aws-sdk-sagemaker 1.64.0 → 1.69.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +3 -2
- data/lib/aws-sdk-sagemaker/client.rb +236 -85
- data/lib/aws-sdk-sagemaker/client_api.rb +16 -0
- data/lib/aws-sdk-sagemaker/types.rb +379 -86
- metadata +4 -4
@@ -37,6 +37,7 @@ module Aws::SageMaker
|
|
37
37
|
AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
|
38
38
|
AppList = Shapes::ListShape.new(name: 'AppList')
|
39
39
|
AppName = Shapes::StringShape.new(name: 'AppName')
|
40
|
+
AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
|
40
41
|
AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
|
41
42
|
AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
|
42
43
|
AppStatus = Shapes::StringShape.new(name: 'AppStatus')
|
@@ -429,6 +430,7 @@ module Aws::SageMaker
|
|
429
430
|
HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
|
430
431
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
431
432
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
433
|
+
ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
|
432
434
|
ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
|
433
435
|
ImageUri = Shapes::StringShape.new(name: 'ImageUri')
|
434
436
|
InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
|
@@ -467,6 +469,7 @@ module Aws::SageMaker
|
|
467
469
|
LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
|
468
470
|
LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
|
469
471
|
LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
|
472
|
+
LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
|
470
473
|
LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
|
471
474
|
LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
|
472
475
|
LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
|
@@ -722,6 +725,7 @@ module Aws::SageMaker
|
|
722
725
|
RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
|
723
726
|
RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
|
724
727
|
RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
|
728
|
+
RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
|
725
729
|
ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
|
726
730
|
ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
|
727
731
|
ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
|
@@ -768,6 +772,7 @@ module Aws::SageMaker
|
|
768
772
|
SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
|
769
773
|
ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
|
770
774
|
SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
|
775
|
+
SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
|
771
776
|
SortBy = Shapes::StringShape.new(name: 'SortBy')
|
772
777
|
SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
|
773
778
|
SortOrder = Shapes::StringShape.new(name: 'SortOrder')
|
@@ -1199,6 +1204,7 @@ module Aws::SageMaker
|
|
1199
1204
|
|
1200
1205
|
ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
|
1201
1206
|
ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
|
1207
|
+
ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
|
1202
1208
|
ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
|
1203
1209
|
ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
|
1204
1210
|
ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -1285,6 +1291,7 @@ module Aws::SageMaker
