aws-sdk-sagemaker 1.63.0 → 1.68.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +3 -2
- data/lib/aws-sdk-sagemaker/client.rb +506 -91
- data/lib/aws-sdk-sagemaker/client_api.rb +179 -14
- data/lib/aws-sdk-sagemaker/types.rb +1613 -147
- metadata +4 -4
@@ -688,6 +688,122 @@ module Aws::SageMaker
|
|
688
688
|
#
|
689
689
|
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
|
690
690
|
#
|
691
|
+
# **Named entity recognition** - Groups similar selections and
|
692
|
+
# calculates aggregate boundaries, resolving to most-assigned label.
|
693
|
+
#
|
694
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition`
|
695
|
+
#
|
696
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition`
|
697
|
+
#
|
698
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition`
|
699
|
+
#
|
700
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition`
|
701
|
+
#
|
702
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition`
|
703
|
+
#
|
704
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition`
|
705
|
+
#
|
706
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition`
|
707
|
+
#
|
708
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition`
|
709
|
+
#
|
710
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition`
|
711
|
+
#
|
712
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition`
|
713
|
+
#
|
714
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition`
|
715
|
+
#
|
716
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
|
717
|
+
#
|
718
|
+
# **Video Classification** - Use this task type when you need workers
|
719
|
+
# to classify videos using predefined labels that you specify. Workers
|
720
|
+
# are shown videos and are asked to choose one label for each video.
|
721
|
+
#
|
722
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass`
|
723
|
+
#
|
724
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass`
|
725
|
+
#
|
726
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass`
|
727
|
+
#
|
728
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass`
|
729
|
+
#
|
730
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass`
|
731
|
+
#
|
732
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass`
|
733
|
+
#
|
734
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass`
|
735
|
+
#
|
736
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass`
|
737
|
+
#
|
738
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass`
|
739
|
+
#
|
740
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass`
|
741
|
+
#
|
742
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass`
|
743
|
+
#
|
744
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass`
|
745
|
+
#
|
746
|
+
# **Video Frame Object Detection** - Use this task type to have
|
747
|
+
# workers identify and locate objects in a sequence of video frames
|
748
|
+
# (images extracted from a video) using bounding boxes. For example,
|
749
|
+
# you can use this task to ask workers to identify and localize
|
750
|
+
# various objects in a series of video frames, such as cars, bikes,
|
751
|
+
# and pedestrians.
|
752
|
+
#
|
753
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection`
|
754
|
+
#
|
755
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection`
|
756
|
+
#
|
757
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection`
|
758
|
+
#
|
759
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection`
|
760
|
+
#
|
761
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection`
|
762
|
+
#
|
763
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection`
|
764
|
+
#
|
765
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection`
|
766
|
+
#
|
767
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection`
|
768
|
+
#
|
769
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection`
|
770
|
+
#
|
771
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection`
|
772
|
+
#
|
773
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection`
|
774
|
+
#
|
775
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection`
|
776
|
+
#
|
777
|
+
# **Video Frame Object Tracking** - Use this task type to have workers
|
778
|
+
# track the movement of objects in a sequence of video frames (images
|
779
|
+
# extracted from a video) using bounding boxes. For example, you can
|
780
|
+
# use this task to ask workers to track the movement of objects, such
|
781
|
+
# as cars, bikes, and pedestrians.
|
782
|
+
#
|
783
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking`
|
784
|
+
#
|
785
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking`
|
786
|
+
#
|
787
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking`
|
788
|
+
#
|
789
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking`
|
790
|
+
#
|
791
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking`
|
792
|
+
#
|
793
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking`
|
794
|
+
#
|
795
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking`
|
796
|
+
#
|
797
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking`
|
798
|
+
#
|
799
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking`
|
800
|
+
#
|
801
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking`
|
802
|
+
#
|
803
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking`
|
804
|
+
#
|
805
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking`
|
806
|
+
#
|
691
807
|
# **3D point cloud object detection** - Use this task type when you
|
692
808
|
# want workers to classify objects in a 3D point cloud by drawing 3D
|
693
809
|
# cuboids around objects. For example, you can use this task type to
|
@@ -897,6 +1013,64 @@ module Aws::SageMaker
|
|
897
1013
|
#
|
898
1014
|
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox`
|
899
1015
|
#
|
1016
|
+
# **Video Frame Object Detection Adjustment** - Use this task type
|
1017
|
+
# when you want workers to adjust bounding boxes that workers have
|
1018
|
+
# added to video frames to classify and localize objects in a sequence
|
1019
|
+
# of video frames.
|
1020
|
+
#
|
1021
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection`
|
1022
|
+
#
|
1023
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection`
|
1024
|
+
#
|
1025
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection`
|
1026
|
+
#
|
1027
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection`
|
1028
|
+
#
|
1029
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection`
|
1030
|
+
#
|
1031
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection`
|
1032
|
+
#
|
1033
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection`
|
1034
|
+
#
|
1035
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection`
|
1036
|
+
#
|
1037
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection`
|
1038
|
+
#
|
1039
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection`
|
1040
|
+
#
|
1041
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection`
|
1042
|
+
#
|
1043
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection`
|
1044
|
+
#
|
1045
|
+
# **Video Frame Object Tracking Adjustment** - Use this task type when
|
1046
|
+
# you want workers to adjust bounding boxes that workers have added to
|
1047
|
+
# video frames to track object movement across a sequence of video
|
1048
|
+
# frames.
|
1049
|
+
#
|
1050
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking`
|
1051
|
+
#
|
1052
|
+
# `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking`
|
1053
|
+
#
|
1054
|
+
# `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking`
|
1055
|
+
#
|
1056
|
+
# `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking`
|
1057
|
+
#
|
1058
|
+
# `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking`
|
1059
|
+
#
|
1060
|
+
# `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking`
|
1061
|
+
#
|
1062
|
+
# `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking`
|
1063
|
+
#
|
1064
|
+
# `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking`
|
1065
|
+
#
|
1066
|
+
# `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking`
|
1067
|
+
#
|
1068
|
+
# `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking`
|
1069
|
+
#
|
1070
|
+
# `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking`
|
1071
|
+
#
|
1072
|
+
# `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking`
|
1073
|
+
#
|
900
1074
|
# **3D point cloud object detection adjustment** - Use this task type
|
901
1075
|
# when you want workers to adjust 3D cuboids around objects in a 3D
|
902
1076
|
# point cloud.
|
@@ -1111,7 +1285,7 @@ module Aws::SageMaker
|
|
1111
1285
|
include Aws::Structure
|
1112
1286
|
end
|
1113
1287
|
|
1114
|
-
# An
|
1288
|
+
# An Autopilot job returns recommendations, or candidates. Each
|
1115
1289
|
# candidate has futher details about the steps involed, and the status.
|
1116
1290
|
#
|
1117
1291
|
# @!attribute [rw] candidate_name
|
@@ -1119,7 +1293,7 @@ module Aws::SageMaker
|
|
1119
1293
|
# @return [String]
|
1120
1294
|
#
|
1121
1295
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
1122
|
-
# The candidate result from
|
1296
|
+
# The best candidate result from an AutoML training job.
|
1123
1297
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1124
1298
|
#
|
1125
1299
|
# @!attribute [rw] objective_status
|
@@ -1266,7 +1440,7 @@ module Aws::SageMaker
|
|
1266
1440
|
include Aws::Structure
|
1267
1441
|
end
|
1268
1442
|
|
1269
|
-
# The data source for the
|
1443
|
+
# The data source for the Autopilot job.
|
1270
1444
|
#
|
1271
1445
|
# @note When making an API call, you may pass AutoMLDataSource
|
1272
1446
|
# data as a hash:
|
@@ -1389,17 +1563,91 @@ module Aws::SageMaker
|
|
1389
1563
|
include Aws::Structure
|
1390
1564
|
end
|
1391
1565
|
|
1392
|
-
#
|
1566
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1393
1567
|
#
|
1394
1568
|
# @note When making an API call, you may pass AutoMLJobObjective
|
1395
1569
|
# data as a hash:
|
1396
1570
|
#
|
1397
1571
|
# {
|
1398
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
1572
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
1399
1573
|
# }
|
1400
1574
|
#
|
1401
1575
|
# @!attribute [rw] metric_name
|
1402
|
-
# The name of the metric
|
1576
|
+
# The name of the objective metric used to measure the predictive
|
1577
|
+
# quality of a machine learning system. This metric is optimized
|
1578
|
+
# during training to provide the best estimate for model parameter
|
1579
|
+
# values from data.
|
1580
|
+
#
|
1581
|
+
# Here are the options:
|
1582
|
+
#
|
1583
|
+
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
1584
|
+
# differences between the predicted and actual values. It is used
|
1585
|
+
# for regression. MSE values are always positive, the better a model
|
1586
|
+
# is at predicting the actual values the smaller the MSE value. When
|
1587
|
+
# the data contains outliers, they tend to dominate the MSE which
|
1588
|
+
# might cause subpar prediction performance.
|
1589
|
+
#
|
1590
|
+
# * `Accuracy`\: The ratio of the number correctly classified items to
|
1591
|
+
# the total number (correctly and incorrectly) classified. It is
|
1592
|
+
# used for binary and multiclass classification. Measures how close
|
1593
|
+
# the predicted class values are to the actual values. Accuracy
|
1594
|
+
# values vary between zero and one, one being perfect accuracy and
|
1595
|
+
# zero perfect inaccuracy.
|
1596
|
+
#
|
1597
|
+
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
1598
|
+
# recall. It is used for binary classification into classes
|
1599
|
+
# traditionally referred to as positive and negative. Predictions
|
1600
|
+
# are said to be true when they match their actual (correct) class;
|
1601
|
+
# false when they do not. Precision is the ratio of the true
|
1602
|
+
# positive predictions to all positive predictions (including the
|
1603
|
+
# false positives) in a data set and measures the quality of the
|
1604
|
+
# prediction when it predicts the positive class. Recall (or
|
1605
|
+
# sensitivity) is the ratio of the true positive predictions to all
|
1606
|
+
# actual positive instances and measures how completely a model
|
1607
|
+
# predicts the actual class members in a data set. The standard F1
|
1608
|
+
# score weighs precision and recall equally. But which metric is
|
1609
|
+
# paramount typically depends on specific aspects of a problem. F1
|
1610
|
+
# scores vary between zero and one, one being the best possible
|
1611
|
+
# performance and zero the worst.
|
1612
|
+
#
|
1613
|
+
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
1614
|
+
# and evaluate binary classification by algorithms such as logistic
|
1615
|
+
# regression that return probabilities. A threshold is needed to map
|
1616
|
+
# the probabilities into classifications. The relevant curve is the
|
1617
|
+
# receiver operating characteristic curve that plots the true
|
1618
|
+
# positive rate (TPR) of predictions (or recall) against the false
|
1619
|
+
# positive rate (FPR) as a function of the threshold value, above
|
1620
|
+
# which a prediction is considered positive. Increasing the
|
1621
|
+
# threshold results in fewer false positives but more false
|
1622
|
+
# negatives. AUC is the area under this receiver operating
|
1623
|
+
# characteristic curve and so provides an aggregated measure of the
|
1624
|
+
# model performance across all possible classification thresholds.
|
1625
|
+
# The AUC score can also be interpreted as the probability that a
|
1626
|
+
# randomly selected positive data point is more likely to be
|
1627
|
+
# predicted positive than a randomly selected negative example. AUC
|
1628
|
+
# scores vary between zero and one, one being perfect accuracy and
|
1629
|
+
# one half not better than a random classifier. Values less that one
|
1630
|
+
# half predict worse than a random predictor and such consistently
|
1631
|
+
# bad predictors can be inverted to obtain better than random
|
1632
|
+
# predictors.
|
1633
|
+
#
|
1634
|
+
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
1635
|
+
# classification. In this context, you have multiple classes to
|
1636
|
+
# predict. You just calculate the precision and recall for each
|
1637
|
+
# class as you did for the positive class in binary classification.
|
1638
|
+
# Then used these values to calculate the F1 score for each class
|
1639
|
+
# and average them to obtain the F1macro score. F1macro scores vary
|
1640
|
+
# between zero and one, one being the best possible performance and
|
1641
|
+
# zero the worst.
|
1642
|
+
#
|
1643
|
+
# If you do not specify a metric explicitly, the default behavior is
|
1644
|
+
# to automatically use:
|
1645
|
+
#
|
1646
|
+
# * `MSE`\: for regression.
|
1647
|
+
#
|
1648
|
+
# * `F1`\: for binary classification
|
1649
|
+
#
|
1650
|
+
# * `Accuracy`\: for multiclass classification.
|
1403
1651
|
# @return [String]
|
1404
1652
|
#
|
1405
1653
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -1433,7 +1681,7 @@ module Aws::SageMaker
