aws-sdk-sagemaker 1.64.0 → 1.65.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 3dd514dc94ac9a72dbf30134179cd7996354fbce6bbea433880986af5ed18a90
4
- data.tar.gz: 691fec9934ce5ae29898a274d0012ab7e7566426351658b08e4c1d33a90a8bea
3
+ metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
4
+ data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
5
5
  SHA512:
6
- metadata.gz: 0febc6c10d0afe0d14609064267f2f587b90dffab2f94f47e8d6662974e92305188a47dbd5a2616fb346a945da2ee33e33e3a35024e4dbb67a0d6b9307f69ee0
7
- data.tar.gz: 2b9ed20523f9f255ef59b925f8697a56ff887f60b770303e83330de53efce42d88d66656bf919b9b4309846407253aaa2f2a6760f05ed24c943eb39be5e6373f
6
+ metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
7
+ data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
48
48
  # @service
49
49
  module Aws::SageMaker
50
50
 
51
- GEM_VERSION = '1.64.0'
51
+ GEM_VERSION = '1.65.0'
52
52
 
53
53
  end
@@ -713,15 +713,14 @@ module Aws::SageMaker
713
713
  req.send_request(options)
714
714
  end
715
715
 
716
- # Creates an AutoPilot job.
716
+ # Creates an Autopilot job.
717
717
  #
718
- # After you run an AutoPilot job, you can find the best performing model
719
- # by calling , and then deploy that model by following the steps
720
- # described in [Step 6.1: Deploy the Model to Amazon SageMaker Hosting
721
- # Services][1].
718
+ # Find the best performing model after you run an Autopilot job by
719
+ # calling . Deploy that model by following the steps described in [Step
720
+ # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
722
721
  #
723
- # For information about how to use AutoPilot, see [Use AutoPilot to
724
- # Automate Model Development][2].
722
+ # For information about how to use Autopilot, see [ Automate Model
723
+ # Development with Amazon SageMaker Autopilot][2].
725
724
  #
726
725
  #
727
726
  #
@@ -729,7 +728,7 @@ module Aws::SageMaker
729
728
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
730
729
  #
731
730
  # @option params [required, String] :auto_ml_job_name
732
- # Identifies an AutoPilot job. Must be unique to your account and is
731
+ # Identifies an Autopilot job. Must be unique to your account and is
733
732
  # case-insensitive.
734
733
  #
735
734
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
@@ -746,20 +745,21 @@ module Aws::SageMaker
746
745
  # MulticlassClassification, and Regression.
747
746
  #
748
747
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
749
- # Defines the job's objective. You provide a MetricName and AutoML will
750
- # infer minimize or maximize. If this is not provided, the most commonly
751
- # used ObjectiveMetric for problem type will be selected.
748
+ # Defines the objective of a an AutoML job. You provide a
749
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
750
+ # or maximize it. If a metric is not specified, the most commonly used
751
+ # ObjectiveMetric for problem type is automaically selected.
752
752
  #
753
753
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
754
754
  # Contains CompletionCriteria and SecurityConfig.
755
755
  #
756
756
  # @option params [required, String] :role_arn
757
- # The ARN of the role that will be used to access the data.
757
+ # The ARN of the role that is used to access the data.
758
758
  #
759
759
  # @option params [Boolean] :generate_candidate_definitions_only
760
- # This will generate possible candidates without training a model. A
761
- # candidate is a combination of data preprocessors, algorithms, and
762
- # algorithm parameter settings.
760
+ # Generates possible candidates without training a model. A candidate is
761
+ # a combination of data preprocessors, algorithms, and algorithm
762
+ # parameter settings.
763
763
  #
764
764
  # @option params [Array<Types::Tag>] :tags
765
765
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -791,7 +791,7 @@ module Aws::SageMaker
791
791
  # },
792
792
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
793
793
  # auto_ml_job_objective: {
794
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
794
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
795
795
  # },
796
796
  # auto_ml_job_config: {
797
797
  # completion_criteria: {
@@ -2247,6 +2247,9 @@ module Aws::SageMaker
2247
2247
  # primary_container: {
2248
2248
  # container_hostname: "ContainerHostname",
2249
2249
  # image: "ContainerImage",
2250
+ # image_config: {
2251
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2252
+ # },
2250
2253
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2251
2254
  # model_data_url: "Url",
2252
2255
  # environment: {
@@ -2258,6 +2261,9 @@ module Aws::SageMaker
2258
2261
  # {
2259
2262
  # container_hostname: "ContainerHostname",
2260
2263
  # image: "ContainerImage",
2264
+ # image_config: {
2265
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2266
+ # },
2261
2267
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2262
2268
  # model_data_url: "Url",
2263
2269
  # environment: {
@@ -3902,11 +3908,12 @@ module Aws::SageMaker
3902
3908
 
