aws-sdk-sagemaker 1.64.0 → 1.69.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +3 -2
- data/lib/aws-sdk-sagemaker/client.rb +236 -85
- data/lib/aws-sdk-sagemaker/client_api.rb +16 -0
- data/lib/aws-sdk-sagemaker/types.rb +379 -86
- metadata +4 -4
@@ -37,6 +37,7 @@ module Aws::SageMaker
|
|
37
37
|
AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
|
38
38
|
AppList = Shapes::ListShape.new(name: 'AppList')
|
39
39
|
AppName = Shapes::StringShape.new(name: 'AppName')
|
40
|
+
AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
|
40
41
|
AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
|
41
42
|
AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
|
42
43
|
AppStatus = Shapes::StringShape.new(name: 'AppStatus')
|
@@ -429,6 +430,7 @@ module Aws::SageMaker
|
|
429
430
|
HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
|
430
431
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
431
432
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
433
|
+
ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
|
432
434
|
ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
|
433
435
|
ImageUri = Shapes::StringShape.new(name: 'ImageUri')
|
434
436
|
InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
|
@@ -467,6 +469,7 @@ module Aws::SageMaker
|
|
467
469
|
LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
|
468
470
|
LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
|
469
471
|
LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
|
472
|
+
LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
|
470
473
|
LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
|
471
474
|
LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
|
472
475
|
LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
|
@@ -722,6 +725,7 @@ module Aws::SageMaker
|
|
722
725
|
RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
|
723
726
|
RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
|
724
727
|
RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
|
728
|
+
RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
|
725
729
|
ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
|
726
730
|
ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
|
727
731
|
ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
|
@@ -768,6 +772,7 @@ module Aws::SageMaker
|
|
768
772
|
SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
|
769
773
|
ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
|
770
774
|
SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
|
775
|
+
SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
|
771
776
|
SortBy = Shapes::StringShape.new(name: 'SortBy')
|
772
777
|
SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
|
773
778
|
SortOrder = Shapes::StringShape.new(name: 'SortOrder')
|
@@ -1199,6 +1204,7 @@ module Aws::SageMaker
|
|
1199
1204
|
|
1200
1205
|
ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
|
1201
1206
|
ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
|
1207
|
+
ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
|
1202
1208
|
ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
|
1203
1209
|
ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
|
1204
1210
|
ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -1285,6 +1291,7 @@ module Aws::SageMaker