|
|
1433
1681
|
# @return [Time]
|
1434
1682
|
#
|
1435
1683
|
# @!attribute [rw] end_time
|
1436
|
-
# The end time.
|
1684
|
+
# The end time of an AutoML job.
|
1437
1685
|
# @return [Time]
|
1438
1686
|
#
|
1439
1687
|
# @!attribute [rw] last_modified_time
|
@@ -1441,7 +1689,7 @@ module Aws::SageMaker
|
|
1441
1689
|
# @return [Time]
|
1442
1690
|
#
|
1443
1691
|
# @!attribute [rw] failure_reason
|
1444
|
-
# The failure reason.
|
1692
|
+
# The failure reason of a job.
|
1445
1693
|
# @return [String]
|
1446
1694
|
#
|
1447
1695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
@@ -1876,6 +2124,47 @@ module Aws::SageMaker
|
|
1876
2124
|
include Aws::Structure
|
1877
2125
|
end
|
1878
2126
|
|
2127
|
+
# Use this parameter to configure your Amazon Cognito workforce. A
|
2128
|
+
# single Cognito workforce is created using and corresponds to a single
|
2129
|
+
# [ Amazon Cognito user pool][1].
|
2130
|
+
#
|
2131
|
+
#
|
2132
|
+
#
|
2133
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
2134
|
+
#
|
2135
|
+
# @note When making an API call, you may pass CognitoConfig
|
2136
|
+
# data as a hash:
|
2137
|
+
#
|
2138
|
+
# {
|
2139
|
+
# user_pool: "CognitoUserPool", # required
|
2140
|
+
# client_id: "ClientId", # required
|
2141
|
+
# }
|
2142
|
+
#
|
2143
|
+
# @!attribute [rw] user_pool
|
2144
|
+
# A [ user pool][1] is a user directory in Amazon Cognito. With a user
|
2145
|
+
# pool, your users can sign in to your web or mobile app through
|
2146
|
+
# Amazon Cognito. Your users can also sign in through social identity
|
2147
|
+
# providers like Google, Facebook, Amazon, or Apple, and through SAML
|
2148
|
+
# identity providers.
|
2149
|
+
#
|
2150
|
+
#
|
2151
|
+
#
|
2152
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
2153
|
+
# @return [String]
|
2154
|
+
#
|
2155
|
+
# @!attribute [rw] client_id
|
2156
|
+
# The client ID for your Amazon Cognito user pool.
|
2157
|
+
# @return [String]
|
2158
|
+
#
|
2159
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CognitoConfig AWS API Documentation
|
2160
|
+
#
|
2161
|
+
class CognitoConfig < Struct.new(
|
2162
|
+
:user_pool,
|
2163
|
+
:client_id)
|
2164
|
+
SENSITIVE = []
|
2165
|
+
include Aws::Structure
|
2166
|
+
end
|
2167
|
+
|
1879
2168
|
# Identifies a Amazon Cognito user group. A user group can be used in on
|
1880
2169
|
# or more work teams.
|
1881
2170
|
#
|
@@ -1885,7 +2174,7 @@ module Aws::SageMaker
|
|
1885
2174
|
# {
|
1886
2175
|
# user_pool: "CognitoUserPool", # required
|
1887
2176
|
# user_group: "CognitoUserGroup", # required
|
1888
|
-
# client_id: "
|
2177
|
+
# client_id: "ClientId", # required
|
1889
2178
|
# }
|
1890
2179
|
#
|
1891
2180
|
# @!attribute [rw] user_pool
|
@@ -1967,8 +2256,23 @@ module Aws::SageMaker
|
|
1967
2256
|
# @return [Time]
|
1968
2257
|
#
|
1969
2258
|
# @!attribute [rw] compilation_target_device
|
1970
|
-
# The type of device that the model will run on after compilation
|
1971
|
-
# completed.
|
2259
|
+
# The type of device that the model will run on after the compilation
|
2260
|
+
# job has completed.
|
2261
|
+
# @return [String]
|
2262
|
+
#
|
2263
|
+
# @!attribute [rw] compilation_target_platform_os
|
2264
|
+
# The type of OS that the model will run on after the compilation job
|
2265
|
+
# has completed.
|
2266
|
+
# @return [String]
|
2267
|
+
#
|
2268
|
+
# @!attribute [rw] compilation_target_platform_arch
|
2269
|
+
# The type of architecture that the model will run on after the
|
2270
|
+
# compilation job has completed.
|
2271
|
+
# @return [String]
|
2272
|
+
#
|
2273
|
+
# @!attribute [rw] compilation_target_platform_accelerator
|
2274
|
+
# The type of accelerator that the model will run on after the
|
2275
|
+
# compilation job has completed.
|
1972
2276
|
# @return [String]
|
1973
2277
|
#
|
1974
2278
|
# @!attribute [rw] last_modified_time
|
@@ -1988,6 +2292,9 @@ module Aws::SageMaker
|
|
1988
2292
|
:compilation_start_time,
|
1989
2293
|
:compilation_end_time,
|
1990
2294
|
:compilation_target_device,
|
2295
|
+
:compilation_target_platform_os,
|
2296
|
+
:compilation_target_platform_arch,
|
2297
|
+
:compilation_target_platform_accelerator,
|
1991
2298
|
:last_modified_time,
|
1992
2299
|
:compilation_job_status)
|
1993
2300
|
SENSITIVE = []