3903
3909
  # Use this operation to create a workforce. This operation will return
3904
3910
  # an error if a workforce already exists in the AWS Region that you
3905
- # specify. You can only create one workforce in each AWS Region.
3911
+ # specify. You can only create one workforce in each AWS Region per AWS
3912
+ # account.
3906
3913
  #
3907
- # If you want to create a new workforce in an AWS Region where the a
3914
+ # If you want to create a new workforce in an AWS Region where a
3908
3915
  # workforce already exists, use the API operation to delete the existing
3909
- # workforce and then use this operation to create a new workforce.
3916
+ # workforce and then use `CreateWorkforce` to create a new workforce.
3910
3917
  #
3911
3918
  # To create a private workforce using Amazon Cognito, you must specify a
3912
3919
  # Cognito user pool in `CognitoConfig`. You can also create an Amazon
@@ -3914,9 +3921,10 @@ module Aws::SageMaker
3914
3921
  # information, see [ Create a Private Workforce (Amazon Cognito)][1].
3915
3922
  #
3916
3923
  # To create a private workforce using your own OIDC Identity Provider
3917
- # (IdP), specify your IdP configuration in `OidcConfig`. You must create
3918
- # a OIDC IdP workforce using this API operation. For more information,
3919
- # see [ Create a Private Workforce (OIDC IdP)][2].
3924
+ # (IdP), specify your IdP configuration in `OidcConfig`. Your OIDC IdP
3925
+ # must support *groups* because groups are used by Ground Truth and
3926
+ # Amazon A2I to create work teams. For more information, see [ Create a
3927
+ # Private Workforce (OIDC IdP)][2].
3920
3928
  #
3921
3929
  #
3922
3930
  #
@@ -3936,12 +3944,15 @@ module Aws::SageMaker
3936
3944
  #
3937
3945
  # @option params [Types::OidcConfig] :oidc_config
3938
3946
  # Use this parameter to configure a private workforce using your own
3939
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
3940
- # values for `OidcConfig`.
3947
+ # OIDC Identity Provider.
3948
+ #
3949
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
3941
3950
  #
3942
3951
  # @option params [Types::SourceIpConfig] :source_ip_config
3943
3952
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
3944
- # of IP addresses for a private workforce. For more information, see .
3953
+ # of IP addresses for a private workforce. Workers will only be able to
3954
+ # login to their worker portal from an IP address within this range. By
3955
+ # default, a workforce isn't restricted to specific IP addresses.
3945
3956
  #
3946
3957
  #
3947
3958
  #
@@ -4015,11 +4026,25 @@ module Aws::SageMaker
4015
4026
  #
4016
4027
  # @option params [required, Array<Types::MemberDefinition>] :member_definitions
4017
4028
  # A list of `MemberDefinition` objects that contains objects that
4018
- # identify the Amazon Cognito user pool that makes up the work team. For
4019
- # more information, see [Amazon Cognito User Pools][1].
4029
+ # identify the workers that make up the work team.
4020
4030
  #
4021
- # All of the `CognitoMemberDefinition` objects that make up the member
4022
- # definition must have the same `ClientId` and `UserPool` values.
4031
+ # Workforces can be created using Amazon Cognito or your own OIDC
4032
+ # Identity Provider (IdP). For private workforces created using Amazon
4033
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
4034
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
4035
+ # not provide input for both of these parameters in a single request.
4036
+ #
4037
+ # For workforces created using Amazon Cognito, private work teams
4038
+ # correspond to Amazon Cognito *user groups* within the user pool used
4039
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
4040
+ # that make up the member definition must have the same `ClientId` and
4041
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
4042
+ # worker pool, see [Adding groups to a User Pool](). For more
4043
+ # information about user pools, see [Amazon Cognito User Pools][1].
4044
+ #
4045
+ # For workforces created using your own OIDC IdP, specify the user
4046
+ # groups that you want to include in your private work team in
4047
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
4023
4048
  #
4024
4049
  #
4025
4050
  #
@@ -4594,10 +4619,15 @@ module Aws::SageMaker
4594
4619
 
