arn: "SnsTopicArn",
12956
13162
  # }
12957
13163
  #
12958
13164
  # @!attribute [rw] s3_output_path
@@ -12986,11 +13192,22 @@ module Aws::SageMaker
12986
13192
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
12987
13193
  # @return [String]
12988
13194
  #
13195
+ # @!attribute [rw] sns_topic_arn
13196
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13197
+ #
13198
+ # When workers complete labeling tasks, Ground Truth will send
13199
+ # labeling task output data to the SNS output topic you specify here.
13200
+ #
13201
+ # You must provide a value for this parameter if you provide an Amazon
13202
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13203
+ # @return [String]
13204
+ #
12989
13205
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
12990
13206
  #
12991
13207
  class LabelingJobOutputConfig < Struct.new(
12992
13208
  :s3_output_path,
12993
- :kms_key_id)
13209
+ :kms_key_id,
13210
+ :sns_topic_arn)
12994
13211
  SENSITIVE = []
12995
13212
  include Aws::Structure
12996
13213
  end
@@ -13049,6 +13266,32 @@ module Aws::SageMaker
13049
13266
  include Aws::Structure
13050
13267
  end
13051
13268
 
13269
+ # An Amazon SNS data source used for streaming labeling jobs.
13270
+ #
13271
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13272
+ # data as a hash:
13273
+ #
13274
+ # {
13275
+ # sns_topic_arn: "SnsTopicArn", # required
13276
+ # }
13277
+ #
13278
+ # @!attribute [rw] sns_topic_arn
13279
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13280
+ # ARN of the input topic you will use to send new data objects to a
13281
+ # streaming labeling job.
13282
+ #
13283
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13284
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13285
+ # @return [String]
13286
+ #
13287
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13288
+ #
13289
+ class LabelingJobSnsDataSource < Struct.new(
13290
+ :sns_topic_arn)
13291
+ SENSITIVE = []
13292
+ include Aws::Structure
13293
+ end
13294
+
13052
13295
  # A set of conditions for stopping a labeling job. If any of the
13053
13296
  # conditions are met, the job is automatically stopped. You can use
13054
13297
  # these conditions to control the cost of data labeling.
@@ -13366,8 +13609,8 @@ module Aws::SageMaker
13366
13609
  # @return [Integer]
13367
13610
  #
13368
13611
  # @!attribute [rw] next_token
13369
- # If the previous response was truncated, you will receive this token.
13370
- # Use it in your next request to receive the next set of results.
13612
+ # If the previous response was truncated, you receive this token. Use
13613
+ # it in your next request to receive the next set of results.
13371
13614
  # @return [String]
13372
13615
  #
13373
13616
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -13392,8 +13635,8 @@ module Aws::SageMaker
13392
13635
  # @return [Array<Types::AutoMLJobSummary>]
13393
13636
  #
13394
13637
  # @!attribute [rw] next_token
13395
- # If the previous response was truncated, you will receive this token.
13396
- # Use it in your next request to receive the next set of results.
13638
+ # If the previous response was truncated, you receive this token. Use
13639
+ # it in your next request to receive the next set of results.
13397
13640
  # @return [String]
13398
13641
  #
13399
13642
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -13445,8 +13688,8 @@ module Aws::SageMaker
13445
13688
  # @return [Integer]
13446
13689
  #
13447
13690
  # @!attribute [rw] next_token
13448
- # If the previous response was truncated, you will receive this token.
13449
- # Use it in your next request to receive the next set of results.
13691
+ # If the previous response was truncated, you receive this token. Use
13692
+ # it in your next request to receive the next set of results.
13450
13693
  # @return [String]
13451
13694
  #
13452
13695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -13468,8 +13711,8 @@ module Aws::SageMaker
13468
13711
  # @return [Array<Types::AutoMLCandidate>]
13469
13712
  #
13470
13713
  # @!attribute [rw] next_token
13471
- # If the previous response was truncated, you will receive this token.
13472
- # Use it in your next request to receive the next set of results.
13714
+ # If the previous response was truncated, you receive this token. Use
13715
+ # it in your next request to receive the next set of results.
13473
13716
  # @return [String]
13474
13717
  #
13475
13718
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -15879,7 +16122,8 @@ module Aws::SageMaker
15879
16122
  include Aws::Structure
15880
16123
  end
15881
16124
 