|
@@ -2015,7 +2322,10 @@ module Aws::SageMaker
|
|
2015
2322
|
#
|
2016
2323
|
# {
|
2017
2324
|
# container_hostname: "ContainerHostname",
|
2018
|
-
# image: "
|
2325
|
+
# image: "ContainerImage",
|
2326
|
+
# image_config: {
|
2327
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2328
|
+
# },
|
2019
2329
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2020
2330
|
# model_data_url: "Url",
|
2021
2331
|
# environment: {
|
@@ -2046,19 +2356,33 @@ module Aws::SageMaker
|
|
2046
2356
|
# @return [String]
|
2047
2357
|
#
|
2048
2358
|
# @!attribute [rw] image
|
2049
|
-
# The
|
2050
|
-
#
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2054
|
-
#
|
2055
|
-
#
|
2359
|
+
# The path where inference code is stored. This can be either in
|
2360
|
+
# Amazon EC2 Container Registry or in a Docker registry that is
|
2361
|
+
# accessible from the same VPC that you configure for your endpoint.
|
2362
|
+
# If you are using your own custom algorithm instead of an algorithm
|
2363
|
+
# provided by Amazon SageMaker, the inference code must meet Amazon
|
2364
|
+
# SageMaker requirements. Amazon SageMaker supports both
|
2365
|
+
# `registry/repository[:tag]` and `registry/repository[@digest]` image
|
2366
|
+
# path formats. For more information, see [Using Your Own Algorithms
|
2367
|
+
# with Amazon SageMaker][1]
|
2056
2368
|
#
|
2057
2369
|
#
|
2058
2370
|
#
|
2059
2371
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
2060
2372
|
# @return [String]
|
2061
2373
|
#
|
2374
|
+
# @!attribute [rw] image_config
|
2375
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
2376
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
2377
|
+
# (VPC). For information about storing containers in a private Docker
|
2378
|
+
# registry, see [Use a Private Docker Registry for Real-Time Inference
|
2379
|
+
# Containers][1]
|
2380
|
+
#
|
2381
|
+
#
|
2382
|
+
#
|
2383
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
|
2384
|
+
# @return [Types::ImageConfig]
|
2385
|
+
#
|
2062
2386
|
# @!attribute [rw] mode
|
2063
2387
|
# Whether the container hosts a single model or multiple models.
|
2064
2388
|
# @return [String]
|
@@ -2105,6 +2429,7 @@ module Aws::SageMaker
|
|
2105
2429
|
class ContainerDefinition < Struct.new(
|
2106
2430
|
:container_hostname,
|
2107
2431
|
:image,
|
2432
|
+
:image_config,
|
2108
2433
|
:mode,
|
2109
2434
|
:model_data_url,
|
2110
2435
|
:environment,
|
@@ -2222,7 +2547,7 @@ module Aws::SageMaker
|
|
2222
2547
|
# algorithm_name: "EntityName", # required
|
2223
2548
|
# algorithm_description: "EntityDescription",
|
2224
2549
|
# training_specification: { # required
|
2225
|
-
# training_image: "
|
2550
|
+
# training_image: "ContainerImage", # required
|
2226
2551
|
# training_image_digest: "ImageDigest",
|
2227
2552
|
# supported_hyper_parameters: [
|
2228
2553
|
# {
|
@@ -2276,7 +2601,7 @@ module Aws::SageMaker
|
|
2276
2601
|
# containers: [ # required
|
2277
2602
|
# {
|
2278
2603
|
# container_hostname: "ContainerHostname",
|
2279
|
-
# image: "
|
2604
|
+
# image: "ContainerImage", # required
|
2280
2605
|
# image_digest: "ImageDigest",
|
2281
2606
|
# model_data_url: "Url",
|
2282
2607
|
# product_id: "ProductId",
|
@@ -2471,7 +2796,7 @@ module Aws::SageMaker
|
|
2471
2796
|
# },
|
2472
2797
|
# ],
|
2473
2798
|
# resource_spec: {
|
2474
|
-
# sage_maker_image_arn: "
|
2799
|
+
# sage_maker_image_arn: "ImageArn",
|
2475
2800
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
2476
2801
|
# },
|
2477
2802
|
# }
|
@@ -2550,7 +2875,7 @@ module Aws::SageMaker
|
|
2550
2875
|
# },
|
2551
2876
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
2552
2877
|
# auto_ml_job_objective: {
|
2553
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
|
2878
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
2554
2879
|
# },
|
2555
2880
|
# auto_ml_job_config: {
|
2556
2881
|
# completion_criteria: {
|
@@ -2578,7 +2903,7 @@ module Aws::SageMaker
|
|
2578
2903
|
# }
|
2579
2904
|
#
|
2580
2905
|
# @!attribute [rw] auto_ml_job_name
|
2581
|
-
# Identifies an
|
2906
|
+
# Identifies an Autopilot job. Must be unique to your account and is
|
2582
2907
|
# case-insensitive.
|
2583
2908
|
# @return [String]
|
2584
2909
|
#
|
@@ -2599,9 +2924,11 @@ module Aws::SageMaker
|
|
2599
2924
|
# @return [String]
|
2600
2925
|
#
|
2601
2926
|
# @!attribute [rw] auto_ml_job_objective
|
2602
|
-
# Defines the job
|
2603
|
-
#
|
2604
|
-
#
|
2927
|
+
# Defines the objective of a an AutoML job. You provide a
|
2928
|
+
# AutoMLJobObjective$MetricName and Autopilot infers whether to
|
2929
|
+
# minimize or maximize it. If a metric is not specified, the most
|
2930
|
+
# commonly used ObjectiveMetric for problem type is automaically
|
2931
|
+
# selected.
|
2605
2932
|
# @return [Types::AutoMLJobObjective]
|
2606
2933
|
#
|
2607
2934
|
# @!attribute [rw] auto_ml_job_config
|
@@ -2609,13 +2936,13 @@ module Aws::SageMaker
|
|
2609
2936
|
# @return [Types::AutoMLJobConfig]
|
2610
2937
|
#
|
2611
2938
|
# @!attribute [rw] role_arn
|
2612
|
-
# The ARN of the role that
|
2939
|
+
# The ARN of the role that is used to access the data.
|
2613
2940
|
# @return [String]
|
2614
2941
|
#
|
2615
2942
|
# @!attribute [rw] generate_candidate_definitions_only
|
2616
|
-
#
|
2617
|
-
#
|
2618
|
-
#
|
2943
|
+
# Generates possible candidates without training a model. A candidate
|
2944
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
2945
|
+
# parameter settings.
|
2619
2946
|
# @return [Boolean]
|
2620
2947
|
#
|
2621
2948
|
# @!attribute [rw] tags
|
@@ -2708,7 +3035,13 @@ module Aws::SageMaker
|
|
2708
3035
|
# },
|
2709
3036
|
# output_config: { # required
|
2710
3037
|
# s3_output_location: "S3Uri", # required
|
2711
|
-
# target_device: "lambda", #
|
3038
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
|
3039
|
+
# target_platform: {
|
3040
|
+
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
3041
|
+
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
3042
|
+
# accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
|
3043
|
+
# },
|
3044
|
+
# compiler_options: "CompilerOptions",
|
2712
3045
|
# },
|
2713
3046
|
# stopping_condition: { # required
|
2714
3047
|
# max_runtime_in_seconds: 1,
|
@@ -2809,19 +3142,19 @@ module Aws::SageMaker
|
|
2809
3142
|
# },
|
2810
3143
|
# jupyter_server_app_settings: {
|
2811
3144
|
# default_resource_spec: {
|
2812
|
-
# sage_maker_image_arn: "
|
3145
|
+
# sage_maker_image_arn: "ImageArn",
|
2813
3146
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
2814
3147
|
# },
|
2815
3148
|
# },
|
2816
3149
|
# kernel_gateway_app_settings: {
|
2817
3150
|
# default_resource_spec: {
|
2818
|
-
# sage_maker_image_arn: "
|
3151
|
+
# sage_maker_image_arn: "ImageArn",
|
2819
3152
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
2820
3153
|
# },
|
2821
3154
|
# },
|
2822
3155
|
# tensor_board_app_settings: {
|
2823
3156
|
# default_resource_spec: {
|
2824
|
-
# sage_maker_image_arn: "
|
3157
|
+
# sage_maker_image_arn: "ImageArn",
|
2825
3158
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
2826
3159
|
# },
|
2827
3160
|
# },
|
@@ -3664,9 +3997,12 @@ module Aws::SageMaker
|
|
3664
3997
|
# label_attribute_name: "LabelAttributeName", # required
|
3665
3998
|
# input_config: { # required
|
3666
3999
|
# data_source: { # required
|
3667
|
-
# s3_data_source: {
|
4000
|
+
# s3_data_source: {
|
3668
4001
|
# manifest_s3_uri: "S3Uri", # required
|
3669
4002
|
# },
|
4003
|
+
# sns_data_source: {
|
4004
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
4005
|
+
# },
|
3670
4006
|
# },
|
3671
4007
|
# data_attributes: {
|
3672
4008
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -3675,6 +4011,7 @@ module Aws::SageMaker
|
|
3675
4011
|
# output_config: { # required
|
3676
4012
|
# s3_output_path: "S3Uri", # required
|
3677
4013
|
# kms_key_id: "KmsKeyId",
|
4014
|
+
# sns_topic_arn: "SnsTopicArn",
|
3678
4015
|
# },
|
3679
4016
|
# role_arn: "RoleArn", # required
|
3680
4017
|
# label_category_config_s3_uri: "S3Uri",
|
@@ -3868,7 +4205,10 @@ module Aws::SageMaker
|
|
3868
4205
|
# model_name: "ModelName", # required
|
3869
4206
|
# primary_container: {
|
3870
4207
|
# container_hostname: "ContainerHostname",
|
3871
|
-
# image: "
|
4208
|
+
# image: "ContainerImage",
|
4209
|
+
# image_config: {
|
4210
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4211
|
+
# },
|
3872
4212
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3873
4213
|
# model_data_url: "Url",
|
3874
4214
|
# environment: {
|
@@ -3879,7 +4219,10 @@ module Aws::SageMaker
|
|
3879
4219
|
# containers: [
|
3880
4220
|
# {
|
3881
4221
|
# container_hostname: "ContainerHostname",
|
3882
|
-
# image: "
|
4222
|
+
# image: "ContainerImage",
|
4223
|
+
# image_config: {
|
4224
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
4225
|
+
# },
|
3883
4226
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3884
4227
|
# model_data_url: "Url",
|
3885
4228
|
# environment: {
|
@@ -3998,7 +4341,7 @@ module Aws::SageMaker
|
|
3998
4341
|
# containers: [ # required
|
3999
4342
|
# {
|
4000
4343
|
# container_hostname: "ContainerHostname",
|
4001
|
-
# image: "
|
4344
|
+
# image: "ContainerImage", # required
|
4002
4345
|
# image_digest: "ImageDigest",
|
4003
4346
|
# model_data_url: "Url",
|
4004
4347
|
# product_id: "ProductId",
|
@@ -4695,7 +5038,14 @@ module Aws::SageMaker
|
|
4695
5038
|
# @return [Array<Types::Tag>]
|
4696
5039
|
#
|
4697
5040
|
# @!attribute [rw] experiment_config
|
4698
|
-
#
|
5041
|
+
# Associates a SageMaker job as a trial component with an experiment
|
5042
|
+
# and trial. Specified when you call the following APIs:
|
5043
|
+
#
|
5044
|
+
# * CreateProcessingJob
|
5045
|
+
#
|
5046
|
+
# * CreateTrainingJob
|
5047
|
+
#
|
5048
|
+
# * CreateTransformJob
|
4699
5049
|
# @return [Types::ExperimentConfig]
|
4700
5050
|
#
|
4701
5051
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateProcessingJobRequest AWS API Documentation
|
@@ -5027,7 +5377,14 @@ module Aws::SageMaker
|
|
5027
5377
|
# @return [Types::TensorBoardOutputConfig]
|
5028
5378
|
#
|
5029
5379
|
# @!attribute [rw] experiment_config
|
5030
|
-
#
|
5380
|
+
# Associates a SageMaker job as a trial component with an experiment
|
5381
|
+
# and trial. Specified when you call the following APIs:
|
5382
|
+
#
|
5383
|
+
# * CreateProcessingJob
|
5384
|
+
#
|
5385
|
+
# * CreateTrainingJob
|
5386
|
+
#
|
5387
|
+
# * CreateTransformJob
|
5031
5388
|
# @return [Types::ExperimentConfig]
|
5032
5389
|
#
|
5033
5390
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
|
@@ -5232,7 +5589,14 @@ module Aws::SageMaker
|
|
5232
5589
|
# @return [Array<Types::Tag>]
|
5233
5590
|
#
|
5234
5591
|
# @!attribute [rw] experiment_config
|
5235
|
-
#
|
5592
|
+
# Associates a SageMaker job as a trial component with an experiment
|
5593
|
+
# and trial. Specified when you call the following APIs:
|
5594
|
+
#
|
5595
|
+
# * CreateProcessingJob
|
5596
|
+
#
|
5597
|
+
# * CreateTrainingJob
|
5598
|
+
#
|
5599
|
+
# * CreateTransformJob
|
5236
5600
|
# @return [Types::ExperimentConfig]
|
5237
5601
|
#
|
5238
5602
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTransformJobRequest AWS API Documentation
|
@@ -5463,19 +5827,19 @@ module Aws::SageMaker
|
|
5463
5827
|
# },
|
5464
5828
|
# jupyter_server_app_settings: {
|
5465
5829
|
# default_resource_spec: {
|
5466
|
-
# sage_maker_image_arn: "
|
5830
|
+
# sage_maker_image_arn: "ImageArn",
|
5467
5831
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
5468
5832
|
# },
|
5469
5833
|
# },
|
5470
5834
|
# kernel_gateway_app_settings: {
|
5471
5835
|
# default_resource_spec: {
|
5472
|
-
# sage_maker_image_arn: "
|
5836
|
+
# sage_maker_image_arn: "ImageArn",
|
5473
5837
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
5474
5838
|
# },
|
5475
5839
|
# },
|
5476
5840
|
# tensor_board_app_settings: {
|
5477
5841
|
# default_resource_spec: {
|
5478
|
-
# sage_maker_image_arn: "
|
5842
|
+
# sage_maker_image_arn: "ImageArn",
|
5479
5843
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
5480
5844
|
# },
|
5481
5845
|
# },
|
@@ -5540,17 +5904,116 @@ module Aws::SageMaker
|
|
5540
5904
|
include Aws::Structure
|
5541
5905
|
end
|
5542
5906
|
|
5907
|
+
# @note When making an API call, you may pass CreateWorkforceRequest
|
5908
|
+
# data as a hash:
|
5909
|
+
#
|
5910
|
+
# {
|
5911
|
+
# cognito_config: {
|
5912
|
+
# user_pool: "CognitoUserPool", # required
|
5913
|
+
# client_id: "ClientId", # required
|
5914
|
+
# },
|
5915
|
+
# oidc_config: {
|
5916
|
+
# client_id: "ClientId", # required
|
5917
|
+
# client_secret: "ClientSecret", # required
|
5918
|
+
# issuer: "OidcEndpoint", # required
|
5919
|
+
# authorization_endpoint: "OidcEndpoint", # required
|
5920
|
+
# token_endpoint: "OidcEndpoint", # required
|
5921
|
+
# user_info_endpoint: "OidcEndpoint", # required
|
5922
|
+
# logout_endpoint: "OidcEndpoint", # required
|
5923
|
+
# jwks_uri: "OidcEndpoint", # required
|
5924
|
+
# },
|
5925
|
+
# source_ip_config: {
|
5926
|
+
# cidrs: ["Cidr"], # required
|
5927
|
+
# },
|
5928
|
+
# workforce_name: "WorkforceName", # required
|
5929
|
+
# tags: [
|
5930
|
+
# {
|
5931
|
+
# key: "TagKey", # required
|
5932
|
+
# value: "TagValue", # required
|
5933
|
+
# },
|
5934
|
+
# ],
|
5935
|
+
# }
|
5936
|
+
#
|
5937
|
+
# @!attribute [rw] cognito_config
|
5938
|
+
# Use this parameter to configure an Amazon Cognito private workforce.
|
5939
|
+
# A single Cognito workforce is created using and corresponds to a
|
5940
|
+
# single [ Amazon Cognito user pool][1].
|
5941
|
+
#
|
5942
|
+
# Do not use `OidcConfig` if you specify values for `CognitoConfig`.
|
5943
|
+
#
|
5944
|
+
#
|
5945
|
+
#
|
5946
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
5947
|
+
# @return [Types::CognitoConfig]
|
5948
|
+
#
|
5949
|
+
# @!attribute [rw] oidc_config
|
5950
|
+
# Use this parameter to configure a private workforce using your own
|
5951
|
+
# OIDC Identity Provider.
|
5952
|
+
#
|
5953
|
+
# Do not use `CognitoConfig` if you specify values for `OidcConfig`.
|
5954
|
+
# @return [Types::OidcConfig]
|
5955
|
+
#
|
5956
|
+
# @!attribute [rw] source_ip_config
|
5957
|
+
# A list of IP address ranges ([CIDRs][1]). Used to create an allow
|
5958
|
+
# list of IP addresses for a private workforce. Workers will only be
|
5959
|
+
# able to login to their worker portal from an IP address within this
|
5960
|
+
# range. By default, a workforce isn't restricted to specific IP
|
5961
|
+
# addresses.
|
5962
|
+
#
|
5963
|
+
#
|
5964
|
+
#
|
5965
|
+
# [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
|
5966
|
+
# @return [Types::SourceIpConfig]
|
5967
|
+
#
|
5968
|
+
# @!attribute [rw] workforce_name
|
5969
|
+
# The name of the private workforce.
|
5970
|
+
# @return [String]
|
5971
|
+
#
|
5972
|
+
# @!attribute [rw] tags
|
5973
|
+
# An array of key-value pairs that contain metadata to help you
|
5974
|
+
# categorize and organize our workforce. Each tag consists of a key
|
5975
|
+
# and a value, both of which you define.
|
5976
|
+
# @return [Array<Types::Tag>]
|
5977
|
+
#
|
5978
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceRequest AWS API Documentation
|
5979
|
+
#
|
5980
|
+
class CreateWorkforceRequest < Struct.new(
|
5981
|
+
:cognito_config,
|
5982
|
+
:oidc_config,
|
5983
|
+
:source_ip_config,
|
5984
|
+
:workforce_name,
|
5985
|
+
:tags)
|
5986
|
+
SENSITIVE = []
|
5987
|
+
include Aws::Structure
|
5988
|
+
end
|
5989
|
+
|
5990
|
+
# @!attribute [rw] workforce_arn
|
5991
|
+
# The Amazon Resource Name (ARN) of the workforce.
|
5992
|
+
# @return [String]
|
5993
|
+
#
|
5994
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceResponse AWS API Documentation
|
5995
|
+
#
|
5996
|
+
class CreateWorkforceResponse < Struct.new(
|
5997
|
+
:workforce_arn)
|
5998
|
+
SENSITIVE = []
|
5999
|
+
include Aws::Structure
|
6000
|
+
end
|
6001
|
+
|
5543
6002
|
# @note When making an API call, you may pass CreateWorkteamRequest
|
5544
6003
|
# data as a hash:
|
5545
6004
|
#
|
5546
6005
|
# {
|
5547
6006
|
# workteam_name: "WorkteamName", # required
|
6007
|
+
# workforce_name: "WorkforceName",
|
5548
6008
|
# member_definitions: [ # required
|
5549
6009
|
# {
|
5550
6010
|
# cognito_member_definition: {
|
5551
6011
|
# user_pool: "CognitoUserPool", # required
|
5552
6012
|
# user_group: "CognitoUserGroup", # required
|
5553
|
-
# client_id: "
|
6013
|
+
# client_id: "ClientId", # required
|
6014
|
+
# },
|
6015
|
+
# oidc_member_definition: {
|
6016
|
+
# groups: ["Group"], # required
|
5554
6017
|
# },
|
5555
6018
|
# },
|
5556
6019
|
# ],
|
@@ -5570,13 +6033,31 @@ module Aws::SageMaker
|
|
5570
6033
|
# The name of the work team. Use this name to identify the work team.
|
5571
6034
|
# @return [String]
|
5572
6035
|
#
|
6036
|
+
# @!attribute [rw] workforce_name
|
6037
|
+
# The name of the workforce.
|
6038
|
+
# @return [String]
|
6039
|
+
#
|
5573
6040
|
# @!attribute [rw] member_definitions
|
5574
6041
|
# A list of `MemberDefinition` objects that contains objects that
|
5575
|
-
# identify the
|
5576
|
-
# For more information, see [Amazon Cognito User Pools][1].
|
6042
|
+
# identify the workers that make up the work team.
|
5577
6043
|
#
|
5578
|
-
#
|
5579
|
-
#
|
6044
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
6045
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
6046
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
6047
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
|
6048
|
+
# not provide input for both of these parameters in a single request.
|
6049
|
+
#
|
6050
|
+
# For workforces created using Amazon Cognito, private work teams
|
6051
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
6052
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
6053
|
+
# that make up the member definition must have the same `ClientId` and
|
6054
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
6055
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
6056
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
6057
|
+
#
|
6058
|
+
# For workforces created using your own OIDC IdP, specify the user
|
6059
|
+
# groups that you want to include in your private work team in
|
6060
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`.
|
5580
6061
|
#
|
5581
6062
|
#
|
5582
6063
|
#
|
@@ -5609,6 +6090,7 @@ module Aws::SageMaker
|
|
5609
6090
|
#
|
5610
6091
|
class CreateWorkteamRequest < Struct.new(
|
5611
6092
|
:workteam_name,
|
6093
|
+
:workforce_name,
|
5612
6094
|
:member_definitions,
|
5613
6095
|
:description,
|
5614
6096
|
:notification_configuration,
|
@@ -6408,6 +6890,29 @@ module Aws::SageMaker
|
|
6408
6890
|
include Aws::Structure
|
6409
6891
|
end
|
6410
6892
|
|
6893
|
+
# @note When making an API call, you may pass DeleteWorkforceRequest
|
6894
|
+
# data as a hash:
|
6895
|
+
#
|
6896
|
+
# {
|
6897
|
+
# workforce_name: "WorkforceName", # required
|
6898
|
+
# }
|
6899
|
+
#
|
6900
|
+
# @!attribute [rw] workforce_name
|
6901
|
+
# The name of the workforce.
|
6902
|
+
# @return [String]
|
6903
|
+
#
|
6904
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceRequest AWS API Documentation
|
6905
|
+
#
|
6906
|
+
class DeleteWorkforceRequest < Struct.new(
|
6907
|
+
:workforce_name)
|
6908
|
+
SENSITIVE = []
|
6909
|
+
include Aws::Structure
|
6910
|
+
end
|
6911
|
+
|
6912
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceResponse AWS API Documentation
