aws-sdk-sagemaker 1.64.0 → 1.65.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 3dd514dc94ac9a72dbf30134179cd7996354fbce6bbea433880986af5ed18a90
4
- data.tar.gz: 691fec9934ce5ae29898a274d0012ab7e7566426351658b08e4c1d33a90a8bea
3
+ metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
4
+ data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
5
5
  SHA512:
6
- metadata.gz: 0febc6c10d0afe0d14609064267f2f587b90dffab2f94f47e8d6662974e92305188a47dbd5a2616fb346a945da2ee33e33e3a35024e4dbb67a0d6b9307f69ee0
7
- data.tar.gz: 2b9ed20523f9f255ef59b925f8697a56ff887f60b770303e83330de53efce42d88d66656bf919b9b4309846407253aaa2f2a6760f05ed24c943eb39be5e6373f
6
+ metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
7
+ data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
48
48
  # @service
49
49
  module Aws::SageMaker
50
50
 
51
- GEM_VERSION = '1.64.0'
51
+ GEM_VERSION = '1.65.0'
52
52
 
53
53
  end
@@ -713,15 +713,14 @@ module Aws::SageMaker
713
713
  req.send_request(options)
714
714
  end
715
715
 
716
- # Creates an AutoPilot job.
716
+ # Creates an Autopilot job.
717
717
  #
718
- # After you run an AutoPilot job, you can find the best performing model
719
- # by calling , and then deploy that model by following the steps
720
- # described in [Step 6.1: Deploy the Model to Amazon SageMaker Hosting
721
- # Services][1].
718
+ # Find the best performing model after you run an Autopilot job by
719
+ # calling . Deploy that model by following the steps described in [Step
720
+ # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
722
721
  #
723
- # For information about how to use AutoPilot, see [Use AutoPilot to
724
- # Automate Model Development][2].
722
+ # For information about how to use Autopilot, see [ Automate Model
723
+ # Development with Amazon SageMaker Autopilot][2].
725
724
  #
726
725
  #
727
726
  #
@@ -729,7 +728,7 @@ module Aws::SageMaker
729
728
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
730
729
  #
731
730
  # @option params [required, String] :auto_ml_job_name
732
- # Identifies an AutoPilot job. Must be unique to your account and is
731
+ # Identifies an Autopilot job. Must be unique to your account and is
733
732
  # case-insensitive.
734
733
  #
735
734
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
@@ -746,20 +745,21 @@ module Aws::SageMaker
746
745
  # MulticlassClassification, and Regression.
747
746
  #
748
747
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
749
- # Defines the job's objective. You provide a MetricName and AutoML will
750
- # infer minimize or maximize. If this is not provided, the most commonly
751
- # used ObjectiveMetric for problem type will be selected.
748
+ # Defines the objective of a an AutoML job. You provide a
749
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
750
+ # or maximize it. If a metric is not specified, the most commonly used
751
+ # ObjectiveMetric for problem type is automaically selected.
752
752
  #
753
753
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
754
754
  # Contains CompletionCriteria and SecurityConfig.
755
755
  #
756
756
  # @option params [required, String] :role_arn
757
- # The ARN of the role that will be used to access the data.
757
+ # The ARN of the role that is used to access the data.
758
758
  #
759
759
  # @option params [Boolean] :generate_candidate_definitions_only
760
- # This will generate possible candidates without training a model. A
761
- # candidate is a combination of data preprocessors, algorithms, and
762
- # algorithm parameter settings.
760
+ # Generates possible candidates without training a model. A candidate is
761
+ # a combination of data preprocessors, algorithms, and algorithm
762
+ # parameter settings.
763
763
  #
764
764
  # @option params [Array<Types::Tag>] :tags
765
765
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -791,7 +791,7 @@ module Aws::SageMaker
791
791
  # },
792
792
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
793
793
  # auto_ml_job_objective: {
794
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
794
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
795
795
  # },
796
796
  # auto_ml_job_config: {
797
797
  # completion_criteria: {
@@ -2247,6 +2247,9 @@ module Aws::SageMaker
2247
2247
  # primary_container: {
2248
2248
  # container_hostname: "ContainerHostname",
2249
2249
  # image: "ContainerImage",
2250
+ # image_config: {
2251
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2252
+ # },
2250
2253
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2251
2254
  # model_data_url: "Url",
2252
2255
  # environment: {
@@ -2258,6 +2261,9 @@ module Aws::SageMaker
2258
2261
  # {
2259
2262
  # container_hostname: "ContainerHostname",
2260
2263
  # image: "ContainerImage",
2264
+ # image_config: {
2265
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2266
+ # },
2261
2267
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2262
2268
  # model_data_url: "Url",
2263
2269
  # environment: {
@@ -3902,11 +3908,12 @@ module Aws::SageMaker
3902
3908
 
