aws-sdk-sagemaker 1.64.0 → 1.69.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -37,6 +37,7 @@ module Aws::SageMaker
37
37
  AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
38
38
  AppList = Shapes::ListShape.new(name: 'AppList')
39
39
  AppName = Shapes::StringShape.new(name: 'AppName')
40
+ AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
40
41
  AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
41
42
  AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
42
43
  AppStatus = Shapes::StringShape.new(name: 'AppStatus')
@@ -429,6 +430,7 @@ module Aws::SageMaker
429
430
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
430
431
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
431
432
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
433
+ ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
432
434
  ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
433
435
  ImageUri = Shapes::StringShape.new(name: 'ImageUri')
434
436
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
@@ -467,6 +469,7 @@ module Aws::SageMaker
467
469
  LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
468
470
  LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
469
471
  LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
472
+ LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
470
473
  LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
471
474
  LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
472
475
  LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
@@ -722,6 +725,7 @@ module Aws::SageMaker
722
725
  RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
723
726
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
724
727
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
728
+ RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
725
729
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
726
730
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
727
731
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -768,6 +772,7 @@ module Aws::SageMaker
768
772
  SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
769
773
  ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
770
774
  SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
775
+ SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
771
776
  SortBy = Shapes::StringShape.new(name: 'SortBy')
772
777
  SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
773
778
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
@@ -1199,6 +1204,7 @@ module Aws::SageMaker
1199
1204
 
1200
1205
  ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
1201
1206
  ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
1207
+ ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
1202
1208
  ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
1203
1209
  ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
1204
1210
  ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -1285,6 +1291,7 @@ module Aws::SageMaker
1285
1291
  CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
1286
1292
  CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1287
1293
  CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
1294
+ CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1288
1295
  CreateDomainRequest.struct_class = Types::CreateDomainRequest
1289
1296
 
1290
1297
  CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
@@ -1798,6 +1805,7 @@ module Aws::SageMaker
1798
1805
  DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
1799
1806
  DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
1800
1807
  DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
1808
+ DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1801
1809
  DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
1802
1810
 
1803
1811
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -2414,6 +2422,9 @@ module Aws::SageMaker
2414
2422
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
2415
2423
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
2416
2424
 
2425
+ ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
2426
+ ImageConfig.struct_class = Types::ImageConfig
2427
+
2417
2428
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
2418
2429
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
2419
2430
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -2471,6 +2482,7 @@ module Aws::SageMaker
2471
2482
  LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
2472
2483
 
2473
2484
  LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
2485
+ LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
2474
2486
  LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
2475
2487
 
2476
2488
  LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
@@ -2493,6 +2505,7 @@ module Aws::SageMaker
2493
2505
 
2494
2506
  LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
2495
2507
  LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2508
+ LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
2496
2509
  LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
2497
2510
 
2498
2511
  LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
@@ -2501,6 +2514,9 @@ module Aws::SageMaker
2501
2514
  LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
2502
2515
  LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
2503
2516
 
2517
+ LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
2518
+ LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
2519
+
2504
2520
  LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
2505
2521
  LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
2506
2522
  LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
1285
1285
  include Aws::Structure
1286
1286
  end
1287
1287
 
1288
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
1289
1289
  # candidate has futher details about the steps involed, and the status.
1290
1290
  #
1291
1291
  # @!attribute [rw] candidate_name
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
1293
1293
  # @return [String]
1294
1294
  #
1295
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
1296
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
1297
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1298
1298
  #
1299
1299
  # @!attribute [rw] objective_status
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
1440
1440
  include Aws::Structure
1441
1441
  end
1442
1442
 
1443
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1444
1444
  #
1445
1445
  # @note When making an API call, you may pass AutoMLDataSource
1446
1446
  # data as a hash:
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
1455
1455
  # @!attribute [rw] s3_data_source
1456
1456
  # The Amazon S3 location of the input data.
1457
1457
  #
1458
- # <note markdown="1"> The input data must be in CSV format and contain at least 1000 rows.
1458
+ # <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
1459
1459
  #
1460
1460
  # </note>
1461
1461
  # @return [Types::AutoMLS3DataSource]
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
1563
1563
  include Aws::Structure
1564
1564
  end
1565
1565
 