|
|
1285
1291
|
CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
|
1286
1292
|
CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1287
1293
|
CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
|
1294
|
+
CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1288
1295
|
CreateDomainRequest.struct_class = Types::CreateDomainRequest
|
1289
1296
|
|
1290
1297
|
CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
|
@@ -1798,6 +1805,7 @@ module Aws::SageMaker
|
|
1798
1805
|
DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
|
1799
1806
|
DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
|
1800
1807
|
DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
|
1808
|
+
DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1801
1809
|
DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
|
1802
1810
|
|
1803
1811
|
DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
|
@@ -2414,6 +2422,9 @@ module Aws::SageMaker
|
|
2414
2422
|
HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
2415
2423
|
HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
|
2416
2424
|
|
2425
|
+
ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
|
2426
|
+
ImageConfig.struct_class = Types::ImageConfig
|
2427
|
+
|
2417
2428
|
InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
|
2418
2429
|
InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
|
2419
2430
|
InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
|
@@ -2471,6 +2482,7 @@ module Aws::SageMaker
|
|
2471
2482
|
LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
|
2472
2483
|
|
2473
2484
|
LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
|
2485
|
+
LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
|
2474
2486
|
LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
|
2475
2487
|
|
2476
2488
|
LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
|
@@ -2493,6 +2505,7 @@ module Aws::SageMaker
|
|
2493
2505
|
|
2494
2506
|
LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
2495
2507
|
LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
2508
|
+
LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
|
2496
2509
|
LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
|
2497
2510
|
|
2498
2511
|
LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
|
@@ -2501,6 +2514,9 @@ module Aws::SageMaker
|
|
2501
2514
|
LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
|
2502
2515
|
LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
|
2503
2516
|
|
2517
|
+
LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
|
2518
|
+
LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
|
2519
|
+
|
2504
2520
|
LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
|
2505
2521
|
LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
|
2506
2522
|
LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
|
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
|
|
1285
1285
|
include Aws::Structure
|
1286
1286
|
end
|
1287
1287
|
|
1288
|
-
# An
|
1288
|
+
# An Autopilot job returns recommendations, or candidates. Each
|
1289
1289
|
# candidate has futher details about the steps involed, and the status.
|
1290
1290
|
#
|
1291
1291
|
# @!attribute [rw] candidate_name
|
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
|
|
1293
1293
|
# @return [String]
|
1294
1294
|
#
|
1295
1295
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
1296
|
-
# The candidate result from
|
1296
|
+
# The best candidate result from an AutoML training job.
|
1297
1297
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1298
1298
|
#
|
1299
1299
|
# @!attribute [rw] objective_status
|
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
|
|
1440
1440
|
include Aws::Structure
|
1441
1441
|
end
|
1442
1442
|
|
1443
|
-
# The data source for the
|
1443
|
+
# The data source for the Autopilot job.
|
1444
1444
|
#
|
1445
1445
|
# @note When making an API call, you may pass AutoMLDataSource
|
1446
1446
|
# data as a hash:
|
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
|
|
1455
1455
|
# @!attribute [rw] s3_data_source
|
1456
1456
|
# The Amazon S3 location of the input data.
|
1457
1457
|
#
|
1458
|
-
# <note markdown="1"> The input data must be in CSV format and contain at least
|
1458
|
+
# <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
|
1459
1459
|
#
|
1460
1460
|
# </note>
|
1461
1461
|
# @return [Types::AutoMLS3DataSource]
|
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
|
|
1563
1563
|
include Aws::Structure
|
1564
1564
|
end
|
1565
1565
|
|
1566
|
-
#
|
1566
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1567
1567
|
#
|
1568
1568
|
# @note When making an API call, you may pass AutoMLJobObjective
|
1569
1569
|
# data as a hash:
|
1570
1570
|
#
|
1571
1571
|
# {
|
1572
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
1572
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
1573
1573
|
# }
|
1574
1574
|
#
|
1575
1575
|
# @!attribute [rw] metric_name
|
1576
|
-
# The name of the metric
|
1576
|
+
# The name of the objective metric used to measure the predictive
|
1577
|
+
# quality of a machine learning system. This metric is optimized
|
1578
|
+
# during training to provide the best estimate for model parameter
|
1579
|
+
# values from data.
|
1580
|
+
#
|
1581
|
+
# Here are the options:
|
1582
|
+
#
|
1583
|
+
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
1584
|
+
# differences between the predicted and actual values. It is used
|
1585
|
+
# for regression. MSE values are always positive, the better a model
|
1586
|
+
# is at predicting the actual values the smaller the MSE value. When
|
1587
|
+
# the data contains outliers, they tend to dominate the MSE which
|
1588
|
+
# might cause subpar prediction performance.
|
1589
|
+
#
|
1590
|
+
# * `Accuracy`\: The ratio of the number correctly classified items to
|
1591
|
+
# the total number (correctly and incorrectly) classified. It is
|
1592
|
+
# used for binary and multiclass classification. Measures how close
|
1593
|
+
# the predicted class values are to the actual values. Accuracy
|
1594
|
+
# values vary between zero and one, one being perfect accuracy and
|
1595
|
+
# zero perfect inaccuracy.
|
1596
|
+
#
|
1597
|
+
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
1598
|
+
# recall. It is used for binary classification into classes
|
1599
|
+
# traditionally referred to as positive and negative. Predictions
|
1600
|
+
# are said to be true when they match their actual (correct) class;
|
1601
|
+
# false when they do not. Precision is the ratio of the true
|
1602
|
+
# positive predictions to all positive predictions (including the
|
1603
|
+
# false positives) in a data set and measures the quality of the
|
1604
|
+
# prediction when it predicts the positive class. Recall (or
|
1605
|
+
# sensitivity) is the ratio of the true positive predictions to all
|
1606
|
+
# actual positive instances and measures how completely a model
|
1607
|
+
# predicts the actual class members in a data set. The standard F1
|
1608
|
+
# score weighs precision and recall equally. But which metric is
|
1609
|
+
# paramount typically depends on specific aspects of a problem. F1
|