3903
3909
  # Use this operation to create a workforce. This operation will return
3904
3910
  # an error if a workforce already exists in the AWS Region that you
3905
- # specify. You can only create one workforce in each AWS Region.
3911
+ # specify. You can only create one workforce in each AWS Region per AWS
3912
+ # account.
3906
3913
  #
3907
- # If you want to create a new workforce in an AWS Region where the a
3914
+ # If you want to create a new workforce in an AWS Region where a
3908
3915
  # workforce already exists, use the API operation to delete the existing
3909
- # workforce and then use this operation to create a new workforce.
3916
+ # workforce and then use `CreateWorkforce` to create a new workforce.
3910
3917
  #
3911
3918
  # To create a private workforce using Amazon Cognito, you must specify a
3912
3919
  # Cognito user pool in `CognitoConfig`. You can also create an Amazon
@@ -3914,9 +3921,10 @@ module Aws::SageMaker
3914
3921
  # information, see [ Create a Private Workforce (Amazon Cognito)][1].
3915
3922
  #
3916
3923
  # To create a private workforce using your own OIDC Identity Provider
3917
- # (IdP), specify your IdP configuration in `OidcConfig`. You must create
3918
- # a OIDC IdP workforce using this API operation. For more information,
3919
- # see [ Create a Private Workforce (OIDC IdP)][2].
3924
+ # (IdP), specify your IdP configuration in `OidcConfig`. Your OIDC IdP
3925
+ # must support *groups* because groups are used by Ground Truth and
3926
+ # Amazon A2I to create work teams. For more information, see [ Create a
3927
+ # Private Workforce (OIDC IdP)][2].
3920
3928
  #
3921
3929
  #
3922
3930
  #
@@ -3936,12 +3944,15 @@ module Aws::SageMaker
3936
3944
  #
3937
3945
  # @option params [Types::OidcConfig] :oidc_config
3938
3946
  # Use this parameter to configure a private workforce using your own
3939
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
3940
- # values for `OidcConfig`.
3947
+ # OIDC Identity Provider.
3948
+ #
3949
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
3941
3950
  #
3942
3951
  # @option params [Types::SourceIpConfig] :source_ip_config
3943
3952
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
3944
- # of IP addresses for a private workforce. For more information, see .
3953
+ # of IP addresses for a private workforce. Workers will only be able to
3954
+ # login to their worker portal from an IP address within this range. By
3955
+ # default, a workforce isn't restricted to specific IP addresses.
3945
3956
  #
3946
3957
  #
3947
3958
  #
@@ -4015,11 +4026,25 @@ module Aws::SageMaker
4015
4026
  #
4016
4027
  # @option params [required, Array<Types::MemberDefinition>] :member_definitions
4017
4028
  # A list of `MemberDefinition` objects that contains objects that
4018
- # identify the Amazon Cognito user pool that makes up the work team. For
4019
- # more information, see [Amazon Cognito User Pools][1].
4029
+ # identify the workers that make up the work team.
4020
4030
  #
4021
- # All of the `CognitoMemberDefinition` objects that make up the member
4022
- # definition must have the same `ClientId` and `UserPool` values.
4031
+ # Workforces can be created using Amazon Cognito or your own OIDC
4032
+ # Identity Provider (IdP). For private workforces created using Amazon
4033
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
4034
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
4035
+ # not provide input for both of these parameters in a single request.
4036
+ #
4037
+ # For workforces created using Amazon Cognito, private work teams
4038
+ # correspond to Amazon Cognito *user groups* within the user pool used
4039
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
4040
+ # that make up the member definition must have the same `ClientId` and
4041
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
4042
+ # worker pool, see [Adding groups to a User Pool](). For more
4043
+ # information about user pools, see [Amazon Cognito User Pools][1].
4044
+ #
4045
+ # For workforces created using your own OIDC IdP, specify the user
4046
+ # groups that you want to include in your private work team in
4047
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
4023
4048
  #
4024
4049
  #
4025
4050
  #
@@ -4594,10 +4619,15 @@ module Aws::SageMaker
4594
4619
 
