aws-sdk-sagemaker 1.64.0 → 1.65.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +128 -57
- data/lib/aws-sdk-sagemaker/client_api.rb +6 -0
- data/lib/aws-sdk-sagemaker/types.rb +242 -58
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
|
4
|
+
data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
|
7
|
+
data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -713,15 +713,14 @@ module Aws::SageMaker
|
|
713
713
|
req.send_request(options)
|
714
714
|
end
|
715
715
|
|
716
|
-
# Creates an
|
716
|
+
# Creates an Autopilot job.
|
717
717
|
#
|
718
|
-
#
|
719
|
-
#
|
720
|
-
#
|
721
|
-
# Services][1].
|
718
|
+
# Find the best performing model after you run an Autopilot job by
|
719
|
+
# calling . Deploy that model by following the steps described in [Step
|
720
|
+
# 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
|
722
721
|
#
|
723
|
-
# For information about how to use
|
724
|
-
#
|
722
|
+
# For information about how to use Autopilot, see [ Automate Model
|
723
|
+
# Development with Amazon SageMaker Autopilot][2].
|
725
724
|
#
|
726
725
|
#
|
727
726
|
#
|
@@ -729,7 +728,7 @@ module Aws::SageMaker
|
|
729
728
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
730
729
|
#
|
731
730
|
# @option params [required, String] :auto_ml_job_name
|
732
|
-
# Identifies an
|
731
|
+
# Identifies an Autopilot job. Must be unique to your account and is
|
733
732
|
# case-insensitive.
|
734
733
|
#
|
735
734
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
@@ -746,20 +745,21 @@ module Aws::SageMaker
|
|
746
745
|
# MulticlassClassification, and Regression.
|
747
746
|
#
|
748
747
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
749
|
-
# Defines the job
|
750
|
-
#
|
751
|
-
#
|
748
|
+
# Defines the objective of a an AutoML job. You provide a
|
749
|
+
# AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
|
750
|
+
# or maximize it. If a metric is not specified, the most commonly used
|
751
|
+
# ObjectiveMetric for problem type is automaically selected.
|
752
752
|
#
|
753
753
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
754
754
|
# Contains CompletionCriteria and SecurityConfig.
|
755
755
|
#
|
756
756
|
# @option params [required, String] :role_arn
|
757
|
-
# The ARN of the role that
|
757
|
+
# The ARN of the role that is used to access the data.
|
758
758
|
#
|
759
759
|
# @option params [Boolean] :generate_candidate_definitions_only
|
760
|
-
#
|
761
|
-
#
|
762
|
-
#
|
760
|
+
# Generates possible candidates without training a model. A candidate is
|
761
|
+
# a combination of data preprocessors, algorithms, and algorithm
|
762
|
+
# parameter settings.
|
763
763
|
#
|
764
764
|
# @option params [Array<Types::Tag>] :tags
|
765
765
|
# Each tag consists of a key and an optional value. Tag keys must be
|
@@ -791,7 +791,7 @@ module Aws::SageMaker
|
|
791
791
|
# },
|
792
792
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
793
793
|
# auto_ml_job_objective: {
|
794
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
794
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
795
795
|
# },
|
796
796
|
# auto_ml_job_config: {
|
797
797
|
# completion_criteria: {
|
@@ -2247,6 +2247,9 @@ module Aws::SageMaker
|
|
2247
2247
|
# primary_container: {
|
2248
2248
|
# container_hostname: "ContainerHostname",
|
2249
2249
|
# image: "ContainerImage",
|
2250
|
+
# image_config: {
|
2251
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2252
|
+
# },
|
2250
2253
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2251
2254
|
# model_data_url: "Url",
|
2252
2255
|
# environment: {
|
@@ -2258,6 +2261,9 @@ module Aws::SageMaker
|
|
2258
2261
|
# {
|
2259
2262
|
# container_hostname: "ContainerHostname",
|
2260
2263
|
# image: "ContainerImage",
|
2264
|
+
# image_config: {
|
2265
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2266
|
+
# },
|
2261
2267
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2262
2268
|
# model_data_url: "Url",
|
2263
2269
|
# environment: {
|
@@ -3902,11 +3908,12 @@ module Aws::SageMaker
|
|
3902
3908
|
|
3903
3909
|
# Use this operation to create a workforce. This operation will return
|
3904
3910
|
# an error if a workforce already exists in the AWS Region that you
|
3905
|
-
# specify. You can only create one workforce in each AWS Region
|
3911
|
+
# specify. You can only create one workforce in each AWS Region per AWS
|
3912
|
+
# account.
|
3906
3913
|
#
|
3907
|
-
# If you want to create a new workforce in an AWS Region where
|
3914
|
+
# If you want to create a new workforce in an AWS Region where a
|
3908
3915
|
# workforce already exists, use the API operation to delete the existing
|
3909
|
-
# workforce and then use
|
3916
|
+
# workforce and then use `CreateWorkforce` to create a new workforce.
|
3910
3917
|
#
|
3911
3918
|
# To create a private workforce using Amazon Cognito, you must specify a
|
3912
3919
|
# Cognito user pool in `CognitoConfig`. You can also create an Amazon
|
@@ -3914,9 +3921,10 @@ module Aws::SageMaker
|
|
3914
3921
|
# information, see [ Create a Private Workforce (Amazon Cognito)][1].
|
3915
3922
|
#
|
3916
3923
|
# To create a private workforce using your own OIDC Identity Provider
|
3917
|
-
# (IdP), specify your IdP configuration in `OidcConfig`.
|
3918
|
-
#
|
3919
|
-
#
|
3924