1566
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1567
1567
  #
1568
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1569
1569
  # data as a hash:
1570
1570
  #
1571
1571
  # {
1572
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1573
1573
  # }
1574
1574
  #
1575
1575
  # @!attribute [rw] metric_name
1576
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1577
1651
  # @return [String]
1578
1652
  #
1579
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
1607
1681
  # @return [Time]
1608
1682
  #
1609
1683
  # @!attribute [rw] end_time
1610
- # The end time.
1684
+ # The end time of an AutoML job.
1611
1685
  # @return [Time]
1612
1686
  #
1613
1687
  # @!attribute [rw] last_modified_time
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
1615
1689
  # @return [Time]
1616
1690
  #
1617
1691
  # @!attribute [rw] failure_reason
1618
- # The failure reason.
1692
+ # The failure reason of a job.
1619
1693
  # @return [String]
1620
1694
  #
1621
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
2249
2323
  # {
2250
2324
  # container_hostname: "ContainerHostname",
2251
2325
  # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
2252
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2253
2330
  # model_data_url: "Url",
2254
2331
  # environment: {
@@ -2279,19 +2356,33 @@ module Aws::SageMaker
2279
2356
  # @return [String]
2280
2357
  #
2281
2358
  # @!attribute [rw] image
2282
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2283
- # code is stored. If you are using your own custom algorithm instead
2284
- # of an algorithm provided by Amazon SageMaker, the inference code
2285
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2286
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2287
- # image path formats. For more information, see [Using Your Own
2288
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2289
2368
  #
2290
2369
  #
2291
2370
  #
2292
2371
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
2293
2372
  # @return [String]
2294
2373
  #
2374
+ # @!attribute [rw] image_config
2375
+ # Specifies whether the model container is in Amazon ECR or a private
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2379
+ # Containers][1]
2380
+ #
2381
+ #
2382
+ #
2383
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2384
+ # @return [Types::ImageConfig]
2385
+ #
2295
2386
  # @!attribute [rw] mode
2296
2387
  # Whether the container hosts a single model or multiple models.
2297
2388
  # @return [String]
@@ -2304,6 +2395,11 @@ module Aws::SageMaker
2304
2395
  # algorithms. For more information on built-in algorithms, see [Common
2305
2396
  # Parameters][1].
2306
2397
  #
2398
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
2399
+ # region as the model or endpoint you are creating.
2400
+ #
2401
+ # </note>
2402
+ #
2307
2403
  # If you provide a value for this parameter, Amazon SageMaker uses AWS
2308
2404
  # Security Token Service to download model artifacts from the S3 path
2309
2405
  # you provide. AWS STS is activated in your IAM user account by
@@ -2338,6 +2434,7 @@ module Aws::SageMaker
2338
2434
  class ContainerDefinition < Struct.new(
2339
2435
  :container_hostname,
2340
2436
  :image,
2437
+ :image_config,
2341
2438
  :mode,
2342
2439
  :model_data_url,
2343
2440
  :environment,
@@ -2783,7 +2880,7 @@ module Aws::SageMaker
2783
2880
  # },
2784
2881
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2785
2882
  # auto_ml_job_objective: {
2786
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2883
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2787
2884
  # },
2788
2885
  # auto_ml_job_config: {
2789
2886
  # completion_criteria: {
@@ -2811,13 +2908,13 @@ module Aws::SageMaker
2811
2908
  # }
2812
2909
  #
2813
2910
  # @!attribute [rw] auto_ml_job_name
2814
- # Identifies an AutoPilot job. Must be unique to your account and is
2911
+ # Identifies an Autopilot job. Must be unique to your account and is
2815
2912
  # case-insensitive.
2816
2913
  # @return [String]
2817
2914
  #
2818
2915
  # @!attribute [rw] input_data_config
2819
2916
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
2820
- # CSV. Minimum of 1000 rows.
2917
+ # CSV. Minimum of 500 rows.
2821
2918
  # @return [Array<Types::AutoMLChannel>]
2822
2919
  #
2823
2920
  # @!attribute [rw] output_data_config
@@ -2832,9 +2929,11 @@ module Aws::SageMaker
2832
2929
  # @return [String]
2833
2930
  #
2834
2931
  # @!attribute [rw] auto_ml_job_objective
2835
- # Defines the job's objective. You provide a MetricName and AutoML
2836
- # will infer minimize or maximize. If this is not provided, the most
2837
- # commonly used ObjectiveMetric for problem type will be selected.
2932
+ # Defines the objective of a an AutoML job. You provide a
2933
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2934
+ # minimize or maximize it. If a metric is not specified, the most
2935
+ # commonly used ObjectiveMetric for problem type is automaically
2936
+ # selected.
2838
2937
  # @return [Types::AutoMLJobObjective]
2839
2938
  #
2840
2939
  # @!attribute [rw] auto_ml_job_config
@@ -2842,13 +2941,13 @@ module Aws::SageMaker
2842
2941
  # @return [Types::AutoMLJobConfig]
2843
2942
  #
2844
2943
  # @!attribute [rw] role_arn
2845
- # The ARN of the role that will be used to access the data.
2944
+ # The ARN of the role that is used to access the data.
2846
2945
  # @return [String]
2847
2946
  #
2848
2947
  # @!attribute [rw] generate_candidate_definitions_only
2849
- # This will generate possible candidates without training a model. A
2850
- # candidate is a combination of data preprocessors, algorithms, and
2851
- # algorithm parameter settings.
2948
+ # Generates possible candidates without training a model. A candidate
2949
+ # is a combination of data preprocessors, algorithms, and algorithm
2950
+ # parameter settings.
2852
2951
  # @return [Boolean]
2853
2952
  #
2854
2953
  # @!attribute [rw] tags
@@ -3074,6 +3173,7 @@ module Aws::SageMaker
3074
3173
  # },
3075
3174
  # ],
3076
3175
  # home_efs_file_system_kms_key_id: "KmsKeyId",
3176
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
3077
3177
  # }
3078
3178
  #
3079
3179
  # @!attribute [rw] domain_name
@@ -3089,12 +3189,12 @@ module Aws::SageMaker
3089
3189
  # @return [Types::UserSettings]
3090
3190
  #
3091
3191
  # @!attribute [rw] subnet_ids
3092
- # The VPC subnets to use for communication with the EFS volume.
3192
+ # The VPC subnets that Studio uses for communication.
3093
3193
  # @return [Array<String>]
3094
3194
  #
3095
3195
  # @!attribute [rw] vpc_id
3096
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
3097
- # communication with the EFS volume.
3196
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
3197
+ # for communication.
3098
3198
  # @return [String]
3099
3199
  #
3100
3200
  # @!attribute [rw] tags
@@ -3108,6 +3208,17 @@ module Aws::SageMaker
3108
3208
  # with a customer master key (CMK) is not supported.
3109
3209
  # @return [String]
3110
3210
  #
3211
+ # @!attribute [rw] app_network_access_type
3212
+ # Specifies the VPC used for non-EFS traffic. The default value is
3213
+ # `PublicInternetOnly`.
3214
+ #
3215
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
3216
+ # Amazon SageMaker, which allows direct internet access
3217
+ #
3218
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
3219
+ # subnets
3220
+ # @return [String]
3221
+ #
3111
3222
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
3112
3223
  #
3113
3224
  class CreateDomainRequest < Struct.new(
@@ -3117,7 +3228,8 @@ module Aws::SageMaker
3117
3228
  :subnet_ids,
3118
3229
  :vpc_id,
3119
3230
  :tags,
3120
- :home_efs_file_system_kms_key_id)
3231
+ :home_efs_file_system_kms_key_id,
3232
+ :app_network_access_type)
3121
3233
  SENSITIVE = []
3122
3234
  include Aws::Structure
3123
3235
  end
@@ -3906,6 +4018,9 @@ module Aws::SageMaker
3906
4018
  # s3_data_source: {
3907
4019
  # manifest_s3_uri: "S3Uri", # required
3908
4020
  # },
4021
+ # sns_data_source: {
4022
+ # sns_topic_arn: "SnsTopicArn", # required
4023
+ # },
3909
4024
  # },
3910
4025
  # data_attributes: {
3911
4026
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -3914,6 +4029,7 @@ module Aws::SageMaker
3914
4029
  # output_config: { # required
3915
4030
  # s3_output_path: "S3Uri", # required
3916
4031
  # kms_key_id: "KmsKeyId",
4032
+ # sns_topic_arn: "SnsTopicArn",
3917
4033
  # },
3918
4034
  # role_arn: "RoleArn", # required
3919
4035
  # label_category_config_s3_uri: "S3Uri",
@@ -4108,6 +4224,9 @@ module Aws::SageMaker
4108
4224
  # primary_container: {
4109
4225
  # container_hostname: "ContainerHostname",
4110
4226
  # image: "ContainerImage",
4227
+ # image_config: {
4228
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4229
+ # },
4111
4230
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4112
4231
  # model_data_url: "Url",
4113
4232
  # environment: {
@@ -4119,6 +4238,9 @@ module Aws::SageMaker
4119
4238
  # {
4120
4239
  # container_hostname: "ContainerHostname",
4121
4240
  # image: "ContainerImage",
4241
+ # image_config: {
4242
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4243
+ # },
4122
4244
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4123
4245
  # model_data_url: "Url",
4124
4246
  # environment: {
@@ -5844,14 +5966,17 @@ module Aws::SageMaker
5844
5966
  #
5845
5967
  # @!attribute [rw] oidc_config
5846
5968
  # Use this parameter to configure a private workforce using your own
5847
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
5848
- # values for `OidcConfig`.
5969
+ # OIDC Identity Provider.
5970
+ #
5971
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5849
5972
  # @return [Types::OidcConfig]
5850
5973
  #
5851
5974
  # @!attribute [rw] source_ip_config
5852
5975
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5853
- # list of IP addresses for a private workforce. For more information,
5854
- # see .
5976
+ # list of IP addresses for a private workforce. Workers will only be
5977
+ # able to login to their worker portal from an IP address within this
5978
+ # range. By default, a workforce isn't restricted to specific IP
5979
+ # addresses.
5855
5980
  #
5856
5981
  #
5857
5982
  #
@@ -5932,11 +6057,25 @@ module Aws::SageMaker
5932
6057
  #
5933
6058
  # @!attribute [rw] member_definitions
5934
6059
  # A list of `MemberDefinition` objects that contains objects that
5935
- # identify the Amazon Cognito user pool that makes up the work team.
5936
- # For more information, see [Amazon Cognito User Pools][1].
6060
+ # identify the workers that make up the work team.
6061
+ #
6062
+ # Workforces can be created using Amazon Cognito or your own OIDC
6063
+ # Identity Provider (IdP). For private workforces created using Amazon
6064
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6065
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6066
+ # not provide input for both of these parameters in a single request.
5937
6067
  #
5938
- # All of the `CognitoMemberDefinition` objects that make up the member
5939
- # definition must have the same `ClientId` and `UserPool` values.
6068
+ # For workforces created using Amazon Cognito, private work teams
6069
+ # correspond to Amazon Cognito *user groups* within the user pool used
6070
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6071
+ # that make up the member definition must have the same `ClientId` and
6072
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6073
+ # worker pool, see [Adding groups to a User Pool](). For more
6074
+ # information about user pools, see [Amazon Cognito User Pools][1].
6075
+ #
6076
+ # For workforces created using your own OIDC IdP, specify the user
6077
+ # groups that you want to include in your private work team in
6078
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5940
6079
  #
5941
6080
  #
5942
6081
  #
@@ -7402,7 +7541,7 @@ module Aws::SageMaker
7402
7541
  # @return [String]
7403
7542
  #
7404
7543
  # @!attribute [rw] subnet_ids
7405
- # Security setting to limit to a set of subnets.
7544
+ # The VPC subnets that Studio uses for communication.
7406
7545
  # @return [Array<String>]
7407
7546
  #
7408
7547
  # @!attribute [rw] url
@@ -7410,7 +7549,19 @@ module Aws::SageMaker
7410
7549
  # @return [String]
7411
7550
  #
7412
7551
  # @!attribute [rw] vpc_id
7413
- # The ID of the Amazon Virtual Private Cloud.
7552
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
7553
+ # for communication.
7554
+ # @return [String]
7555
+ #
7556
+ # @!attribute [rw] app_network_access_type
7557
+ # Specifies the VPC used for non-EFS traffic. The default value is
7558
+ # `PublicInternetOnly`.
7559
+ #
7560
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
7561
+ # Amazon SageMaker, which allows direct internet access
7562
+ #
7563
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
7564
+ # subnets
7414
7565
  # @return [String]
7415
7566
  #
7416
7567
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
@@ -7430,7 +7581,8 @@ module Aws::SageMaker
7430
7581
  :home_efs_file_system_kms_key_id,
7431
7582
  :subnet_ids,
7432
7583
  :url,
7433
- :vpc_id)
7584
+ :vpc_id,
7585
+ :app_network_access_type)
7434
7586
  SENSITIVE = []
7435
7587
  include Aws::Structure
7436
7588
  end
@@ -8841,7 +8993,7 @@ module Aws::SageMaker
8841
8993
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8842
8994
  # maximum allowed runtime.
8843
8995
  #
8844
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8996
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8845
8997
  # maximum allowed wait time.
8846
8998
  #
8847
8999
  # * `Stopped` - The training job has stopped.
@@ -10210,18 +10362,19 @@ module Aws::SageMaker
10210
10362
  include Aws::Structure
10211
10363
  end
10212
10364
 