4595
4620
  # Use this operation to delete a workforce.
4596
4621
  #
4597
- # If you want to create a new workforce in an AWS Region where the a
4622
+ # If you want to create a new workforce in an AWS Region where a
4598
4623
  # workforce already exists, use this operation to delete the existing
4599
4624
  # workforce and then use to create a new workforce.
4600
4625
  #
4626
+ # If a private workforce contains one or more work teams, you must use
4627
+ # the operation to delete all work teams before you delete the
4628
+ # workforce. If you try to delete a workforce that contains one or more
4629
+ # work teams, you will recieve a `ResourceInUse` error.
4630
+ #
4601
4631
  # @option params [required, String] :workforce_name
4602
4632
  # The name of the workforce.
4603
4633
  #
@@ -4899,7 +4929,7 @@ module Aws::SageMaker
4899
4929
  # resp.output_data_config.kms_key_id #=> String
4900
4930
  # resp.output_data_config.s3_output_path #=> String
4901
4931
  # resp.role_arn #=> String
4902
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4932
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4903
4933
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4904
4934
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
4905
4935
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4916,7 +4946,7 @@ module Aws::SageMaker
4916
4946
  # resp.failure_reason #=> String
4917
4947
  # resp.best_candidate.candidate_name #=> String
4918
4948
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
4919
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4949
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4920
4950
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
4921
4951
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
4922
4952
  # resp.best_candidate.candidate_steps #=> Array
@@ -4938,7 +4968,7 @@ module Aws::SageMaker
4938
4968
  # resp.generate_candidate_definitions_only #=> Boolean
4939
4969
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
4940
4970
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
4941
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4971
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4942
4972
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4943
4973
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
4944
4974
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -5732,6 +5762,7 @@ module Aws::SageMaker
5732
5762
  # resp.model_name #=> String
5733
5763
  # resp.primary_container.container_hostname #=> String
5734
5764
  # resp.primary_container.image #=> String
5765
+ # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5735
5766
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
5736
5767
  # resp.primary_container.model_data_url #=> String
5737
5768
  # resp.primary_container.environment #=> Hash
@@ -5740,6 +5771,7 @@ module Aws::SageMaker
5740
5771
  # resp.containers #=> Array
5741
5772
  # resp.containers[0].container_hostname #=> String
5742
5773
  # resp.containers[0].image #=> String
5774
+ # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5743
5775
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
5744
5776
  # resp.containers[0].model_data_url #=> String
5745
5777
  # resp.containers[0].environment #=> Hash
@@ -6972,8 +7004,8 @@ module Aws::SageMaker
6972
7004
  # Request a list of jobs up to a specified limit.
6973
7005
  #
6974
7006
  # @option params [String] :next_token
6975
- # If the previous response was truncated, you will receive this token.
6976
- # Use it in your next request to receive the next set of results.
7007
+ # If the previous response was truncated, you receive this token. Use it
7008
+ # in your next request to receive the next set of results.
6977
7009
  #
6978
7010
  # @return [Types::ListAutoMLJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6979
7011
  #
@@ -7040,8 +7072,8 @@ module Aws::SageMaker
7040
7072
  # List the job's Candidates up to a specified limit.
7041
7073
  #
7042
7074
  # @option params [String] :next_token
7043
- # If the previous response was truncated, you will receive this token.
7044
- # Use it in your next request to receive the next set of results.
7075
+ # If the previous response was truncated, you receive this token. Use it
7076
+ # in your next request to receive the next set of results.
7045
7077
  #
7046
7078
  # @return [Types::ListCandidatesForAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7047
7079
  #
@@ -7067,7 +7099,7 @@ module Aws::SageMaker
7067
7099
  # resp.candidates #=> Array
7068
7100
  # resp.candidates[0].candidate_name #=> String
7069
7101
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7070
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
7102
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
7071
7103
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
7072
7104
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
7073
7105
  # resp.candidates[0].candidate_steps #=> Array
@@ -9125,9 +9157,9 @@ module Aws::SageMaker
9125
9157
  req.send_request(options)
9126
9158
  end
9127
9159
 
9128
- # Gets a list of work teams that you have defined in a region. The list
9129
- # may be empty if no work team satisfies the filter specified in the
9130
- # `NameContains` parameter.
9160
+ # Gets a list of private work teams that you have defined in a region.
9161
+ # The list may be empty if no work team satisfies the filter specified
9162
+ # in the `NameContains` parameter.
9131
9163
  #
9132
9164
  # @option params [String] :sort_by
9133
9165
  # The field to sort results by. The default is `CreationTime`.
@@ -10731,27 +10763,39 @@ module Aws::SageMaker
10731
10763
  req.send_request(options)
10732
10764
  end
10733
10765
 