|
|
1285
1291
|
CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
|
1286
1292
|
CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1287
1293
|
CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
|
1294
|
+
CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1288
1295
|
CreateDomainRequest.struct_class = Types::CreateDomainRequest
|
1289
1296
|
|
1290
1297
|
CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
|
@@ -1798,6 +1805,7 @@ module Aws::SageMaker
|
|
1798
1805
|
DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
|
1799
1806
|
DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
|
1800
1807
|
DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
|
1808
|
+
DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1801
1809
|
DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
|
1802
1810
|
|
1803
1811
|
DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
|
@@ -2414,6 +2422,9 @@ module Aws::SageMaker
|
|
2414
2422
|
HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
2415
2423
|
HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
|
2416
2424
|
|
2425
|
+
ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
|
2426
|
+
ImageConfig.struct_class = Types::ImageConfig
|
2427
|
+
|
2417
2428
|
InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
|
2418
2429
|
InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
|
2419
2430
|
InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
|
@@ -2471,6 +2482,7 @@ module Aws::SageMaker
|
|
2471
2482
|
LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
|
2472
2483
|
|
2473
2484
|
LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
|
2485
|
+
LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
|
2474
2486
|
LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
|
2475
2487
|
|
2476
2488
|
LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
|
@@ -2493,6 +2505,7 @@ module Aws::SageMaker
|
|
2493
2505
|
|
2494
2506
|
LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
2495
2507
|
LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
2508
|
+
LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
|
2496
2509
|
LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
|
2497
2510
|
|
2498
2511
|
LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
|
@@ -2501,6 +2514,9 @@ module Aws::SageMaker
|
|
2501
2514
|
LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
|
2502
2515
|
LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
|
2503
2516
|
|
2517
|
+
LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
|
2518
|
+
LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
|
2519
|
+
|
2504
2520
|
LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
|
2505
2521
|
LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
|
2506
2522
|
LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
|
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
|
|
1285
1285
|
include Aws::Structure
|
1286
1286
|
end
|
1287
1287
|
|
1288
|
-
# An
|
1288
|
+
# An Autopilot job returns recommendations, or candidates. Each
|
1289
1289
|
# candidate has futher details about the steps involed, and the status.
|
1290
1290
|
#
|
1291
1291
|
# @!attribute [rw] candidate_name
|
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
|
|
1293
1293
|
# @return [String]
|
1294
1294
|
#
|
1295
1295
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
1296
|
-
# The candidate result from
|
1296
|
+
# The best candidate result from an AutoML training job.
|
1297
1297
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1298
1298
|
#
|
1299
1299
|
# @!attribute [rw] objective_status
|
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
|
|
1440
1440
|
include Aws::Structure
|
1441
1441
|
end
|
1442
1442
|
|
1443
|
-
# The data source for the
|
1443
|
+
# The data source for the Autopilot job.
|
1444
1444
|
#
|
1445
1445
|
# @note When making an API call, you may pass AutoMLDataSource
|
1446
1446
|
# data as a hash:
|
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
|
|
1455
1455
|
# @!attribute [rw] s3_data_source
|
1456
1456
|
# The Amazon S3 location of the input data.
|
1457
1457
|
#
|
1458
|
-
# <note markdown="1"> The input data must be in CSV format and contain at least
|
1458
|
+
# <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
|
1459
1459
|
#
|
1460
1460
|
# </note>
|
1461
1461
|
# @return [Types::AutoMLS3DataSource]
|
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
|
|
1563
1563
|
include Aws::Structure
|
1564
1564
|
end
|
1565
1565
|
|
1566
|
-
#
|
1566
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1567
1567
|
#
|
1568
1568
|
# @note When making an API call, you may pass AutoMLJobObjective
|
1569
1569
|
# data as a hash:
|
1570
1570
|
#
|
1571
1571
|
# {
|
1572
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
1572
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
1573
1573
|
# }
|
1574
1574
|
#
|
1575
1575
|
# @!attribute [rw] metric_name
|
1576
|
-
# The name of the metric
|
1576
|
+
# The name of the objective metric used to measure the predictive
|
1577
|
+
# quality of a machine learning system. This metric is optimized
|
1578
|
+
# during training to provide the best estimate for model parameter
|
1579
|
+
# values from data.
|
1580
|
+
#
|
1581
|
+
# Here are the options:
|
1582
|
+
#
|
1583
|
+
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
1584
|
+
# differences between the predicted and actual values. It is used
|
1585
|
+
# for regression. MSE values are always positive, the better a model
|
1586
|
+
# is at predicting the actual values the smaller the MSE value. When
|
1587
|
+
# the data contains outliers, they tend to dominate the MSE which
|
1588
|
+
# might cause subpar prediction performance.
|
1589
|
+
#
|
1590
|
+
# * `Accuracy`\: The ratio of the number correctly classified items to
|
1591
|
+
# the total number (correctly and incorrectly) classified. It is
|
1592
|
+
# used for binary and multiclass classification. Measures how close
|
1593
|
+
# the predicted class values are to the actual values. Accuracy
|
1594
|
+
# values vary between zero and one, one being perfect accuracy and
|
1595
|
+
# zero perfect inaccuracy.
|
1596
|
+
#
|
1597
|
+
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
1598
|
+
# recall. It is used for binary classification into classes
|
1599
|
+
# traditionally referred to as positive and negative. Predictions
|
1600
|
+
# are said to be true when they match their actual (correct) class;
|
1601
|
+
# false when they do not. Precision is the ratio of the true
|
1602
|
+
# positive predictions to all positive predictions (including the
|
1603
|
+
# false positives) in a data set and measures the quality of the
|
1604
|
+
# prediction when it predicts the positive class. Recall (or
|
1605
|
+
# sensitivity) is the ratio of the true positive predictions to all
|
1606
|
+
# actual positive instances and measures how completely a model
|
1607
|
+
# predicts the actual class members in a data set. The standard F1
|
1608
|
+
# score weighs precision and recall equally. But which metric is
|
1609
|
+
# paramount typically depends on specific aspects of a problem. F1
|