10213
- # The candidate result from a job.
10365
+ # The best candidate result from an AutoML training job.
10214
10366
  #
10215
10367
  # @!attribute [rw] type
10216
- # The metric type used.
10368
+ # The type of metric with the best result.
10217
10369
  # @return [String]
10218
10370
  #
10219
10371
  # @!attribute [rw] metric_name
10220
- # The name of the metric.
10372
+ # The name of the metric with the best result. For a description of
10373
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
10221
10374
  # @return [String]
10222
10375
  #
10223
10376
  # @!attribute [rw] value
10224
- # The value of the metric.
10377
+ # The value of the metric with the best result.
10225
10378
  # @return [Float]
10226
10379
  #
10227
10380
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -10539,12 +10692,13 @@ module Aws::SageMaker
10539
10692
  # @return [Integer]
10540
10693
  #
10541
10694
  # @!attribute [rw] task_availability_lifetime_in_seconds
10542
- # The length of time that a task remains available for labeling by
10543
- # human workers.
10695
+ # The length of time that a task remains available for review by human
10696
+ # workers.
10544
10697
  # @return [Integer]
10545
10698
  #
10546
10699
  # @!attribute [rw] task_time_limit_in_seconds
10547
- # The amount of time that a worker has to complete a task.
10700
+ # The amount of time that a worker has to complete a task. The default
10701
+ # value is 3,600 seconds (1 hour)
10548
10702
  # @return [Integer]
10549
10703
  #
10550
10704
  # @!attribute [rw] task_keywords
@@ -12362,6 +12516,34 @@ module Aws::SageMaker
12362
12516
  include Aws::Structure
12363
12517
  end
12364
12518
 