1610
|
+
# scores vary between zero and one, one being the best possible
|
1611
|
+
# performance and zero the worst.
|
1612
|
+
#
|
1613
|
+
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
1614
|
+
# and evaluate binary classification by algorithms such as logistic
|
1615
|
+
# regression that return probabilities. A threshold is needed to map
|
1616
|
+
# the probabilities into classifications. The relevant curve is the
|
1617
|
+
# receiver operating characteristic curve that plots the true
|
1618
|
+
# positive rate (TPR) of predictions (or recall) against the false
|
1619
|
+
# positive rate (FPR) as a function of the threshold value, above
|
1620
|
+
# which a prediction is considered positive. Increasing the
|
1621
|
+
# threshold results in fewer false positives but more false
|
1622
|
+
# negatives. AUC is the area under this receiver operating
|
1623
|
+
# characteristic curve and so provides an aggregated measure of the
|
1624
|
+
# model performance across all possible classification thresholds.
|
1625
|
+
# The AUC score can also be interpreted as the probability that a
|
1626
|
+
# randomly selected positive data point is more likely to be
|
1627
|
+
# predicted positive than a randomly selected negative example. AUC
|
1628
|
+
# scores vary between zero and one, one being perfect accuracy and
|
1629
|
+
# one half not better than a random classifier. Values less that one
|
1630
|
+
# half predict worse than a random predictor and such consistently
|
1631
|
+
# bad predictors can be inverted to obtain better than random
|
1632
|
+
# predictors.
|
1633
|
+
#
|
1634
|
+
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
1635
|
+
# classification. In this context, you have multiple classes to
|
1636
|
+
# predict. You just calculate the precision and recall for each
|
1637
|
+
# class as you did for the positive class in binary classification.
|
1638
|
+
# Then used these values to calculate the F1 score for each class
|
1639
|
+
# and average them to obtain the F1macro score. F1macro scores vary
|
1640
|
+
# between zero and one, one being the best possible performance and
|
1641
|
+
# zero the worst.
|
1642
|
+
#
|
1643
|
+
# If you do not specify a metric explicitly, the default behavior is
|
1644
|
+
# to automatically use:
|
1645
|
+
#
|
1646
|
+
# * `MSE`\: for regression.
|
1647
|
+
#
|
1648
|
+
# * `F1`\: for binary classification
|
1649
|
+
#
|
1650
|
+
# * `Accuracy`\: for multiclass classification.
|
1577
1651
|
# @return [String]
|
1578
1652
|
#
|
1579
1653
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
|
|
1607
1681
|
# @return [Time]
|
1608
1682
|
#
|
1609
1683
|
# @!attribute [rw] end_time
|
1610
|
-
# The end time.
|
1684
|
+
# The end time of an AutoML job.
|
1611
1685
|
# @return [Time]
|
1612
1686
|
#
|
1613
1687
|
# @!attribute [rw] last_modified_time
|
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
|
|
1615
1689
|
# @return [Time]
|
1616
1690
|
#
|
1617
1691
|
# @!attribute [rw] failure_reason
|
1618
|
-
# The failure reason.
|
1692
|
+
# The failure reason of a job.
|
1619
1693
|
# @return [String]
|
1620
1694
|
#
|
1621
1695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
|
|
2249
2323
|
# {
|
2250
2324
|
# container_hostname: "ContainerHostname",
|
2251
2325
|
# image: "ContainerImage",
|
2326
|
+
# image_config: {
|
2327
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2328
|
+
# },
|
2252
2329
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2253
2330
|
# model_data_url: "Url",
|
2254
2331
|
# environment: {
|
@@ -2279,19 +2356,33 @@ module Aws::SageMaker
|
|
2279
2356
|
# @return [String]
|
2280
2357
|
#
|
2281
2358
|
# @!attribute [rw] image
|
2282
|
-
# The
|
2283
|
-
#
|
2284
|
-
#
|
2285
|
-
#
|
2286
|
-
#
|
2287
|
-
#
|
2288
|
-
#
|
2359
|
+
# The path where inference code is stored. This can be either in
|
2360
|
+
# Amazon EC2 Container Registry or in a Docker registry that is
|
2361
|
+
# accessible from the same VPC that you configure for your endpoint.
|
2362
|
+
# If you are using your own custom algorithm instead of an algorithm
|
2363
|
+
# provided by Amazon SageMaker, the inference code must meet Amazon
|
2364
|
+
# SageMaker requirements. Amazon SageMaker supports both
|
2365
|
+
# `registry/repository[:tag]` and `registry/repository[@digest]` image
|
2366
|
+
# path formats. For more information, see [Using Your Own Algorithms
|
2367
|
+
# with Amazon SageMaker][1]
|
2289
2368
|
#
|
2290
2369
|
#
|
2291
2370
|
#
|
2292
2371
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
2293
2372
|
# @return [String]
|
2294
2373
|
#
|
2374
|
+
# @!attribute [rw] image_config
|
2375
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
2376
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
2377
|
+
# (VPC). For information about storing containers in a private Docker
|
2378
|
+
# registry, see [Use a Private Docker Registry for Real-Time Inference
|
2379
|
+
# Containers][1]
|
2380
|
+
#
|
2381
|
+
#
|
2382
|
+
#
|
2383
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
|
2384
|
+
# @return [Types::ImageConfig]
|
2385
|
+
#
|
2295
2386
|
# @!attribute [rw] mode
|
2296
2387
|
# Whether the container hosts a single model or multiple models.
|
2297
2388
|
# @return [String]
|
@@ -2304,6 +2395,11 @@ module Aws::SageMaker
|
|
2304
2395
|
# algorithms. For more information on built-in algorithms, see [Common
|
2305
2396
|
# Parameters][1].
|
2306
2397
|
#
|
2398
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
2399
|
+
# region as the model or endpoint you are creating.
|
2400
|
+
#
|
2401
|
+
# </note>
|
2402
|
+
#
|
2307
2403
|
# If you provide a value for this parameter, Amazon SageMaker uses AWS
|
2308
2404
|
# Security Token Service to download model artifacts from the S3 path
|
2309
2405
|
# you provide. AWS STS is activated in your IAM user account by
|
@@ -2338,6 +2434,7 @@ module Aws::SageMaker
|
|
2338
2434
|
class ContainerDefinition < Struct.new(
|
2339
2435
|
:container_hostname,
|
2340
2436
|
:image,
|
2437
|
+
:image_config,
|
2341
2438
|
:mode,
|
2342
2439
|
:model_data_url,
|
2343
2440
|
:environment,
|
@@ -2783,7 +2880,7 @@ module Aws::SageMaker
|
|
2783
2880
|
# },
|
2784
2881
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
2785
2882
|
# auto_ml_job_objective: {
|
2786
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
2883
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
2787
2884
|
# },
|
2788
2885
|
# auto_ml_job_config: {
|
2789
2886
|
# completion_criteria: {
|
@@ -2811,13 +2908,13 @@ module Aws::SageMaker
|
|
2811
2908
|
# }
|
2812
2909
|
#
|
2813
2910
|
# @!attribute [rw] auto_ml_job_name
|
2814
|
-
# Identifies an
|
2911
|
+
# Identifies an Autopilot job. Must be unique to your account and is
|
2815
2912
|
# case-insensitive.
|
2816
2913
|
# @return [String]
|
2817
2914
|
#
|
2818
2915
|
# @!attribute [rw] input_data_config
|
2819
2916
|
# Similar to InputDataConfig supported by Tuning. Format(s) supported:
|
2820
|
-
# CSV. Minimum of
|
2917
|
+
# CSV. Minimum of 500 rows.
|
2821
2918
|
# @return [Array<Types::AutoMLChannel>]
|
2822
2919
|
#
|
2823
2920
|