1610
|
+
# scores vary between zero and one, one being the best possible
|
1611
|
+
# performance and zero the worst.
|
1612
|
+
#
|
1613
|
+
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
1614
|
+
# and evaluate binary classification by algorithms such as logistic
|
1615
|
+
# regression that return probabilities. A threshold is needed to map
|
1616
|
+
# the probabilities into classifications. The relevant curve is the
|
1617
|
+
# receiver operating characteristic curve that plots the true
|
1618
|
+
# positive rate (TPR) of predictions (or recall) against the false
|
1619
|
+
# positive rate (FPR) as a function of the threshold value, above
|
1620
|
+
# which a prediction is considered positive. Increasing the
|
1621
|
+
# threshold results in fewer false positives but more false
|
1622
|
+
# negatives. AUC is the area under this receiver operating
|
1623
|
+
# characteristic curve and so provides an aggregated measure of the
|
1624
|
+
# model performance across all possible classification thresholds.
|
1625
|
+
# The AUC score can also be interpreted as the probability that a
|
1626
|
+
# randomly selected positive data point is more likely to be
|
1627
|
+
# predicted positive than a randomly selected negative example. AUC
|
1628
|
+
# scores vary between zero and one, one being perfect accuracy and
|
1629
|
+
# one half not better than a random classifier. Values less that one
|
1630
|
+
# half predict worse than a random predictor and such consistently
|
1631
|
+
# bad predictors can be inverted to obtain better than random
|
1632
|
+
# predictors.
|
1633
|
+
#
|
1634
|
+
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
1635
|
+
# classification. In this context, you have multiple classes to
|
1636
|
+
# predict. You just calculate the precision and recall for each
|
1637
|
+
# class as you did for the positive class in binary classification.
|
1638
|
+
# Then used these values to calculate the F1 score for each class
|
1639
|
+
# and average them to obtain the F1macro score. F1macro scores vary
|
1640
|
+
# between zero and one, one being the best possible performance and
|
1641
|
+
# zero the worst.
|
1642
|
+
#
|
1643
|
+
# If you do not specify a metric explicitly, the default behavior is
|
1644
|
+
# to automatically use:
|
1645
|
+
#
|
1646
|
+
# * `MSE`\: for regression.
|
1647
|
+
#
|
1648
|
+
# * `F1`\: for binary classification
|
1649
|
+
#
|
1650
|
+
# * `Accuracy`\: for multiclass classification.
|
1577
1651
|
# @return [String]
|
1578
1652
|
#
|
1579
1653
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
|
|
1607
1681
|
# @return [Time]
|
1608
1682
|
#
|
1609
1683
|
# @!attribute [rw] end_time
|
1610
|
-
# The end time.
|
1684
|
+
# The end time of an AutoML job.
|
1611
1685
|
# @return [Time]
|
1612
1686
|
#
|
1613
1687
|
# @!attribute [rw] last_modified_time
|
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
|
|
1615
1689
|
# @return [Time]
|
1616
1690
|
#
|
1617
1691
|
# @!attribute [rw] failure_reason
|
1618
|
-
# The failure reason.
|
1692
|
+
# The failure reason of a job.
|
1619
1693
|
# @return [String]
|
1620
1694
|
#
|
1621
1695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
|
|
2249
2323
|
# {
|
2250
2324
|
# container_hostname: "ContainerHostname",
|
2251
2325
|
# image: "ContainerImage",
|
2326
|
+
# image_config: {
|
2327
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2328
|
+
# },
|
2252
2329
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2253
2330
|
# model_data_url: "Url",
|
2254
2331
|
# environment: {
|
@@ -2279,19 +2356,33 @@ module Aws::SageMaker
|
|
2279
2356
|
# @return [String]
|
2280
2357
|
#
|
2281
2358
|
# @!attribute [rw] image
|
2282
|
-
# The
|
2283
|
-
#
|
2284
|
-
#
|
2285
|
-
#
|
2286
|
-
#
|
2287
|
-
#
|
2288
|
-
#
|
2359
|
+
# The path where inference code is stored. This can be either in
|
2360
|
+
# Amazon EC2 Container Registry or in a Docker registry that is
|
2361
|
+
# accessible from the same VPC that you configure for your endpoint.
|
2362
|
+
# If you are using your own custom algorithm instead of an algorithm
|
2363
|
+
# provided by Amazon SageMaker, the inference code must meet Amazon
|
2364
|
+
# SageMaker requirements. Amazon SageMaker supports both
|
2365
|
+
# `registry/repository[:tag]` and `registry/repository[@digest]` image
|
2366
|
+
# path formats. For more information, see [Using Your Own Algorithms
|
2367
|
+
# with Amazon SageMaker][1]
|
2289
2368
|
#
|
2290
2369
|
#
|
2291
2370
|
#
|
2292
2371
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
2293
2372
|
# @return [String]
|
2294
2373
|
#
|
2374
|
+
# @!attribute [rw] image_config
|
2375
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
2376
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
2377
|
+
# (VPC). For information about storing containers in a private Docker
|
2378
|
+
# registry, see [Use a Private Docker Registry for Real-Time Inference
|
2379
|
+
# Containers][1]
|
2380
|
+
#
|
2381
|
+
#
|
2382
|
+
#
|
2383
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
|
2384
|
+
# @return [Types::ImageConfig]
|
2385
|
+
#
|
2295
2386
|
# @!attribute [rw] mode
|
2296
2387
|
# Whether the container hosts a single model or multiple models.
|
2297
2388
|
# @return [String]
|
@@ -2304,6 +2395,11 @@ module Aws::SageMaker
|
|
2304
2395
|
# algorithms. For more information on built-in algorithms, see [Common
|
2305
2396
|
# Parameters][1].
|
2306
2397
|
#
|
2398
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
2399
|
+
# region as the model or endpoint you are creating.
|
2400
|
+
#
|
2401
|
+
# </note>
|
2402
|
+
#
|
2307
2403
|
# If you provide a value for this parameter, Amazon SageMaker uses AWS
|
2308
2404
|
# Security Token Service to download model artifacts from the S3 path
|
2309
2405
|
# you provide. AWS STS is activated in your IAM user account by
|
@@ -2338,6 +2434,7 @@ module Aws::SageMaker
|
|
2338
2434
|
class ContainerDefinition < Struct.new(
|
2339
2435
|
:container_hostname,
|
2340
2436
|
:image,
|
2437
|
+
:image_config,
|
2341
2438
|
:mode,
|
2342
2439
|
:model_data_url,
|
2343
2440
|
:environment,
|
@@ -2783,7 +2880,7 @@ module Aws::SageMaker
|
|
2783
2880
|
# },
|
2784
2881
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
2785
2882
|
# auto_ml_job_objective: {
|
2786
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
2883
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
2787
2884
|
# },
|
2788
2885
|
# auto_ml_job_config: {
|
2789
2886
|
# completion_criteria: {
|
@@ -2811,13 +2908,13 @@ module Aws::SageMaker
|
|
2811
2908
|
# }
|
2812
2909
|
#
|
2813
2910
|
# @!attribute [rw] auto_ml_job_name
|
2814
|
-
# Identifies an
|
2911
|
+
# Identifies an Autopilot job. Must be unique to your account and is
|
2815
2912
|
# case-insensitive.
|
2816
2913
|
# @return [String]
|
2817
2914
|
#
|
2818
2915
|
# @!attribute [rw] input_data_config
|
2819
2916
|
# Similar to InputDataConfig supported by Tuning. Format(s) supported:
|
2820
|
-
# CSV. Minimum of
|
2917
|
+
# CSV. Minimum of 500 rows.
|
2821
2918
|
# @return [Array<Types::AutoMLChannel>]
|
2822
2919
|
#
|
2823
2920
|