12519
+ # Specifies whether the model container is in Amazon ECR or a private
12520
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12521
+ # (VPC).
12522
+ #
12523
+ # @note When making an API call, you may pass ImageConfig
12524
+ # data as a hash:
12525
+ #
12526
+ # {
12527
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12528
+ # }
12529
+ #
12530
+ # @!attribute [rw] repository_access_mode
12531
+ # Set this to one of the following values:
12532
+ #
12533
+ # * `Platform` - The model image is hosted in Amazon ECR.
12534
+ #
12535
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12536
+ # your VPC.
12537
+ # @return [String]
12538
+ #
12539
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12540
+ #
12541
+ class ImageConfig < Struct.new(
12542
+ :repository_access_mode)
12543
+ SENSITIVE = []
12544
+ include Aws::Structure
12545
+ end
12546
+
12365
12547
  # Defines how to perform inference generation after a training job is
12366
12548
  # run.
12367
12549
  #
@@ -12785,10 +12967,10 @@ module Aws::SageMaker
12785
12967
  # @return [String]
12786
12968
  #
12787
12969
  # @!attribute [rw] initial_active_learning_model_arn
12788
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12789
- # the Amazon Resource Nam (ARN) of the final model used for
12790
- # auto-labeling. You can use this model as the starting point for
12791
- # subsequent similar jobs by providing the ARN of the model here.
12970
+ # At the end of an auto-label job Ground Truth sends the Amazon
12971
+ # Resource Name (ARN) of the final model used for auto-labeling. You
12972
+ # can use this model as the starting point for subsequent similar jobs
12973
+ # by providing the ARN of the model here.
12792
12974
  # @return [String]
12793
12975
  #
12794
12976
  # @!attribute [rw] labeling_job_resource_config
@@ -12832,6 +13014,18 @@ module Aws::SageMaker
12832
13014
 