15882
- # Defines the Amazon Cognito user group that is part of a work team.
16125
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16126
+ # of a work team.
15883
16127
  #
15884
16128
  # @note When making an API call, you may pass MemberDefinition
15885
16129
  # data as a hash:
@@ -16069,6 +16313,11 @@ module Aws::SageMaker
16069
16313
  # The Amazon S3 path where the model artifacts, which result from
16070
16314
  # model training, are stored. This path must point to a single `gzip`
16071
16315
  # compressed tar archive (`.tar.gz` suffix).
16316
+ #
16317
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
16318
+ # region as the model package.
16319
+ #
16320
+ # </note>
16072
16321
  # @return [String]
16073
16322
  #
16074
16323
  # @!attribute [rw] product_id
@@ -17364,7 +17613,7 @@ module Aws::SageMaker
17364
17613
  include Aws::Structure
17365
17614
  end
17366
17615
 
17367
- # Your Amazon Cognito workforce configuration.
17616
+ # Your OIDC IdP workforce configuration.
17368
17617
  #
17369
17618
  # @!attribute [rw] client_id
17370
17619
  # The OIDC IdP client ID used to configure your private workforce.
@@ -17413,7 +17662,7 @@ module Aws::SageMaker
17413
17662
  include Aws::Structure
17414
17663
  end
17415
17664
 
17416
- # A list user groups that exist in your OIDC Identity Provider (IdP).
17665
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17417
17666
  # One to ten groups can be used to create a single private work team.
17418
17667
  # When you add a user group to the list of `Groups`, you can add that
17419
17668
  # user group to one or more private work teams. If you add a user group
@@ -18813,7 +19062,8 @@ module Aws::SageMaker
18813
19062
  # The resolved attributes.
18814
19063
  #
18815
19064
  # @!attribute [rw] auto_ml_job_objective
18816
- # Applies a metric to minimize or maximize for the job's objective.
19065
+ # Specifies a metric to minimize or maximize as the objective of a
19066
+ # job.
18817
19067
  # @return [Types::AutoMLJobObjective]
18818
19068
  #
18819
19069
  # @!attribute [rw] problem_type
@@ -19617,8 +19867,7 @@ module Aws::SageMaker
19617
19867
  #
19618
19868
  # @!attribute [rw] s3_output_path
19619
19869
  # When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
19620
- # to save the notebook cell output. If `S3OutputPath` isn't
19621
- # specified, a default bucket is used.
19870
+ # to save the notebook cell output.
19622
19871
  # @return [String]
19623
19872
  #
19624
19873
  # @!attribute [rw] s3_kms_key_id
@@ -19690,6 +19939,11 @@ module Aws::SageMaker
19690
19939
  # The Amazon S3 path where the model artifacts, which result from
19691
19940
  # model training, are stored. This path must point to a single `gzip`
19692
19941
  # compressed tar archive (`.tar.gz` suffix).
19942
+ #
19943
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
19944
+ # region as the algorithm.
19945
+ #
19946
+ # </note>
19693
19947
  # @return [String]
19694
19948
  #
19695
19949
  # @!attribute [rw] algorithm_name
@@ -19735,7 +19989,9 @@ module Aws::SageMaker
19735
19989
  end
19736
19990
 
19737
19991
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
19738
- # of IP addresses for a private workforce. For more information, see .
19992
+ # of IP addresses for a private workforce. Workers will only be able to
19993
+ # login to their worker portal from an IP address within this range. By
19994
+ # default, a workforce isn't restricted to specific IP addresses.
19739
19995
  #
19740
19996
  #
19741
19997
  #
@@ -20930,7 +21186,12 @@ module Aws::SageMaker
20930
21186
  # request payloads contain the entire contents of an input object. Set
20931
21187
  # the value of this parameter to `Line` to split records on a newline
20932
21188
  # character boundary. `SplitType` also supports a number of
20933
- # record-oriented binary data formats.
21189
+ # record-oriented binary data formats. Currently, the supported record
21190
+ # formats are:
21191
+ #
21192
+ # * RecordIO
21193
+ #
21194
+ # * TFRecord
20934
21195
  #
20935
21196
  # When splitting is enabled, the size of a mini-batch depends on the
20936
21197
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -21877,7 +22138,7 @@ module Aws::SageMaker
21877
22138
  # @return [Types::ProcessingJob]
21878
22139
  #
21879
22140
  # @!attribute [rw] transform_job
21880
- # Information about a transform job that's the source of the trial
22141
+ # Information about a transform job that's the source of a trial
21881
22142
  # component.
21882
22143
  # @return [Types::TransformJob]
21883
22144
  #
@@ -22063,7 +22324,7 @@ module Aws::SageMaker
22063
22324
  # }
22064
22325
  #
22065
22326
  # @!attribute [rw] target_objective_metric_value
22066
- # The objective metric's value.
22327
+ # The value of the objective metric.
22067
22328
  # @return [Float]
22068
22329
  #
22069
22330
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -23050,9 +23311,8 @@ module Aws::SageMaker
23050
23311
  # }
23051
23312
  #
23052
23313
  # @!attribute [rw] workforce_name
23053
- # The name of the private workforce whose access you want to restrict.
23054
- # `WorkforceName` is automatically set to `default` when a workforce
23055
- # is created and cannot be modified.
23314
+ # The name of the private workforce that you want to update. You can
23315
+ # find your workforce name by using the operation.
23056
23316
  # @return [String]
23057
23317
  #
23058
23318
  # @!attribute [rw] source_ip_config
@@ -23082,12 +23342,11 @@ module Aws::SageMaker
23082
23342
  end
23083
23343
 