4595
4620
  # Use this operation to delete a workforce.
4596
4621
  #
4597
- # If you want to create a new workforce in an AWS Region where the a
4622
+ # If you want to create a new workforce in an AWS Region where a
4598
4623
  # workforce already exists, use this operation to delete the existing
4599
4624
  # workforce and then use to create a new workforce.
4600
4625
  #
4626
+ # If a private workforce contains one or more work teams, you must use
4627
+ # the operation to delete all work teams before you delete the
4628
+ # workforce. If you try to delete a workforce that contains one or more
4629
+ # work teams, you will recieve a `ResourceInUse` error.
4630
+ #
4601
4631
  # @option params [required, String] :workforce_name
4602
4632
  # The name of the workforce.
4603
4633
  #
@@ -4899,7 +4929,7 @@ module Aws::SageMaker
4899
4929
  # resp.output_data_config.kms_key_id #=> String
4900
4930
  # resp.output_data_config.s3_output_path #=> String
4901
4931
  # resp.role_arn #=> String
4902
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4932
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4903
4933
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4904
4934
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
4905
4935
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4916,7 +4946,7 @@ module Aws::SageMaker
4916
4946
  # resp.failure_reason #=> String
4917
4947
  # resp.best_candidate.candidate_name #=> String
4918
4948
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
4919
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4949
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4920
4950
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
4921
4951
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
4922
4952
  # resp.best_candidate.candidate_steps #=> Array
@@ -4938,7 +4968,7 @@ module Aws::SageMaker
4938
4968
  # resp.generate_candidate_definitions_only #=> Boolean
4939
4969
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
4940
4970
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
4941
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4971
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4942
4972
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4943
4973
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
4944
4974
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -5732,6 +5762,7 @@ module Aws::SageMaker
5732
5762
  # resp.model_name #=> String
5733
5763
  # resp.primary_container.container_hostname #=> String
5734
5764
  # resp.primary_container.image #=> String
5765
+ # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5735
5766
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
5736
5767
  # resp.primary_container.model_data_url #=> String
5737
5768
  # resp.primary_container.environment #=> Hash
@@ -5740,6 +5771,7 @@ module Aws::SageMaker
5740
5771
  # resp.containers #=> Array
5741
5772
  # resp.containers[0].container_hostname #=> String
5742
5773
  # resp.containers[0].image #=> String
5774
+ # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5743
5775
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
5744
5776
  # resp.containers[0].model_data_url #=> String
5745
5777
  # resp.containers[0].environment #=> Hash
@@ -6972,8 +7004,8 @@ module Aws::SageMaker
6972
7004
  # Request a list of jobs up to a specified limit.
6973
7005
  #
6974
7006
  # @option params [String] :next_token
6975
- # If the previous response was truncated, you will receive this token.
6976
- # Use it in your next request to receive the next set of results.
7007
+ # If the previous response was truncated, you receive this token. Use it
7008
+ # in your next request to receive the next set of results.
6977
7009
  #
6978
7010
  # @return [Types::ListAutoMLJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6979
7011
  #
@@ -7040,8 +7072,8 @@ module Aws::SageMaker
7040
7072
  # List the job's Candidates up to a specified limit.
7041
7073
  #
7042
7074
  # @option params [String] :next_token
7043
- # If the previous response was truncated, you will receive this token.
7044
- # Use it in your next request to receive the next set of results.
7075
+ # If the previous response was truncated, you receive this token. Use it
7076
+ # in your next request to receive the next set of results.
7045
7077
  #
7046
7078
  # @return [Types::ListCandidatesForAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7047
7079
  #
@@ -7067,7 +7099,7 @@ module Aws::SageMaker
7067
7099
  # resp.candidates #=> Array
7068
7100
  # resp.candidates[0].candidate_name #=> String
7069
7101
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7070
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
7102
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
7071
7103
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
7072
7104
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
7073
7105
  # resp.candidates[0].candidate_steps #=> Array
@@ -9125,9 +9157,9 @@ module Aws::SageMaker
9125
9157
  req.send_request(options)
9126
9158
  end
9127
9159
 
9128
- # Gets a list of work teams that you have defined in a region. The list
9129
- # may be empty if no work team satisfies the filter specified in the
9130
- # `NameContains` parameter.
9160
+ # Gets a list of private work teams that you have defined in a region.
9161
+ # The list may be empty if no work team satisfies the filter specified
9162
+ # in the `NameContains` parameter.
9131
9163
  #
9132
9164
  # @option params [String] :sort_by
9133
9165
  # The field to sort results by. The default is `CreationTime`.
@@ -10731,27 +10763,39 @@ module Aws::SageMaker
10731
10763
  req.send_request(options)
10732
10764
  end
10733
10765
 