12833
13015
  # Provides information about the location of input data.
12834
13016
  #
13017
+ # You must specify at least one of the following: `S3DataSource` or
13018
+ # `SnsDataSource`.
13019
+ #
13020
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
13021
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
13022
+ # Truth will create a one-time labeling job.
13023
+ #
13024
+ # Use `S3DataSource` to specify an input manifest file for both
13025
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
13026
+ # optional if you use `SnsDataSource` to create a streaming labeling
13027
+ # job.
13028
+ #
12835
13029
  # @note When making an API call, you may pass LabelingJobDataSource
12836
13030
  # data as a hash:
12837
13031
  #
@@ -12839,16 +13033,24 @@ module Aws::SageMaker
12839
13033
  # s3_data_source: {
12840
13034
  # manifest_s3_uri: "S3Uri", # required
12841
13035
  # },
13036
+ # sns_data_source: {
13037
+ # sns_topic_arn: "SnsTopicArn", # required
13038
+ # },
12842
13039
  # }
12843
13040
  #
12844
13041
  # @!attribute [rw] s3_data_source
12845
13042
  # The Amazon S3 location of the input data objects.
12846
13043
  # @return [Types::LabelingJobS3DataSource]
12847
13044
  #
13045
+ # @!attribute [rw] sns_data_source
13046
+ # An Amazon SNS data source used for streaming labeling jobs.
13047
+ # @return [Types::LabelingJobSnsDataSource]
13048
+ #
12848
13049
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12849
13050
  #
12850
13051
  class LabelingJobDataSource < Struct.new(
12851
- :s3_data_source)
13052
+ :s3_data_source,
13053
+ :sns_data_source)
12852
13054
  SENSITIVE = []
12853
13055
  include Aws::Structure
12854
13056
  end
@@ -12902,6 +13104,9 @@ module Aws::SageMaker
12902
13104
  # s3_data_source: {
12903
13105
  # manifest_s3_uri: "S3Uri", # required
12904
13106
  # },
13107
+ # sns_data_source: {
13108
+ # sns_topic_arn: "SnsTopicArn", # required
13109
+ # },
12905
13110
  # },
12906
13111
  # data_attributes: {
12907
13112
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -12953,6 +13158,7 @@ module Aws::SageMaker
12953
13158
  # {
12954
13159
  # s3_output_path: "S3Uri", # required
12955
13160
  # kms_key_id: "KmsKeyId",
13161
+ # sns_topic_arn: "SnsTopicArn",
12956
13162
  # }
12957
13163
  #
12958
13164
  # @!attribute [rw] s3_output_path
@@ -12986,11 +13192,22 @@ module Aws::SageMaker
12986
13192
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
12987
13193
  # @return [String]
12988
13194
  #
13195
+ # @!attribute [rw] sns_topic_arn
13196
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13197
+ #
13198
+ # When workers complete labeling tasks, Ground Truth will send
13199
+ # labeling task output data to the SNS output topic you specify here.
13200
+ #
13201
+ # You must provide a value for this parameter if you provide an Amazon
13202
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13203
+ # @return [String]
13204
+ #
12989
13205
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
12990
13206
  #
12991
13207
  class LabelingJobOutputConfig < Struct.new(
12992
13208
  :s3_output_path,
12993
- :kms_key_id)
13209
+ :kms_key_id,
13210
+ :sns_topic_arn)
12994
13211
  SENSITIVE = []
12995
13212
  include Aws::Structure
12996
13213
  end
@@ -13049,6 +13266,32 @@ module Aws::SageMaker
13049
13266
  include Aws::Structure
13050
13267
  end
13051
13268
 