|
+
# (IdP), specify your IdP configuration in `OidcConfig`. Your OIDC IdP
|
3925
|
+
# must support *groups* because groups are used by Ground Truth and
|
3926
|
+
# Amazon A2I to create work teams. For more information, see [ Create a
|
3927
|
+
# Private Workforce (OIDC IdP)][2].
|
3920
3928
|
#
|
3921
3929
|
#
|
3922
3930
|
#
|
@@ -3936,12 +3944,15 @@ module Aws::SageMaker
|
|
3936
3944
|
#
|
3937
3945
|
# @option params [Types::OidcConfig] :oidc_config
|
3938
3946
|
# Use this parameter to configure a private workforce using your own
|
3939
|
-
# OIDC Identity Provider.
|
3940
|
-
#
|
3947
|
+
# OIDC Identity Provider.
|
3948
|
+
#
|
3949
|
+
# Do not use `CognitoConfig` if you specify values for `OidcConfig`.
|
3941
3950
|
#
|
3942
3951
|
# @option params [Types::SourceIpConfig] :source_ip_config
|
3943
3952
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow list
|
3944
|
-
# of IP addresses for a private workforce.
|
3953
|
+
# of IP addresses for a private workforce. Workers will only be able to
|
3954
|
+
# login to their worker portal from an IP address within this range. By
|
3955
|
+
# default, a workforce isn't restricted to specific IP addresses.
|
3945
3956
|
#
|
3946
3957
|
#
|
3947
3958
|
#
|
@@ -4015,11 +4026,25 @@ module Aws::SageMaker
|
|
4015
4026
|
#
|
4016
4027
|
# @option params [required, Array<Types::MemberDefinition>] :member_definitions
|
4017
4028
|
# A list of `MemberDefinition` objects that contains objects that
|
4018
|
-
# identify the
|
4019
|
-
# more information, see [Amazon Cognito User Pools][1].
|
4029
|
+
# identify the workers that make up the work team.
|
4020
4030
|
#
|
4021
|
-
#
|
4022
|
-
#
|
4031
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
4032
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
4033
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
4034
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
|
4035
|
+
# not provide input for both of these parameters in a single request.
|
4036
|
+
#
|
4037
|
+
# For workforces created using Amazon Cognito, private work teams
|
4038
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
4039
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
4040
|
+
# that make up the member definition must have the same `ClientId` and
|
4041
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
4042
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
4043
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
4044
|
+
#
|
4045
|
+
# For workforces created using your own OIDC IdP, specify the user
|
4046
|
+
# groups that you want to include in your private work team in
|
4047
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`.
|
4023
4048
|
#
|
4024
4049
|
#
|
4025
4050
|
#
|
@@ -4594,10 +4619,15 @@ module Aws::SageMaker
|
|
4594
4619
|
|
4595
4620
|
# Use this operation to delete a workforce.
|
4596
4621
|
#
|
4597
|
-
# If you want to create a new workforce in an AWS Region where
|
4622
|
+
# If you want to create a new workforce in an AWS Region where a
|
4598
4623
|
# workforce already exists, use this operation to delete the existing
|
4599
4624
|
# workforce and then use to create a new workforce.
|
4600
4625
|
#
|
4626
|
+
# If a private workforce contains one or more work teams, you must use
|
4627
|
+
# the operation to delete all work teams before you delete the
|
4628
|
+
# workforce. If you try to delete a workforce that contains one or more
|
4629
|
+
# work teams, you will recieve a `ResourceInUse` error.
|
4630
|
+
#
|
4601
4631
|
# @option params [required, String] :workforce_name
|
4602
4632
|
# The name of the workforce.
|
4603
4633
|
#
|
@@ -4899,7 +4929,7 @@ module Aws::SageMaker
|
|
4899
4929
|
# resp.output_data_config.kms_key_id #=> String
|
4900
4930
|
# resp.output_data_config.s3_output_path #=> String
|
4901
4931
|
# resp.role_arn #=> String
|
4902
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
|
4932
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
4903
4933
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
4904
4934
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
4905
4935
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -4916,7 +4946,7 @@ module Aws::SageMaker
|
|
4916
4946
|
# resp.failure_reason #=> String
|
4917
4947
|
# resp.best_candidate.candidate_name #=> String
|
4918
4948
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
4919
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
|
4949
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
4920
4950
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
4921
4951
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
4922
4952
|
# resp.best_candidate.candidate_steps #=> Array
|
@@ -4938,7 +4968,7 @@ module Aws::SageMaker
|
|
4938
4968
|
# resp.generate_candidate_definitions_only #=> Boolean
|
4939
4969
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
4940
4970
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
4941
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
|
4971
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
4942
4972
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
4943
4973
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
4944
4974
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -5732,6 +5762,7 @@ module Aws::SageMaker