# @!attribute [rw] output_data_config
|
@@ -2832,9 +2929,11 @@ module Aws::SageMaker
|
|
2832
2929
|
# @return [String]
|
2833
2930
|
#
|
2834
2931
|
# @!attribute [rw] auto_ml_job_objective
|
2835
|
-
# Defines the job
|
2836
|
-
#
|
2837
|
-
#
|
2932
|
+
# Defines the objective of a an AutoML job. You provide a
|
2933
|
+
# AutoMLJobObjective$MetricName and Autopilot infers whether to
|
2934
|
+
# minimize or maximize it. If a metric is not specified, the most
|
2935
|
+
# commonly used ObjectiveMetric for problem type is automaically
|
2936
|
+
# selected.
|
2838
2937
|
# @return [Types::AutoMLJobObjective]
|
2839
2938
|
#
|
2840
2939
|
# @!attribute [rw] auto_ml_job_config
|
@@ -2842,13 +2941,13 @@ module Aws::SageMaker
|
|
2842
2941
|
# @return [Types::AutoMLJobConfig]
|
2843
2942
|
#
|
2844
2943
|
# @!attribute [rw] role_arn
|
2845
|
-
# The ARN of the role that
|
2944
|
+
# The ARN of the role that is used to access the data.
|
2846
2945
|
# @return [String]
|
2847
2946
|
#
|
2848
2947
|
# @!attribute [rw] generate_candidate_definitions_only
|
2849
|
-
#
|
2850
|
-
#
|
2851
|
-
#
|
2948
|
+
# Generates possible candidates without training a model. A candidate
|
2949
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
2950
|
+
# parameter settings.
|
2852
2951
|
# @return [Boolean]
|
2853
2952
|
#
|
2854
2953
|
# @!attribute [rw] tags
|
@@ -3074,6 +3173,7 @@ module Aws::SageMaker
|
|
3074
3173
|
# },
|
3075
3174
|
# ],
|
3076
3175
|
# home_efs_file_system_kms_key_id: "KmsKeyId",
|
3176
|
+
# app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
|
3077
3177
|
# }
|
3078
3178
|
#
|
3079
3179
|
# @!attribute [rw] domain_name
|
@@ -3089,12 +3189,12 @@ module Aws::SageMaker
|
|
3089
3189
|
# @return [Types::UserSettings]
|
3090
3190
|
#
|
3091
3191
|
# @!attribute [rw] subnet_ids
|
3092
|
-
# The VPC subnets
|
3192
|
+
# The VPC subnets that Studio uses for communication.
|
3093
3193
|
# @return [Array<String>]
|
3094
3194
|
#
|
3095
3195
|
# @!attribute [rw] vpc_id
|
3096
|
-
# The ID of the Amazon Virtual Private Cloud (VPC)
|
3097
|
-
# communication
|
3196
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
3197
|
+
# for communication.
|
3098
3198
|
# @return [String]
|
3099
3199
|
#
|
3100
3200
|
# @!attribute [rw] tags
|
@@ -3108,6 +3208,17 @@ module Aws::SageMaker
|
|
3108
3208
|
# with a customer master key (CMK) is not supported.
|
3109
3209
|
# @return [String]
|
3110
3210
|
#
|
3211
|
+
# @!attribute [rw] app_network_access_type
|
3212
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
3213
|
+
# `PublicInternetOnly`.
|
3214
|
+
#
|
3215
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
3216
|
+
# Amazon SageMaker, which allows direct internet access
|
3217
|
+
#
|
3218
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
3219
|
+
# subnets
|
3220
|
+
# @return [String]
|
3221
|
+
#
|
3111
3222
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
|
3112
3223
|
#
|
3113
3224
|
class CreateDomainRequest < Struct.new(
|
@@ -3117,7 +3228,8 @@ module Aws::SageMaker
|
|
3117
3228
|
:subnet_ids,
|
3118
3229
|
:vpc_id,
|
3119
3230
|
:tags,
|
3120
|
-
:home_efs_file_system_kms_key_id
|
3231
|
+
:home_efs_file_system_kms_key_id,
|
3232
|
+
:app_network_access_type)
|
3121
3233
|
SENSITIVE = []
|
3122
3234
|
include Aws::Structure
|
3123
3235
|
end
|
@@ -3906,6 +4018,9 @@ module Aws::SageMaker
|
|
3906
4018
|
# s3_data_source: {
|
3907
4019
|
# manifest_s3_uri: "S3Uri", # required
|
3908
4020
|
# },
|
4021
|
+
# sns_data_source: {
|
4022
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
4023
|
+
# },
|
3909
4024
|
# },
|
3910
4025
|
# data_attributes: {
|
3911
4026
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -3914,6 +4029,7 @@ module Aws::SageMaker
|
|
3914
4029
|
# output_config: { # required
|
3915
4030
|
# s3_output_path: "S3Uri", # required
|
3916
4031
|
# kms_key_id: "KmsKeyId",
|
4032
|
+
# sns_topic_arn: "SnsTopicArn",
|
3917
4033
|
# },
|
3918
4034
|
# role_arn: "RoleArn", # required
|
3919
4035
|
# label_category_config_s3_uri: "S3Uri",
|
@@ -4108,6 +4224,9 @@ module Aws::SageMaker
|
|
4108
4224
|
# primary_container: {
|
4109
4225
|
# container_hostname: "ContainerHostname",
|
4110
4226
|
# image: "ContainerImage",
|
4227
|
+
# image_config: {
|
4228
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4229
|
+
# },
|
4111
4230
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4112
4231
|
# model_data_url: "Url",
|
4113
4232
|
# environment: {
|
@@ -4119,6 +4238,9 @@ module Aws::SageMaker
|
|
4119
4238
|
# {
|
4120
4239
|
# container_hostname: "ContainerHostname",
|
4121
4240
|
# image: "ContainerImage",
|
4241
|
+
# image_config: {
|
4242
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4243
|
+
# },
|
4122
4244
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4123
4245
|
# model_data_url: "Url",
|
4124
4246
|
# environment: {
|
@@ -5844,14 +5966,17 @@ module Aws::SageMaker
|
|
5844
5966
|
#
|
5845
5967
|
# @!attribute [rw] oidc_config
|
5846
5968
|
# Use this parameter to configure a private workforce using your own
|
5847
|
-
# OIDC Identity Provider.
|
5848
|
-
#
|
5969
|
+
# OIDC Identity Provider.
|
5970
|
+
#
|
5971
|
+
# Do not use `CognitoConfig` if you specify values for `OidcConfig`.
|
5849
5972
|
# @return [Types::OidcConfig]
|
5850
5973
|
#
|
5851
5974
|
# @!attribute [rw] source_ip_config
|
5852
5975
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow
|
5853
|
-
# list of IP addresses for a private workforce.
|
5854
|
-
#
|
5976
|
+
# list of IP addresses for a private workforce. Workers will only be
|
5977
|
+
# able to login to their worker portal from an IP address within this
|
5978
|
+
# range. By default, a workforce isn't restricted to specific IP
|
5979
|
+
# addresses.
|
5855
5980
|
#
|
5856
5981
|
#
|
5857
5982
|
#
|
@@ -5932,11 +6057,25 @@ module Aws::SageMaker
|
|
5932
6057
|
#
|
5933
6058
|
# @!attribute [rw] member_definitions
|
5934
6059
|
# A list of `MemberDefinition` objects that contains objects that
|
5935
|
-
# identify the
|
5936
|
-
#
|
6060
|
+
# identify the workers that make up the work team.
|
6061
|
+
#
|
6062
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
6063
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
6064
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
6065
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
|
6066
|
+
# not provide input for both of these parameters in a single request.
|
5937
6067
|
#
|
5938
|
-
#
|
5939
|
-
#
|
6068
|
+
# For workforces created using Amazon Cognito, private work teams
|
6069
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
6070
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
6071
|
+
# that make up the member definition must have the same `ClientId` and
|
6072
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
6073
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
6074
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
6075
|
+
#
|
6076
|
+
# For workforces created using your own OIDC IdP, specify the user
|
6077
|
+
# groups that you want to include in your private work team in
|
6078
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`.