13269
+ # An Amazon SNS data source used for streaming labeling jobs.
13270
+ #
13271
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13272
+ # data as a hash:
13273
+ #
13274
+ # {
13275
+ # sns_topic_arn: "SnsTopicArn", # required
13276
+ # }
13277
+ #
13278
+ # @!attribute [rw] sns_topic_arn
13279
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13280
+ # ARN of the input topic you will use to send new data objects to a
13281
+ # streaming labeling job.
13282
+ #
13283
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13284
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13285
+ # @return [String]
13286
+ #
13287
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13288
+ #
13289
+ class LabelingJobSnsDataSource < Struct.new(
13290
+ :sns_topic_arn)
13291
+ SENSITIVE = []
13292
+ include Aws::Structure
13293
+ end
13294
+
13052
13295
  # A set of conditions for stopping a labeling job. If any of the
13053
13296
  # conditions are met, the job is automatically stopped. You can use
13054
13297
  # these conditions to control the cost of data labeling.
@@ -13366,8 +13609,8 @@ module Aws::SageMaker
13366
13609
  # @return [Integer]
13367
13610
  #
13368
13611
  # @!attribute [rw] next_token
13369
- # If the previous response was truncated, you will receive this token.
13370
- # Use it in your next request to receive the next set of results.
13612
+ # If the previous response was truncated, you receive this token. Use
13613
+ # it in your next request to receive the next set of results.
13371
13614
  # @return [String]
13372
13615
  #
13373
13616
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -13392,8 +13635,8 @@ module Aws::SageMaker
13392
13635
  # @return [Array<Types::AutoMLJobSummary>]
13393
13636
  #
13394
13637
  # @!attribute [rw] next_token
13395
- # If the previous response was truncated, you will receive this token.
13396
- # Use it in your next request to receive the next set of results.
13638
+ # If the previous response was truncated, you receive this token. Use
13639
+ # it in your next request to receive the next set of results.
13397
13640
  # @return [String]
13398
13641
  #
13399
13642
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -13445,8 +13688,8 @@ module Aws::SageMaker
13445
13688
  # @return [Integer]
13446
13689
  #
13447
13690
  # @!attribute [rw] next_token
13448
- # If the previous response was truncated, you will receive this token.
13449
- # Use it in your next request to receive the next set of results.
13691
+ # If the previous response was truncated, you receive this token. Use
13692
+ # it in your next request to receive the next set of results.
13450
13693
  # @return [String]
13451
13694
  #
13452
13695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -13468,8 +13711,8 @@ module Aws::SageMaker
13468
13711
  # @return [Array<Types::AutoMLCandidate>]
13469
13712
  #
13470
13713
  # @!attribute [rw] next_token
13471
- # If the previous response was truncated, you will receive this token.
13472
- # Use it in your next request to receive the next set of results.
13714
+ # If the previous response was truncated, you receive this token. Use
13715
+ # it in your next request to receive the next set of results.
13473
13716
  # @return [String]
13474
13717
  #
13475
13718
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -15879,7 +16122,8 @@ module Aws::SageMaker
15879
16122
  include Aws::Structure
15880
16123
  end
15881
16124
 