|
|
5732
5762
|
# resp.model_name #=> String
|
5733
5763
|
# resp.primary_container.container_hostname #=> String
|
5734
5764
|
# resp.primary_container.image #=> String
|
5765
|
+
# resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
5735
5766
|
# resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
|
5736
5767
|
# resp.primary_container.model_data_url #=> String
|
5737
5768
|
# resp.primary_container.environment #=> Hash
|
@@ -5740,6 +5771,7 @@ module Aws::SageMaker
|
|
5740
5771
|
# resp.containers #=> Array
|
5741
5772
|
# resp.containers[0].container_hostname #=> String
|
5742
5773
|
# resp.containers[0].image #=> String
|
5774
|
+
# resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
5743
5775
|
# resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
|
5744
5776
|
# resp.containers[0].model_data_url #=> String
|
5745
5777
|
# resp.containers[0].environment #=> Hash
|
@@ -6972,8 +7004,8 @@ module Aws::SageMaker
|
|
6972
7004
|
# Request a list of jobs up to a specified limit.
|
6973
7005
|
#
|
6974
7006
|
# @option params [String] :next_token
|
6975
|
-
# If the previous response was truncated, you
|
6976
|
-
#
|
7007
|
+
# If the previous response was truncated, you receive this token. Use it
|
7008
|
+
# in your next request to receive the next set of results.
|
6977
7009
|
#
|
6978
7010
|
# @return [Types::ListAutoMLJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
6979
7011
|
#
|
@@ -7040,8 +7072,8 @@ module Aws::SageMaker
|
|
7040
7072
|
# List the job's Candidates up to a specified limit.
|
7041
7073
|
#
|
7042
7074
|
# @option params [String] :next_token
|
7043
|
-
# If the previous response was truncated, you
|
7044
|
-
#
|
7075
|
+
# If the previous response was truncated, you receive this token. Use it
|
7076
|
+
# in your next request to receive the next set of results.
|
7045
7077
|
#
|
7046
7078
|
# @return [Types::ListCandidatesForAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
7047
7079
|
#
|
@@ -7067,7 +7099,7 @@ module Aws::SageMaker
|
|
7067
7099
|
# resp.candidates #=> Array
|
7068
7100
|
# resp.candidates[0].candidate_name #=> String
|
7069
7101
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
7070
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
|
7102
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
7071
7103
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
7072
7104
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
7073
7105
|
# resp.candidates[0].candidate_steps #=> Array
|
@@ -9125,9 +9157,9 @@ module Aws::SageMaker
|
|
9125
9157
|
req.send_request(options)
|
9126
9158
|
end
|
9127
9159
|
|
9128
|
-
# Gets a list of work teams that you have defined in a region.
|
9129
|
-
# may be empty if no work team satisfies the filter specified
|
9130
|
-
# `NameContains` parameter.
|
9160
|
+
# Gets a list of private work teams that you have defined in a region.
|
9161
|
+
# The list may be empty if no work team satisfies the filter specified
|
9162
|
+
# in the `NameContains` parameter.
|
9131
9163
|
#
|
9132
9164
|
# @option params [String] :sort_by
|
9133
9165
|
# The field to sort results by. The default is `CreationTime`.
|
@@ -10731,27 +10763,39 @@ module Aws::SageMaker
|
|
10731
10763
|
req.send_request(options)
|
10732
10764
|
end
|
10733
10765
|
|
10734
|
-
#
|
10735
|
-
#
|
10736
|
-
#
|
10766
|
+
# Use this operation to update your workforce. You can use this
|
10767
|
+
# operation to require that workers use specific IP addresses to work on
|
10768
|
+
# tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP)
|
10769
|
+
# workforce configuration.
|
10737
10770
|
#
|
10738
|
-
#
|
10739
|
-
#
|
10740
|
-
#
|
10741
|
-
#
|
10742
|
-
#
|
10743
|
-
#
|
10771
|
+
# Use `SourceIpConfig` to restrict worker access to tasks to a specific
|
10772
|
+
# range of IP addresses. You specify allowed IP addresses by creating a
|
10773
|
+
# list of up to ten [CIDRs][1]. By default, a workforce isn't
|
10774
|
+
# restricted to specific IP addresses. If you specify a range of IP
|
10775
|
+
# addresses, workers who attempt to access tasks using any IP address
|
10776
|
+
# outside the specified range are denied and get a `Not Found` error
|
10777
|
+
# message on the worker portal.
|
10744
10778
|
#
|
10745
|
-
#
|
10779
|
+
# Use `OidcConfig` to update the configuration of a workforce created
|
10780
|
+
# using your own OIDC IdP.
|
10781
|
+
#
|
10782
|
+
# You can only update your OIDC IdP configuration when there are no work
|
10783
|
+
# teams associated with your workforce. You can delete work teams using
|
10784
|
+
# the operation.
|
10785
|
+
#
|
10786
|
+
# After restricting access to a range of IP addresses or updating your
|
10787
|
+
# OIDC IdP configuration with this operation, you can view details about
|
10788
|
+
# your update workforce using the operation.
|
10789
|
+
#
|
10790
|
+
# This operation only applies to private workforces.
|
10746
10791
|
#
|
10747
10792
|
#
|
10748
10793
|
#
|
10749
10794
|
# [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
|
10750
10795
|
#
|
10751
10796
|
# @option params [required, String] :workforce_name
|
10752
|
-
# The name of the private workforce
|
10753
|
-
#
|
10754
|
-
# created and cannot be modified.
|
10797
|
+
# The name of the private workforce that you want to update. You can
|
10798
|
+
# find your workforce name by using the operation.
|
10755
10799
|
#
|
10756
10800
|
# @option params [Types::SourceIpConfig] :source_ip_config
|
10757
10801
|
# A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
|
@@ -10825,8 +10869,35 @@ module Aws::SageMaker
|
|
10825
10869
|
# The name of the work team to update.
|
10826
10870
|
#
|
10827
10871
|
# @option params [Array<Types::MemberDefinition>] :member_definitions
|
10828
|
-
# A list of `MemberDefinition` objects that
|
10829
|
-
# team
|
10872
|
+
# A list of `MemberDefinition` objects that contains objects that
|
10873
|
+
# identify the workers that make up the work team.
|
10874
|
+
#
|
10875
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
10876
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
10877
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
10878
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. You
|
10879
|
+
# should not provide input for both of these parameters in a single
|
10880
|
+
# request.
|
10881
|
+
#
|
10882
|
+
# For workforces created using Amazon Cognito, private work teams
|
10883
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
10884
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
10885
|
+
# that make up the member definition must have the same `ClientId` and
|
10886
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
10887
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
10888
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
10889
|
+
#
|
10890
|
+
# For workforces created using your own OIDC IdP, specify the user
|
10891
|
+
# groups that you want to include in your private work team in
|
10892
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
|
10893
|
+
# that user groups that are already in the work team must also be listed
|
10894
|
+
# in `Groups` when you make this request to remain on the work team. If
|
10895
|
+
# you do not include these user groups, they will no longer be
|
10896
|
+
# associated with the work team you update.
|
10897
|
+
#
|
10898
|
+
#
|
10899
|
+
#
|
10900
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
10830
10901
|
#
|
10831
10902
|
# @option params [String] :description
|
10832
10903
|
# An updated description for the work team.
|
@@ -10902,7 +10973,7 @@ module Aws::SageMaker
|
|
10902
10973
|
params: params,
|
10903
10974
|
config: config)
|
10904
10975
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
10905
|
-
context[:gem_version] = '1.