10734
- # Restricts access to tasks assigned to workers in the specified
10735
- # workforce to those within specific ranges of IP addresses. You specify
10736
- # allowed IP addresses by creating a list of up to ten [CIDRs][1].
10766
+ # Use this operation to update your workforce. You can use this
10767
+ # operation to require that workers use specific IP addresses to work on
10768
+ # tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP)
10769
+ # workforce configuration.
10737
10770
  #
10738
- # By default, a workforce isn't restricted to specific IP addresses. If
10739
- # you specify a range of IP addresses, workers who attempt to access
10740
- # tasks using any IP address outside the specified range are denied
10741
- # access and get a `Not Found` error message on the worker portal. After
10742
- # restricting access with this operation, you can see the allowed IP
10743
- # values for a private workforce with the operation.
10771
+ # Use `SourceIpConfig` to restrict worker access to tasks to a specific
10772
+ # range of IP addresses. You specify allowed IP addresses by creating a
10773
+ # list of up to ten [CIDRs][1]. By default, a workforce isn't
10774
+ # restricted to specific IP addresses. If you specify a range of IP
10775
+ # addresses, workers who attempt to access tasks using any IP address
10776
+ # outside the specified range are denied and get a `Not Found` error
10777
+ # message on the worker portal.
10744
10778
  #
10745
- # This operation applies only to private workforces.
10779
+ # Use `OidcConfig` to update the configuration of a workforce created
10780
+ # using your own OIDC IdP.
10781
+ #
10782
+ # You can only update your OIDC IdP configuration when there are no work
10783
+ # teams associated with your workforce. You can delete work teams using
10784
+ # the operation.
10785
+ #
10786
+ # After restricting access to a range of IP addresses or updating your
10787
+ # OIDC IdP configuration with this operation, you can view details about
10788
+ # your update workforce using the operation.
10789
+ #
10790
+ # This operation only applies to private workforces.
10746
10791
  #
10747
10792
  #
10748
10793
  #
10749
10794
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10750
10795
  #
10751
10796
  # @option params [required, String] :workforce_name
10752
- # The name of the private workforce whose access you want to restrict.
10753
- # `WorkforceName` is automatically set to `default` when a workforce is
10754
- # created and cannot be modified.
10797
+ # The name of the private workforce that you want to update. You can
10798
+ # find your workforce name by using the operation.
10755
10799
  #
10756
10800
  # @option params [Types::SourceIpConfig] :source_ip_config
10757
10801
  # A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
@@ -10825,8 +10869,35 @@ module Aws::SageMaker
10825
10869
  # The name of the work team to update.
10826
10870
  #
10827
10871
  # @option params [Array<Types::MemberDefinition>] :member_definitions
10828
- # A list of `MemberDefinition` objects that contain the updated work
10829
- # team members.
10872
+ # A list of `MemberDefinition` objects that contains objects that
10873
+ # identify the workers that make up the work team.
10874
+ #
10875
+ # Workforces can be created using Amazon Cognito or your own OIDC
10876
+ # Identity Provider (IdP). For private workforces created using Amazon
10877
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
10878
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. You
10879
+ # should not provide input for both of these parameters in a single
10880
+ # request.
10881
+ #
10882
+ # For workforces created using Amazon Cognito, private work teams
10883
+ # correspond to Amazon Cognito *user groups* within the user pool used
10884
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
10885
+ # that make up the member definition must have the same `ClientId` and
10886
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
10887
+ # worker pool, see [Adding groups to a User Pool](). For more
10888
+ # information about user pools, see [Amazon Cognito User Pools][1].
10889
+ #
10890
+ # For workforces created using your own OIDC IdP, specify the user
10891
+ # groups that you want to include in your private work team in
10892
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
10893
+ # that user groups that are already in the work team must also be listed
10894
+ # in `Groups` when you make this request to remain on the work team. If
10895
+ # you do not include these user groups, they will no longer be
10896
+ # associated with the work team you update.
10897
+ #
10898
+ #
10899
+ #
10900
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
10830
10901
  #
10831
10902
  # @option params [String] :description
10832
10903
  # An updated description for the work team.
@@ -10902,7 +10973,7 @@ module Aws::SageMaker
10902
10973
  params: params,
10903
10974
  config: config)
10904
10975
  context[:gem_name] = 'aws-sdk-sagemaker'
10905
- context[:gem_version] = '1.64.0'
10976
+ context[:gem_version] = '1.65.0'
10906
10977
  Seahorse::Client::Request.new(handlers, context)
10907
10978
  end
10908
10979
 
@@ -429,6 +429,7 @@ module Aws::SageMaker
429
429
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
430
430
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
431
431
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
432
+ ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
432
433
  ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
433
434
  ImageUri = Shapes::StringShape.new(name: 'ImageUri')
434
435
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
@@ -722,6 +723,7 @@ module Aws::SageMaker
722
723
  RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
723
724
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
724
725
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
726
+ RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
725
727
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
726
728
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
727
729
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1199,6 +1201,7 @@ module Aws::SageMaker
1199
1201
 
1200
1202
  ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
1201
1203
  ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
1204
+ ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
1202
1205
  ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
1203
1206
  ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
1204
1207
  ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2414,6 +2417,9 @@ module Aws::SageMaker
2414
2417
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
2415
2418
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
2416
2419
 
2420
+ ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
2421
+ ImageConfig.struct_class = Types::ImageConfig
2422
+
2417
2423
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
2418
2424
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
2419
2425
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
1285
1285
  include Aws::Structure
1286
1286
  end
1287
1287
 
1288
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
1289
1289
  # candidate has futher details about the steps involed, and the status.
1290
1290
  #
1291
1291
  # @!attribute [rw] candidate_name
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
1293
1293
  # @return [String]
1294
1294
  #
1295
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
1296
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
1297
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1298
1298
  #
1299
1299
  # @!attribute [rw] objective_status
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
1440
1440
  include Aws::Structure
1441
1441
  end
1442
1442
 