15882
- # Defines the Amazon Cognito user group that is part of a work team.
16125
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16126
+ # of a work team.
15883
16127
  #
15884
16128
  # @note When making an API call, you may pass MemberDefinition
15885
16129
  # data as a hash:
@@ -16069,6 +16313,11 @@ module Aws::SageMaker
16069
16313
  # The Amazon S3 path where the model artifacts, which result from
16070
16314
  # model training, are stored. This path must point to a single `gzip`
16071
16315
  # compressed tar archive (`.tar.gz` suffix).
16316
+ #
16317
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
16318
+ # region as the model package.
16319
+ #
16320
+ # </note>
16072
16321
  # @return [String]
16073
16322
  #
16074
16323
  # @!attribute [rw] product_id
@@ -17364,7 +17613,7 @@ module Aws::SageMaker
17364
17613
  include Aws::Structure
17365
17614
  end
17366
17615
 
17367
- # Your Amazon Cognito workforce configuration.
17616
+ # Your OIDC IdP workforce configuration.
17368
17617
  #
17369
17618
  # @!attribute [rw] client_id
17370
17619
  # The OIDC IdP client ID used to configure your private workforce.
@@ -17413,7 +17662,7 @@ module Aws::SageMaker
17413
17662
  include Aws::Structure
17414
17663
  end
17415
17664
 
17416
- # A list user groups that exist in your OIDC Identity Provider (IdP).
17665
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17417
17666
  # One to ten groups can be used to create a single private work team.
17418
17667
  # When you add a user group to the list of `Groups`, you can add that
17419
17668
  # user group to one or more private work teams. If you add a user group
@@ -18813,7 +19062,8 @@ module Aws::SageMaker
18813
19062
  # The resolved attributes.
18814
19063
  #
18815
19064
  # @!attribute [rw] auto_ml_job_objective
18816
- # Applies a metric to minimize or maximize for the job's objective.
19065
+ # Specifies a metric to minimize or maximize as the objective of a
19066
+ # job.
18817
19067
  # @return [Types::AutoMLJobObjective]
18818
19068
  #
18819
19069
  # @!attribute [rw] problem_type
@@ -19617,8 +19867,7 @@ module Aws::SageMaker
19617
19867
  #
19618
19868
  # @!attribute [rw] s3_output_path
19619
19869
  # When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
19620
- # to save the notebook cell output. If `S3OutputPath` isn't
19621
- # specified, a default bucket is used.
19870
+ # to save the notebook cell output.
19622
19871
  # @return [String]
19623
19872
  #
19624
19873
  # @!attribute [rw] s3_kms_key_id
@@ -19690,6 +19939,11 @@ module Aws::SageMaker
19690
19939
  # The Amazon S3 path where the model artifacts, which result from
19691
19940
  # model training, are stored. This path must point to a single `gzip`
19692
19941
  # compressed tar archive (`.tar.gz` suffix).
19942
+ #
19943
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
19944
+ # region as the algorithm.
19945
+ #
19946
+ # </note>
19693
19947
  # @return [String]
19694
19948
  #
19695
19949
  # @!attribute [rw] algorithm_name
@@ -19735,7 +19989,9 @@ module Aws::SageMaker
19735
19989
  end
19736
19990
 