|
10976
|
+
context[:gem_version] = '1.65.0'
|
10906
10977
|
Seahorse::Client::Request.new(handlers, context)
|
10907
10978
|
end
|
10908
10979
|
|
@@ -429,6 +429,7 @@ module Aws::SageMaker
|
|
429
429
|
HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
|
430
430
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
431
431
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
432
|
+
ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
|
432
433
|
ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
|
433
434
|
ImageUri = Shapes::StringShape.new(name: 'ImageUri')
|
434
435
|
InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
|
@@ -722,6 +723,7 @@ module Aws::SageMaker
|
|
722
723
|
RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
|
723
724
|
RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
|
724
725
|
RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
|
726
|
+
RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
|
725
727
|
ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
|
726
728
|
ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
|
727
729
|
ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
|
@@ -1199,6 +1201,7 @@ module Aws::SageMaker
|
|
1199
1201
|
|
1200
1202
|
ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
|
1201
1203
|
ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
|
1204
|
+
ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
|
1202
1205
|
ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
|
1203
1206
|
ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
|
1204
1207
|
ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -2414,6 +2417,9 @@ module Aws::SageMaker
|
|
2414
2417
|
HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
2415
2418
|
HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
|
2416
2419
|
|
2420
|
+
ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
|
2421
|
+
ImageConfig.struct_class = Types::ImageConfig
|
2422
|
+
|
2417
2423
|
InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
|
2418
2424
|
InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
|
2419
2425
|
InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
|
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
|
|
1285
1285
|
include Aws::Structure
|
1286
1286
|
end
|
1287
1287
|
|
1288
|
-
# An
|
1288
|
+
# An Autopilot job returns recommendations, or candidates. Each
|
1289
1289
|
# candidate has futher details about the steps involed, and the status.
|
1290
1290
|
#
|
1291
1291
|
# @!attribute [rw] candidate_name
|
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
|
|
1293
1293
|
# @return [String]
|
1294
1294
|
#
|
1295
1295
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
1296
|
-
# The candidate result from
|
1296
|
+
# The best candidate result from an AutoML training job.
|
1297
1297
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1298
1298
|
#
|
1299
1299
|
# @!attribute [rw] objective_status
|
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
|
|
1440
1440
|
include Aws::Structure
|
1441
1441
|
end
|
1442
1442
|
|
1443
|
-
# The data source for the
|
1443
|
+
# The data source for the Autopilot job.
|
1444
1444
|
#
|
1445
1445
|
# @note When making an API call, you may pass AutoMLDataSource
|
1446
1446
|
# data as a hash:
|
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
|
|
1563
1563
|
include Aws::Structure
|
1564
1564
|
end
|
1565
1565
|
|
1566
|
-
#
|
1566
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1567
1567
|
#
|
1568
1568
|
# @note When making an API call, you may pass AutoMLJobObjective
|
1569
1569
|
# data as a hash:
|
1570
1570
|
#
|
1571
1571
|
# {
|
1572
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
1572
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
1573
1573
|
# }
|
1574
1574
|
#
|
1575
1575
|
# @!attribute [rw] metric_name
|
1576
|
-
# The name of the metric
|
1576
|
+
# The name of the objective metric used to measure the predictive
|
1577
|
+
# quality of a machine learning system. This metric is optimized
|
1578
|
+
# during training to provide the best estimate for model parameter
|
1579
|
+
# values from data.
|
1580
|
+
#
|
1581
|
+
# Here are the options:
|
1582
|
+
#
|
1583
|
+
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
1584
|
+
# differences between the predicted and actual values. It is used
|
1585
|
+
# for regression. MSE values are always positive, the better a model
|
1586
|
+
# is at predicting the actual values the smaller the MSE value. When
|
1587
|
+
# the data contains outliers, they tend to dominate the MSE which
|
1588
|
+
# might cause subpar prediction performance.
|
1589
|
+
#
|
1590
|
+
# * `Accuracy`\: The ratio of the number correctly classified items to
|
1591
|
+
# the total number (correctly and incorrectly) classified. It is
|
1592
|
+
# used for binary and multiclass classification. Measures how close
|
1593
|
+
# the predicted class values are to the actual values. Accuracy
|
1594
|
+
# values vary between zero and one, one being perfect accuracy and
|
1595
|
+
# zero perfect inaccuracy.
|
1596
|
+
#
|
1597
|
+
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
1598
|
+
# recall. It is used for binary classification into classes
|
1599
|
+
# traditionally referred to as positive and negative. Predictions
|
1600
|
+
# are said to be true when they match their actual (correct) class;
|
1601
|
+
# false when they do not. Precision is the ratio of the true
|
1602
|
+
# positive predictions to all positive predictions (including the
|
1603
|
+
# false positives) in a data set and measures the quality of the
|
1604
|
+
# prediction when it predicts the positive class. Recall (or
|
1605
|
+
# sensitivity) is the ratio of the true positive predictions to all
|
1606
|
+
# actual positive instances and measures how completely a model
|
1607
|
+
# predicts the actual class members in a data set. The standard F1
|
1608
|
+
# score weighs precision and recall equally. But which metric is
|
1609
|
+
# paramount typically depends on specific aspects of a problem. F1
|
1610
|
+
# scores vary between zero and one, one being the best possible
|
1611
|
+
# performance and zero the worst.
|
1612
|
+
#
|
1613
|
+
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
1614
|
+
# and evaluate binary classification by algorithms such as logistic
|
1615
|
+
# regression that return probabilities. A threshold is needed to map
|
1616
|
+
# the probabilities into classifications. The relevant curve is the
|
1617
|
+
# receiver operating characteristic curve that plots the true
|
1618
|
+
# positive rate (TPR) of predictions (or recall) against the false
|
1619
|
+
# positive rate (FPR) as a function of the threshold value, above
|
1620
|
+
# which a prediction is considered positive. Increasing the
|
1621
|
+
# threshold results in fewer false positives but more false
|
1622
|
+
# negatives. AUC is the area under this receiver operating
|
1623
|
+
# characteristic curve and so provides an aggregated measure of the
|
1624
|
+
# model performance across all possible classification thresholds.
|
1625
|
+
# The AUC score can also be interpreted as the probability that a
|
1626
|
+
# randomly selected positive data point is more likely to be
|
1627
|
+
# predicted positive than a randomly selected negative example. AUC
|
1628
|
+
# scores vary between zero and one, one being perfect accuracy and
|
1629
|
+
# one half not better than a random classifier. Values less that one
|
1630
|
+
# half predict worse than a random predictor and such consistently
|
1631
|
+
# bad predictors can be inverted to obtain better than random
|
1632
|
+
# predictors.
|
1633
|
+
#
|
1634
|
+
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
1635
|
+
# classification. In this context, you have multiple classes to
|
1636
|
+
# predict. You just calculate the precision and recall for each
|
1637
|
+
# class as you did for the positive class in binary classification.
|