# @!attribute [rw] output_data_config
|
@@ -2832,9 +2929,11 @@ module Aws::SageMaker
|
|
2832
2929
|
# @return [String]
|
2833
2930
|
#
|
2834
2931
|
# @!attribute [rw] auto_ml_job_objective
|
2835
|
-
# Defines the job
|
2836
|
-
#
|
2837
|
-
#
|
2932
|
+
# Defines the objective of a an AutoML job. You provide a
|
2933
|
+
# AutoMLJobObjective$MetricName and Autopilot infers whether to
|
2934
|
+
# minimize or maximize it. If a metric is not specified, the most
|
2935
|
+
# commonly used ObjectiveMetric for problem type is automaically
|
2936
|
+
# selected.
|
2838
2937
|
# @return [Types::AutoMLJobObjective]
|
2839
2938
|
#
|
2840
2939
|
# @!attribute [rw] auto_ml_job_config
|
@@ -2842,13 +2941,13 @@ module Aws::SageMaker
|
|
2842
2941
|
# @return [Types::AutoMLJobConfig]
|
2843
2942
|
#
|
2844
2943
|
# @!attribute [rw] role_arn
|
2845
|
-
# The ARN of the role that
|
2944
|
+
# The ARN of the role that is used to access the data.
|
2846
2945
|
# @return [String]
|
2847
2946
|
#
|
2848
2947
|
# @!attribute [rw] generate_candidate_definitions_only
|
2849
|
-
#
|
2850
|
-
#
|
2851
|
-
#
|
2948
|
+
# Generates possible candidates without training a model. A candidate
|
2949
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
2950
|
+
# parameter settings.
|
2852
2951
|
# @return [Boolean]
|
2853
2952
|
#
|
2854
2953
|
# @!attribute [rw] tags
|
@@ -3074,6 +3173,7 @@ module Aws::SageMaker
|
|
3074
3173
|
# },
|
3075
3174
|
# ],
|
3076
3175
|
# home_efs_file_system_kms_key_id: "KmsKeyId",
|
3176
|
+
# app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
|
3077
3177
|
# }
|
3078
3178
|
#
|
3079
3179
|
# @!attribute [rw] domain_name
|
@@ -3089,12 +3189,12 @@ module Aws::SageMaker
|
|
3089
3189
|
# @return [Types::UserSettings]
|
3090
3190
|
#
|
3091
3191
|
# @!attribute [rw] subnet_ids
|
3092
|
-
# The VPC subnets
|
3192
|
+
# The VPC subnets that Studio uses for communication.
|
3093
3193
|
# @return [Array<String>]
|
3094
3194
|
#
|
3095
3195
|
# @!attribute [rw] vpc_id
|
3096
|
-
# The ID of the Amazon Virtual Private Cloud (VPC)
|
3097
|
-
# communication
|
3196
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
3197
|
+
# for communication.
|
3098
3198
|
# @return [String]
|
3099
3199
|
#
|
3100
3200
|
# @!attribute [rw] tags
|
@@ -3108,6 +3208,17 @@ module Aws::SageMaker
|
|
3108
3208
|
# with a customer master key (CMK) is not supported.
|
3109
3209
|
# @return [String]
|
3110
3210
|
#
|
3211
|
+
# @!attribute [rw] app_network_access_type
|
3212
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
3213
|
+
# `PublicInternetOnly`.
|
3214
|
+
#
|
3215
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
3216
|
+
# Amazon SageMaker, which allows direct internet access
|
3217
|
+
#
|
3218
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
3219
|
+
# subnets
|
3220
|
+
# @return [String]
|
3221
|
+
#
|
3111
3222
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
|
3112
3223
|
#
|
3113
3224
|
class CreateDomainRequest < Struct.new(
|
@@ -3117,7 +3228,8 @@ module Aws::SageMaker
|
|
3117
3228
|
:subnet_ids,
|
3118
3229
|
:vpc_id,
|
3119
3230
|
:tags,
|
3120
|
-
:home_efs_file_system_kms_key_id
|
3231
|
+
:home_efs_file_system_kms_key_id,
|
3232
|
+
:app_network_access_type)
|
3121
3233
|
SENSITIVE = []
|
3122
3234
|
include Aws::Structure
|
3123
3235
|
end
|
@@ -3906,6 +4018,9 @@ module Aws::SageMaker
|
|
3906
4018
|
# s3_data_source: {
|
3907
4019
|
# manifest_s3_uri: "S3Uri", # required
|
3908
4020
|
# },
|
4021
|
+
# sns_data_source: {
|
4022
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
4023
|
+
# },
|
3909
4024
|
# },
|
3910
4025
|
# data_attributes: {
|
3911
4026
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -3914,6 +4029,7 @@ module Aws::SageMaker
|
|
3914
4029
|
# output_config: { # required
|
3915
4030
|
# s3_output_path: "S3Uri", # required
|
3916
4031
|
# kms_key_id: "KmsKeyId",
|
4032
|
+
# sns_topic_arn: "SnsTopicArn",
|
3917
4033
|
# },
|
3918
4034
|
# role_arn: "RoleArn", # required
|
3919
4035
|
# label_category_config_s3_uri: "S3Uri",
|
@@ -4108,6 +4224,9 @@ module Aws::SageMaker
|
|
4108
4224
|
# primary_container: {
|
4109
4225
|
# container_hostname: "ContainerHostname",
|
4110
4226
|
# image: "ContainerImage",
|
4227
|
+
# image_config: {
|
4228
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4229
|
+
# },
|
4111
4230
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4112
4231
|
# model_data_url: "Url",
|
4113
4232
|
# environment: {
|
@@ -4119,6 +4238,9 @@ module Aws::SageMaker
|
|
4119
4238
|
# {
|
4120
4239
|
# container_hostname: "ContainerHostname",
|
4121
4240
|
# image: "ContainerImage",
|
4241
|
+
# image_config: {
|
4242
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4243
|
+
# },
|
4122
4244
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4123
4245
|
# model_data_url: "Url",
|
4124
4246
|
# environment: {
|
@@ -5844,14 +5966,17 @@ module Aws::SageMaker
|
|
5844
5966
|
#
|
5845
5967
|
# @!attribute [rw] oidc_config
|
5846
5968
|
# Use this parameter to configure a private workforce using your own
|
5847
|
-
# OIDC Identity Provider.
|
5848
|
-
#
|
5969
|
+
# OIDC Identity Provider.
|
5970
|
+
#
|
5971
|
+
# Do not use `CognitoConfig` if you specify values for `OidcConfig`.
|
5849
5972
|
# @return [Types::OidcConfig]
|
5850
5973
|
#
|
5851
5974
|
# @!attribute [rw] source_ip_config
|
5852
5975
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow
|
5853
|
-
# list of IP addresses for a private workforce.
|
5854
|
-
#
|
5976
|
+
# list of IP addresses for a private workforce. Workers will only be
|
5977
|
+
# able to login to their worker portal from an IP address within this
|
5978
|
+
# range. By default, a workforce isn't restricted to specific IP
|
5979
|
+
# addresses.
|
5855
5980
|
#
|
5856
5981
|
#
|
5857
5982
|
#
|
@@ -5932,11 +6057,25 @@ module Aws::SageMaker
|
|
5932
6057
|
#
|
5933
6058
|
# @!attribute [rw] member_definitions
|
5934
6059
|
# A list of `MemberDefinition` objects that contains objects that
|
5935
|
-
# identify the
|
5936
|
-
#
|
6060
|
+
# identify the workers that make up the work team.
|
6061
|
+
#
|
6062
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
6063
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
6064
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
6065
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
|
6066
|
+
# not provide input for both of these parameters in a single request.
|
5937
6067
|
#
|
5938
|
-
#
|
5939
|
-
#
|
6068
|
+
# For workforces created using Amazon Cognito, private work teams
|
6069
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
6070
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
6071
|
+
# that make up the member definition must have the same `ClientId` and
|
6072
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
6073
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
6074
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
6075
|
+
#
|
6076
|
+
# For workforces created using your own OIDC IdP, specify the user
|
6077
|
+
# groups that you want to include in your private work team in
|
6078
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`.