1443
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1444
1444
  #
1445
1445
  # @note When making an API call, you may pass AutoMLDataSource
1446
1446
  # data as a hash:
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
1563
1563
  include Aws::Structure
1564
1564
  end
1565
1565
 
1566
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1567
1567
  #
1568
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1569
1569
  # data as a hash:
1570
1570
  #
1571
1571
  # {
1572
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1573
1573
  # }
1574
1574
  #
1575
1575
  # @!attribute [rw] metric_name
1576
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1577
1651
  # @return [String]
1578
1652
  #
1579
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
1607
1681
  # @return [Time]
1608
1682
  #
1609
1683
  # @!attribute [rw] end_time
1610
- # The end time.
1684
+ # The end time of an AutoML job.
1611
1685
  # @return [Time]
1612
1686
  #
1613
1687
  # @!attribute [rw] last_modified_time
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
1615
1689
  # @return [Time]
1616
1690
  #
1617
1691
  # @!attribute [rw] failure_reason
1618
- # The failure reason.
1692
+ # The failure reason of a job.
1619
1693
  # @return [String]
1620
1694
  #
1621
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
2249
2323
  # {
2250
2324
  # container_hostname: "ContainerHostname",
2251
2325
  # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
2252
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2253
2330
  # model_data_url: "Url",
2254
2331
  # environment: {
@@ -2292,6 +2369,18 @@ module Aws::SageMaker
2292
2369
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
2293
2370
  # @return [String]
2294
2371
  #
2372
+ # @!attribute [rw] image_config
2373
+ # Specifies whether the model container is in Amazon ECR or a private
2374
+ # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
+ # information about storing containers in a private Docker registry,
2376
+ # see [Use a Private Docker Registry for Real-Time Inference
2377
+ # Containers][1]
2378
+ #
2379
+ #
2380
+ #
2381
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2382
+ # @return [Types::ImageConfig]
2383
+ #
2295
2384
  # @!attribute [rw] mode
2296
2385
  # Whether the container hosts a single model or multiple models.
2297
2386
  # @return [String]
@@ -2338,6 +2427,7 @@ module Aws::SageMaker
2338
2427
  class ContainerDefinition < Struct.new(
2339
2428
  :container_hostname,
2340
2429
  :image,
2430
+ :image_config,
2341
2431
  :mode,
2342
2432
  :model_data_url,
2343
2433
  :environment,
@@ -2783,7 +2873,7 @@ module Aws::SageMaker
2783
2873
  # },
2784
2874
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2785
2875
  # auto_ml_job_objective: {
2786
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2876
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2787
2877
  # },
2788
2878
  # auto_ml_job_config: {
2789
2879
  # completion_criteria: {
@@ -2811,7 +2901,7 @@ module Aws::SageMaker
2811
2901
  # }
2812
2902
  #
2813
2903
  # @!attribute [rw] auto_ml_job_name
2814
- # Identifies an AutoPilot job. Must be unique to your account and is
2904
+ # Identifies an Autopilot job. Must be unique to your account and is
2815
2905
  # case-insensitive.
2816
2906
  # @return [String]
2817
2907
  #
@@ -2832,9 +2922,11 @@ module Aws::SageMaker
2832
2922
  # @return [String]
2833
2923
  #
2834
2924
  # @!attribute [rw] auto_ml_job_objective
2835
- # Defines the job's objective. You provide a MetricName and AutoML
2836
- # will infer minimize or maximize. If this is not provided, the most
2837
- # commonly used ObjectiveMetric for problem type will be selected.
2925
+ # Defines the objective of a an AutoML job. You provide a
2926
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2927
+ # minimize or maximize it. If a metric is not specified, the most
2928
+ # commonly used ObjectiveMetric for problem type is automaically
2929
+ # selected.
2838
2930
  # @return [Types::AutoMLJobObjective]
2839
2931
  #
2840
2932
  # @!attribute [rw] auto_ml_job_config
@@ -2842,13 +2934,13 @@ module Aws::SageMaker
2842
2934
  # @return [Types::AutoMLJobConfig]
2843
2935
  #
2844
2936
  # @!attribute [rw] role_arn
2845
- # The ARN of the role that will be used to access the data.
2937
+ # The ARN of the role that is used to access the data.
2846
2938