|
5940
6079
|
#
|
5941
6080
|
#
|
5942
6081
|
#
|
@@ -7402,7 +7541,7 @@ module Aws::SageMaker
|
|
7402
7541
|
# @return [String]
|
7403
7542
|
#
|
7404
7543
|
# @!attribute [rw] subnet_ids
|
7405
|
-
#
|
7544
|
+
# The VPC subnets that Studio uses for communication.
|
7406
7545
|
# @return [Array<String>]
|
7407
7546
|
#
|
7408
7547
|
# @!attribute [rw] url
|
@@ -7410,7 +7549,19 @@ module Aws::SageMaker
|
|
7410
7549
|
# @return [String]
|
7411
7550
|
#
|
7412
7551
|
# @!attribute [rw] vpc_id
|
7413
|
-
# The ID of the Amazon Virtual Private Cloud
|
7552
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
7553
|
+
# for communication.
|
7554
|
+
# @return [String]
|
7555
|
+
#
|
7556
|
+
# @!attribute [rw] app_network_access_type
|
7557
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
7558
|
+
# `PublicInternetOnly`.
|
7559
|
+
#
|
7560
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
7561
|
+
# Amazon SageMaker, which allows direct internet access
|
7562
|
+
#
|
7563
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
7564
|
+
# subnets
|
7414
7565
|
# @return [String]
|
7415
7566
|
#
|
7416
7567
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
|
@@ -7430,7 +7581,8 @@ module Aws::SageMaker
|
|
7430
7581
|
:home_efs_file_system_kms_key_id,
|
7431
7582
|
:subnet_ids,
|
7432
7583
|
:url,
|
7433
|
-
:vpc_id
|
7584
|
+
:vpc_id,
|
7585
|
+
:app_network_access_type)
|
7434
7586
|
SENSITIVE = []
|
7435
7587
|
include Aws::Structure
|
7436
7588
|
end
|
@@ -8841,7 +8993,7 @@ module Aws::SageMaker
|
|
8841
8993
|
# : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
|
8842
8994
|
# maximum allowed runtime.
|
8843
8995
|
#
|
8844
|
-
# * `
|
8996
|
+
# * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
|
8845
8997
|
# maximum allowed wait time.
|
8846
8998
|
#
|
8847
8999
|
# * `Stopped` - The training job has stopped.
|
@@ -10210,18 +10362,19 @@ module Aws::SageMaker
|
|
10210
10362
|
include Aws::Structure
|
10211
10363
|
end
|
10212
10364
|
|
10213
|
-
# The candidate result from
|
10365
|
+
# The best candidate result from an AutoML training job.
|
10214
10366
|
#
|
10215
10367
|
# @!attribute [rw] type
|
10216
|
-
# The metric
|
10368
|
+
# The type of metric with the best result.
|
10217
10369
|
# @return [String]
|
10218
10370
|
#
|
10219
10371
|
# @!attribute [rw] metric_name
|
10220
|
-
# The name of the metric.
|
10372
|
+
# The name of the metric with the best result. For a description of
|
10373
|
+
# the possible objective metrics, see AutoMLJobObjective$MetricName.
|
10221
10374
|
# @return [String]
|
10222
10375
|
#
|
10223
10376
|
# @!attribute [rw] value
|
10224
|
-
# The value of the metric.
|
10377
|
+
# The value of the metric with the best result.
|
10225
10378
|
# @return [Float]
|
10226
10379
|
#
|
10227
10380
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
|
@@ -10539,12 +10692,13 @@ module Aws::SageMaker
|
|
10539
10692
|
# @return [Integer]
|
10540
10693
|
#
|
10541
10694
|
# @!attribute [rw] task_availability_lifetime_in_seconds
|
10542
|
-
# The length of time that a task remains available for
|
10543
|
-
#
|
10695
|
+
# The length of time that a task remains available for review by human
|
10696
|
+
# workers.
|
10544
10697
|
# @return [Integer]
|
10545
10698
|
#
|
10546
10699
|
# @!attribute [rw] task_time_limit_in_seconds
|
10547
|
-
# The amount of time that a worker has to complete a task.
|
10700
|
+
# The amount of time that a worker has to complete a task. The default
|
10701
|
+
# value is 3,600 seconds (1 hour)
|
10548
10702
|
# @return [Integer]
|
10549
10703
|
#
|
10550
10704
|
# @!attribute [rw] task_keywords
|
@@ -12362,6 +12516,34 @@ module Aws::SageMaker
|
|
12362
12516
|
include Aws::Structure
|
12363
12517
|
end
|
12364
12518
|
|
12519
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
12520
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
12521
|
+
# (VPC).
|
12522
|
+
#
|
12523
|
+
# @note When making an API call, you may pass ImageConfig
|
12524
|
+
# data as a hash:
|
12525
|
+
#
|
12526
|
+
# {
|
12527
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
12528
|
+
# }
|
12529
|
+
#
|
12530
|
+
# @!attribute [rw] repository_access_mode
|
12531
|
+
# Set this to one of the following values:
|
12532
|
+
#
|
12533
|
+
# * `Platform` - The model image is hosted in Amazon ECR.
|
12534
|
+
#
|
12535
|
+
# * `Vpc` - The model image is hosted in a private Docker registry in
|
12536
|
+
# your VPC.
|
12537
|
+
# @return [String]
|
12538
|
+
#
|
12539
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
|
12540
|
+
#
|
12541
|
+
class ImageConfig < Struct.new(
|
12542
|
+
:repository_access_mode)
|
12543
|
+
SENSITIVE = []