10734
- # Restricts access to tasks assigned to workers in the specified
10735
- # workforce to those within specific ranges of IP addresses. You specify
10736
- # allowed IP addresses by creating a list of up to ten [CIDRs][1].
10766
+ # Use this operation to update your workforce. You can use this
10767
+ # operation to require that workers use specific IP addresses to work on
10768
+ # tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP)
10769
+ # workforce configuration.
10737
10770
  #
10738
- # By default, a workforce isn't restricted to specific IP addresses. If
10739
- # you specify a range of IP addresses, workers who attempt to access
10740
- # tasks using any IP address outside the specified range are denied
10741
- # access and get a `Not Found` error message on the worker portal. After
10742
- # restricting access with this operation, you can see the allowed IP
10743
- # values for a private workforce with the operation.
10771
+ # Use `SourceIpConfig` to restrict worker access to tasks to a specific
10772
+ # range of IP addresses. You specify allowed IP addresses by creating a
10773
+ # list of up to ten [CIDRs][1]. By default, a workforce isn't
10774
+ # restricted to specific IP addresses. If you specify a range of IP
10775
+ # addresses, workers who attempt to access tasks using any IP address
10776
+ # outside the specified range are denied and get a `Not Found` error
10777
+ # message on the worker portal.
10744
10778
  #
10745
- # This operation applies only to private workforces.
10779
+ # Use `OidcConfig` to update the configuration of a workforce created
10780
+ # using your own OIDC IdP.
10781
+ #
10782
+ # You can only update your OIDC IdP configuration when there are no work
10783
+ # teams associated with your workforce. You can delete work teams using
10784
+ # the operation.
10785
+ #
10786
+ # After restricting access to a range of IP addresses or updating your
10787
+ # OIDC IdP configuration with this operation, you can view details about
10788
+ # your update workforce using the operation.
10789
+ #
10790
+ # This operation only applies to private workforces.
10746
10791
  #
10747
10792
  #
10748
10793
  #
10749
10794
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10750
10795
  #
10751
10796
  # @option params [required, String] :workforce_name
10752
- # The name of the private workforce whose access you want to restrict.
10753
- # `WorkforceName` is automatically set to `default` when a workforce is
10754
- # created and cannot be modified.
10797
+ # The name of the private workforce that you want to update. You can
10798
+ # find your workforce name by using the operation.
10755
10799
  #
10756
10800
  # @option params [Types::SourceIpConfig] :source_ip_config
10757
10801
  # A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
@@ -10825,8 +10869,35 @@ module Aws::SageMaker
10825
10869
  # The name of the work team to update.
10826
10870
  #
10827
10871
  # @option params [Array<Types::MemberDefinition>] :member_definitions
10828
- # A list of `MemberDefinition` objects that contain the updated work
10829
- # team members.
10872
+ # A list of `MemberDefinition` objects that contains objects that
10873
+ # identify the workers that make up the work team.
10874
+ #
10875
+ # Workforces can be created using Amazon Cognito or your own OIDC
10876
+ # Identity Provider (IdP). For private workforces created using Amazon
10877
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
10878
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. You
10879
+ # should not provide input for both of these parameters in a single
10880
+ # request.
10881
+ #
10882
+ # For workforces created using Amazon Cognito, private work teams
10883
+ # correspond to Amazon Cognito *user groups* within the user pool used
10884
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
10885
+ # that make up the member definition must have the same `ClientId` and
10886
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
10887
+ # worker pool, see [Adding groups to a User Pool](). For more
10888
+ # information about user pools, see [Amazon Cognito User Pools][1].
10889
+ #
10890
+ # For workforces created using your own OIDC IdP, specify the user
10891
+ # groups that you want to include in your private work team in
10892
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
10893
+ # that user groups that are already in the work team must also be listed
10894
+ # in `Groups` when you make this request to remain on the work team. If
10895
+ # you do not include these user groups, they will no longer be
10896
+ # associated with the work team you update.
10897
+ #
10898
+ #
10899
+ #
10900
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
10830
10901
  #
10831
10902
  # @option params [String] :description
10832
10903
  # An updated description for the work team.
@@ -10902,7 +10973,7 @@ module Aws::SageMaker
10902
10973
  params: params,
10903
10974
  config: config)
10904
10975
  context[:gem_name] = 'aws-sdk-sagemaker'
10905
- context[:gem_version] = '1.64.0'
10976
+ context[:gem_version] = '1.65.0'
10906
10977
  Seahorse::Client::Request.new(handlers, context)
10907
10978
  end
10908
10979
 
@@ -429,6 +429,7 @@ module Aws::SageMaker
429
429
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
430
430
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
431
431
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
432
+ ImageConfig = Shapes::StructureShape.new(name: 'ImageConfig')
432
433
  ImageDigest = Shapes::StringShape.new(name: 'ImageDigest')
433
434
  ImageUri = Shapes::StringShape.new(name: 'ImageUri')
434
435
  InferenceSpecification = Shapes::StructureShape.new(name: 'InferenceSpecification')
@@ -722,6 +723,7 @@ module Aws::SageMaker
722
723
  RenderableTask = Shapes::StructureShape.new(name: 'RenderableTask')
723
724
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
724
725
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
726
+ RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
725
727
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
726
728
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
727
729
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1199,6 +1201,7 @@ module Aws::SageMaker
1199
1201
 
1200
1202
  ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
1201
1203
  ContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, location_name: "Image"))
1204
+ ContainerDefinition.add_member(:image_config, Shapes::ShapeRef.new(shape: ImageConfig, location_name: "ImageConfig"))
1202
1205
  ContainerDefinition.add_member(:mode, Shapes::ShapeRef.new(shape: ContainerMode, location_name: "Mode"))
1203
1206
  ContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, location_name: "ModelDataUrl"))
1204
1207
  ContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2414,6 +2417,9 @@ module Aws::SageMaker
2414
2417
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
2415
2418
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
2416
2419
 
2420
+ ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
2421
+ ImageConfig.struct_class = Types::ImageConfig
2422
+
2417
2423
  InferenceSpecification.add_member(:containers, Shapes::ShapeRef.new(shape: ModelPackageContainerDefinitionList, required: true, location_name: "Containers"))
2418
2424
  InferenceSpecification.add_member(:supported_transform_instance_types, Shapes::ShapeRef.new(shape: TransformInstanceTypes, required: true, location_name: "SupportedTransformInstanceTypes"))
2419
2425
  InferenceSpecification.add_member(:supported_realtime_inference_instance_types, Shapes::ShapeRef.new(shape: RealtimeInferenceInstanceTypes, required: true, location_name: "SupportedRealtimeInferenceInstanceTypes"))
@@ -1285,7 +1285,7 @@ module Aws::SageMaker
1285
1285
  include Aws::Structure
1286
1286
  end
1287
1287
 