|
6913
|
+
#
|
6914
|
+
class DeleteWorkforceResponse < Aws::EmptyStructure; end
|
6915
|
+
|
6411
6916
|
# @note When making an API call, you may pass DeleteWorkteamRequest
|
6412
6917
|
# data as a hash:
|
6413
6918
|
#
|
@@ -8457,7 +8962,7 @@ module Aws::SageMaker
|
|
8457
8962
|
# : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
|
8458
8963
|
# maximum allowed runtime.
|
8459
8964
|
#
|
8460
|
-
# * `
|
8965
|
+
# * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
|
8461
8966
|
# maximum allowed wait time.
|
8462
8967
|
#
|
8463
8968
|
# * `Stopped` - The training job has stopped.
|
@@ -8620,7 +9125,14 @@ module Aws::SageMaker
|
|
8620
9125
|
# @return [Types::DebugHookConfig]
|
8621
9126
|
#
|
8622
9127
|
# @!attribute [rw] experiment_config
|
8623
|
-
#
|
9128
|
+
# Associates a SageMaker job as a trial component with an experiment
|
9129
|
+
# and trial. Specified when you call the following APIs:
|
9130
|
+
#
|
9131
|
+
# * CreateProcessingJob
|
9132
|
+
#
|
9133
|
+
# * CreateTrainingJob
|
9134
|
+
#
|
9135
|
+
# * CreateTransformJob
|
8624
9136
|
# @return [Types::ExperimentConfig]
|
8625
9137
|
#
|
8626
9138
|
# @!attribute [rw] debug_rule_configurations
|
@@ -8809,7 +9321,14 @@ module Aws::SageMaker
|
|
8809
9321
|
# @return [Types::DataProcessing]
|
8810
9322
|
#
|
8811
9323
|
# @!attribute [rw] experiment_config
|
8812
|
-
#
|
9324
|
+
# Associates a SageMaker job as a trial component with an experiment
|
9325
|
+
# and trial. Specified when you call the following APIs:
|
9326
|
+
#
|
9327
|
+
# * CreateProcessingJob
|
9328
|
+
#
|
9329
|
+
# * CreateTrainingJob
|
9330
|
+
#
|
9331
|
+
# * CreateTransformJob
|
8813
9332
|
# @return [Types::ExperimentConfig]
|
8814
9333
|
#
|
8815
9334
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
|
@@ -9502,7 +10021,14 @@ module Aws::SageMaker
|
|
9502
10021
|
include Aws::Structure
|
9503
10022
|
end
|
9504
10023
|
|
9505
|
-
#
|
10024
|
+
# Associates a SageMaker job as a trial component with an experiment and
|
10025
|
+
# trial. Specified when you call the following APIs:
|
10026
|
+
#
|
10027
|
+
# * CreateProcessingJob
|
10028
|
+
#
|
10029
|
+
# * CreateTrainingJob
|
10030
|
+
#
|
10031
|
+
# * CreateTransformJob
|
9506
10032
|
#
|
9507
10033
|
# @note When making an API call, you may pass ExperimentConfig
|
9508
10034
|
# data as a hash:
|
@@ -9514,15 +10040,18 @@ module Aws::SageMaker
|
|
9514
10040
|
# }
|
9515
10041
|
#
|
9516
10042
|
# @!attribute [rw] experiment_name
|
9517
|
-
# The name of the
|
10043
|
+
# The name of an existing experiment to associate the trial component
|
10044
|
+
# with.
|
9518
10045
|
# @return [String]
|
9519
10046
|
#
|
9520
10047
|
# @!attribute [rw] trial_name
|
9521
|
-
# The name of the trial.
|
10048
|
+
# The name of an existing trial to associate the trial component with.
|
10049
|
+
# If not specified, a new trial is created.
|
9522
10050
|
# @return [String]
|
9523
10051
|
#
|
9524
10052
|
# @!attribute [rw] trial_component_display_name
|
9525
|
-
#
|
10053
|
+
# The display name for the trial component. If this key isn't
|
10054
|
+
# specified, the display name is the trial component name.
|
9526
10055
|
# @return [String]
|
9527
10056
|
#
|
9528
10057
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
|
@@ -9802,18 +10331,19 @@ module Aws::SageMaker
|
|
9802
10331
|
include Aws::Structure
|
9803
10332
|
end
|
9804
10333
|
|
9805
|
-
# The candidate result from
|
10334
|
+
# The best candidate result from an AutoML training job.
|
9806
10335
|
#
|
9807
10336
|
# @!attribute [rw] type
|
9808
|
-
# The metric
|
10337
|
+
# The type of metric with the best result.
|
9809
10338
|
# @return [String]
|
9810
10339
|
#
|
9811
10340
|
# @!attribute [rw] metric_name
|
9812
|
-
# The name of the metric.
|
10341
|
+
# The name of the metric with the best result. For a description of
|
10342
|
+
# the possible objective metrics, see AutoMLJobObjective$MetricName.
|
9813
10343
|
# @return [String]
|
9814
10344
|
#
|
9815
10345
|
# @!attribute [rw] value
|
9816
|
-
# The value of the metric.
|
10346
|
+
# The value of the metric with the best result.
|
9817
10347
|
# @return [Float]
|
9818
10348
|
#
|
9819
10349
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
|
@@ -10131,12 +10661,13 @@ module Aws::SageMaker
|
|
10131
10661
|
# @return [Integer]
|
10132
10662
|
#
|
10133
10663
|
# @!attribute [rw] task_availability_lifetime_in_seconds
|
10134
|
-
# The length of time that a task remains available for
|
10135
|
-
#
|
10664
|
+
# The length of time that a task remains available for review by human
|
10665
|
+
# workers.
|
10136
10666
|
# @return [Integer]
|
10137
10667
|
#
|
10138
10668
|
# @!attribute [rw] task_time_limit_in_seconds
|
10139
|
-
# The amount of time that a worker has to complete a task.
|
10669
|
+
# The amount of time that a worker has to complete a task. The default
|
10670
|
+
# value is 3,600 seconds (1 hour)
|
10140
10671
|
# @return [Integer]
|
10141
10672
|
#
|
10142
10673
|
# @!attribute [rw] task_keywords
|
@@ -10638,18 +11169,107 @@ module Aws::SageMaker
|
|
10638
11169
|
#
|
10639
11170
|
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
|
10640
11171
|
#
|
10641
|
-
# **
|
11172
|
+
# **Video Classification** - Use this task type when you need workers
|
11173
|
+
# to classify videos using predefined labels that you specify. Workers
|
11174
|
+
# are shown videos and are asked to choose one label for each video.
|
10642
11175
|
#
|
10643
|
-
#
|
10644
|
-
# modality tasks. See [3D Point Cloud Task types ][3] to learn more.
|
11176
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass`
|
10645
11177
|
#
|
10646
|
-
#
|
10647
|
-
# want workers to classify objects in a 3D point cloud by drawing 3D
|
10648
|
-
# cuboids around objects. For example, you can use this task type to
|
10649
|
-
# ask workers to identify different types of objects in a point cloud,
|
10650
|
-
# such as cars, bikes, and pedestrians.
|
11178
|
+
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass`
|
10651
11179
|
#
|
10652
|
-
# * `arn:aws:lambda:us-
|
11180
|
+
# * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass`
|
11181
|
+
#
|
11182
|
+
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass`
|
11183
|
+
#
|
11184
|
+
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass`
|
11185
|
+
#
|
11186
|
+
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass`
|
11187
|
+
#
|
11188
|
+
# * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass`
|
11189
|
+
#
|
11190
|
+
# * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass`
|
11191
|
+
#
|
11192
|
+
# * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass`
|
11193
|
+
#
|
11194
|
+
# * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass`
|
11195
|
+
#
|
11196
|
+
# * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass`
|
11197
|
+
#
|
11198
|
+
# * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass`
|
11199
|
+
#
|
11200
|
+
# **Video Frame Object Detection** - Use this task type to have
|
11201
|
+
# workers identify and locate objects in a sequence of video frames
|
11202
|
+
# (images extracted from a video) using bounding boxes. For example,
|
11203
|
+
# you can use this task to ask workers to identify and localize
|
11204
|
+
# various objects in a series of video frames, such as cars, bikes,
|
11205
|
+
# and pedestrians.
|
11206
|
+
#
|
11207
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection`
|
11208
|
+
#
|
11209
|
+
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection`
|
11210
|
+
#
|
11211
|
+
# * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection`
|
11212
|
+
#
|
11213
|
+
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection`
|
11214
|
+
#
|
11215
|
+
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection`
|
11216
|
+
#
|
11217
|
+
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection`
|
11218
|
+
#
|
11219
|
+
# * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection`
|
11220
|
+
#
|
11221
|
+
# * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection`
|
11222
|
+
#
|
11223
|
+
# * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection`
|
11224
|
+
#
|
11225
|
+
# * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection`
|
11226
|
+
#
|
11227
|
+
# * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection`
|
11228
|
+
#
|
11229
|
+
# * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection`
|
11230
|
+
#
|
11231
|
+
# **Video Frame Object Tracking** - Use this task type to have workers
|
11232
|
+
# track the movement of objects in a sequence of video frames (images
|
11233
|
+
# extracted from a video) using bounding boxes. For example, you can
|
11234
|
+
# use this task to ask workers to track the movement of objects, such
|
11235
|
+
# as cars, bikes, and pedestrians.
|
11236
|
+
#
|
11237
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking`
|
11238
|
+
#
|
11239
|
+
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking`
|
11240
|
+
#
|
11241
|
+
# * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking`
|
11242
|
+
#
|
11243
|
+
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking`
|
11244
|
+
#
|
11245
|
+
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking`
|
11246
|
+
#
|
11247
|
+
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking`
|
11248
|
+
#
|
11249
|
+
# * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking`
|
11250
|
+
#
|
11251
|
+
# * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking`
|
11252
|
+
#
|
11253
|
+
# * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking`
|
11254
|
+
#
|
11255
|
+
# * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking`
|
11256
|
+
#
|
11257
|
+
# * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking`
|
11258
|
+
#
|
11259
|
+
# * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking`
|
11260
|
+
#
|
11261
|
+
# **3D Point Cloud Modalities**
|
11262
|
+
#
|
11263
|
+
# Use the following pre-annotation lambdas for 3D point cloud labeling
|
11264
|
+
# modality tasks. See [3D Point Cloud Task types ][3] to learn more.
|
11265
|
+
#
|
11266
|
+
# **3D Point Cloud Object Detection** - Use this task type when you
|
11267
|
+
# want workers to classify objects in a 3D point cloud by drawing 3D
|
11268
|
+
# cuboids around objects. For example, you can use this task type to
|
11269
|
+
# ask workers to identify different types of objects in a point cloud,
|
11270
|
+
# such as cars, bikes, and pedestrians.
|
11271
|
+
#
|
11272
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
|
10653
11273
|
#
|
10654
11274
|
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection`
|
10655
11275
|
#
|
@@ -10852,6 +11472,64 @@ module Aws::SageMaker
|
|
10852
11472
|
#
|
10853
11473
|
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
|
10854
11474
|
#
|
11475
|
+
# **Video Frame Object Detection Adjustment** - Use this task type
|
11476
|
+
# when you want workers to adjust bounding boxes that workers have
|
11477
|
+
# added to video frames to classify and localize objects in a sequence
|
11478
|
+
# of video frames.
|
11479
|
+
#
|
11480
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection`
|
11481
|
+
#
|
11482
|
+
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection`
|
11483
|
+
#
|
11484
|
+
# * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection`
|
11485
|
+
#
|
11486
|
+
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection`
|
11487
|
+
#
|
11488
|
+
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection`
|
11489
|
+
#
|
11490
|
+
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection`
|
11491
|
+
#
|
11492
|
+
# * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection`
|
11493
|
+
#
|
11494
|
+
# * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection`
|
11495
|
+
#
|
11496
|
+
# * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection`
|
11497
|
+
#
|
11498
|
+
# * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection`
|
11499
|
+
#
|
11500
|
+
# * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection`
|
11501
|
+
#
|
11502
|
+
# * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection`
|
11503
|
+
#
|
11504
|
+
# **Video Frame Object Tracking Adjustment** - Use this task type when
|
11505
|
+
# you want workers to adjust bounding boxes that workers have added to
|
11506
|
+
# video frames to track object movement across a sequence of video
|
11507
|
+
# frames.
|
11508
|
+
#
|
11509
|
+
# * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking`
|
11510
|
+
#
|
11511
|
+
# * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking`
|
11512
|
+
#
|
11513
|
+
# * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking`
|
11514
|
+
#
|
11515
|
+
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking`
|
11516
|
+
#
|
11517
|
+
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking`
|
11518
|
+
#
|
11519
|
+
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking`
|
11520
|
+
#
|
11521
|
+
# * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking`
|
11522
|
+
#
|
11523
|
+
# * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking`
|
11524
|
+
#
|
11525
|
+
# * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking`
|
11526
|
+
#
|
11527
|
+
# * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking`
|
11528
|
+
#
|
11529
|
+
# * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking`
|
11530
|
+
#
|
11531
|
+
# * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking`
|
11532
|
+
#
|
10855
11533
|
# **3D point cloud object detection adjustment** - Adjust 3D cuboids
|
10856
11534
|
# in a point cloud frame.
|
10857
11535
|
#
|
@@ -11807,6 +12485,34 @@ module Aws::SageMaker
|
|
11807
12485
|
include Aws::Structure
|
11808
12486
|
end
|
11809
12487
|
|
12488
|
+
# Specifies whether the model container is in Amazon ECR or a private
|
12489
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
12490
|
+
# (VPC).
|
12491
|
+
#
|
12492
|
+
# @note When making an API call, you may pass ImageConfig
|
12493
|
+
# data as a hash:
|
12494
|
+
#
|
12495
|
+
# {
|
12496
|
+
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
12497
|
+
# }
|
12498
|
+
#
|
12499
|
+
# @!attribute [rw] repository_access_mode
|
12500
|
+
# Set this to one of the following values:
|
12501
|
+
#
|
12502
|
+
# * `Platform` - The model image is hosted in Amazon ECR.
|
12503
|
+
#
|
12504
|
+
# * `Vpc` - The model image is hosted in a private Docker registry in
|
12505
|
+
# your VPC.
|
12506
|
+
# @return [String]
|
12507
|
+
#
|
12508
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
|
12509
|
+
#
|
12510
|
+
class ImageConfig < Struct.new(
|
12511
|
+
:repository_access_mode)
|
12512
|
+
SENSITIVE = []