|
12544
|
+
include Aws::Structure
|
12545
|
+
end
|
12546
|
+
|
12365
12547
|
# Defines how to perform inference generation after a training job is
|
12366
12548
|
# run.
|
12367
12549
|
#
|
@@ -12785,10 +12967,10 @@ module Aws::SageMaker
|
|
12785
12967
|
# @return [String]
|
12786
12968
|
#
|
12787
12969
|
# @!attribute [rw] initial_active_learning_model_arn
|
12788
|
-
# At the end of an auto-label job
|
12789
|
-
#
|
12790
|
-
#
|
12791
|
-
#
|
12970
|
+
# At the end of an auto-label job Ground Truth sends the Amazon
|
12971
|
+
# Resource Name (ARN) of the final model used for auto-labeling. You
|
12972
|
+
# can use this model as the starting point for subsequent similar jobs
|
12973
|
+
# by providing the ARN of the model here.
|
12792
12974
|
# @return [String]
|
12793
12975
|
#
|
12794
12976
|
# @!attribute [rw] labeling_job_resource_config
|
@@ -12832,6 +13014,18 @@ module Aws::SageMaker
|
|
12832
13014
|
|
12833
13015
|
# Provides information about the location of input data.
|
12834
13016
|
#
|
13017
|
+
# You must specify at least one of the following: `S3DataSource` or
|
13018
|
+
# `SnsDataSource`.
|
13019
|
+
#
|
13020
|
+
# Use `SnsDataSource` to specify an SNS input topic for a streaming
|
13021
|
+
# labeling job. If you do not specify and SNS input topic ARN, Ground
|
13022
|
+
# Truth will create a one-time labeling job.
|
13023
|
+
#
|
13024
|
+
# Use `S3DataSource` to specify an input manifest file for both
|
13025
|
+
# streaming and one-time labeling jobs. Adding an `S3DataSource` is
|
13026
|
+
# optional if you use `SnsDataSource` to create a streaming labeling
|
13027
|
+
# job.
|
13028
|
+
#
|
12835
13029
|
# @note When making an API call, you may pass LabelingJobDataSource
|
12836
13030
|
# data as a hash:
|
12837
13031
|
#
|
@@ -12839,16 +13033,24 @@ module Aws::SageMaker
|
|
12839
13033
|
# s3_data_source: {
|
12840
13034
|
# manifest_s3_uri: "S3Uri", # required
|
12841
13035
|
# },
|
13036
|
+
# sns_data_source: {
|
13037
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13038
|
+
# },
|
12842
13039
|
# }
|
12843
13040
|
#
|
12844
13041
|
# @!attribute [rw] s3_data_source
|
12845
13042
|
# The Amazon S3 location of the input data objects.
|
12846
13043
|
# @return [Types::LabelingJobS3DataSource]
|
12847
13044
|
#
|
13045
|
+
# @!attribute [rw] sns_data_source
|
13046
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13047
|
+
# @return [Types::LabelingJobSnsDataSource]
|
13048
|
+
#
|
12848
13049
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
12849
13050
|
#
|
12850
13051
|
class LabelingJobDataSource < Struct.new(
|
12851
|
-
:s3_data_source
|
13052
|
+
:s3_data_source,
|
13053
|
+
:sns_data_source)
|
12852
13054
|
SENSITIVE = []
|
12853
13055
|
include Aws::Structure
|
12854
13056
|
end
|
@@ -12902,6 +13104,9 @@ module Aws::SageMaker
|
|
12902
13104
|
# s3_data_source: {
|
12903
13105
|
# manifest_s3_uri: "S3Uri", # required
|
12904
13106
|
# },
|
13107
|
+
# sns_data_source: {
|
13108
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13109
|
+
# },
|
12905
13110
|
# },
|
12906
13111
|
# data_attributes: {
|
12907
13112
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -12953,6 +13158,7 @@ module Aws::SageMaker
|
|
12953
13158
|
# {
|
12954
13159
|
# s3_output_path: "S3Uri", # required
|
12955
13160
|
# kms_key_id: "KmsKeyId",
|
13161
|
+
# sns_topic_arn: "SnsTopicArn",
|
12956
13162
|
# }
|
12957
13163
|
#
|
12958
13164
|
# @!attribute [rw] s3_output_path
|
@@ -12986,11 +13192,22 @@ module Aws::SageMaker
|
|
12986
13192
|
# [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
12987
13193
|
# @return [String]
|
12988
13194
|
#
|
13195
|
+
# @!attribute [rw] sns_topic_arn
|
13196
|
+
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
13197
|
+
#
|
13198
|
+
# When workers complete labeling tasks, Ground Truth will send
|
13199
|
+
# labeling task output data to the SNS output topic you specify here.
|
13200
|
+
#
|
13201
|
+
# You must provide a value for this parameter if you provide an Amazon
|
13202
|
+
# SNS input topic in `SnsDataSource` in `InputConfig`.
|
13203
|
+
# @return [String]
|
13204
|
+
#
|
12989
13205
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
12990
13206
|
#
|
12991
13207
|
class LabelingJobOutputConfig < Struct.new(
|
12992
13208
|
:s3_output_path,
|
12993
|
-
:kms_key_id
|
13209
|
+
:kms_key_id,
|
13210
|
+
:sns_topic_arn)
|
12994
13211
|
SENSITIVE = []
|
12995
13212
|
include Aws::Structure
|
12996
13213
|
end
|
@@ -13049,6 +13266,32 @@ module Aws::SageMaker
|
|
13049
13266
|
include Aws::Structure
|
13050
13267
|
end
|
13051
13268
|
|
13269
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13270
|
+
#
|
13271
|
+
# @note When making an API call, you may pass LabelingJobSnsDataSource
|
13272
|
+
# data as a hash:
|
13273
|
+
#
|
13274
|
+
# {
|
13275
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13276
|
+
# }
|
13277
|
+
#
|
13278
|
+
# @!attribute [rw] sns_topic_arn
|
13279
|
+
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
13280
|
+
# ARN of the input topic you will use to send new data objects to a
|
13281
|
+
# streaming labeling job.
|
13282
|
+
#
|
13283
|
+
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
13284
|
+
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
13285
|
+
# @return [String]
|
13286
|
+
#
|
13287
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
13288
|
+
#
|
13289
|
+
class LabelingJobSnsDataSource < Struct.new(
|
13290
|
+
:sns_topic_arn)
|
13291
|
+
SENSITIVE = []