1638
|
+
# Then used these values to calculate the F1 score for each class
|
1639
|
+
# and average them to obtain the F1macro score. F1macro scores vary
|
1640
|
+
# between zero and one, one being the best possible performance and
|
1641
|
+
# zero the worst.
|
1642
|
+
#
|
1643
|
+
# If you do not specify a metric explicitly, the default behavior is
|
1644
|
+
# to automatically use:
|
1645
|
+
#
|
1646
|
+
# * `MSE`\: for regression.
|
1647
|
+
#
|
1648
|
+
# * `F1`\: for binary classification
|
1649
|
+
#
|
1650
|
+
# * `Accuracy`\: for multiclass classification.
|
1577
1651
|
# @return [String]
|
1578
1652
|
#
|
1579
1653
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
|
|
1607
1681
|
# @return [Time]
|
1608
1682
|
#
|
1609
1683
|
# @!attribute [rw] end_time
|
1610
|
-
# The end time.
|
1684
|
+
# The end time of an AutoML job.
|
1611
1685
|
# @return [Time]
|
1612
1686
|
#
|
1613
1687
|
# @!attribute [rw] last_modified_time
|
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
|
|
1615
1689
|
# @return [Time]
|
1616
1690
|
#
|
1617
1691
|
# @!attribute [rw] failure_reason
|
1618
|
-
# The failure reason.
|
1692
|
+
# The failure reason of a job.
|
1619
1693
|
# @return [String]
|
1620
1694
|
#
|
1621
1695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
|
|
2249
2323
|
# {
|
2250
2324
|
# container_hostname: "ContainerHostname",
|
2251
2325
|
# image: "ContainerImage",
|
2326
|
+
# image_config: {
|
2327
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2328
|
+
# },
|
2252
2329
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2253
2330
|
# model_data_url: "Url",
|
2254
2331
|
# environment: {
|
@@ -2292,6 +2369,18 @@ module Aws::SageMaker
|
|
2292
2369
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
2293
2370
|
# @return [String]
|
2294
2371
|
#
|
2372
|
+
# @!attribute [rw] image_config
|
2373
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
2374
|
+
# Docker registry in your Amazon Virtual Private Cloud (VPC). For
|
2375
|
+
# information about storing containers in a private Docker registry,
|
2376
|
+
# see [Use a Private Docker Registry for Real-Time Inference
|
2377
|
+
# Containers][1]
|
2378
|
+
#
|
2379
|
+
#
|
2380
|
+
#
|
2381
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
|
2382
|
+
# @return [Types::ImageConfig]
|
2383
|
+
#
|
2295
2384
|
# @!attribute [rw] mode
|
2296
2385
|
# Whether the container hosts a single model or multiple models.
|
2297
2386
|
# @return [String]
|
@@ -2338,6 +2427,7 @@ module Aws::SageMaker
|
|
2338
2427
|
class ContainerDefinition < Struct.new(
|
2339
2428
|
:container_hostname,
|
2340
2429
|
:image,
|
2430
|
+
:image_config,
|
2341
2431
|
:mode,
|
2342
2432
|
:model_data_url,
|
2343
2433
|
:environment,
|
@@ -2783,7 +2873,7 @@ module Aws::SageMaker
|
|
2783
2873
|
# },
|
2784
2874
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
2785
2875
|
# auto_ml_job_objective: {
|
2786
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
2876
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
2787
2877
|
# },
|
2788
2878
|
# auto_ml_job_config: {
|
2789
2879
|
# completion_criteria: {
|
@@ -2811,7 +2901,7 @@ module Aws::SageMaker
|
|
2811
2901
|
# }
|
2812
2902
|
#
|
2813
2903
|
# @!attribute [rw] auto_ml_job_name
|
2814
|
-
# Identifies an
|
2904
|
+
# Identifies an Autopilot job. Must be unique to your account and is
|
2815
2905
|
# case-insensitive.
|
2816
2906
|
# @return [String]
|
2817
2907
|
#
|
@@ -2832,9 +2922,11 @@ module Aws::SageMaker
|
|
2832
2922
|
# @return [String]
|
2833
2923
|
#
|
2834
2924
|
# @!attribute [rw] auto_ml_job_objective
|
2835
|
-
# Defines the job
|
2836
|
-
#
|
2837
|
-
#
|
2925
|
+
# Defines the objective of a an AutoML job. You provide a
|
2926
|
+
# AutoMLJobObjective$MetricName and Autopilot infers whether to
|
2927
|
+
# minimize or maximize it. If a metric is not specified, the most
|
2928
|
+
# commonly used ObjectiveMetric for problem type is automaically
|
2929
|
+
# selected.
|
2838
2930
|
# @return [Types::AutoMLJobObjective]
|
2839
2931
|
#
|
2840
2932
|
# @!attribute [rw] auto_ml_job_config
|
@@ -2842,13 +2934,13 @@ module Aws::SageMaker
|
|
2842
2934
|
# @return [Types::AutoMLJobConfig]
|
2843
2935
|
#
|
2844
2936
|
# @!attribute [rw] role_arn
|
2845
|
-
# The ARN of the role that
|
2937
|
+
# The ARN of the role that is used to access the data.
|
2846
2938
|
# @return [String]
|
2847
2939
|
#
|
2848
2940
|
# @!attribute [rw] generate_candidate_definitions_only
|
2849
|
-
#
|
2850
|
-
#
|
2851
|
-
#
|
2941
|
+
# Generates possible candidates without training a model. A candidate
|
2942
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
2943
|
+
# parameter settings.
|
2852
2944
|
# @return [Boolean]
|
2853
2945
|
#
|
2854
2946
|
# @!attribute [rw] tags
|
@@ -4108,6 +4200,9 @@ module Aws::SageMaker
|
|
4108
4200
|
# primary_container: {
|
4109
4201
|
# container_hostname: "ContainerHostname",
|
4110
4202
|
# image: "ContainerImage",
|
4203
|
+
# image_config: {
|
4204
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4205
|
+
# },
|
4111
4206
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4112
4207
|
# model_data_url: "Url",
|
4113
4208
|
# environment: {
|
@@ -4119,6 +4214,9 @@ module Aws::SageMaker
|
|
4119
4214
|
# {
|
4120
4215
|
# container_hostname: "ContainerHostname",
|
4121
4216
|
# image: "ContainerImage",
|
4217
|
+
# image_config: {
|
4218
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4219
|
+
# },
|
4122
4220
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
4123
4221
|
# model_data_url: "Url",
|
4124
4222
|
# environment: {
|
@@ -5844,14 +5942,17 @@ module Aws::SageMaker
|
|
5844
5942
|
#
|
5845
5943
|
# @!attribute [rw] oidc_config
|
5846
5944
|
# Use this parameter to configure a private workforce using your own
|
5847
|
-
# OIDC Identity Provider.
|
5848
|
-
#
|
5945
|
+
# OIDC Identity Provider.
|
5946
|
+
#
|
5947
|
+
# Do not use `CognitoConfig` if you specify values for `OidcConfig`.
|
5849
5948
|
# @return [Types::OidcConfig]
|
5850
5949
|
#
|
5851
5950
|
# @!attribute [rw] source_ip_config
|
5852
5951
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow
|
5853
|
-
# list of IP addresses for a private workforce.
|
5854
|
-
#
|
5952
|
+
# list of IP addresses for a private workforce. Workers will only be
|
5953
|
+
# able to login to their worker portal from an IP address within this
|
5954
|
+
# range. By default, a workforce isn't restricted to specific IP
|
5955
|
+
# addresses.
|
5855
5956
|
#
|
5856
5957
|
#
|
5857
5958
|
#
|
@@ -5932,11 +6033,25 @@ module Aws::SageMaker
|
|
5932
6033
|
#
|
5933
6034
|
# @!attribute [rw] member_definitions
|
5934
6035
|
# A list of `MemberDefinition` objects that contains objects that
|
5935
|
-
# identify the
|
5936
|
-
#
|
6036
|
+
# identify the workers that make up the work team.
|
6037
|
+
#
|
6038
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
6039
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
6040
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
6041
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
|
6042
|
+
# not provide input for both of these parameters in a single request.
|
5937
6043
|
#
|
5938
|
-
#
|
5939
|
-
#
|
6044
|
+
# For workforces created using Amazon Cognito, private work teams
|
6045
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
6046
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
6047
|
+
# that make up the member definition must have the same `ClientId` and
|
6048
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
6049
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
6050
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
6051
|
+
#
|
6052
|
+
# For workforces created using your own OIDC IdP, specify the user
|
6053
|
+
# groups that you want to include in your private work team in
|
6054
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`.