  # @return [String]
2847
2939
  #
2848
2940
  # @!attribute [rw] generate_candidate_definitions_only
2849
- # This will generate possible candidates without training a model. A
2850
- # candidate is a combination of data preprocessors, algorithms, and
2851
- # algorithm parameter settings.
2941
+ # Generates possible candidates without training a model. A candidate
2942
+ # is a combination of data preprocessors, algorithms, and algorithm
2943
+ # parameter settings.
2852
2944
  # @return [Boolean]
2853
2945
  #
2854
2946
  # @!attribute [rw] tags
@@ -4108,6 +4200,9 @@ module Aws::SageMaker
4108
4200
  # primary_container: {
4109
4201
  # container_hostname: "ContainerHostname",
4110
4202
  # image: "ContainerImage",
4203
+ # image_config: {
4204
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4205
+ # },
4111
4206
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4112
4207
  # model_data_url: "Url",
4113
4208
  # environment: {
@@ -4119,6 +4214,9 @@ module Aws::SageMaker
4119
4214
  # {
4120
4215
  # container_hostname: "ContainerHostname",
4121
4216
  # image: "ContainerImage",
4217
+ # image_config: {
4218
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4219
+ # },
4122
4220
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4123
4221
  # model_data_url: "Url",
4124
4222
  # environment: {
@@ -5844,14 +5942,17 @@ module Aws::SageMaker
5844
5942
  #
5845
5943
  # @!attribute [rw] oidc_config
5846
5944
  # Use this parameter to configure a private workforce using your own
5847
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
5848
- # values for `OidcConfig`.
5945
+ # OIDC Identity Provider.
5946
+ #
5947
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5849
5948
  # @return [Types::OidcConfig]
5850
5949
  #
5851
5950
  # @!attribute [rw] source_ip_config
5852
5951
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5853
- # list of IP addresses for a private workforce. For more information,
5854
- # see .
5952
+ # list of IP addresses for a private workforce. Workers will only be
5953
+ # able to login to their worker portal from an IP address within this
5954
+ # range. By default, a workforce isn't restricted to specific IP
5955
+ # addresses.
5855
5956
  #
5856
5957
  #
5857
5958
  #
@@ -5932,11 +6033,25 @@ module Aws::SageMaker
5932
6033
  #
5933
6034
  # @!attribute [rw] member_definitions
5934
6035
  # A list of `MemberDefinition` objects that contains objects that
5935
- # identify the Amazon Cognito user pool that makes up the work team.
5936
- # For more information, see [Amazon Cognito User Pools][1].
6036
+ # identify the workers that make up the work team.
6037
+ #
6038
+ # Workforces can be created using Amazon Cognito or your own OIDC
6039
+ # Identity Provider (IdP). For private workforces created using Amazon
6040
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6041
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6042
+ # not provide input for both of these parameters in a single request.
5937
6043
  #
5938
- # All of the `CognitoMemberDefinition` objects that make up the member
5939
- # definition must have the same `ClientId` and `UserPool` values.
6044
+ # For workforces created using Amazon Cognito, private work teams
6045
+ # correspond to Amazon Cognito *user groups* within the user pool used
6046
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6047
+ # that make up the member definition must have the same `ClientId` and
6048
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6049
+ # worker pool, see [Adding groups to a User Pool](). For more
6050
+ # information about user pools, see [Amazon Cognito User Pools][1].
6051
+ #
6052
+ # For workforces created using your own OIDC IdP, specify the user
6053
+ # groups that you want to include in your private work team in
6054
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5940
6055
  #
5941
6056
  #
5942
6057
  #
@@ -8841,7 +8956,7 @@ module Aws::SageMaker
8841
8956
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8842
8957
  # maximum allowed runtime.
8843
8958
  #
8844
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8959
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8845
8960
  # maximum allowed wait time.
8846
8961
  #
8847
8962
  # * `Stopped` - The training job has stopped.
@@ -10210,18 +10325,19 @@ module Aws::SageMaker
10210
10325
  include Aws::Structure
10211
10326
  end
10212
10327
 