|
13292
|
+
include Aws::Structure
|
13293
|
+
end
|
13294
|
+
|
13052
13295
|
# A set of conditions for stopping a labeling job. If any of the
|
13053
13296
|
# conditions are met, the job is automatically stopped. You can use
|
13054
13297
|
# these conditions to control the cost of data labeling.
|
@@ -13366,8 +13609,8 @@ module Aws::SageMaker
|
|
13366
13609
|
# @return [Integer]
|
13367
13610
|
#
|
13368
13611
|
# @!attribute [rw] next_token
|
13369
|
-
# If the previous response was truncated, you
|
13370
|
-
#
|
13612
|
+
# If the previous response was truncated, you receive this token. Use
|
13613
|
+
# it in your next request to receive the next set of results.
|
13371
13614
|
# @return [String]
|
13372
13615
|
#
|
13373
13616
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
|
@@ -13392,8 +13635,8 @@ module Aws::SageMaker
|
|
13392
13635
|
# @return [Array<Types::AutoMLJobSummary>]
|
13393
13636
|
#
|
13394
13637
|
# @!attribute [rw] next_token
|
13395
|
-
# If the previous response was truncated, you
|
13396
|
-
#
|
13638
|
+
# If the previous response was truncated, you receive this token. Use
|
13639
|
+
# it in your next request to receive the next set of results.
|
13397
13640
|
# @return [String]
|
13398
13641
|
#
|
13399
13642
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
|
@@ -13445,8 +13688,8 @@ module Aws::SageMaker
|
|
13445
13688
|
# @return [Integer]
|
13446
13689
|
#
|
13447
13690
|
# @!attribute [rw] next_token
|
13448
|
-
# If the previous response was truncated, you
|
13449
|
-
#
|
13691
|
+
# If the previous response was truncated, you receive this token. Use
|
13692
|
+
# it in your next request to receive the next set of results.
|
13450
13693
|
# @return [String]
|
13451
13694
|
#
|
13452
13695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
|
@@ -13468,8 +13711,8 @@ module Aws::SageMaker
|
|
13468
13711
|
# @return [Array<Types::AutoMLCandidate>]
|
13469
13712
|
#
|
13470
13713
|
# @!attribute [rw] next_token
|
13471
|
-
# If the previous response was truncated, you
|
13472
|
-
#
|
13714
|
+
# If the previous response was truncated, you receive this token. Use
|
13715
|
+
# it in your next request to receive the next set of results.
|
13473
13716
|
# @return [String]
|
13474
13717
|
#
|
13475
13718
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
|
@@ -15879,7 +16122,8 @@ module Aws::SageMaker
|
|
15879
16122
|
include Aws::Structure
|
15880
16123
|
end
|
15881
16124
|
|
15882
|
-
# Defines
|
16125
|
+
# Defines an Amazon Cognito or your own OIDC IdP user group that is part
|
16126
|
+
# of a work team.
|
15883
16127
|
#
|
15884
16128
|
# @note When making an API call, you may pass MemberDefinition
|
15885
16129
|
# data as a hash:
|
@@ -16069,6 +16313,11 @@ module Aws::SageMaker
|
|
16069
16313
|
# The Amazon S3 path where the model artifacts, which result from
|
16070
16314
|
# model training, are stored. This path must point to a single `gzip`
|
16071
16315
|
# compressed tar archive (`.tar.gz` suffix).
|
16316
|
+
#
|
16317
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
16318
|
+
# region as the model package.
|
16319
|
+
#
|
16320
|
+
# </note>
|
16072
16321
|
# @return [String]
|
16073
16322
|
#
|
16074
16323
|
# @!attribute [rw] product_id
|
@@ -17364,7 +17613,7 @@ module Aws::SageMaker
|
|
17364
17613
|
include Aws::Structure
|
17365
17614
|
end
|
17366
17615
|
|
17367
|
-
# Your
|
17616
|
+
# Your OIDC IdP workforce configuration.
|
17368
17617
|
#
|
17369
17618
|
# @!attribute [rw] client_id
|
17370
17619
|
# The OIDC IdP client ID used to configure your private workforce.
|
@@ -17413,7 +17662,7 @@ module Aws::SageMaker
|
|
17413
17662
|
include Aws::Structure
|
17414
17663
|
end
|
17415
17664
|
|
17416
|
-
# A list user groups that exist in your OIDC Identity Provider (IdP).
|
17665
|
+
# A list of user groups that exist in your OIDC Identity Provider (IdP).
|
17417
17666
|
# One to ten groups can be used to create a single private work team.
|
17418
17667
|
# When you add a user group to the list of `Groups`, you can add that
|
17419
17668
|
# user group to one or more private work teams. If you add a user group
|
@@ -18813,7 +19062,8 @@ module Aws::SageMaker
|
|
18813
19062
|
# The resolved attributes.
|
18814
19063
|
#
|
18815
19064
|
# @!attribute [rw] auto_ml_job_objective
|
18816
|
-
#
|
19065
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
19066
|
+
# job.
|
18817
19067
|
# @return [Types::AutoMLJobObjective]
|
18818
19068
|
#
|
18819
19069
|
# @!attribute [rw] problem_type
|
@@ -19617,8 +19867,7 @@ module Aws::SageMaker
|
|
19617
19867
|
#
|
19618
19868
|
# @!attribute [rw] s3_output_path
|
19619
19869
|
# When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
|
19620
|
-
# to save the notebook cell output.
|
19621
|
-
# specified, a default bucket is used.
|
19870
|
+
# to save the notebook cell output.
|
19622
19871
|
# @return [String]
|
19623
19872
|
#
|
19624
19873
|
# @!attribute [rw] s3_kms_key_id
|
@@ -19690,6 +19939,11 @@ module Aws::SageMaker
|
|
19690
19939
|
# The Amazon S3 path where the model artifacts, which result from
|
19691
19940
|
# model training, are stored. This path must point to a single `gzip`
|
19692
19941
|
# compressed tar archive (`.tar.gz` suffix).
|
19942
|
+
#
|
19943
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
19944
|
+
# region as the algorithm.
|
19945
|
+
#
|
19946
|
+
# </note>
|
19693
19947
|
# @return [String]
|
19694
19948
|
#
|
19695
19949
|
# @!attribute [rw] algorithm_name
|
@@ -19735,7 +19989,9 @@ module Aws::SageMaker
|
|
19735
19989
|
end
|
19736
19990
|
|
19737
19991
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow list
|
19738
|
-
# of IP addresses for a private workforce.
|
19992
|
+
# of IP addresses for a private workforce. Workers will only be able to
|
19993
|
+
# login to their worker portal from an IP address within this range. By
|