1288
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
1289
1289
  # candidate has futher details about the steps involed, and the status.
1290
1290
  #
1291
1291
  # @!attribute [rw] candidate_name
@@ -1293,7 +1293,7 @@ module Aws::SageMaker
1293
1293
  # @return [String]
1294
1294
  #
1295
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
1296
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
1297
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1298
1298
  #
1299
1299
  # @!attribute [rw] objective_status
@@ -1440,7 +1440,7 @@ module Aws::SageMaker
1440
1440
  include Aws::Structure
1441
1441
  end
1442
1442
 
1443
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1444
1444
  #
1445
1445
  # @note When making an API call, you may pass AutoMLDataSource
1446
1446
  # data as a hash:
@@ -1563,17 +1563,91 @@ module Aws::SageMaker
1563
1563
  include Aws::Structure
1564
1564
  end
1565
1565
 
1566
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1567
1567
  #
1568
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1569
1569
  # data as a hash:
1570
1570
  #
1571
1571
  # {
1572
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1573
1573
  # }
1574
1574
  #
1575
1575
  # @!attribute [rw] metric_name
1576
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1577
1651
  # @return [String]
1578
1652
  #
1579
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1607,7 +1681,7 @@ module Aws::SageMaker
1607
1681
  # @return [Time]
1608
1682
  #
1609
1683
  # @!attribute [rw] end_time
1610
- # The end time.
1684
+ # The end time of an AutoML job.
1611
1685
  # @return [Time]
1612
1686
  #
1613
1687
  # @!attribute [rw] last_modified_time
@@ -1615,7 +1689,7 @@ module Aws::SageMaker
1615
1689
  # @return [Time]
1616
1690
  #
1617
1691
  # @!attribute [rw] failure_reason
1618
- # The failure reason.
1692
+ # The failure reason of a job.
1619
1693
  # @return [String]
1620
1694
  #
1621
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -2249,6 +2323,9 @@ module Aws::SageMaker
2249
2323
  # {
2250
2324
  # container_hostname: "ContainerHostname",
2251
2325
  # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
2252
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2253
2330
  # model_data_url: "Url",
2254
2331
  # environment: {
@@ -2292,6 +2369,18 @@ module Aws::SageMaker
2292
2369
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
2293
2370
  # @return [String]
2294
2371
  #
2372
+ # @!attribute [rw] image_config
2373
+ # Specifies whether the model container is in Amazon ECR or a private
2374
+ # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
+ # information about storing containers in a private Docker registry,
2376
+ # see [Use a Private Docker Registry for Real-Time Inference
2377
+ # Containers][1]
2378
+ #
2379
+ #
2380
+ #
2381
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2382
+ # @return [Types::ImageConfig]
2383
+ #
2295
2384
  # @!attribute [rw] mode
2296
2385
  # Whether the container hosts a single model or multiple models.
2297
2386
  # @return [String]
@@ -2338,6 +2427,7 @@ module Aws::SageMaker
2338
2427
  class ContainerDefinition < Struct.new(
2339
2428
  :container_hostname,
2340
2429
  :image,
2430
+ :image_config,
2341
2431
  :mode,
2342
2432
  :model_data_url,
2343
2433
  :environment,
@@ -2783,7 +2873,7 @@ module Aws::SageMaker
2783
2873
  # },
2784
2874
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2785
2875
  # auto_ml_job_objective: {
2786
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2876
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2787
2877
  # },
2788
2878
  # auto_ml_job_config: {
2789
2879
  # completion_criteria: {
@@ -2811,7 +2901,7 @@ module Aws::SageMaker
2811
2901
  # }
2812
2902
  #
2813
2903
  # @!attribute [rw] auto_ml_job_name
2814
- # Identifies an AutoPilot job. Must be unique to your account and is
2904
+ # Identifies an Autopilot job. Must be unique to your account and is
2815
2905
  # case-insensitive.
2816
2906
  # @return [String]
2817
2907
  #
@@ -2832,9 +2922,11 @@ module Aws::SageMaker
2832
2922
  # @return [String]
2833
2923
  #
2834
2924
  # @!attribute [rw] auto_ml_job_objective
2835
- # Defines the job's objective. You provide a MetricName and AutoML
2836
- # will infer minimize or maximize. If this is not provided, the most
2837
- # commonly used ObjectiveMetric for problem type will be selected.
2925
+ # Defines the objective of a an AutoML job. You provide a
2926
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2927
+ # minimize or maximize it. If a metric is not specified, the most
2928
+ # commonly used ObjectiveMetric for problem type is automaically
2929
+ # selected.
2838
2930
  # @return [Types::AutoMLJobObjective]
2839
2931
  #
2840
2932