10213
- # The candidate result from a job.
10328
+ # The best candidate result from an AutoML training job.
10214
10329
  #
10215
10330
  # @!attribute [rw] type
10216
- # The metric type used.
10331
+ # The type of metric with the best result.
10217
10332
  # @return [String]
10218
10333
  #
10219
10334
  # @!attribute [rw] metric_name
10220
- # The name of the metric.
10335
+ # The name of the metric with the best result. For a description of
10336
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
10221
10337
  # @return [String]
10222
10338
  #
10223
10339
  # @!attribute [rw] value
10224
- # The value of the metric.
10340
+ # The value of the metric with the best result.
10225
10341
  # @return [Float]
10226
10342
  #
10227
10343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -12362,6 +12478,33 @@ module Aws::SageMaker
12362
12478
  include Aws::Structure
12363
12479
  end
12364
12480
 
12481
+ # Specifies whether the model container is in Amazon ECR or a private
12482
+ # Docker registry in your Amazon Virtual Private Cloud (VPC).
12483
+ #
12484
+ # @note When making an API call, you may pass ImageConfig
12485
+ # data as a hash:
12486
+ #
12487
+ # {
12488
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12489
+ # }
12490
+ #
12491
+ # @!attribute [rw] repository_access_mode
12492
+ # Set this to one of the following values:
12493
+ #
12494
+ # * `Platform` - The model image is hosted in Amazon ECR.
12495
+ #
12496
+ # * `VPC` - The model image is hosted in a private Docker registry in
12497
+ # your VPC.
12498
+ # @return [String]
12499
+ #
12500
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12501
+ #
12502
+ class ImageConfig < Struct.new(
12503
+ :repository_access_mode)
12504
+ SENSITIVE = []
12505
+ include Aws::Structure
12506
+ end
12507
+
12365
12508
  # Defines how to perform inference generation after a training job is
12366
12509
  # run.
12367
12510
  #
@@ -13366,8 +13509,8 @@ module Aws::SageMaker
13366
13509
  # @return [Integer]
13367
13510
  #
13368
13511
  # @!attribute [rw] next_token
13369
- # If the previous response was truncated, you will receive this token.
13370
- # Use it in your next request to receive the next set of results.
13512
+ # If the previous response was truncated, you receive this token. Use
13513
+ # it in your next request to receive the next set of results.
13371
13514
  # @return [String]
13372
13515
  #
13373
13516
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -13392,8 +13535,8 @@ module Aws::SageMaker
13392
13535
  # @return [Array<Types::AutoMLJobSummary>]
13393
13536
  #
13394
13537
  # @!attribute [rw] next_token
13395
- # If the previous response was truncated, you will receive this token.
13396
- # Use it in your next request to receive the next set of results.
13538
+ # If the previous response was truncated, you receive this token. Use
13539
+ # it in your next request to receive the next set of results.
13397
13540
  # @return [String]
13398
13541
  #
13399
13542
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -13445,8 +13588,8 @@ module Aws::SageMaker
13445
13588
  # @return [Integer]
13446
13589
  #
13447
13590
  # @!attribute [rw] next_token
13448
- # If the previous response was truncated, you will receive this token.
13449
- # Use it in your next request to receive the next set of results.
13591
+ # If the previous response was truncated, you receive this token. Use
13592
+ # it in your next request to receive the next set of results.
13450
13593
  # @return [String]
13451
13594
  #
13452
13595
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -13468,8 +13611,8 @@ module Aws::SageMaker
13468
13611
  # @return [Array<Types::AutoMLCandidate>]
13469
13612
  #
13470
13613
  # @!attribute [rw] next_token
13471
- # If the previous response was truncated, you will receive this token.
13472
- # Use it in your next request to receive the next set of results.
13614
+ # If the previous response was truncated, you receive this token. Use
13615
+ # it in your next request to receive the next set of results.
13473
13616
  # @return [String]
13474
13617
  #
13475
13618
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -15879,7 +16022,8 @@ module Aws::SageMaker
15879
16022
  include Aws::Structure
15880
16023
  end
15881
16024
 
15882
- # Defines the Amazon Cognito user group that is part of a work team.
16025
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16026
+ # of a work team.
15883
16027
  #
15884
16028
  # @note When making an API call, you may pass MemberDefinition
15885
16029
  # data as a hash:
@@ -17364,7 +17508,7 @@ module Aws::SageMaker
17364
17508
  include Aws::Structure
17365
17509
  end
17366
17510
 
17367
- # Your Amazon Cognito workforce configuration.
17511
+ # Your OIDC IdP workforce configuration.
17368
17512
  #
17369
17513
  # @!attribute [rw] client_id
17370
17514
  # The OIDC IdP client ID used to configure your private workforce.
@@ -17413,7 +17557,7 @@ module Aws::SageMaker
17413
17557
  include Aws::Structure
17414
17558
  end
17415
17559
 
17416
- # A list user groups that exist in your OIDC Identity Provider (IdP).
17560
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17417
17561
  # One to ten groups can be used to create a single private work team.
17418
17562
  # When you add a user group to the list of `Groups`, you can add that
17419
17563
  # user group to one or more private work teams. If you add a user group
@@ -18813,7 +18957,8 @@ module Aws::SageMaker
18813
18957
  # The resolved attributes.
18814
18958
  #
18815
18959
  # @!attribute [rw] auto_ml_job_objective
18816
- # Applies a metric to minimize or maximize for the job's objective.
18960
+ # Specifies a metric to minimize or maximize as the objective of a
18961
+ # job.
18817
18962
  # @return [Types::AutoMLJobObjective]
18818
18963
  #
18819
18964
  # @!attribute [rw] problem_type
@@ -19735,7 +19880,9 @@ module Aws::SageMaker
19735
19880
  end
19736
19881
 