23084
23344
  # @!attribute [rw] workforce
23085
- # A single private workforce, which is automatically created when you
23086
- # create your first private work team. You can create one private work
23087
- # force in each AWS Region. By default, any workforce-related API
23088
- # operation used in a specific region will apply to the workforce
23089
- # created in that region. To learn how to create a private workforce,
23090
- # see [Create a Private Workforce][1].
23345
+ # A single private workforce. You can create one private work force in
23346
+ # each AWS Region. By default, any workforce-related API operation
23347
+ # used in a specific region will apply to the workforce created in
23348
+ # that region. To learn how to create a private workforce, see [Create
23349
+ # a Private Workforce][1].
23091
23350
  #
23092
23351
  #
23093
23352
  #
@@ -23130,8 +23389,35 @@ module Aws::SageMaker
23130
23389
  # @return [String]
23131
23390
  #
23132
23391
  # @!attribute [rw] member_definitions
23133
- # A list of `MemberDefinition` objects that contain the updated work
23134
- # team members.
23392
+ # A list of `MemberDefinition` objects that contains objects that
23393
+ # identify the workers that make up the work team.
23394
+ #
23395
+ # Workforces can be created using Amazon Cognito or your own OIDC
23396
+ # Identity Provider (IdP). For private workforces created using Amazon
23397
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23398
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23399
+ # You should not provide input for both of these parameters in a
23400
+ # single request.
23401
+ #
23402
+ # For workforces created using Amazon Cognito, private work teams
23403
+ # correspond to Amazon Cognito *user groups* within the user pool used
23404
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23405
+ # that make up the member definition must have the same `ClientId` and
23406
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23407
+ # worker pool, see [Adding groups to a User Pool](). For more
23408
+ # information about user pools, see [Amazon Cognito User Pools][1].
23409
+ #
23410
+ # For workforces created using your own OIDC IdP, specify the user
23411
+ # groups that you want to include in your private work team in
23412
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23413
+ # that user groups that are already in the work team must also be
23414
+ # listed in `Groups` when you make this request to remain on the work
23415
+ # team. If you do not include these user groups, they will no longer
23416
+ # be associated with the work team you update.
23417
+ #
23418
+ #
23419
+ #
23420
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23135
23421
  # @return [Array<Types::MemberDefinition>]
23136
23422
  #
23137
23423
  # @!attribute [rw] description
@@ -23407,7 +23693,8 @@ module Aws::SageMaker
23407
23693
  #
23408
23694
  # @!attribute [rw] source_ip_config
23409
23695
  # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23410
- # the workforce allow list.
23696
+ # the workforce allow list. By default, a workforce isn't restricted
23697
+ # to specific IP addresses.
23411
23698
  #
23412
23699
  #
23413
23700
  #
@@ -23459,7 +23746,13 @@ module Aws::SageMaker
23459
23746
  # @return [String]
23460
23747
  #
23461
23748
  # @!attribute [rw] member_definitions
23462
- # The Amazon Cognito user groups that make up the work team.
23749
+ # A list of `MemberDefinition` objects that contains objects that
23750
+ # identify the workers that make up the work team.
23751
+ #
23752
+ # Workforces can be created using Amazon Cognito or your own OIDC
23753
+ # Identity Provider (IdP). For private workforces created using Amazon
23754
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23755
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23463
23756
  # @return [Array<Types::MemberDefinition>]
23464
23757
  #
23465
23758
  # @!attribute [rw] workteam_arn