|
5940
6079
|
#
|
5941
6080
|
#
|
5942
6081
|
#
|
@@ -7402,7 +7541,7 @@ module Aws::SageMaker
|
|
7402
7541
|
# @return [String]
|
7403
7542
|
#
|
7404
7543
|
# @!attribute [rw] subnet_ids
|
7405
|
-
#
|
7544
|
+
# The VPC subnets that Studio uses for communication.
|
7406
7545
|
# @return [Array<String>]
|
7407
7546
|
#
|
7408
7547
|
# @!attribute [rw] url
|
@@ -7410,7 +7549,19 @@ module Aws::SageMaker
|
|
7410
7549
|
# @return [String]
|
7411
7550
|
#
|
7412
7551
|
# @!attribute [rw] vpc_id
|
7413
|
-
# The ID of the Amazon Virtual Private Cloud
|
7552
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
7553
|
+
# for communication.
|
7554
|
+
# @return [String]
|
7555
|
+
#
|
7556
|
+
# @!attribute [rw] app_network_access_type
|
7557
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
7558
|
+
# `PublicInternetOnly`.
|
7559
|
+
#
|
7560
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
7561
|
+
# Amazon SageMaker, which allows direct internet access
|
7562
|
+
#
|
7563
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
7564
|
+
# subnets
|
7414
7565
|
# @return [String]
|
7415
7566
|
#
|
7416
7567
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
|
@@ -7430,7 +7581,8 @@ module Aws::SageMaker
|
|
7430
7581
|
:home_efs_file_system_kms_key_id,
|
7431
7582
|
:subnet_ids,
|
7432
7583
|
:url,
|
7433
|
-
:vpc_id
|
7584
|
+
:vpc_id,
|
7585
|
+
:app_network_access_type)
|
7434
7586
|
SENSITIVE = []
|
7435
7587
|
include Aws::Structure
|
7436
7588
|
end
|
@@ -8841,7 +8993,7 @@ module Aws::SageMaker
|
|
8841
8993
|
# : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
|
8842
8994
|
# maximum allowed runtime.
|
8843
8995
|
#
|
8844
|
-
# * `
|
8996
|
+
# * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
|
8845
8997
|
# maximum allowed wait time.
|
8846
8998
|
#
|
8847
8999
|
# * `Stopped` - The training job has stopped.
|
@@ -10210,18 +10362,19 @@ module Aws::SageMaker
|
|
10210
10362
|
include Aws::Structure
|
10211
10363
|
end
|
10212
10364
|
|
10213
|
-
# The candidate result from
|
10365
|
+
# The best candidate result from an AutoML training job.
|
10214
10366
|
#
|
10215
10367
|
# @!attribute [rw] type
|
10216
|
-
# The metric
|
10368
|
+
# The type of metric with the best result.
|
10217
10369
|
# @return [String]
|
10218
10370
|
#
|
10219
10371
|
# @!attribute [rw] metric_name
|
10220
|
-
# The name of the metric.
|
10372
|
+
# The name of the metric with the best result. For a description of
|
10373
|
+
# the possible objective metrics, see AutoMLJobObjective$MetricName.
|
10221
10374
|
# @return [String]
|
10222
10375
|
#
|
10223
10376
|
# @!attribute [rw] value
|
10224
|
-
# The value of the metric.
|
10377
|
+
# The value of the metric with the best result.
|
10225
10378
|
# @return [Float]
|
10226
10379
|
#
|
10227
10380
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
|
@@ -10539,12 +10692,13 @@ module Aws::SageMaker
|
|
10539
10692
|
# @return [Integer]
|
10540
10693
|
#
|
10541
10694
|
# @!attribute [rw] task_availability_lifetime_in_seconds
|
10542
|
-
# The length of time that a task remains available for
|
10543
|
-
#
|
10695
|
+
# The length of time that a task remains available for review by human
|
10696
|
+
# workers.
|
10544
10697
|
# @return [Integer]
|
10545
10698
|
#
|
10546
10699
|
# @!attribute [rw] task_time_limit_in_seconds
|
10547
|
-
# The amount of time that a worker has to complete a task.
|
10700
|
+
# The amount of time that a worker has to complete a task. The default
|
10701
|
+
# value is 3,600 seconds (1 hour)
|
10548
10702
|
# @return [Integer]
|
10549
10703
|
#
|
10550
10704
|
# @!attribute [rw] task_keywords
|
@@ -12362,6 +12516,34 @@ module Aws::SageMaker
|
|
12362
12516
|
include Aws::Structure
|
12363
12517
|
end
|
12364
12518
|
|
12519
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
12520
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
12521
|
+
# (VPC).
|
12522
|
+
#
|
12523
|
+
# @note When making an API call, you may pass ImageConfig
|
12524
|
+
# data as a hash:
|
12525
|
+
#
|
12526
|
+
# {
|
12527
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
12528
|
+
# }
|
12529
|
+
#
|
12530
|
+
# @!attribute [rw] repository_access_mode
|
12531
|
+
# Set this to one of the following values:
|
12532
|
+
#
|
12533
|
+
# * `Platform` - The model image is hosted in Amazon ECR.
|
12534
|
+
#
|
12535
|
+
# * `Vpc` - The model image is hosted in a private Docker registry in
|
12536
|
+
# your VPC.
|
12537
|
+
# @return [String]
|
12538
|
+
#
|
12539
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
|
12540
|
+
#
|
12541
|
+
class ImageConfig < Struct.new(
|
12542
|
+
:repository_access_mode)
|
12543
|
+
SENSITIVE = []