|
12513
|
+
include Aws::Structure
|
12514
|
+
end
|
12515
|
+
|
11810
12516
|
# Defines how to perform inference generation after a training job is
|
11811
12517
|
# run.
|
11812
12518
|
#
|
@@ -11817,7 +12523,7 @@ module Aws::SageMaker
|
|
11817
12523
|
# containers: [ # required
|
11818
12524
|
# {
|
11819
12525
|
# container_hostname: "ContainerHostname",
|
11820
|
-
# image: "
|
12526
|
+
# image: "ContainerImage", # required
|
11821
12527
|
# image_digest: "ImageDigest",
|
11822
12528
|
# model_data_url: "Url",
|
11823
12529
|
# product_id: "ProductId",
|
@@ -12090,7 +12796,7 @@ module Aws::SageMaker
|
|
12090
12796
|
#
|
12091
12797
|
# {
|
12092
12798
|
# default_resource_spec: {
|
12093
|
-
# sage_maker_image_arn: "
|
12799
|
+
# sage_maker_image_arn: "ImageArn",
|
12094
12800
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
12095
12801
|
# },
|
12096
12802
|
# }
|
@@ -12115,7 +12821,7 @@ module Aws::SageMaker
|
|
12115
12821
|
#
|
12116
12822
|
# {
|
12117
12823
|
# default_resource_spec: {
|
12118
|
-
# sage_maker_image_arn: "
|
12824
|
+
# sage_maker_image_arn: "ImageArn",
|
12119
12825
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
12120
12826
|
# },
|
12121
12827
|
# }
|
@@ -12230,10 +12936,10 @@ module Aws::SageMaker
|
|
12230
12936
|
# @return [String]
|
12231
12937
|
#
|
12232
12938
|
# @!attribute [rw] initial_active_learning_model_arn
|
12233
|
-
# At the end of an auto-label job
|
12234
|
-
#
|
12235
|
-
#
|
12236
|
-
#
|
12939
|
+
# At the end of an auto-label job Ground Truth sends the Amazon
|
12940
|
+
# Resource Name (ARN) of the final model used for auto-labeling. You
|
12941
|
+
# can use this model as the starting point for subsequent similar jobs
|
12942
|
+
# by providing the ARN of the model here.
|
12237
12943
|
# @return [String]
|
12238
12944
|
#
|
12239
12945
|
# @!attribute [rw] labeling_job_resource_config
|
@@ -12277,23 +12983,43 @@ module Aws::SageMaker
|
|
12277
12983
|
|
12278
12984
|
# Provides information about the location of input data.
|
12279
12985
|
#
|
12986
|
+
# You must specify at least one of the following: `S3DataSource` or
|
12987
|
+
# `SnsDataSource`.
|
12988
|
+
#
|
12989
|
+
# Use `SnsDataSource` to specify an SNS input topic for a streaming
|
12990
|
+
# labeling job. If you do not specify and SNS input topic ARN, Ground
|
12991
|
+
# Truth will create a one-time labeling job.
|
12992
|
+
#
|
12993
|
+
# Use `S3DataSource` to specify an input manifest file for both
|
12994
|
+
# streaming and one-time labeling jobs. Adding an `S3DataSource` is
|
12995
|
+
# optional if you use `SnsDataSource` to create a streaming labeling
|
12996
|
+
# job.
|
12997
|
+
#
|
12280
12998
|
# @note When making an API call, you may pass LabelingJobDataSource
|
12281
12999
|
# data as a hash:
|
12282
13000
|
#
|
12283
13001
|
# {
|
12284
|
-
# s3_data_source: {
|
13002
|
+
# s3_data_source: {
|
12285
13003
|
# manifest_s3_uri: "S3Uri", # required
|
12286
13004
|
# },
|
13005
|
+
# sns_data_source: {
|
13006
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13007
|
+
# },
|
12287
13008
|
# }
|
12288
13009
|
#
|
12289
13010
|
# @!attribute [rw] s3_data_source
|
12290
13011
|
# The Amazon S3 location of the input data objects.
|
12291
13012
|
# @return [Types::LabelingJobS3DataSource]
|
12292
13013
|
#
|
13014
|
+
# @!attribute [rw] sns_data_source
|
13015
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13016
|
+
# @return [Types::LabelingJobSnsDataSource]
|
13017
|
+
#
|
12293
13018
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
12294
13019
|
#
|
12295
13020
|
class LabelingJobDataSource < Struct.new(
|
12296
|
-
:s3_data_source
|
13021
|
+
:s3_data_source,
|
13022
|
+
:sns_data_source)
|
12297
13023
|
SENSITIVE = []
|
12298
13024
|
include Aws::Structure
|
12299
13025
|
end
|
@@ -12344,9 +13070,12 @@ module Aws::SageMaker
|
|
12344
13070
|
#
|
12345
13071
|
# {
|
12346
13072
|
# data_source: { # required
|
12347
|
-
# s3_data_source: {
|
13073
|
+
# s3_data_source: {
|
12348
13074
|
# manifest_s3_uri: "S3Uri", # required
|
12349
13075
|
# },
|
13076
|
+
# sns_data_source: {
|
13077
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13078
|
+
# },
|
12350
13079
|
# },
|
12351
13080
|
# data_attributes: {
|
12352
13081
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -12398,6 +13127,7 @@ module Aws::SageMaker
|
|
12398
13127
|
# {
|
12399
13128
|
# s3_output_path: "S3Uri", # required
|
12400
13129
|
# kms_key_id: "KmsKeyId",
|
13130
|
+
# sns_topic_arn: "SnsTopicArn",
|
12401
13131
|
# }
|
12402
13132
|
#
|
12403
13133
|
# @!attribute [rw] s3_output_path
|
@@ -12431,11 +13161,22 @@ module Aws::SageMaker
|
|
12431
13161
|
# [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
12432
13162
|
# @return [String]
|
12433
13163
|
#
|
13164
|
+
# @!attribute [rw] sns_topic_arn
|
13165
|
+
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
13166
|
+
#
|
13167
|
+
# When workers complete labeling tasks, Ground Truth will send
|
13168
|
+
# labeling task output data to the SNS output topic you specify here.
|
13169
|
+
#
|
13170
|
+
# You must provide a value for this parameter if you provide an Amazon
|
13171
|
+
# SNS input topic in `SnsDataSource` in `InputConfig`.
|
13172
|
+
# @return [String]
|
13173
|
+
#
|
12434
13174
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
12435
13175
|
#
|
12436
13176
|
class LabelingJobOutputConfig < Struct.new(
|
12437
13177
|
:s3_output_path,
|
12438
|
-
:kms_key_id
|
13178
|
+
:kms_key_id,
|
13179
|
+
:sns_topic_arn)
|
12439
13180
|
SENSITIVE = []
|
12440
13181
|
include Aws::Structure
|
12441
13182
|
end
|
@@ -12494,6 +13235,32 @@ module Aws::SageMaker
|
|
12494
13235
|
include Aws::Structure
|
12495
13236
|
end
|
12496
13237
|
|
13238
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13239
|
+
#
|
13240
|
+
# @note When making an API call, you may pass LabelingJobSnsDataSource
|
13241
|
+
# data as a hash:
|
13242
|
+
#
|
13243
|
+
# {
|
13244
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13245
|
+
# }
|
13246
|
+
#
|
13247
|
+
# @!attribute [rw] sns_topic_arn
|
13248
|
+
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
13249
|
+
# ARN of the input topic you will use to send new data objects to a
|
13250
|
+
# streaming labeling job.
|
13251
|
+
#
|
13252
|
+
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
13253
|
+
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
13254
|
+
# @return [String]
|
13255
|
+
#
|
13256
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
13257
|
+
#
|
13258
|
+
class LabelingJobSnsDataSource < Struct.new(
|
13259
|
+
:sns_topic_arn)
|
13260
|
+
SENSITIVE = []
|
13261
|
+
include Aws::Structure
|
13262
|
+
end
|
13263
|
+
|
12497
13264
|
# A set of conditions for stopping a labeling job. If any of the
|
12498
13265
|
# conditions are met, the job is automatically stopped. You can use
|
12499
13266
|
# these conditions to control the cost of data labeling.
|
@@ -12811,8 +13578,8 @@ module Aws::SageMaker
|
|
12811
13578
|
# @return [Integer]
|
12812
13579
|
#
|
12813
13580
|
# @!attribute [rw] next_token
|
12814
|
-
# If the previous response was truncated, you
|
12815
|
-
#
|
13581
|
+
# If the previous response was truncated, you receive this token. Use
|
13582
|
+
# it in your next request to receive the next set of results.
|
12816
13583
|
# @return [String]
|
12817
13584
|
#
|
12818
13585
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
|
@@ -12837,8 +13604,8 @@ module Aws::SageMaker
|
|
12837
13604
|
# @return [Array<Types::AutoMLJobSummary>]
|
12838
13605
|
#
|
12839
13606
|
# @!attribute [rw] next_token
|
12840
|
-
# If the previous response was truncated, you
|
12841
|
-
#
|
13607
|
+
# If the previous response was truncated, you receive this token. Use
|
13608
|
+
# it in your next request to receive the next set of results.
|
12842
13609
|
# @return [String]
|
12843
13610
|
#
|
12844
13611
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
|
@@ -12890,8 +13657,8 @@ module Aws::SageMaker
|
|
12890
13657
|
# @return [Integer]
|
12891
13658
|
#
|
12892
13659
|
# @!attribute [rw] next_token
|
12893
|
-
# If the previous response was truncated, you
|
12894
|
-
#
|
13660
|
+
# If the previous response was truncated, you receive this token. Use
|
13661
|
+
# it in your next request to receive the next set of results.
|
12895
13662
|
# @return [String]
|
12896
13663
|
#
|
12897
13664
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
|
@@ -12913,8 +13680,8 @@ module Aws::SageMaker
|
|
12913
13680
|
# @return [Array<Types::AutoMLCandidate>]
|
12914
13681
|
#
|
12915
13682
|
# @!attribute [rw] next_token
|
12916
|
-
# If the previous response was truncated, you
|
12917
|
-
#
|
13683
|
+
# If the previous response was truncated, you receive this token. Use
|
13684
|
+
# it in your next request to receive the next set of results.
|
12918
13685
|
# @return [String]
|
12919
13686
|
#
|
12920
13687
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
|
@@ -13764,7 +14531,7 @@ module Aws::SageMaker
|
|
13764
14531
|
# name_contains: "NameContains",
|
13765
14532
|
# sort_by: "Name", # accepts Name, CreationTime, Status
|
13766
14533
|
# sort_order: "Ascending", # accepts Ascending, Descending
|
13767
|
-
# status_equals: "
|
14534
|
+
# status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
|
13768
14535
|
# }
|
13769
14536
|
#
|
13770
14537
|
# @!attribute [rw] creation_time_after
|
@@ -15197,6 +15964,67 @@ module Aws::SageMaker
|
|
15197
15964
|
include Aws::Structure
|
15198
15965
|
end
|
15199
15966
|
|
15967
|
+
# @note When making an API call, you may pass ListWorkforcesRequest
|
15968
|
+
# data as a hash:
|
15969
|
+
#
|
15970
|
+
# {
|
15971
|
+
# sort_by: "Name", # accepts Name, CreateDate
|
15972
|
+
# sort_order: "Ascending", # accepts Ascending, Descending
|
15973
|
+
# name_contains: "WorkforceName",
|
15974
|
+
# next_token: "NextToken",
|
15975
|
+
# max_results: 1,
|
15976
|
+
# }
|
15977
|
+
#
|
15978
|
+
# @!attribute [rw] sort_by
|
15979
|
+
# Sort workforces using the workforce name or creation date.
|
15980
|
+
# @return [String]
|
15981
|
+
#
|
15982
|
+
# @!attribute [rw] sort_order
|
15983
|
+
# Sort workforces in ascending or descending order.
|
15984
|
+
# @return [String]
|
15985
|
+
#
|
15986
|
+
# @!attribute [rw] name_contains
|
15987
|
+
# A filter you can use to search for workforces using part of the
|
15988
|
+
# workforce name.
|
15989
|
+
# @return [String]
|
15990
|
+
#
|
15991
|
+
# @!attribute [rw] next_token
|
15992
|
+
# A token to resume pagination.
|
15993
|
+
# @return [String]
|
15994
|
+
#
|
15995
|
+
# @!attribute [rw] max_results
|
15996
|
+
# The maximum number of workforces returned in the response.
|
15997
|
+
# @return [Integer]
|
15998
|
+
#
|
15999
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesRequest AWS API Documentation
|
16000
|
+
#
|
16001
|
+
class ListWorkforcesRequest < Struct.new(
|
16002
|
+
:sort_by,
|
16003
|
+
:sort_order,
|
16004
|
+
:name_contains,
|
16005
|
+
:next_token,
|
16006
|
+
:max_results)
|
16007
|
+
SENSITIVE = []
|
16008
|
+
include Aws::Structure
|
16009
|
+
end
|
16010
|
+
|
16011
|
+
# @!attribute [rw] workforces
|
16012
|
+
# A list containing information about your workforce.
|
16013
|
+
# @return [Array<Types::Workforce>]
|
16014
|
+
#
|
16015
|
+
# @!attribute [rw] next_token
|
16016
|
+
# A token to resume pagination.
|
16017
|
+
# @return [String]
|
16018
|
+
#
|
16019
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesResponse AWS API Documentation
|
16020
|
+
#
|
16021
|
+
class ListWorkforcesResponse < Struct.new(
|
16022
|
+
:workforces,
|
16023
|
+
:next_token)
|
16024
|
+
SENSITIVE = []