19994
|
+
# default, a workforce isn't restricted to specific IP addresses.
|
19739
19995
|
#
|
19740
19996
|
#
|
19741
19997
|
#
|
@@ -20930,7 +21186,12 @@ module Aws::SageMaker
|
|
20930
21186
|
# request payloads contain the entire contents of an input object. Set
|
20931
21187
|
# the value of this parameter to `Line` to split records on a newline
|
20932
21188
|
# character boundary. `SplitType` also supports a number of
|
20933
|
-
# record-oriented binary data formats.
|
21189
|
+
# record-oriented binary data formats. Currently, the supported record
|
21190
|
+
# formats are:
|
21191
|
+
#
|
21192
|
+
# * RecordIO
|
21193
|
+
#
|
21194
|
+
# * TFRecord
|
20934
21195
|
#
|
20935
21196
|
# When splitting is enabled, the size of a mini-batch depends on the
|
20936
21197
|
# values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
|
@@ -21877,7 +22138,7 @@ module Aws::SageMaker
|
|
21877
22138
|
# @return [Types::ProcessingJob]
|
21878
22139
|
#
|
21879
22140
|
# @!attribute [rw] transform_job
|
21880
|
-
# Information about a transform job that's the source of
|
22141
|
+
# Information about a transform job that's the source of a trial
|
21881
22142
|
# component.
|
21882
22143
|
# @return [Types::TransformJob]
|
21883
22144
|
#
|
@@ -22063,7 +22324,7 @@ module Aws::SageMaker
|
|
22063
22324
|
# }
|
22064
22325
|
#
|
22065
22326
|
# @!attribute [rw] target_objective_metric_value
|
22066
|
-
# The objective metric
|
22327
|
+
# The value of the objective metric.
|
22067
22328
|
# @return [Float]
|
22068
22329
|
#
|
22069
22330
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
|
@@ -23050,9 +23311,8 @@ module Aws::SageMaker
|
|
23050
23311
|
# }
|
23051
23312
|
#
|
23052
23313
|
# @!attribute [rw] workforce_name
|
23053
|
-
# The name of the private workforce
|
23054
|
-
#
|
23055
|
-
# is created and cannot be modified.
|
23314
|
+
# The name of the private workforce that you want to update. You can
|
23315
|
+
# find your workforce name by using the operation.
|
23056
23316
|
# @return [String]
|
23057
23317
|
#
|
23058
23318
|
# @!attribute [rw] source_ip_config
|
@@ -23082,12 +23342,11 @@ module Aws::SageMaker
|
|
23082
23342
|
end
|
23083
23343
|
|
23084
23344
|
# @!attribute [rw] workforce
|
23085
|
-
# A single private workforce
|
23086
|
-
#
|
23087
|
-
#
|
23088
|
-
#
|
23089
|
-
#
|
23090
|
-
# see [Create a Private Workforce][1].
|
23345
|
+
# A single private workforce. You can create one private work force in
|
23346
|
+
# each AWS Region. By default, any workforce-related API operation
|
23347
|
+
# used in a specific region will apply to the workforce created in
|
23348
|
+
# that region. To learn how to create a private workforce, see [Create
|
23349
|
+
# a Private Workforce][1].
|
23091
23350
|
#
|
23092
23351
|
#
|
23093
23352
|
#
|
@@ -23130,8 +23389,35 @@ module Aws::SageMaker
|
|
23130
23389
|
# @return [String]
|
23131
23390
|
#
|
23132
23391
|
# @!attribute [rw] member_definitions
|
23133
|
-
# A list of `MemberDefinition` objects that
|
23134
|
-
# team
|
23392
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23393
|
+
# identify the workers that make up the work team.
|
23394
|
+
#
|
23395
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23396
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23397
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23398
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23399
|
+
# You should not provide input for both of these parameters in a
|
23400
|
+
# single request.
|
23401
|
+
#
|
23402
|
+
# For workforces created using Amazon Cognito, private work teams
|
23403
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
23404
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
23405
|
+
# that make up the member definition must have the same `ClientId` and
|
23406
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
23407
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
23408
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
23409
|
+
#
|
23410
|
+
# For workforces created using your own OIDC IdP, specify the user
|
23411
|
+
# groups that you want to include in your private work team in
|
23412
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
|
23413
|
+
# that user groups that are already in the work team must also be
|
23414
|
+
# listed in `Groups` when you make this request to remain on the work
|
23415
|
+
# team. If you do not include these user groups, they will no longer
|
23416
|
+
# be associated with the work team you update.
|
23417
|
+
#
|
23418
|
+
#
|
23419
|
+
#
|
23420
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
23135
23421
|
# @return [Array<Types::MemberDefinition>]
|
23136
23422
|
#
|
23137
23423
|
# @!attribute [rw] description
|
@@ -23407,7 +23693,8 @@ module Aws::SageMaker
|
|
23407
23693
|
#
|
23408
23694
|
# @!attribute [rw] source_ip_config
|
23409
23695
|
# A list of one to ten IP address ranges ([CIDRs][1]) to be added to
|
23410
|
-
# the workforce allow list.
|
23696
|
+
# the workforce allow list. By default, a workforce isn't restricted
|
23697
|
+
# to specific IP addresses.
|
23411
23698
|
#
|
23412
23699
|
#
|
23413
23700
|
#
|
@@ -23459,7 +23746,13 @@ module Aws::SageMaker
|
|
23459
23746
|
# @return [String]
|
23460
23747
|
#
|
23461
23748
|
# @!attribute [rw] member_definitions
|
23462
|
-
#
|
23749
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23750
|
+
# identify the workers that make up the work team.
|
23751
|
+
#
|
23752
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23753
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23754
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23755
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23463
23756
|
# @return [Array<Types::MemberDefinition>]
|
23464
23757
|
#
|
23465
23758
|
# @!attribute [rw] workteam_arn
|