|
12544
|
+
include Aws::Structure
|
12545
|
+
end
|
12546
|
+
|
12365
12547
|
# Defines how to perform inference generation after a training job is
|
12366
12548
|
# run.
|
12367
12549
|
#
|
@@ -12785,10 +12967,10 @@ module Aws::SageMaker
|
|
12785
12967
|
# @return [String]
|
12786
12968
|
#
|
12787
12969
|
# @!attribute [rw] initial_active_learning_model_arn
|
12788
|
-
# At the end of an auto-label job
|
12789
|
-
#
|
12790
|
-
#
|
12791
|
-
#
|
12970
|
+
# At the end of an auto-label job Ground Truth sends the Amazon
|
12971
|
+
# Resource Name (ARN) of the final model used for auto-labeling. You
|
12972
|
+
# can use this model as the starting point for subsequent similar jobs
|
12973
|
+
# by providing the ARN of the model here.
|
12792
12974
|
# @return [String]
|
12793
12975
|
#
|
12794
12976
|
# @!attribute [rw] labeling_job_resource_config
|
@@ -12832,6 +13014,18 @@ module Aws::SageMaker
|
|
12832
13014
|
|
12833
13015
|
# Provides information about the location of input data.
|
12834
13016
|
#
|
13017
|
+
# You must specify at least one of the following: `S3DataSource` or
|
13018
|
+
# `SnsDataSource`.
|
13019
|
+
#
|
13020
|
+
# Use `SnsDataSource` to specify an SNS input topic for a streaming
|
13021
|
+
# labeling job. If you do not specify and SNS input topic ARN, Ground
|
13022
|
+
# Truth will create a one-time labeling job.
|
13023
|
+
#
|
13024
|
+
# Use `S3DataSource` to specify an input manifest file for both
|
13025
|
+
# streaming and one-time labeling jobs. Adding an `S3DataSource` is
|
13026
|
+
# optional if you use `SnsDataSource` to create a streaming labeling
|
13027
|
+
# job.
|
13028
|
+
#
|
12835
13029
|
# @note When making an API call, you may pass LabelingJobDataSource
|
12836
13030
|
# data as a hash:
|
12837
13031
|
#
|
@@ -12839,16 +13033,24 @@ module Aws::SageMaker
|
|
12839
13033
|
# s3_data_source: {
|
12840
13034
|
# manifest_s3_uri: "S3Uri", # required
|
12841
13035
|
# },
|
13036
|
+
# sns_data_source: {
|
13037
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13038
|
+
# },
|
12842
13039
|
# }
|
12843
13040
|
#
|
12844
13041
|
# @!attribute [rw] s3_data_source
|
12845
13042
|
# The Amazon S3 location of the input data objects.
|
12846
13043
|
# @return [Types::LabelingJobS3DataSource]
|
12847
13044
|
#
|
13045
|
+
# @!attribute [rw] sns_data_source
|
13046
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13047
|
+
# @return [Types::LabelingJobSnsDataSource]
|
13048
|
+
#
|
12848
13049
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
12849
13050
|
#
|
12850
13051
|
class LabelingJobDataSource < Struct.new(
|
12851
|
-
:s3_data_source
|
13052
|
+
:s3_data_source,
|
13053
|
+
:sns_data_source)
|
12852
13054
|
SENSITIVE = []
|
12853
13055
|
include Aws::Structure
|
12854
13056
|
end
|
@@ -12902,6 +13104,9 @@ module Aws::SageMaker
|
|
12902
13104
|
# s3_data_source: {
|
12903
13105
|
# manifest_s3_uri: "S3Uri", # required
|
12904
13106
|
# },
|
13107
|
+
# sns_data_source: {
|
13108
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13109
|
+
# },
|
12905
13110
|
# },
|
12906
13111
|
# data_attributes: {
|
12907
13112
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -12953,6 +13158,7 @@ module Aws::SageMaker
|
|
12953
13158
|
# {
|
12954
13159
|
# s3_output_path: "S3Uri", # required
|
12955
13160
|
# kms_key_id: "KmsKeyId",
|
13161
|
+
# sns_topic_arn: "SnsTopicArn",
|
12956
13162
|
# }
|
12957
13163
|
#
|
12958
13164
|
# @!attribute [rw] s3_output_path
|
@@ -12986,11 +13192,22 @@ module Aws::SageMaker
|
|
12986
13192
|
# [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
12987
13193
|
# @return [String]
|
12988
13194
|
#
|
13195
|
+
# @!attribute [rw] sns_topic_arn
|
13196
|
+
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
13197
|
+
#
|
13198
|
+
# When workers complete labeling tasks, Ground Truth will send
|
13199
|
+
# labeling task output data to the SNS output topic you specify here.
|
13200
|
+
#
|
13201
|
+
# You must provide a value for this parameter if you provide an Amazon
|
13202
|
+
# SNS input topic in `SnsDataSource` in `InputConfig`.
|
13203
|
+
# @return [String]
|
13204
|
+
#
|
12989
13205
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
12990
13206
|
#
|
12991
13207
|
class LabelingJobOutputConfig < Struct.new(
|
12992
13208
|
:s3_output_path,
|
12993
|
-
:kms_key_id
|
13209
|
+
:kms_key_id,
|
13210
|
+
:sns_topic_arn)
|
12994
13211
|
SENSITIVE = []
|
12995
13212
|
include Aws::Structure
|
12996
13213
|
end
|
@@ -13049,6 +13266,32 @@ module Aws::SageMaker
|
|
13049
13266
|
include Aws::Structure
|
13050
13267
|
end
|
13051
13268
|
|
13269
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13270
|
+
#
|
13271
|
+
# @note When making an API call, you may pass LabelingJobSnsDataSource
|
13272
|
+
# data as a hash:
|
13273
|
+
#
|
13274
|
+
# {
|
13275
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13276
|
+
# }
|
13277
|
+
#
|
13278
|
+
# @!attribute [rw] sns_topic_arn
|
13279
|
+
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
13280
|
+
# ARN of the input topic you will use to send new data objects to a
|
13281
|
+
# streaming labeling job.
|
13282
|
+
#
|
13283
|
+
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
13284
|
+
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
13285
|
+
# @return [String]
|
13286
|
+
#
|
13287
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
13288
|
+
#
|
13289
|
+
class LabelingJobSnsDataSource < Struct.new(
|
13290
|
+
:sns_topic_arn)
|
13291
|
+
SENSITIVE = []