  # @!attribute [rw] auto_ml_job_config
@@ -2842,13 +2934,13 @@ module Aws::SageMaker
2842
2934
  # @return [Types::AutoMLJobConfig]
2843
2935
  #
2844
2936
  # @!attribute [rw] role_arn
2845
- # The ARN of the role that will be used to access the data.
2937
+ # The ARN of the role that is used to access the data.
2846
2938
  # @return [String]
2847
2939
  #
2848
2940
  # @!attribute [rw] generate_candidate_definitions_only
2849
- # This will generate possible candidates without training a model. A
2850
- # candidate is a combination of data preprocessors, algorithms, and
2851
- # algorithm parameter settings.
2941
+ # Generates possible candidates without training a model. A candidate
2942
+ # is a combination of data preprocessors, algorithms, and algorithm
2943
+ # parameter settings.
2852
2944
  # @return [Boolean]
2853
2945
  #
2854
2946
  # @!attribute [rw] tags
@@ -4108,6 +4200,9 @@ module Aws::SageMaker
4108
4200
  # primary_container: {
4109
4201
  # container_hostname: "ContainerHostname",
4110
4202
  # image: "ContainerImage",
4203
+ # image_config: {
4204
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4205
+ # },
4111
4206
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4112
4207
  # model_data_url: "Url",
4113
4208
  # environment: {
@@ -4119,6 +4214,9 @@ module Aws::SageMaker
4119
4214
  # {
4120
4215
  # container_hostname: "ContainerHostname",
4121
4216
  # image: "ContainerImage",
4217
+ # image_config: {
4218
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4219
+ # },
4122
4220
  # mode: "SingleModel", # accepts SingleModel, MultiModel
4123
4221
  # model_data_url: "Url",
4124
4222
  # environment: {
@@ -5844,14 +5942,17 @@ module Aws::SageMaker
5844
5942
  #
5845
5943
  # @!attribute [rw] oidc_config
5846
5944
  # Use this parameter to configure a private workforce using your own
5847
- # OIDC Identity Provider. Do not use `CognitoConfig` if you specify
5848
- # values for `OidcConfig`.
5945
+ # OIDC Identity Provider.
5946
+ #
5947
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5849
5948
  # @return [Types::OidcConfig]
5850
5949
  #
5851
5950
  # @!attribute [rw] source_ip_config
5852
5951
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5853
- # list of IP addresses for a private workforce. For more information,
5854
- # see .
5952
+ # list of IP addresses for a private workforce. Workers will only be
5953
+ # able to login to their worker portal from an IP address within this
5954
+ # range. By default, a workforce isn't restricted to specific IP
5955
+ # addresses.
5855
5956
  #
5856
5957
  #
5857
5958
  #
@@ -5932,11 +6033,25 @@ module Aws::SageMaker
5932
6033
  #
5933
6034
  # @!attribute [rw] member_definitions
5934
6035
  # A list of `MemberDefinition` objects that contains objects that
5935
- # identify the Amazon Cognito user pool that makes up the work team.
5936
- # For more information, see [Amazon Cognito User Pools][1].
6036
+ # identify the workers that make up the work team.
6037
+ #
6038
+ # Workforces can be created using Amazon Cognito or your own OIDC
6039
+ # Identity Provider (IdP). For private workforces created using Amazon
6040
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6041
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6042
+ # not provide input for both of these parameters in a single request.
5937
6043
  #
5938
- # All of the `CognitoMemberDefinition` objects that make up the member
5939
- # definition must have the same `ClientId` and `UserPool` values.
6044
+ # For workforces created using Amazon Cognito, private work teams
6045
+ # correspond to Amazon Cognito *user groups* within the user pool used
6046
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6047
+ # that make up the member definition must have the same `ClientId` and
6048
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6049
+ # worker pool, see [Adding groups to a User Pool](). For more
6050
+ # information about user pools, see [Amazon Cognito User Pools][1].
6051
+ #
6052
+ # For workforces created using your own OIDC IdP, specify the user
6053
+ # groups that you want to include in your private work team in
6054
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5940
6055
  #
5941
6056
  #
5942
6057
  #
@@ -8841,7 +8956,7 @@ module Aws::SageMaker
8841
8956
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8842
8957
  # maximum allowed runtime.
8843
8958
  #
8844
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8959
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8845
8960
  # maximum allowed wait time.
8846
8961
  #
8847
8962
  # * `Stopped` - The training job has stopped.
@@ -10210,18 +10325,19 @@ module Aws::SageMaker
10210
10325
  include Aws::Structure
10211
10326
  end
10212
10327
 