|
16025
|
+
include Aws::Structure
|
16026
|
+
end
|
16027
|
+
|
15200
16028
|
# @note When making an API call, you may pass ListWorkteamsRequest
|
15201
16029
|
# data as a hash:
|
15202
16030
|
#
|
@@ -15263,7 +16091,8 @@ module Aws::SageMaker
|
|
15263
16091
|
include Aws::Structure
|
15264
16092
|
end
|
15265
16093
|
|
15266
|
-
# Defines
|
16094
|
+
# Defines an Amazon Cognito or your own OIDC IdP user group that is part
|
16095
|
+
# of a work team.
|
15267
16096
|
#
|
15268
16097
|
# @note When making an API call, you may pass MemberDefinition
|
15269
16098
|
# data as a hash:
|
@@ -15272,7 +16101,10 @@ module Aws::SageMaker
|
|
15272
16101
|
# cognito_member_definition: {
|
15273
16102
|
# user_pool: "CognitoUserPool", # required
|
15274
16103
|
# user_group: "CognitoUserGroup", # required
|
15275
|
-
# client_id: "
|
16104
|
+
# client_id: "ClientId", # required
|
16105
|
+
# },
|
16106
|
+
# oidc_member_definition: {
|
16107
|
+
# groups: ["Group"], # required
|
15276
16108
|
# },
|
15277
16109
|
# }
|
15278
16110
|
#
|
@@ -15280,10 +16112,20 @@ module Aws::SageMaker
|
|
15280
16112
|
# The Amazon Cognito user group that is part of the work team.
|
15281
16113
|
# @return [Types::CognitoMemberDefinition]
|
15282
16114
|
#
|
16115
|
+
# @!attribute [rw] oidc_member_definition
|
16116
|
+
# A list user groups that exist in your OIDC Identity Provider (IdP).
|
16117
|
+
# One to ten groups can be used to create a single private work team.
|
16118
|
+
# When you add a user group to the list of `Groups`, you can add that
|
16119
|
+
# user group to one or more private work teams. If you add a user
|
16120
|
+
# group to a private work team, all workers in that user group are
|
16121
|
+
# added to the work team.
|
16122
|
+
# @return [Types::OidcMemberDefinition]
|
16123
|
+
#
|
15283
16124
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MemberDefinition AWS API Documentation
|
15284
16125
|
#
|
15285
16126
|
class MemberDefinition < Struct.new(
|
15286
|
-
:cognito_member_definition
|
16127
|
+
:cognito_member_definition,
|
16128
|
+
:oidc_member_definition)
|
15287
16129
|
SENSITIVE = []
|
15288
16130
|
include Aws::Structure
|
15289
16131
|
end
|
@@ -15405,7 +16247,7 @@ module Aws::SageMaker
|
|
15405
16247
|
#
|
15406
16248
|
# {
|
15407
16249
|
# container_hostname: "ContainerHostname",
|
15408
|
-
# image: "
|
16250
|
+
# image: "ContainerImage", # required
|
15409
16251
|
# image_digest: "ImageDigest",
|
15410
16252
|
# model_data_url: "Url",
|
15411
16253
|
# product_id: "ProductId",
|
@@ -16667,32 +17509,290 @@ module Aws::SageMaker
|
|
16667
17509
|
include Aws::Structure
|
16668
17510
|
end
|
16669
17511
|
|
17512
|
+
# Use this parameter to configure your OIDC Identity Provider (IdP).
|
17513
|
+
#
|
17514
|
+
# @note When making an API call, you may pass OidcConfig
|
17515
|
+
# data as a hash:
|
17516
|
+
#
|
17517
|
+
# {
|
17518
|
+
# client_id: "ClientId", # required
|
17519
|
+
# client_secret: "ClientSecret", # required
|
17520
|
+
# issuer: "OidcEndpoint", # required
|
17521
|
+
# authorization_endpoint: "OidcEndpoint", # required
|
17522
|
+
# token_endpoint: "OidcEndpoint", # required
|
17523
|
+
# user_info_endpoint: "OidcEndpoint", # required
|
17524
|
+
# logout_endpoint: "OidcEndpoint", # required
|
17525
|
+
# jwks_uri: "OidcEndpoint", # required
|
17526
|
+
# }
|
17527
|
+
#
|
17528
|
+
# @!attribute [rw] client_id
|
17529
|
+
# The OIDC IdP client ID used to configure your private workforce.
|
17530
|
+
# @return [String]
|
17531
|
+
#
|
17532
|
+
# @!attribute [rw] client_secret
|
17533
|
+
# The OIDC IdP client secret used to configure your private workforce.
|
17534
|
+
# @return [String]
|
17535
|
+
#
|
17536
|
+
# @!attribute [rw] issuer
|
17537
|
+
# The OIDC IdP issuer used to configure your private workforce.
|
17538
|
+
# @return [String]
|
17539
|
+
#
|
17540
|
+
# @!attribute [rw] authorization_endpoint
|
17541
|
+
# The OIDC IdP authorization endpoint used to configure your private
|
17542
|
+
# workforce.
|
17543
|
+
# @return [String]
|
17544
|
+
#
|
17545
|
+
# @!attribute [rw] token_endpoint
|
17546
|
+
# The OIDC IdP token endpoint used to configure your private
|
17547
|
+
# workforce.
|
17548
|
+
# @return [String]
|
17549
|
+
#
|
17550
|
+
# @!attribute [rw] user_info_endpoint
|
17551
|
+
# The OIDC IdP user information endpoint used to configure your
|
17552
|
+
# private workforce.
|
17553
|
+
# @return [String]
|
17554
|
+
#
|
17555
|
+
# @!attribute [rw] logout_endpoint
|
17556
|
+
# The OIDC IdP logout endpoint used to configure your private
|
17557
|
+
# workforce.
|
17558
|
+
# @return [String]
|
17559
|
+
#
|
17560
|
+
# @!attribute [rw] jwks_uri
|
17561
|
+
# The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
|
17562
|
+
# private workforce.
|
17563
|
+
# @return [String]
|
17564
|
+
#
|
17565
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfig AWS API Documentation
|
17566
|
+
#
|
17567
|
+
class OidcConfig < Struct.new(
|
17568
|
+
:client_id,
|
17569
|
+
:client_secret,
|
17570
|
+
:issuer,
|
17571
|
+
:authorization_endpoint,
|
17572
|
+
:token_endpoint,
|
17573
|
+
:user_info_endpoint,
|
17574
|
+
:logout_endpoint,
|
17575
|
+
:jwks_uri)
|
17576
|
+
SENSITIVE = [:client_secret]
|
17577
|
+
include Aws::Structure
|
17578
|
+
end
|
17579
|
+
|
17580
|
+
# Your OIDC IdP workforce configuration.
|
17581
|
+
#
|
17582
|
+
# @!attribute [rw] client_id
|
17583
|
+
# The OIDC IdP client ID used to configure your private workforce.
|
17584
|
+
# @return [String]
|
17585
|
+
#
|
17586
|
+
# @!attribute [rw] issuer
|
17587
|
+
# The OIDC IdP issuer used to configure your private workforce.
|
17588
|
+
# @return [String]
|
17589
|
+
#
|
17590
|
+
# @!attribute [rw] authorization_endpoint
|
17591
|
+
# The OIDC IdP authorization endpoint used to configure your private
|
17592
|
+
# workforce.
|
17593
|
+
# @return [String]
|
17594
|
+
#
|
17595
|
+
# @!attribute [rw] token_endpoint
|
17596
|
+
# The OIDC IdP token endpoint used to configure your private
|
17597
|
+
# workforce.
|
17598
|
+
# @return [String]
|
17599
|
+
#
|
17600
|
+
# @!attribute [rw] user_info_endpoint
|
17601
|
+
# The OIDC IdP user information endpoint used to configure your
|
17602
|
+
# private workforce.
|
17603
|
+
# @return [String]
|
17604
|
+
#
|
17605
|
+
# @!attribute [rw] logout_endpoint
|
17606
|
+
# The OIDC IdP logout endpoint used to configure your private
|
17607
|
+
# workforce.
|
17608
|
+
# @return [String]
|
17609
|
+
#
|
17610
|
+
# @!attribute [rw] jwks_uri
|
17611
|
+
# The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
|
17612
|
+
# private workforce.
|
17613
|
+
# @return [String]
|
17614
|
+
#
|
17615
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfigForResponse AWS API Documentation
|
17616
|
+
#
|
17617
|
+
class OidcConfigForResponse < Struct.new(
|
17618
|
+
:client_id,
|
17619
|
+
:issuer,
|
17620
|
+
:authorization_endpoint,
|
17621
|
+
:token_endpoint,
|
17622
|
+
:user_info_endpoint,
|
17623
|
+
:logout_endpoint,
|
17624
|
+
:jwks_uri)
|
17625
|
+
SENSITIVE = []
|
17626
|
+
include Aws::Structure
|
17627
|
+
end
|
17628
|
+
|
17629
|
+
# A list of user groups that exist in your OIDC Identity Provider (IdP).
|
17630
|
+
# One to ten groups can be used to create a single private work team.
|
17631
|
+
# When you add a user group to the list of `Groups`, you can add that
|
17632
|
+
# user group to one or more private work teams. If you add a user group
|
17633
|
+
# to a private work team, all workers in that user group are added to
|
17634
|
+
# the work team.
|
17635
|
+
#
|
17636
|
+
# @note When making an API call, you may pass OidcMemberDefinition
|
17637
|
+
# data as a hash:
|
17638
|
+
#
|
17639
|
+
# {
|
17640
|
+
# groups: ["Group"], # required
|
17641
|
+
# }
|
17642
|
+
#
|
17643
|
+
# @!attribute [rw] groups
|
17644
|
+
# A list of comma seperated strings that identifies user groups in
|
17645
|
+
# your OIDC IdP. Each user group is made up of a group of private
|
17646
|
+
# workers.
|
17647
|
+
# @return [Array<String>]
|
17648
|
+
#
|
17649
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcMemberDefinition AWS API Documentation
|
17650
|
+
#
|
17651
|
+
class OidcMemberDefinition < Struct.new(
|
17652
|
+
:groups)
|
17653
|
+
SENSITIVE = []