|
5940
6055
|
#
|
5941
6056
|
#
|
5942
6057
|
#
|
@@ -8841,7 +8956,7 @@ module Aws::SageMaker
|
|
8841
8956
|
# : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
|
8842
8957
|
# maximum allowed runtime.
|
8843
8958
|
#
|
8844
|
-
# * `
|
8959
|
+
# * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
|
8845
8960
|
# maximum allowed wait time.
|
8846
8961
|
#
|
8847
8962
|
# * `Stopped` - The training job has stopped.
|
@@ -10210,18 +10325,19 @@ module Aws::SageMaker
|
|
10210
10325
|
include Aws::Structure
|
10211
10326
|
end
|
10212
10327
|
|
10213
|
-
# The candidate result from
|
10328
|
+
# The best candidate result from an AutoML training job.
|
10214
10329
|
#
|
10215
10330
|
# @!attribute [rw] type
|
10216
|
-
# The metric
|
10331
|
+
# The type of metric with the best result.
|
10217
10332
|
# @return [String]
|
10218
10333
|
#
|
10219
10334
|
# @!attribute [rw] metric_name
|
10220
|
-
# The name of the metric.
|
10335
|
+
# The name of the metric with the best result. For a description of
|
10336
|
+
# the possible objective metrics, see AutoMLJobObjective$MetricName.
|
10221
10337
|
# @return [String]
|
10222
10338
|
#
|
10223
10339
|
# @!attribute [rw] value
|
10224
|
-
# The value of the metric.
|
10340
|
+
# The value of the metric with the best result.
|
10225
10341
|
# @return [Float]
|
10226
10342
|
#
|
10227
10343
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
|
@@ -12362,6 +12478,33 @@ module Aws::SageMaker
|
|
12362
12478
|
include Aws::Structure
|
12363
12479
|
end
|
12364
12480
|
|
12481
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
12482
|
+
# Docker registry in your Amazon Virtual Private Cloud (VPC).
|
12483
|
+
#
|
12484
|
+
# @note When making an API call, you may pass ImageConfig
|
12485
|
+
# data as a hash:
|
12486
|
+
#
|
12487
|
+
# {
|
12488
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
12489
|
+
# }
|
12490
|
+
#
|
12491
|
+
# @!attribute [rw] repository_access_mode
|
12492
|
+
# Set this to one of the following values:
|
12493
|
+
#
|
12494
|
+
# * `Platform` - The model image is hosted in Amazon ECR.
|
12495
|
+
#
|
12496
|
+
# * `VPC` - The model image is hosted in a private Docker registry in
|
12497
|
+
# your VPC.
|
12498
|
+
# @return [String]
|
12499
|
+
#
|
12500
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
|
12501
|
+
#
|
12502
|
+
class ImageConfig < Struct.new(
|
12503
|
+
:repository_access_mode)
|
12504
|
+
SENSITIVE = []