|
13292
|
+
include Aws::Structure
|
13293
|
+
end
|
13294
|
+
|
13052
13295
|
# A set of conditions for stopping a labeling job. If any of the
|
13053
13296
|
# conditions are met, the job is automatically stopped. You can use
|
13054
13297
|
# these conditions to control the cost of data labeling.
|
@@ -13366,8 +13609,8 @@ module Aws::SageMaker
|
|
13366
13609
|
# @return [Integer]
|
13367
13610
|
#
|
13368
13611
|
# @!attribute [rw] next_token
|
13369
|
-
# If the previous response was truncated, you
|
13370
|
-
#
|
13612
|
+
# If the previous response was truncated, you receive this token. Use
|
13613
|
+
# it in your next request to receive the next set of results.
|
13371
13614
|
# @return [String]
|
13372
13615
|
#
|
13373
13616
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
|
@@ -13392,8 +13635,8 @@ module Aws::SageMaker
|
|
13392
13635
|
# @return [Array<Types::AutoMLJobSummary>]
|
13393
13636
|
#
|
13394
13637
|
# @!attribute [rw] next_token
|
13395
|
-
# If the previous response was truncated, you
|
13396
|
-
#
|
13638
|
+
# If the previous response was truncated, you receive this token. Use
|
13639
|
+
# it in your next request to receive the next set of results.
|
13397
13640
|
# @return [String]
|
13398
13641
|
#
|
13399
13642
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
|
@@ -13445,8 +13688,8 @@ module Aws::SageMaker
|
|
13445
13688
|
# @return [Integer]
|
13446
13689
|
#
|
13447
13690
|
# @!attribute [rw] next_token
|
13448
|
-
# If the previous response was truncated, you
|
13449
|
-
#
|
13691
|
+
# If the previous response was truncated, you receive this token. Use
|
13692
|
+
# it in your next request to receive the next set of results.
|
13450
13693
|
# @return [String]
|
13451
13694
|
#
|
13452
13695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
|
@@ -13468,8 +13711,8 @@ module Aws::SageMaker
|
|
13468
13711
|
# @return [Array<Types::AutoMLCandidate>]
|
13469
13712
|
#
|
13470
13713
|
# @!attribute [rw] next_token
|
13471
|
-
# If the previous response was truncated, you
|
13472
|
-
#
|
13714
|
+
# If the previous response was truncated, you receive this token. Use
|
13715
|
+
# it in your next request to receive the next set of results.
|
13473
13716
|
# @return [String]
|
13474
13717
|
#
|
13475
13718
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
|
@@ -15879,7 +16122,8 @@ module Aws::SageMaker
|
|
15879
16122
|
include Aws::Structure
|
15880
16123
|
end
|
15881
16124
|
|
15882
|
-
# Defines
|
16125
|
+
# Defines an Amazon Cognito or your own OIDC IdP user group that is part
|
16126
|
+
# of a work team.
|
15883
16127
|
#
|
15884
16128
|
# @note When making an API call, you may pass MemberDefinition
|
15885
16129
|
# data as a hash:
|
@@ -16069,6 +16313,11 @@ module Aws::SageMaker
|
|
16069
16313
|
# The Amazon S3 path where the model artifacts, which result from
|
16070
16314
|
# model training, are stored. This path must point to a single `gzip`
|
16071
16315
|
# compressed tar archive (`.tar.gz` suffix).
|
16316
|
+
#
|
16317
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
16318
|
+
# region as the model package.
|
16319
|
+
#
|
16320
|
+
# </note>
|
16072
16321
|
# @return [String]
|
16073
16322
|
#
|
16074
16323
|
# @!attribute [rw] product_id
|
@@ -17364,7 +17613,7 @@ module Aws::SageMaker
|
|
17364
17613
|
include Aws::Structure
|
17365
17614
|
end
|
17366
17615
|
|
17367
|
-
# Your
|
17616
|
+
# Your OIDC IdP workforce configuration.
|
17368
17617
|
#
|
17369
17618
|
# @!attribute [rw] client_id
|
17370
17619
|
# The OIDC IdP client ID used to configure your private workforce.
|
@@ -17413,7 +17662,7 @@ module Aws::SageMaker
|
|
17413
17662
|
include Aws::Structure
|
17414
17663
|
end
|
17415
17664
|
|
17416
|
-
# A list user groups that exist in your OIDC Identity Provider (IdP).
|
17665
|
+
# A list of user groups that exist in your OIDC Identity Provider (IdP).
|
17417
17666
|
# One to ten groups can be used to create a single private work team.
|
17418
17667
|
# When you add a user group to the list of `Groups`, you can add that
|
17419
17668
|
# user group to one or more private work teams. If you add a user group
|
@@ -18813,7 +19062,8 @@ module Aws::SageMaker
|
|
18813
19062
|
# The resolved attributes.
|
18814
19063
|
#
|
18815
19064
|
# @!attribute [rw] auto_ml_job_objective
|
18816
|
-
#
|
19065
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
19066
|
+
# job.
|
18817
19067
|
# @return [Types::AutoMLJobObjective]
|
18818
19068
|
#
|
18819
19069
|
# @!attribute [rw] problem_type
|
@@ -19617,8 +19867,7 @@ module Aws::SageMaker
|
|
19617
19867
|
#
|
19618
19868
|
# @!attribute [rw] s3_output_path
|
19619
19869
|
# When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
|
19620
|
-
# to save the notebook cell output.
|
19621
|
-
# specified, a default bucket is used.
|
19870
|
+
# to save the notebook cell output.
|
19622
19871
|
# @return [String]
|
19623
19872
|
#
|
19624
19873
|
# @!attribute [rw] s3_kms_key_id
|
@@ -19690,6 +19939,11 @@ module Aws::SageMaker
|
|
19690
19939
|
# The Amazon S3 path where the model artifacts, which result from
|
19691
19940
|
# model training, are stored. This path must point to a single `gzip`
|
19692
19941
|
# compressed tar archive (`.tar.gz` suffix).
|
19942
|
+
#
|
19943
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
19944
|
+
# region as the algorithm.
|
19945
|
+
#
|
19946
|
+
# </note>
|
19693
19947
|
# @return [String]
|
19694
19948
|
#
|
19695
19949
|
# @!attribute [rw] algorithm_name
|
@@ -19735,7 +19989,9 @@ module Aws::SageMaker
|
|
19735
19989
|
end
|
19736
19990
|
|
19737
19991
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow list
|
19738
|
-
# of IP addresses for a private workforce.
|
19992
|
+
# of IP addresses for a private workforce. Workers will only be able to
|
19993
|
+
# login to their worker portal from an IP address within this range. By
|