|
17654
|
+
include Aws::Structure
|
17655
|
+
end
|
17656
|
+
|
16670
17657
|
# Contains information about the output location for the compiled model
|
16671
|
-
# and the device
|
17658
|
+
# and the target device that the model runs on. `TargetDevice` and
|
17659
|
+
# `TargetPlatform` are mutually exclusive, so you need to choose one
|
17660
|
+
# between the two to specify your target device or platform. If you
|
17661
|
+
# cannot find your device you want to use from the `TargetDevice` list,
|
17662
|
+
# use `TargetPlatform` to describe the platform of your edge device and
|
17663
|
+
# `CompilerOptions` if there are specific settings that are required or
|
17664
|
+
# recommended to use for particular TargetPlatform.
|
16672
17665
|
#
|
16673
17666
|
# @note When making an API call, you may pass OutputConfig
|
16674
17667
|
# data as a hash:
|
16675
17668
|
#
|
16676
17669
|
# {
|
16677
17670
|
# s3_output_location: "S3Uri", # required
|
16678
|
-
# target_device: "lambda", #
|
17671
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
|
17672
|
+
# target_platform: {
|
17673
|
+
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
17674
|
+
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
17675
|
+
# accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
|
17676
|
+
# },
|
17677
|
+
# compiler_options: "CompilerOptions",
|
16679
17678
|
# }
|
16680
17679
|
#
|
16681
17680
|
# @!attribute [rw] s3_output_location
|
16682
|
-
# Identifies the S3
|
16683
|
-
# model artifacts. For example,
|
17681
|
+
# Identifies the S3 bucket where you want Amazon SageMaker to store
|
17682
|
+
# the model artifacts. For example,
|
17683
|
+
# `s3://bucket-name/key-name-prefix`.
|
16684
17684
|
# @return [String]
|
16685
17685
|
#
|
16686
17686
|
# @!attribute [rw] target_device
|
16687
|
-
# Identifies the device
|
16688
|
-
#
|
17687
|
+
# Identifies the target device or the machine learning instance that
|
17688
|
+
# you want to run your model on after the compilation has completed.
|
17689
|
+
# Alternatively, you can specify OS, architecture, and accelerator
|
17690
|
+
# using TargetPlatform fields. It can be used instead of
|
17691
|
+
# `TargetPlatform`.
|
17692
|
+
# @return [String]
|
17693
|
+
#
|
17694
|
+
# @!attribute [rw] target_platform
|
17695
|
+
# Contains information about a target platform that you want your
|
17696
|
+
# model to run on, such as OS, architecture, and accelerators. It is
|
17697
|
+
# an alternative of `TargetDevice`.
|
17698
|
+
#
|
17699
|
+
# The following examples show how to configure the `TargetPlatform`
|
17700
|
+
# and `CompilerOptions` JSON strings for popular target platforms:
|
17701
|
+
#
|
17702
|
+
# * Raspberry Pi 3 Model B+
|
17703
|
+
#
|
17704
|
+
# `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
|
17705
|
+
#
|
17706
|
+
# ` "CompilerOptions": \{'mattr': ['+neon']\}`
|
17707
|
+
#
|
17708
|
+
# * Jetson TX2
|
17709
|
+
#
|
17710
|
+
# `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
|
17711
|
+
# "Accelerator": "NVIDIA"\},`
|
17712
|
+
#
|
17713
|
+
# ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
|
17714
|
+
# 'cuda-ver': '10.0'\}`
|
17715
|
+
#
|
17716
|
+
# * EC2 m5.2xlarge instance OS
|
17717
|
+
#
|
17718
|
+
# `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
|
17719
|
+
# "Accelerator": "NVIDIA"\},`
|
17720
|
+
#
|
17721
|
+
# ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
|
17722
|
+
#
|
17723
|
+
# * RK3399
|
17724
|
+
#
|
17725
|
+
# `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
|
17726
|
+
# "Accelerator": "MALI"\}`
|
17727
|
+
#
|
17728
|
+
# * ARMv7 phone (CPU)
|
17729
|
+
#
|
17730
|
+
# `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
|
17731
|
+
#
|
17732
|
+
# ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
|
17733
|
+
# ['+neon']\}`
|
17734
|
+
#
|
17735
|
+
# * ARMv8 phone (CPU)
|
17736
|
+
#
|
17737
|
+
# `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
|
17738
|
+
#
|
17739
|
+
# ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
|
17740
|
+
# @return [Types::TargetPlatform]
|
17741
|
+
#
|
17742
|
+
# @!attribute [rw] compiler_options
|
17743
|
+
# Specifies additional parameters for compiler options in JSON format.
|
17744
|
+
# The compiler options are `TargetPlatform` specific. It is required
|
17745
|
+
# for NVIDIA accelerators and highly recommended for CPU compliations.
|
17746
|
+
# For any other cases, it is optional to specify `CompilerOptions.`
|
17747
|
+
#
|
17748
|
+
# * `CPU`\: Compilation for CPU supports the following compiler
|
17749
|
+
# options.
|
17750
|
+
#
|
17751
|
+
# * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
|
17752
|
+
# 'skylake-avx512'\}`
|
17753
|
+
#
|
17754
|
+
# * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
|
17755
|
+
# '+vfpv4']\}`
|
17756
|
+
#
|
17757
|
+
# * `ARM`\: Details of ARM CPU compilations.
|
17758
|
+
#
|
17759
|
+
# * `NEON`\: NEON is an implementation of the Advanced SIMD
|
17760
|
+
# extension used in ARMv7 processors.
|
17761
|
+
#
|
17762
|
+
# For example, add `\{'mattr': ['+neon']\}` to the compiler
|
17763
|
+
# options if compiling for ARM 32-bit platform with the NEON
|
17764
|
+
# support.
|
17765
|
+
#
|
17766
|
+
# * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
|
17767
|
+
# compiler options.
|
17768
|
+
#
|
17769
|
+
# * `gpu_code`\: Specifies the targeted architecture.
|
17770
|
+
#
|
17771
|
+
# * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
|
17772
|
+
#
|
17773
|
+
# * `cuda-ver`\: Specifies the CUDA version in x.y format.
|
17774
|
+
#
|
17775
|
+
# For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
17776
|
+
# 'cuda-ver': '10.1'\}`
|
17777
|
+
#
|
17778
|
+
# * `ANDROID`\: Compilation for the Android OS supports the following
|
17779
|
+
# compiler options:
|
17780
|
+
#
|
17781
|
+
# * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
|
17782
|
+
# levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
|
17783
|
+
# 28\}`.
|
17784
|
+
#
|
17785
|
+
# * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
|
17786
|
+
# compiling for ARM 32-bit platform with NEON support.
|
16689
17787
|
# @return [String]
|
16690
17788
|
#
|
16691
17789
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
|
16692
17790
|
#
|
16693
17791
|
class OutputConfig < Struct.new(
|
16694
17792
|
:s3_output_location,
|
16695
|
-
:target_device
|
17793
|
+
:target_device,
|
17794
|
+
:target_platform,
|
17795
|
+
:compiler_options)
|
16696
17796
|
SENSITIVE = []
|
16697
17797
|
include Aws::Structure
|
16698
17798
|
end
|
@@ -17057,7 +18157,14 @@ module Aws::SageMaker
|
|
17057
18157
|
# @return [String]
|
17058
18158
|
#
|
17059
18159
|
# @!attribute [rw] experiment_config
|
17060
|
-
#
|
18160
|
+
# Associates a SageMaker job as a trial component with an experiment
|
18161
|
+
# and trial. Specified when you call the following APIs:
|
18162
|
+
#
|
18163
|
+
# * CreateProcessingJob
|
18164
|
+
#
|
18165
|
+
# * CreateTrainingJob
|
18166
|
+
#
|
18167
|
+
# * CreateTransformJob
|
17061
18168
|
# @return [Types::ExperimentConfig]
|
17062
18169
|
#
|
17063
18170
|
# @!attribute [rw] processing_job_arn
|
@@ -17919,7 +19026,8 @@ module Aws::SageMaker
|
|
17919
19026
|
# The resolved attributes.
|
17920
19027
|
#
|
17921
19028
|
# @!attribute [rw] auto_ml_job_objective
|
17922
|
-
#
|
19029
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
19030
|
+
# job.
|
17923
19031
|
# @return [Types::AutoMLJobObjective]
|
17924
19032
|
#
|
17925
19033
|
# @!attribute [rw] problem_type
|
@@ -18120,7 +19228,7 @@ module Aws::SageMaker
|
|
18120
19228
|
# data as a hash:
|
18121
19229
|
#
|
18122
19230
|
# {
|
18123
|
-
# sage_maker_image_arn: "
|
19231
|
+
# sage_maker_image_arn: "ImageArn",
|
18124
19232
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
18125
19233
|
# }
|
18126
19234
|
#
|
@@ -18841,7 +19949,9 @@ module Aws::SageMaker
|
|
18841
19949
|
end
|
18842
19950
|
|
18843
19951
|
# A list of IP address ranges ([CIDRs][1]). Used to create an allow list
|
18844
|
-
# of IP addresses for a private workforce.
|
19952
|
+
# of IP addresses for a private workforce. Workers will only be able to
|
19953
|
+
# login to their worker portal from an IP address within this range. By
|
19954
|
+
# default, a workforce isn't restricted to specific IP addresses.
|
18845
19955
|
#
|
18846
19956
|
#
|
18847
19957
|
#
|
@@ -19232,6 +20342,65 @@ module Aws::SageMaker
|
|
19232
20342
|
include Aws::Structure
|
19233
20343
|
end
|
19234
20344
|
|
20345
|
+
# Contains information about a target platform that you want your model
|
20346
|
+
# to run on, such as OS, architecture, and accelerators. It is an
|
20347
|
+
# alternative of `TargetDevice`.
|
20348
|
+
#
|
20349
|
+
# @note When making an API call, you may pass TargetPlatform
|
20350
|
+
# data as a hash:
|
20351
|
+
#
|
20352
|
+
# {
|
20353
|
+
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
20354
|
+
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
20355
|
+
# accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
|
20356
|
+
# }
|
20357
|
+
#
|
20358
|
+
# @!attribute [rw] os
|
20359
|
+
# Specifies a target platform OS.
|
20360
|
+
#
|
20361
|
+
# * `LINUX`\: Linux-based operating systems.
|
20362
|
+
#
|
20363
|
+
# * `ANDROID`\: Android operating systems. Android API level can be
|
20364
|
+
# specified using the `ANDROID_PLATFORM` compiler option. For
|
20365
|
+
# example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
|
20366
|
+
# @return [String]
|
20367
|
+
#
|
20368
|
+
# @!attribute [rw] arch
|
20369
|
+
# Specifies a target platform architecture.
|
20370
|
+
#
|
20371
|
+
# * `X86_64`\: 64-bit version of the x86 instruction set.
|
20372
|
+
#
|
20373
|
+
# * `X86`\: 32-bit version of the x86 instruction set.
|
20374
|
+
#
|
20375
|
+
# * `ARM64`\: ARMv8 64-bit CPU.
|
20376
|
+
#
|
20377
|
+
# * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
|
20378
|
+
#
|
20379
|
+
# * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
|
20380
|
+
# platform.
|
20381
|
+
# @return [String]
|
20382
|
+
#
|
20383
|
+
# @!attribute [rw] accelerator
|
20384
|
+
# Specifies a target platform accelerator (optional).
|
20385
|
+
#
|
20386
|
+
# * `NVIDIA`\: Nvidia graphics processing unit. It also requires
|
20387
|
+
# `gpu-code`, `trt-ver`, `cuda-ver` compiler options
|
20388
|
+
#
|
20389
|
+
# * `MALI`\: ARM Mali graphics processor
|
20390
|
+
#
|
20391
|
+
# * `INTEL_GRAPHICS`\: Integrated Intel graphics
|
20392
|
+
# @return [String]
|
20393
|
+
#
|
20394
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
|
20395
|
+
#
|
20396
|
+
class TargetPlatform < Struct.new(
|
20397
|
+
:os,
|
20398
|
+
:arch,
|
20399
|
+
:accelerator)
|
20400
|
+
SENSITIVE = []