|
12505
|
+
include Aws::Structure
|
12506
|
+
end
|
12507
|
+
|
12365
12508
|
# Defines how to perform inference generation after a training job is
|
12366
12509
|
# run.
|
12367
12510
|
#
|
@@ -13366,8 +13509,8 @@ module Aws::SageMaker
|
|
13366
13509
|
# @return [Integer]
|
13367
13510
|
#
|
13368
13511
|
# @!attribute [rw] next_token
|
13369
|
-
# If the previous response was truncated, you
|
13370
|
-
#
|
13512
|
+
# If the previous response was truncated, you receive this token. Use
|
13513
|
+
# it in your next request to receive the next set of results.
|
13371
13514
|
# @return [String]
|
13372
13515
|
#
|
13373
13516
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
|
@@ -13392,8 +13535,8 @@ module Aws::SageMaker
|
|
13392
13535
|
# @return [Array<Types::AutoMLJobSummary>]
|
13393
13536
|
#
|
13394
13537
|
# @!attribute [rw] next_token
|
13395
|
-
# If the previous response was truncated, you
|
13396
|
-
#
|
13538
|
+
# If the previous response was truncated, you receive this token. Use
|
13539
|
+
# it in your next request to receive the next set of results.
|
13397
13540
|
# @return [String]
|
13398
13541
|
#
|
13399
13542
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
|
@@ -13445,8 +13588,8 @@ module Aws::SageMaker
|
|
13445
13588
|
# @return [Integer]
|
13446
13589
|
#
|
13447
13590
|
# @!attribute [rw] next_token
|
13448
|
-
# If the previous response was truncated, you
|
13449
|
-
#
|
13591
|
+
# If the previous response was truncated, you receive this token. Use
|
13592
|
+
# it in your next request to receive the next set of results.
|
13450
13593
|
# @return [String]
|
13451
13594
|
#
|
13452
13595
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
|
@@ -13468,8 +13611,8 @@ module Aws::SageMaker
|
|
13468
13611
|
# @return [Array<Types::AutoMLCandidate>]
|
13469
13612
|
#
|
13470
13613
|
# @!attribute [rw] next_token
|
13471
|
-
# If the previous response was truncated, you
|
13472
|
-
#
|
13614
|
+
# If the previous response was truncated, you receive this token. Use
|
13615
|
+
# it in your next request to receive the next set of results.
|
13473
13616
|
# @return [String]
|
13474
13617
|
#
|
13475
13618
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
|
@@ -15879,7 +16022,8 @@ module Aws::SageMaker
|
|
15879
16022
|
include Aws::Structure
|
15880
16023
|
end
|
15881
16024
|
|
15882
|
-
# Defines
|
16025
|
+
# Defines an Amazon Cognito or your own OIDC IdP user group that is part
|
16026
|
+
# of a work team.
|
15883
16027
|
#
|
15884
16028
|
# @note When making an API call, you may pass MemberDefinition
|
15885
16029
|
# data as a hash:
|
@@ -17364,7 +17508,7 @@ module Aws::SageMaker
|
|
17364
17508
|
include Aws::Structure
|
17365
17509
|
end
|
17366
17510
|
|
17367
|
-
# Your
|
17511
|
+
# Your OIDC IdP workforce configuration.
|
17368
17512
|
#
|
17369
17513
|
# @!attribute [rw] client_id
|
17370
17514
|
# The OIDC IdP client ID used to configure your private workforce.
|
@@ -17413,7 +17557,7 @@ module Aws::SageMaker
|
|
17413
17557
|
include Aws::Structure
|
17414
17558
|
end
|
17415
17559
|
|
17416
|
-
# A list user groups that exist in your OIDC Identity Provider (IdP).
|
17560
|
+
# A list of user groups that exist in your OIDC Identity Provider (IdP).
|
17417
17561
|
# One to ten groups can be used to create a single private work team.
|
17418
17562
|
# When you add a user group to the list of `Groups`, you can add that
|
17419
17563
|
# user group to one or more private work teams. If you add a user group
|
@@ -18813,7 +18957,8 @@ module Aws::SageMaker
|
|
18813
18957
|
# The resolved attributes.
|
18814
18958
|
#
|
18815
18959
|
# @!attribute [rw] auto_ml_job_objective
|
18816
|
-
#
|
18960
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
18961
|
+
# job.
|
18817
18962
|
# @return [Types::AutoMLJobObjective]
|
18818
18963
|
#
|
18819
18964
|
# @!attribute [rw] problem_type
|
@@ -19735,7 +19880,9 @@ module Aws::SageMaker
|
|
19735
19880
|
end
|
19736
19881
|
|
19737
19882
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow list
|
19738
|
-
# of IP addresses for a private workforce.
|
19883
|
+
# of IP addresses for a private workforce. Workers will only be able to
|
19884
|
+
# login to their worker portal from an IP address within this range. By
|
19885
|
+
# default, a workforce isn't restricted to specific IP addresses.
|
19739
19886
|
#
|
19740
19887
|
#
|
19741
19888
|
#
|
@@ -20930,7 +21077,12 @@ module Aws::SageMaker
|
|
20930
21077
|
# request payloads contain the entire contents of an input object. Set
|
20931
21078
|
# the value of this parameter to `Line` to split records on a newline
|
20932
21079
|
# character boundary. `SplitType` also supports a number of
|
20933
|
-
# record-oriented binary data formats.
|
21080
|
+
# record-oriented binary data formats. Currently, the supported record
|
21081
|
+
# formats are:
|
21082
|
+
#
|
21083
|
+
# * RecordIO
|
21084
|
+
#
|
21085
|
+