19994
|
+
# default, a workforce isn't restricted to specific IP addresses.
|
19739
19995
|
#
|
19740
19996
|
#
|
19741
19997
|
#
|
@@ -20930,7 +21186,12 @@ module Aws::SageMaker
|
|
20930
21186
|
# request payloads contain the entire contents of an input object. Set
|
20931
21187
|
# the value of this parameter to `Line` to split records on a newline
|
20932
21188
|
# character boundary. `SplitType` also supports a number of
|
20933
|
-
# record-oriented binary data formats.
|
21189
|
+
# record-oriented binary data formats. Currently, the supported record
|
21190
|
+
# formats are:
|
21191
|
+
#
|
21192
|
+
# * RecordIO
|
21193
|
+
#
|
21194
|
+
# * TFRecord
|
20934
21195
|
#
|
20935
21196
|
# When splitting is enabled, the size of a mini-batch depends on the
|
20936
21197
|
# values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
|
@@ -21877,7 +22138,7 @@ module Aws::SageMaker
|
|
21877
22138
|
# @return [Types::ProcessingJob]
|
21878
22139
|
#
|
21879
22140
|
# @!attribute [rw] transform_job
|
21880
|
-
# Information about a transform job that's the source of
|
22141
|
+
# Information about a transform job that's the source of a trial
|
21881
22142
|
# component.
|
21882
22143
|
# @return [Types::TransformJob]
|
21883
22144
|
#
|
@@ -22063,7 +22324,7 @@ module Aws::SageMaker
|
|
22063
22324
|
# }
|
22064
22325
|
#
|
22065
22326
|
# @!attribute [rw] target_objective_metric_value
|
22066
|
-
# The objective metric
|
22327
|
+
# The value of the objective metric.
|
22067
22328
|
# @return [Float]
|
22068
22329
|
#
|
22069
22330
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
|
@@ -23050,9 +23311,8 @@ module Aws::SageMaker
|
|
23050
23311
|
# }
|
23051
23312
|
#
|
23052
23313
|
# @!attribute [rw] workforce_name
|
23053
|
-
# The name of the private workforce
|
23054
|
-
#
|
23055
|
-
# is created and cannot be modified.
|
23314
|
+
# The name of the private workforce that you want to update. You can
|
23315
|
+
# find your workforce name by using the operation.
|
23056
23316
|
# @return [String]
|
23057
23317
|
#
|
23058
23318
|
# @!attribute [rw] source_ip_config
|
@@ -23082,12 +23342,11 @@ module Aws::SageMaker
|
|
23082
23342
|
end
|
23083
23343
|
|
23084
23344
|
# @!attribute [rw] workforce
|
23085
|
-
# A single private workforce
|
23086
|
-
#
|
23087
|
-
#
|
23088
|
-
#
|
23089
|
-
#
|
23090
|
-
# see [Create a Private Workforce][1].
|
23345
|
+
# A single private workforce. You can create one private work force in
|
23346
|
+
# each AWS Region. By default, any workforce-related API operation
|
23347
|
+
# used in a specific region will apply to the workforce created in
|
23348
|
+
# that region. To learn how to create a private workforce, see [Create
|
23349
|
+
# a Private Workforce][1].
|
23091
23350
|
#
|
23092
23351
|
#
|
23093
23352
|
#
|
@@ -23130,8 +23389,35 @@ module Aws::SageMaker
|
|
23130
23389
|
# @return [String]
|
23131
23390
|
#
|
23132
23391
|
# @!attribute [rw] member_definitions
|
23133
|
-
# A list of `MemberDefinition` objects that
|
23134
|
-
# team
|
23392
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23393
|
+
# identify the workers that make up the work team.
|
23394
|
+
#
|
23395
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23396
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23397
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23398
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23399
|
+
# You should not provide input for both of these parameters in a
|
23400
|
+
# single request.
|
23401
|
+
#
|
23402
|
+
# For workforces created using Amazon Cognito, private work teams
|
23403
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
23404
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
23405
|
+
# that make up the member definition must have the same `ClientId` and
|
23406
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
23407
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
23408
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
23409
|
+
#
|
23410
|
+
# For workforces created using your own OIDC IdP, specify the user
|
23411
|
+
# groups that you want to include in your private work team in
|
23412
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
|
23413
|
+
# that user groups that are already in the work team must also be
|
23414
|
+
# listed in `Groups` when you make this request to remain on the work
|
23415
|
+
# team. If you do not include these user groups, they will no longer
|
23416
|
+
# be associated with the work team you update.
|
23417
|
+
#
|
23418
|
+
#
|
23419
|
+
#
|
23420
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
23135
23421
|
# @return [Array<Types::MemberDefinition>]
|
23136
23422
|
#
|
23137
23423
|
# @!attribute [rw] description
|
@@ -23407,7 +23693,8 @@ module Aws::SageMaker
|
|
23407
23693
|
#
|
23408
23694
|
# @!attribute [rw] source_ip_config
|
23409
23695
|
# A list of one to ten IP address ranges ([CIDRs][1]) to be added to
|
23410
|
-
# the workforce allow list.
|
23696
|
+
# the workforce allow list. By default, a workforce isn't restricted
|
23697
|
+
# to specific IP addresses.
|
23411
23698
|
#
|
23412
23699
|
#
|
23413
23700
|
#
|
@@ -23459,7 +23746,13 @@ module Aws::SageMaker
|
|
23459
23746
|
# @return [String]
|
23460
23747
|
#
|
23461
23748
|
# @!attribute [rw] member_definitions
|
23462
|
-
#
|
23749
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23750
|
+
# identify the workers that make up the work team.
|
23751
|
+
#
|
23752
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23753
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23754
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23755
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23463
23756
|
# @return [Array<Types::MemberDefinition>]
|
23464
23757
|
#
|
23465
23758
|
# @!attribute [rw] workteam_arn
|