10213
- # The candidate result from a job.
10328
+ # The best candidate result from an AutoML training job.
10214
10329
  #
10215
10330
  # @!attribute [rw] type
10216
- # The metric type used.
10331
+ # The type of metric with the best result.
10217
10332
  # @return [String]
10218
10333
  #
10219
10334
  # @!attribute [rw] metric_name
10220
- # The name of the metric.
10335
+ # The name of the metric with the best result. For a description of
10336
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
10221
10337
  # @return [String]
10222
10338
  #
10223
10339
  # @!attribute [rw] value
10224
- # The value of the metric.
10340
+ # The value of the metric with the best result.
10225
10341
  # @return [Float]
10226
10342
  #
10227
10343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -12362,6 +12478,33 @@ module Aws::SageMaker
12362
12478
  include Aws::Structure
12363
12479
  end
12364
12480
 
12481
+ # Specifies whether the model container is in Amazon ECR or a private
12482
+ # Docker registry in your Amazon Virtual Private Cloud (VPC).
12483
+ #
12484
+ # @note When making an API call, you may pass ImageConfig
12485
+ # data as a hash:
12486
+ #
12487
+ # {
12488
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12489
+ # }
12490
+ #
12491
+ # @!attribute [rw] repository_access_mode
12492
+ # Set this to one of the following values:
12493
+ #
12494
+ # * `Platform` - The model image is hosted in Amazon ECR.
12495
+ #
12496
+ # * `VPC` - The model image is hosted in a private Docker registry in
12497
+ # your VPC.
12498
+ # @return [String]
12499
+ #
12500
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12501
+ #
12502
+ class ImageConfig < Struct.new(
12503
+ :repository_access_mode)
12504
+ SENSITIVE = []
12505
+ include Aws::Structure
12506
+ end
12507
+
12365
12508
  # Defines how to perform inference generation after a training job is
12366
12509
  # run.
12367
12510
  #
@@ -13366,8 +13509,8 @@ module Aws::SageMaker
13366
13509
  # @return [Integer]
13367
13510
  #
13368
13511
  # @!attribute [rw] next_token
13369
- # If the previous response was truncated, you will receive this token.
13370
- # Use it in your next request to receive the next set of results.
13512
+ # If the previous response was truncated, you receive this token. Use
13513
+ # it in your next request to receive the next set of results.
13371
13514
  # @return [String]
13372
13515
  #
13373
13516
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -13392,8 +13535,8 @@ module Aws::SageMaker
13392
13535
  # @return [Array<Types::AutoMLJobSummary>]
13393
13536
  #
13394
13537
  # @!attribute [rw] next_token
13395
- # If the previous response was truncated, you will receive this token.
13396
- # Use it in your next request to receive the next set of results.
13538
+ # If the previous response was truncated, you receive this token. Use
13539
+ # it in your next request to receive the next set of results.
13397
13540
  # @return [String]
13398
13541
  #
13399
13542
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -13445,8 +13588,8 @@ module Aws::SageMaker
13445
13588
  # @return [Integer]
13446
13589
  #
13447
13590
  # @!attribute [rw] next_token
13448
- # If the previous response was truncated, you will receive this token.
13449
- # Use it in your next request to receive the next set of results.
13591
+ # If the previous response was truncated, you receive this token. Use
13592
+ # it in your next request to receive the next set of results.
13450
13593
  # @return [String]
13451
13594
  #
13452
13595
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -13468,8 +13611,8 @@ module Aws::SageMaker
13468
13611
  # @return [Array<Types::AutoMLCandidate>]
13469
13612
  #
13470
13613
  # @!attribute [rw] next_token
13471
- # If the previous response was truncated, you will receive this token.
13472
- # Use it in your next request to receive the next set of results.
13614
+ # If the previous response was truncated, you receive this token. Use
13615
+ # it in your next request to receive the next set of results.
13473
13616
  # @return [String]
13474
13617
  #
13475
13618
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -15879,7 +16022,8 @@ module Aws::SageMaker
15879
16022
  include Aws::Structure
15880
16023
  end
15881
16024
 
15882
- # Defines the Amazon Cognito user group that is part of a work team.
16025
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16026
+ # of a work team.
15883
16027
  #
15884
16028
  # @note When making an API call, you may pass MemberDefinition
15885
16029
  # data as a hash:
@@ -17364,7 +17508,7 @@ module Aws::SageMaker
17364
17508
  include Aws::Structure
17365
17509
  end
17366
17510
 
17367
- # Your Amazon Cognito workforce configuration.
17511
+ # Your OIDC IdP workforce configuration.
17368
17512
  #
17369
17513
  # @!attribute [rw] client_id
17370
17514
  # The OIDC IdP client ID used to configure your private workforce.
@@ -17413,7 +17557,7 @@ module Aws::SageMaker
17413
17557
  include Aws::Structure
17414
17558
  end
17415
17559
 
17416
- # A list user groups that exist in your OIDC Identity Provider (IdP).
17560
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17417
17561
  # One to ten groups can be used to create a single private work team.
17418
17562
  # When you add a user group to the list of `Groups`, you can add that
17419
17563
  # user group to one or more private work teams. If you add a user group
@@ -18813,7 +18957,8 @@ module Aws::SageMaker
18813
18957
  # The resolved attributes.
18814
18958
  #
18815
18959
  # @!attribute [rw] auto_ml_job_objective
18816
- # Applies a metric to minimize or maximize for the job's objective.
18960
+ # Specifies a metric to minimize or maximize as the objective of a
18961
+ # job.
18817
18962
  # @return [Types::AutoMLJobObjective]
18818
18963
  #
18819
18964
  # @!attribute [rw] problem_type
@@ -19735,7 +19880,9 @@ module Aws::SageMaker
19735
19880
  end
19736
19881
 