# * TFRecord
|
20934
21086
|
#
|
20935
21087
|
# When splitting is enabled, the size of a mini-batch depends on the
|
20936
21088
|
# values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
|
@@ -22063,7 +22215,7 @@ module Aws::SageMaker
|
|
22063
22215
|
# }
|
22064
22216
|
#
|
22065
22217
|
# @!attribute [rw] target_objective_metric_value
|
22066
|
-
# The objective metric
|
22218
|
+
# The value of the objective metric.
|
22067
22219
|
# @return [Float]
|
22068
22220
|
#
|
22069
22221
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
|
@@ -23050,9 +23202,8 @@ module Aws::SageMaker
|
|
23050
23202
|
# }
|
23051
23203
|
#
|
23052
23204
|
# @!attribute [rw] workforce_name
|
23053
|
-
# The name of the private workforce
|
23054
|
-
#
|
23055
|
-
# is created and cannot be modified.
|
23205
|
+
# The name of the private workforce that you want to update. You can
|
23206
|
+
# find your workforce name by using the operation.
|
23056
23207
|
# @return [String]
|
23057
23208
|
#
|
23058
23209
|
# @!attribute [rw] source_ip_config
|
@@ -23082,12 +23233,11 @@ module Aws::SageMaker
|
|
23082
23233
|
end
|
23083
23234
|
|
23084
23235
|
# @!attribute [rw] workforce
|
23085
|
-
# A single private workforce
|
23086
|
-
#
|
23087
|
-
#
|
23088
|
-
#
|
23089
|
-
#
|
23090
|
-
# see [Create a Private Workforce][1].
|
23236
|
+
# A single private workforce. You can create one private work force in
|
23237
|
+
# each AWS Region. By default, any workforce-related API operation
|
23238
|
+
# used in a specific region will apply to the workforce created in
|
23239
|
+
# that region. To learn how to create a private workforce, see [Create
|
23240
|
+
# a Private Workforce][1].
|
23091
23241
|
#
|
23092
23242
|
#
|
23093
23243
|
#
|
@@ -23130,8 +23280,35 @@ module Aws::SageMaker
|
|
23130
23280
|
# @return [String]
|
23131
23281
|
#
|
23132
23282
|
# @!attribute [rw] member_definitions
|
23133
|
-
# A list of `MemberDefinition` objects that
|
23134
|
-
# team
|
23283
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23284
|
+
# identify the workers that make up the work team.
|
23285
|
+
#
|
23286
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23287
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23288
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23289
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23290
|
+
# You should not provide input for both of these parameters in a
|
23291
|
+
# single request.
|
23292
|
+
#
|
23293
|
+
# For workforces created using Amazon Cognito, private work teams
|
23294
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
23295
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
23296
|
+
# that make up the member definition must have the same `ClientId` and
|
23297
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
23298
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
23299
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
23300
|
+
#
|
23301
|
+
# For workforces created using your own OIDC IdP, specify the user
|
23302
|
+
# groups that you want to include in your private work team in
|
23303
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
|
23304
|
+
# that user groups that are already in the work team must also be
|
23305
|
+
# listed in `Groups` when you make this request to remain on the work
|
23306
|
+
# team. If you do not include these user groups, they will no longer
|
23307
|
+
# be associated with the work team you update.
|
23308
|
+
#
|
23309
|
+
#
|
23310
|
+
#
|
23311
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
23135
23312
|
# @return [Array<Types::MemberDefinition>]
|
23136
23313
|
#
|
23137
23314
|
# @!attribute [rw] description
|
@@ -23407,7 +23584,8 @@ module Aws::SageMaker
|
|
23407
23584
|
#
|
23408
23585
|
# @!attribute [rw] source_ip_config
|
23409
23586
|
# A list of one to ten IP address ranges ([CIDRs][1]) to be added to
|
23410
|
-
# the workforce allow list.
|
23587
|
+
# the workforce allow list. By default, a workforce isn't restricted
|
23588
|
+
# to specific IP addresses.
|
23411
23589
|
#
|
23412
23590
|
#
|
23413
23591
|
#
|
@@ -23459,7 +23637,13 @@ module Aws::SageMaker
|
|
23459
23637
|
# @return [String]
|
23460
23638
|
#
|
23461
23639
|
# @!attribute [rw] member_definitions
|
23462
|
-
#
|
23640
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23641
|
+
# identify the workers that make up the work team.
|
23642
|
+
#
|
23643
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23644
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23645
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23646
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23463
23647
|
# @return [Array<Types::MemberDefinition>]
|
23464
23648
|
#
|
23465
23649
|
# @!attribute [rw] workteam_arn
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.65.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-08-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|