19737
19991
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
19738
- # of IP addresses for a private workforce. For more information, see .
19992
+ # of IP addresses for a private workforce. Workers will only be able to
19993
+ # login to their worker portal from an IP address within this range. By
19994
+ # default, a workforce isn't restricted to specific IP addresses.
19739
19995
  #
19740
19996
  #
19741
19997
  #
@@ -20930,7 +21186,12 @@ module Aws::SageMaker
20930
21186
  # request payloads contain the entire contents of an input object. Set
20931
21187
  # the value of this parameter to `Line` to split records on a newline
20932
21188
  # character boundary. `SplitType` also supports a number of
20933
- # record-oriented binary data formats.
21189
+ # record-oriented binary data formats. Currently, the supported record
21190
+ # formats are:
21191
+ #
21192
+ # * RecordIO
21193
+ #
21194
+ # * TFRecord
20934
21195
  #
20935
21196
  # When splitting is enabled, the size of a mini-batch depends on the
20936
21197
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -21877,7 +22138,7 @@ module Aws::SageMaker
21877
22138
  # @return [Types::ProcessingJob]
21878
22139
  #
21879
22140
  # @!attribute [rw] transform_job
21880
- # Information about a transform job that's the source of the trial
22141
+ # Information about a transform job that's the source of a trial
21881
22142
  # component.
21882
22143
  # @return [Types::TransformJob]
21883
22144
  #
@@ -22063,7 +22324,7 @@ module Aws::SageMaker
22063
22324
  # }
22064
22325
  #
22065
22326
  # @!attribute [rw] target_objective_metric_value
22066
- # The objective metric's value.
22327
+ # The value of the objective metric.
22067
22328
  # @return [Float]
22068
22329
  #
22069
22330
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -23050,9 +23311,8 @@ module Aws::SageMaker
23050
23311
  # }
23051
23312
  #
23052
23313
  # @!attribute [rw] workforce_name
23053
- # The name of the private workforce whose access you want to restrict.
23054
- # `WorkforceName` is automatically set to `default` when a workforce
23055
- # is created and cannot be modified.
23314
+ # The name of the private workforce that you want to update. You can
23315
+ # find your workforce name by using the operation.
23056
23316
  # @return [String]
23057
23317
  #
23058
23318
  # @!attribute [rw] source_ip_config
@@ -23082,12 +23342,11 @@ module Aws::SageMaker
23082
23342
  end
23083
23343
 
23084
23344
  # @!attribute [rw] workforce
23085
- # A single private workforce, which is automatically created when you
23086
- # create your first private work team. You can create one private work
23087
- # force in each AWS Region. By default, any workforce-related API
23088
- # operation used in a specific region will apply to the workforce
23089
- # created in that region. To learn how to create a private workforce,
23090
- # see [Create a Private Workforce][1].
23345
+ # A single private workforce. You can create one private work force in
23346
+ # each AWS Region. By default, any workforce-related API operation
23347
+ # used in a specific region will apply to the workforce created in
23348
+ # that region. To learn how to create a private workforce, see [Create
23349
+ # a Private Workforce][1].
23091
23350
  #
23092
23351
  #
23093
23352
  #
@@ -23130,8 +23389,35 @@ module Aws::SageMaker
23130
23389
  # @return [String]
23131
23390
  #
23132
23391
  # @!attribute [rw] member_definitions
23133
- # A list of `MemberDefinition` objects that contain the updated work
23134
- # team members.
23392
+ # A list of `MemberDefinition` objects that contains objects that
23393
+ # identify the workers that make up the work team.
23394
+ #
23395
+ # Workforces can be created using Amazon Cognito or your own OIDC
23396
+ # Identity Provider (IdP). For private workforces created using Amazon
23397
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23398
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23399
+ # You should not provide input for both of these parameters in a
23400
+ # single request.
23401
+ #
23402
+ # For workforces created using Amazon Cognito, private work teams
23403
+ # correspond to Amazon Cognito *user groups* within the user pool used
23404
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23405
+ # that make up the member definition must have the same `ClientId` and
23406
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23407
+ # worker pool, see [Adding groups to a User Pool](). For more
23408
+ # information about user pools, see [Amazon Cognito User Pools][1].
23409
+ #
23410
+ # For workforces created using your own OIDC IdP, specify the user
23411
+ # groups that you want to include in your private work team in
23412
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23413
+ # that user groups that are already in the work team must also be
23414
+ # listed in `Groups` when you make this request to remain on the work
23415
+ # team. If you do not include these user groups, they will no longer
23416
+ # be associated with the work team you update.
23417
+ #
23418
+ #
23419
+ #
23420
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23135
23421
  # @return [Array<Types::MemberDefinition>]
23136
23422
  #
23137
23423
  # @!attribute [rw] description
@@ -23407,7 +23693,8 @@ module Aws::SageMaker
23407
23693
  #
23408
23694
  # @!attribute [rw] source_ip_config
23409
23695
  # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23410
- # the workforce allow list.
23696
+ # the workforce allow list. By default, a workforce isn't restricted
23697
+ # to specific IP addresses.
23411
23698
  #
23412
23699
  #
23413
23700
  #
@@ -23459,7 +23746,13 @@ module Aws::SageMaker
23459
23746
  # @return [String]
23460
23747
  #
23461
23748
  # @!attribute [rw] member_definitions
23462
- # The Amazon Cognito user groups that make up the work team.
23749
+ # A list of `MemberDefinition` objects that contains objects that
23750
+ # identify the workers that make up the work team.
23751
+ #
23752
+ # Workforces can be created using Amazon Cognito or your own OIDC
23753
+ # Identity Provider (IdP). For private workforces created using Amazon
23754
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23755
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23463
23756
  # @return [Array<Types::MemberDefinition>]
23464
23757
  #
23465
23758
  # @!attribute [rw] workteam_arn