19737
19882
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
19738
- # of IP addresses for a private workforce. For more information, see .
19883
+ # of IP addresses for a private workforce. Workers will only be able to
19884
+ # login to their worker portal from an IP address within this range. By
19885
+ # default, a workforce isn't restricted to specific IP addresses.
19739
19886
  #
19740
19887
  #
19741
19888
  #
@@ -20930,7 +21077,12 @@ module Aws::SageMaker
20930
21077
  # request payloads contain the entire contents of an input object. Set
20931
21078
  # the value of this parameter to `Line` to split records on a newline
20932
21079
  # character boundary. `SplitType` also supports a number of
20933
- # record-oriented binary data formats.
21080
+ # record-oriented binary data formats. Currently, the supported record
21081
+ # formats are:
21082
+ #
21083
+ # * RecordIO
21084
+ #
21085
+ # * TFRecord
20934
21086
  #
20935
21087
  # When splitting is enabled, the size of a mini-batch depends on the
20936
21088
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -22063,7 +22215,7 @@ module Aws::SageMaker
22063
22215
  # }
22064
22216
  #
22065
22217
  # @!attribute [rw] target_objective_metric_value
22066
- # The objective metric's value.
22218
+ # The value of the objective metric.
22067
22219
  # @return [Float]
22068
22220
  #
22069
22221
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -23050,9 +23202,8 @@ module Aws::SageMaker
23050
23202
  # }
23051
23203
  #
23052
23204
  # @!attribute [rw] workforce_name
23053
- # The name of the private workforce whose access you want to restrict.
23054
- # `WorkforceName` is automatically set to `default` when a workforce
23055
- # is created and cannot be modified.
23205
+ # The name of the private workforce that you want to update. You can
23206
+ # find your workforce name by using the operation.
23056
23207
  # @return [String]
23057
23208
  #
23058
23209
  # @!attribute [rw] source_ip_config
@@ -23082,12 +23233,11 @@ module Aws::SageMaker
23082
23233
  end
23083
23234
 
23084
23235
  # @!attribute [rw] workforce
23085
- # A single private workforce, which is automatically created when you
23086
- # create your first private work team. You can create one private work
23087
- # force in each AWS Region. By default, any workforce-related API
23088
- # operation used in a specific region will apply to the workforce
23089
- # created in that region. To learn how to create a private workforce,
23090
- # see [Create a Private Workforce][1].
23236
+ # A single private workforce. You can create one private work force in
23237
+ # each AWS Region. By default, any workforce-related API operation
23238
+ # used in a specific region will apply to the workforce created in
23239
+ # that region. To learn how to create a private workforce, see [Create
23240
+ # a Private Workforce][1].
23091
23241
  #
23092
23242
  #
23093
23243
  #
@@ -23130,8 +23280,35 @@ module Aws::SageMaker
23130
23280
  # @return [String]
23131
23281
  #
23132
23282
  # @!attribute [rw] member_definitions
23133
- # A list of `MemberDefinition` objects that contain the updated work
23134
- # team members.
23283
+ # A list of `MemberDefinition` objects that contains objects that
23284
+ # identify the workers that make up the work team.
23285
+ #
23286
+ # Workforces can be created using Amazon Cognito or your own OIDC
23287
+ # Identity Provider (IdP). For private workforces created using Amazon
23288
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23289
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23290
+ # You should not provide input for both of these parameters in a
23291
+ # single request.
23292
+ #
23293
+ # For workforces created using Amazon Cognito, private work teams
23294
+ # correspond to Amazon Cognito *user groups* within the user pool used
23295
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23296
+ # that make up the member definition must have the same `ClientId` and
23297
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23298
+ # worker pool, see [Adding groups to a User Pool](). For more
23299
+ # information about user pools, see [Amazon Cognito User Pools][1].
23300
+ #
23301
+ # For workforces created using your own OIDC IdP, specify the user
23302
+ # groups that you want to include in your private work team in
23303
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23304
+ # that user groups that are already in the work team must also be
23305
+ # listed in `Groups` when you make this request to remain on the work
23306
+ # team. If you do not include these user groups, they will no longer
23307
+ # be associated with the work team you update.
23308
+ #
23309
+ #
23310
+ #
23311
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23135
23312
  # @return [Array<Types::MemberDefinition>]
23136
23313
  #
23137
23314
  # @!attribute [rw] description
@@ -23407,7 +23584,8 @@ module Aws::SageMaker
23407
23584
  #
23408
23585
  # @!attribute [rw] source_ip_config
23409
23586
  # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23410
- # the workforce allow list.
23587
+ # the workforce allow list. By default, a workforce isn't restricted
23588
+ # to specific IP addresses.
23411
23589
  #
23412
23590
  #
23413
23591
  #
@@ -23459,7 +23637,13 @@ module Aws::SageMaker
23459
23637
  # @return [String]
23460
23638
  #
23461
23639
  # @!attribute [rw] member_definitions
23462
- # The Amazon Cognito user groups that make up the work team.
23640
+ # A list of `MemberDefinition` objects that contains objects that
23641
+ # identify the workers that make up the work team.
23642
+ #
23643
+ # Workforces can be created using Amazon Cognito or your own OIDC
23644
+ # Identity Provider (IdP). For private workforces created using Amazon
23645
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23646
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23463
23647
  # @return [Array<Types::MemberDefinition>]
23464
23648
  #
23465
23649
  # @!attribute [rw] workteam_arn
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.64.0
4
+ version: 1.65.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-07-24 00:00:00.000000000 Z
11
+ date: 2020-08-14 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core