19737
19882
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
19738
- # of IP addresses for a private workforce. For more information, see .
19883
+ # of IP addresses for a private workforce. Workers will only be able to
19884
+ # login to their worker portal from an IP address within this range. By
19885
+ # default, a workforce isn't restricted to specific IP addresses.
19739
19886
  #
19740
19887
  #
19741
19888
  #
@@ -20930,7 +21077,12 @@ module Aws::SageMaker
20930
21077
  # request payloads contain the entire contents of an input object. Set
20931
21078
  # the value of this parameter to `Line` to split records on a newline
20932
21079
  # character boundary. `SplitType` also supports a number of
20933
- # record-oriented binary data formats.
21080
+ # record-oriented binary data formats. Currently, the supported record
21081
+ # formats are:
21082
+ #
21083
+ # * RecordIO
21084
+ #
21085
+ # * TFRecord
20934
21086
  #
20935
21087
  # When splitting is enabled, the size of a mini-batch depends on the
20936
21088
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -22063,7 +22215,7 @@ module Aws::SageMaker
22063
22215
  # }
22064
22216
  #
22065
22217
  # @!attribute [rw] target_objective_metric_value
22066
- # The objective metric's value.
22218
+ # The value of the objective metric.
22067
22219
  # @return [Float]
22068
22220
  #
22069
22221
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -23050,9 +23202,8 @@ module Aws::SageMaker
23050
23202
  # }
23051
23203
  #
23052
23204
  # @!attribute [rw] workforce_name
23053
- # The name of the private workforce whose access you want to restrict.
23054
- # `WorkforceName` is automatically set to `default` when a workforce
23055
- # is created and cannot be modified.
23205
+ # The name of the private workforce that you want to update. You can
23206
+ # find your workforce name by using the operation.
23056
23207
  # @return [String]
23057
23208
  #
23058
23209
  # @!attribute [rw] source_ip_config
@@ -23082,12 +23233,11 @@ module Aws::SageMaker
23082
23233
  end
23083
23234
 
23084
23235
  # @!attribute [rw] workforce
23085
- # A single private workforce, which is automatically created when you
23086
- # create your first private work team. You can create one private work
23087
- # force in each AWS Region. By default, any workforce-related API
23088
- # operation used in a specific region will apply to the workforce
23089
- # created in that region. To learn how to create a private workforce,
23090
- # see [Create a Private Workforce][1].
23236
+ # A single private workforce. You can create one private work force in
23237
+ # each AWS Region. By default, any workforce-related API operation
23238
+ # used in a specific region will apply to the workforce created in
23239
+ # that region. To learn how to create a private workforce, see [Create
23240
+ # a Private Workforce][1].
23091
23241
  #
23092
23242
  #
23093
23243
  #
@@ -23130,8 +23280,35 @@ module Aws::SageMaker
23130
23280
  # @return [String]
23131
23281
  #
23132
23282
  # @!attribute [rw] member_definitions
23133
- # A list of `MemberDefinition` objects that contain the updated work
23134
- # team members.
23283
+ # A list of `MemberDefinition` objects that contains objects that
23284
+ # identify the workers that make up the work team.
23285
+ #
23286
+ # Workforces can be created using Amazon Cognito or your own OIDC
23287
+ # Identity Provider (IdP). For private workforces created using Amazon
23288
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23289
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23290
+ # You should not provide input for both of these parameters in a
23291
+ # single request.
23292
+ #
23293
+ # For workforces created using Amazon Cognito, private work teams
23294
+ # correspond to Amazon Cognito *user groups* within the user pool used
23295
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23296
+ # that make up the member definition must have the same `ClientId` and
23297
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23298
+ # worker pool, see [Adding groups to a User Pool](). For more
23299
+ # information about user pools, see [Amazon Cognito User Pools][1].
23300
+ #
23301
+ # For workforces created using your own OIDC IdP, specify the user
23302
+ # groups that you want to include in your private work team in
23303
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23304
+ # that user groups that are already in the work team must also be
23305
+ # listed in `Groups` when you make this request to remain on the work
23306
+ # team. If you do not include these user groups, they will no longer
23307
+ # be associated with the work team you update.
23308
+ #
23309
+ #
23310
+ #
23311
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23135
23312
  # @return [Array<Types::MemberDefinition>]
23136
23313
  #
23137
23314
  # @!attribute [rw] description
@@ -23407,7 +23584,8 @@ module Aws::SageMaker
23407
23584
  #
23408
23585
  # @!attribute [rw] source_ip_config
23409
23586
  # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23410
- # the workforce allow list.
23587
+ # the workforce allow list. By default, a workforce isn't restricted
23588
+ # to specific IP addresses.
23411
23589
  #
23412
23590
  #
23413
23591
  #
@@ -23459,7 +23637,13 @@ module Aws::SageMaker
23459
23637
  # @return [String]
23460
23638
  #
23461
23639
  # @!attribute [rw] member_definitions
23462
- # The Amazon Cognito user groups that make up the work team.
23640
+ # A list of `MemberDefinition` objects that contains objects that
23641
+ # identify the workers that make up the work team.
23642
+ #
23643
+ # Workforces can be created using Amazon Cognito or your own OIDC
23644
+ # Identity Provider (IdP). For private workforces created using Amazon
23645
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23646
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23463
23647
  # @return [Array<Types::MemberDefinition>]
23464
23648
  #
23465
23649
  # @!attribute [rw] workteam_arn
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.64.0
4
+ version: 1.65.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-07-24 00:00:00.000000000 Z
11
+ date: 2020-08-14 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core