|
20401
|
+
include Aws::Structure
|
20402
|
+
end
|
20403
|
+
|
19235
20404
|
# The TensorBoard app settings.
|
19236
20405
|
#
|
19237
20406
|
# @note When making an API call, you may pass TensorBoardAppSettings
|
@@ -19239,7 +20408,7 @@ module Aws::SageMaker
|
|
19239
20408
|
#
|
19240
20409
|
# {
|
19241
20410
|
# default_resource_spec: {
|
19242
|
-
# sage_maker_image_arn: "
|
20411
|
+
# sage_maker_image_arn: "ImageArn",
|
19243
20412
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
19244
20413
|
# },
|
19245
20414
|
# }
|
@@ -19525,7 +20694,14 @@ module Aws::SageMaker
|
|
19525
20694
|
# @return [Types::DebugHookConfig]
|
19526
20695
|
#
|
19527
20696
|
# @!attribute [rw] experiment_config
|
19528
|
-
#
|
20697
|
+
# Associates a SageMaker job as a trial component with an experiment
|
20698
|
+
# and trial. Specified when you call the following APIs:
|
20699
|
+
#
|
20700
|
+
# * CreateProcessingJob
|
20701
|
+
#
|
20702
|
+
# * CreateTrainingJob
|
20703
|
+
#
|
20704
|
+
# * CreateTransformJob
|
19529
20705
|
# @return [Types::ExperimentConfig]
|
19530
20706
|
#
|
19531
20707
|
# @!attribute [rw] debug_rule_configurations
|
@@ -19792,7 +20968,7 @@ module Aws::SageMaker
|
|
19792
20968
|
# data as a hash:
|
19793
20969
|
#
|
19794
20970
|
# {
|
19795
|
-
# training_image: "
|
20971
|
+
# training_image: "ContainerImage", # required
|
19796
20972
|
# training_image_digest: "ImageDigest",
|
19797
20973
|
# supported_hyper_parameters: [
|
19798
20974
|
# {
|
@@ -19970,7 +21146,12 @@ module Aws::SageMaker
|
|
19970
21146
|
# request payloads contain the entire contents of an input object. Set
|
19971
21147
|
# the value of this parameter to `Line` to split records on a newline
|
19972
21148
|
# character boundary. `SplitType` also supports a number of
|
19973
|
-
# record-oriented binary data formats.
|
21149
|
+
# record-oriented binary data formats. Currently, the supported record
|
21150
|
+
# formats are:
|
21151
|
+
#
|
21152
|
+
# * RecordIO
|
21153
|
+
#
|
21154
|
+
# * TFRecord
|
19974
21155
|
#
|
19975
21156
|
# When splitting is enabled, the size of a mini-batch depends on the
|
19976
21157
|
# values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
|
@@ -20010,6 +21191,186 @@ module Aws::SageMaker
|
|
20010
21191
|
include Aws::Structure
|
20011
21192
|
end
|
20012
21193
|
|
21194
|
+
# A batch transform job. For information about SageMaker batch
|
21195
|
+
# transform, see [Use Batch Transform][1].
|
21196
|
+
#
|
21197
|
+
#
|
21198
|
+
#
|
21199
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
|
21200
|
+
#
|
21201
|
+
# @!attribute [rw] transform_job_name
|
21202
|
+
# The name of the transform job.
|
21203
|
+
# @return [String]
|
21204
|
+
#
|
21205
|
+
# @!attribute [rw] transform_job_arn
|
21206
|
+
# The Amazon Resource Name (ARN) of the transform job.
|
21207
|
+
# @return [String]
|
21208
|
+
#
|
21209
|
+
# @!attribute [rw] transform_job_status
|
21210
|
+
# The status of the transform job.
|
21211
|
+
#
|
21212
|
+
# Transform job statuses are:
|
21213
|
+
#
|
21214
|
+
# * `InProgress` - The job is in progress.
|
21215
|
+
#
|
21216
|
+
# * `Completed` - The job has completed.
|
21217
|
+
#
|
21218
|
+
# * `Failed` - The transform job has failed. To see the reason for the
|
21219
|
+
# failure, see the `FailureReason` field in the response to a
|
21220
|
+
# `DescribeTransformJob` call.
|
21221
|
+
#
|
21222
|
+
# * `Stopping` - The transform job is stopping.
|
21223
|
+
#
|
21224
|
+
# * `Stopped` - The transform job has stopped.
|
21225
|
+
# @return [String]
|
21226
|
+
#
|
21227
|
+
# @!attribute [rw] failure_reason
|
21228
|
+
# If the transform job failed, the reason it failed.
|
21229
|
+
# @return [String]
|
21230
|
+
#
|
21231
|
+
# @!attribute [rw] model_name
|
21232
|
+
# The name of the model associated with the transform job.
|
21233
|
+
# @return [String]
|
21234
|
+
#
|
21235
|
+
# @!attribute [rw] max_concurrent_transforms
|
21236
|
+
# The maximum number of parallel requests that can be sent to each
|
21237
|
+
# instance in a transform job. If `MaxConcurrentTransforms` is set to
|
21238
|
+
# 0 or left unset, SageMaker checks the optional execution-parameters
|
21239
|
+
# to determine the settings for your chosen algorithm. If the
|
21240
|
+
# execution-parameters endpoint is not enabled, the default value is
|
21241
|
+
# 1. For built-in algorithms, you don't need to set a value for
|
21242
|
+
# `MaxConcurrentTransforms`.
|
21243
|
+
# @return [Integer]
|
21244
|
+
#
|
21245
|
+
# @!attribute [rw] model_client_config
|
21246
|
+
# Configures the timeout and maximum number of retries for processing
|
21247
|
+
# a transform job invocation.
|
21248
|
+
# @return [Types::ModelClientConfig]
|
21249
|
+
#
|
21250
|
+
# @!attribute [rw] max_payload_in_mb
|
21251
|
+
# The maximum allowed size of the payload, in MB. A payload is the
|
21252
|
+
# data portion of a record (without metadata). The value in
|
21253
|
+
# `MaxPayloadInMB` must be greater than, or equal to, the size of a
|
21254
|
+
# single record. To estimate the size of a record in MB, divide the
|
21255
|
+
# size of your dataset by the number of records. To ensure that the
|
21256
|
+
# records fit within the maximum payload size, we recommend using a
|
21257
|
+
# slightly larger value. The default value is 6 MB. For cases where
|
21258
|
+
# the payload might be arbitrarily large and is transmitted using HTTP
|
21259
|
+
# chunked encoding, set the value to 0. This feature works only in
|
21260
|
+
# supported algorithms. Currently, SageMaker built-in algorithms do
|
21261
|
+
# not support HTTP chunked encoding.
|
21262
|
+
# @return [Integer]
|
21263
|
+
#
|
21264
|
+
# @!attribute [rw] batch_strategy
|
21265
|
+
# Specifies the number of records to include in a mini-batch for an
|
21266
|
+
# HTTP inference request. A record is a single unit of input data that
|
21267
|
+
# inference can be made on. For example, a single line in a CSV file
|
21268
|
+
# is a record.
|
21269
|
+
# @return [String]
|
21270
|
+
#
|
21271
|
+
# @!attribute [rw] environment
|
21272
|
+
# The environment variables to set in the Docker container. We support
|
21273
|
+
# up to 16 key and values entries in the map.
|
21274
|
+
# @return [Hash<String,String>]
|
21275
|
+
#
|
21276
|
+
# @!attribute [rw] transform_input
|
21277
|
+
# Describes the input source of a transform job and the way the
|
21278
|
+
# transform job consumes it.
|
21279
|
+
# @return [Types::TransformInput]
|
21280
|
+
#
|
21281
|
+
# @!attribute [rw] transform_output
|
21282
|
+
# Describes the results of a transform job.
|
21283
|
+
# @return [Types::TransformOutput]
|
21284
|
+
#
|
21285
|
+
# @!attribute [rw] transform_resources
|
21286
|
+
# Describes the resources, including ML instance types and ML instance
|
21287
|
+
# count, to use for transform job.
|
21288
|
+
# @return [Types::TransformResources]
|
21289
|
+
#
|
21290
|
+
# @!attribute [rw] creation_time
|
21291
|
+
# A timestamp that shows when the transform Job was created.
|
21292
|
+
# @return [Time]
|
21293
|
+
#
|
21294
|
+
# @!attribute [rw] transform_start_time
|
21295
|
+
# Indicates when the transform job starts on ML instances. You are
|
21296
|
+
# billed for the time interval between this time and the value of
|
21297
|
+
# `TransformEndTime`.
|
21298
|
+
# @return [Time]
|
21299
|
+
#
|
21300
|
+
# @!attribute [rw] transform_end_time
|
21301
|
+
# Indicates when the transform job has been completed, or has stopped
|
21302
|
+
# or failed. You are billed for the time interval between this time
|
21303
|
+
# and the value of `TransformStartTime`.
|
21304
|
+
# @return [Time]
|
21305
|
+
#
|
21306
|
+
# @!attribute [rw] labeling_job_arn
|
21307
|
+
# The Amazon Resource Name (ARN) of the labeling job that created the
|
21308
|
+
# transform job.
|
21309
|
+
# @return [String]
|
21310
|
+
#
|
21311
|
+
# @!attribute [rw] auto_ml_job_arn
|
21312
|
+
# The Amazon Resource Name (ARN) of the AutoML job that created the
|
21313
|
+
# transform job.
|
21314
|
+
# @return [String]
|
21315
|
+
#
|
21316
|
+
# @!attribute [rw] data_processing
|
21317
|
+
# The data structure used to specify the data to be used for inference
|
21318
|
+
# in a batch transform job and to associate the data that is relevant
|
21319
|
+
# to the prediction results in the output. The input filter provided
|
21320
|
+
# allows you to exclude input data that is not needed for inference in
|
21321
|
+
# a batch transform job. The output filter provided allows you to
|
21322
|
+
# include input data relevant to interpreting the predictions in the
|
21323
|
+
# output from the job. For more information, see [Associate Prediction
|
21324
|
+
# Results with their Corresponding Input Records][1].
|
21325
|
+
#
|
21326
|
+
#
|
21327
|
+
#
|
21328
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
|
21329
|
+
# @return [Types::DataProcessing]
|
21330
|
+
#
|
21331
|
+
# @!attribute [rw] experiment_config
|
21332
|
+
# Associates a SageMaker job as a trial component with an experiment
|
21333
|
+
# and trial. Specified when you call the following APIs:
|
21334
|
+
#
|
21335
|
+
# * CreateProcessingJob
|
21336
|
+
#
|
21337
|
+
# * CreateTrainingJob
|
21338
|
+
#
|
21339
|
+
# * CreateTransformJob
|
21340
|
+
# @return [Types::ExperimentConfig]
|
21341
|
+
#
|
21342
|
+
# @!attribute [rw] tags
|
21343
|
+
# A list of tags associated with the transform job.
|
21344
|
+
# @return [Array<Types::Tag>]
|
21345
|
+
#
|
21346
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformJob AWS API Documentation
|
21347
|
+
#
|
21348
|
+
class TransformJob < Struct.new(
|
21349
|
+
:transform_job_name,
|
21350
|
+
:transform_job_arn,
|
21351
|
+
:transform_job_status,
|
21352
|
+
:failure_reason,
|
21353
|
+
:model_name,
|
21354
|
+
:max_concurrent_transforms,
|
21355
|
+
:model_client_config,
|
21356
|
+
:max_payload_in_mb,
|
21357
|
+
:batch_strategy,
|
21358
|
+
:environment,
|
21359
|
+
:transform_input,
|
21360
|
+
:transform_output,
|
21361
|
+
:transform_resources,
|
21362
|
+
:creation_time,
|
21363
|
+
:transform_start_time,
|
21364
|
+
:transform_end_time,
|
21365
|
+
:labeling_job_arn,
|
21366
|
+
:auto_ml_job_arn,
|
21367
|
+
:data_processing,
|
21368
|
+
:experiment_config,
|
21369
|
+
:tags)
|
21370
|
+
SENSITIVE = []
|
21371
|
+
include Aws::Structure
|
21372
|
+
end
|
21373
|
+
|
20013
21374
|
# Defines the input needed to run a transform job using the inference
|
20014
21375
|
# specification specified in the algorithm.
|
20015
21376
|
#
|
@@ -20338,7 +21699,7 @@ module Aws::SageMaker
|
|
20338
21699
|
#
|
20339
21700
|
# `]`
|
20340
21701
|
#
|
20341
|
-
# The preceding JSON matches the following `
|
21702
|
+
# The preceding JSON matches the following `S3Uris`\:
|
20342
21703
|
#
|
20343
21704
|
# `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
|
20344
21705
|
#
|
@@ -20736,12 +22097,18 @@ module Aws::SageMaker
|
|
20736
22097
|
# component.
|
20737
22098
|
# @return [Types::ProcessingJob]
|
20738
22099
|
#
|
22100
|
+
# @!attribute [rw] transform_job
|
22101
|
+
# Information about a transform job that's the source of the trial
|
22102
|
+
# component.
|
22103
|
+
# @return [Types::TransformJob]
|
22104
|
+
#
|
20739
22105
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrialComponentSourceDetail AWS API Documentation
|
20740
22106
|
#
|
20741
22107
|
class TrialComponentSourceDetail < Struct.new(
|
20742
22108
|
:source_arn,
|
20743
22109
|
:training_job,
|
20744
|
-
:processing_job
|
22110
|
+
:processing_job,
|
22111
|
+
:transform_job)
|
20745
22112
|
SENSITIVE = []
|
20746
22113
|
include Aws::Structure
|
20747
22114
|
end
|
@@ -20917,7 +22284,7 @@ module Aws::SageMaker
|
|
20917
22284
|
# }
|
20918
22285
|
#
|
20919
22286
|
# @!attribute [rw] target_objective_metric_value
|
20920
|
-
# The objective metric
|
22287
|
+
# The value of the objective metric.
|
20921
22288
|
# @return [Float]
|
20922
22289
|
#
|
20923
22290
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
|
@@ -20989,10 +22356,12 @@ module Aws::SageMaker
|
|
20989
22356
|
# tools for labeling job tasks.
|
20990
22357
|
#
|
20991
22358
|
# Use this parameter when you are creating a labeling job for 3D point
|
20992
|
-
# cloud labeling
|
20993
|
-
# one of the following ARN's and use it with this parameter
|
20994
|
-
# create a labeling job. Replace `aws-region` with the AWS
|
20995
|
-
# are creating your labeling job in.
|
22359
|
+
# cloud and video fram labeling jobs. Use your labeling job task type
|
22360
|
+
# to select one of the following ARN's and use it with this parameter
|
22361
|
+
# when you create a labeling job. Replace `aws-region` with the AWS
|
22362
|
+
# region you are creating your labeling job in.
|
22363
|
+
#
|
22364
|
+
# **3D Point Cloud HumanTaskUiArns**
|
20996
22365
|
#
|
20997
22366
|
# Use this `HumanTaskUiArn` for 3D point cloud object detection and 3D
|
20998
22367
|
# point cloud object detection adjustment labeling jobs.
|
@@ -21014,6 +22383,22 @@ module Aws::SageMaker
|
|
21014
22383
|
# * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation`
|
21015
22384
|
#
|
21016
22385
|
# ^
|
22386
|
+
#
|
22387
|
+
# **Video Frame HumanTaskUiArns**
|
22388
|
+
#
|
22389
|
+
# Use this `HumanTaskUiArn` for video frame object detection and video
|
22390
|
+
# frame object detection adjustment labeling jobs.
|
22391
|
+
#
|
22392
|
+
# * `arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection`
|
22393
|
+
#
|
22394
|
+
# ^
|
22395
|
+
#
|
22396
|
+
# Use this `HumanTaskUiArn` for video frame object tracking and video
|
22397
|
+
# frame object tracking adjustment labeling jobs.
|
22398
|
+
#
|
22399
|
+
# * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking`
|
22400
|
+
#
|
22401
|
+
# ^
|
21017
22402
|
# @return [String]
|
21018
22403
|
#
|
21019
22404
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UiConfig AWS API Documentation
|
@@ -21125,19 +22510,19 @@ module Aws::SageMaker
|
|
21125
22510
|
# },
|
21126
22511
|
# jupyter_server_app_settings: {
|
21127
22512
|
# default_resource_spec: {
|
21128
|
-
# sage_maker_image_arn: "
|
22513
|
+
# sage_maker_image_arn: "ImageArn",
|
21129
22514
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21130
22515
|
# },
|
21131
22516
|
# },
|
21132
22517
|
# kernel_gateway_app_settings: {
|
21133
22518
|
# default_resource_spec: {
|
21134
|
-
# sage_maker_image_arn: "
|
22519
|
+
# sage_maker_image_arn: "ImageArn",
|
21135
22520
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21136
22521
|
# },
|
21137
22522
|
# },
|
21138
22523
|
# tensor_board_app_settings: {
|
21139
22524
|
# default_resource_spec: {
|
21140
|
-
# sage_maker_image_arn: "
|
22525
|
+
# sage_maker_image_arn: "ImageArn",
|
21141
22526
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21142
22527
|
# },
|
21143
22528
|
# },
|
@@ -21812,19 +23197,19 @@ module Aws::SageMaker
|
|
21812
23197
|
# },
|
21813
23198
|
# jupyter_server_app_settings: {
|
21814
23199
|
# default_resource_spec: {
|
21815
|
-
# sage_maker_image_arn: "
|
23200
|
+
# sage_maker_image_arn: "ImageArn",
|
21816
23201
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21817
23202
|
# },
|
21818
23203
|
# },
|
21819
23204
|
# kernel_gateway_app_settings: {
|
21820
23205
|
# default_resource_spec: {
|
21821
|
-
# sage_maker_image_arn: "
|
23206
|
+
# sage_maker_image_arn: "ImageArn",
|
21822
23207
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21823
23208
|
# },
|
21824
23209
|
# },
|
21825
23210
|
# tensor_board_app_settings: {
|
21826
23211
|
# default_resource_spec: {
|
21827
|
-
# sage_maker_image_arn: "
|
23212
|
+
# sage_maker_image_arn: "ImageArn",
|
21828
23213
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
21829
23214
|
# },
|
21830
23215
|
# },
|
@@ -21873,12 +23258,21 @@ module Aws::SageMaker
|
|
21873
23258
|
# source_ip_config: {
|
21874
23259
|
# cidrs: ["Cidr"], # required
|
21875
23260
|
# },
|
23261
|
+
# oidc_config: {
|
23262
|
+
# client_id: "ClientId", # required
|
23263
|
+
# client_secret: "ClientSecret", # required
|
23264
|
+
# issuer: "OidcEndpoint", # required
|
23265
|
+
# authorization_endpoint: "OidcEndpoint", # required
|
23266
|
+
# token_endpoint: "OidcEndpoint", # required
|
23267
|
+
# user_info_endpoint: "OidcEndpoint", # required
|
23268
|
+
# logout_endpoint: "OidcEndpoint", # required
|
23269
|
+
# jwks_uri: "OidcEndpoint", # required
|
23270
|
+
# },
|
21876
23271
|
# }
|
21877
23272
|
#
|
21878
23273
|
# @!attribute [rw] workforce_name
|
21879
|
-
# The name of the private workforce
|
21880
|
-
#
|
21881
|
-
# is created and cannot be modified.
|
23274
|
+
# The name of the private workforce that you want to update. You can
|
23275
|
+
# find your workforce name by using the operation.
|
21882
23276
|
# @return [String]
|
21883
23277
|
#
|
21884
23278
|
# @!attribute [rw] source_ip_config
|
@@ -21892,22 +23286,27 @@ module Aws::SageMaker
|
|
21892
23286
|
# [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
|
21893
23287
|
# @return [Types::SourceIpConfig]
|
21894
23288
|
#
|
23289
|
+
# @!attribute [rw] oidc_config
|
23290
|
+
# Use this parameter to update your OIDC Identity Provider (IdP)
|
23291
|
+
# configuration for a workforce made using your own IdP.
|
23292
|
+
# @return [Types::OidcConfig]
|
23293
|
+
#
|
21895
23294
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforceRequest AWS API Documentation
|
21896
23295
|
#
|
21897
23296
|
class UpdateWorkforceRequest < Struct.new(
|
21898
23297
|
:workforce_name,
|
21899
|
-
:source_ip_config
|
23298
|
+
:source_ip_config,
|
23299
|
+
:oidc_config)
|
21900
23300
|
SENSITIVE = []
|
21901
23301
|
include Aws::Structure
|
21902
23302
|
end
|
21903
23303
|
|
21904
23304
|
# @!attribute [rw] workforce
|
21905
|
-
# A single private workforce
|
21906
|
-
#
|
21907
|
-
#
|
21908
|
-
#
|
21909
|
-
#
|
21910
|
-
# see [Create a Private Workforce][1].
|
23305
|
+
# A single private workforce. You can create one private work force in
|
23306
|
+
# each AWS Region. By default, any workforce-related API operation
|
23307
|
+
# used in a specific region will apply to the workforce created in
|
23308
|
+
# that region. To learn how to create a private workforce, see [Create
|
23309
|
+
# a Private Workforce][1].
|
21911
23310
|
#
|
21912
23311
|
#
|
21913
23312
|
#
|
@@ -21932,7 +23331,10 @@ module Aws::SageMaker
|
|
21932
23331
|
# cognito_member_definition: {
|
21933
23332
|
# user_pool: "CognitoUserPool", # required
|
21934
23333
|
# user_group: "CognitoUserGroup", # required
|
21935
|
-
# client_id: "
|
23334
|
+
# client_id: "ClientId", # required
|
23335
|
+
# },
|
23336
|
+
# oidc_member_definition: {
|
23337
|
+
# groups: ["Group"], # required
|
21936
23338
|
# },
|
21937
23339
|
# },
|
21938
23340
|
# ],
|
@@ -21947,8 +23349,35 @@ module Aws::SageMaker
|
|
21947
23349
|
# @return [String]
|
21948
23350
|
#
|
21949
23351
|
# @!attribute [rw] member_definitions
|
21950
|
-
# A list of `MemberDefinition` objects that
|
21951
|
-
# team
|
23352
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23353
|
+
# identify the workers that make up the work team.
|
23354
|
+
#
|
23355
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23356
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23357
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23358
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
23359
|
+
# You should not provide input for both of these parameters in a
|
23360
|
+
# single request.
|
23361
|
+
#
|
23362
|
+
# For workforces created using Amazon Cognito, private work teams
|
23363
|
+
# correspond to Amazon Cognito *user groups* within the user pool used
|
23364
|
+
# to create a workforce. All of the `CognitoMemberDefinition` objects
|
23365
|
+
# that make up the member definition must have the same `ClientId` and
|
23366
|
+
# `UserPool` values. To add a Amazon Cognito user group to an existing
|
23367
|
+
# worker pool, see [Adding groups to a User Pool](). For more
|
23368
|
+
# information about user pools, see [Amazon Cognito User Pools][1].
|
23369
|
+
#
|
23370
|
+
# For workforces created using your own OIDC IdP, specify the user
|
23371
|
+
# groups that you want to include in your private work team in
|
23372
|
+
# `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
|
23373
|
+
# that user groups that are already in the work team must also be
|
23374
|
+
# listed in `Groups` when you make this request to remain on the work
|
23375
|
+
# team. If you do not include these user groups, they will no longer
|
23376
|
+
# be associated with the work team you update.
|
23377
|
+
#
|
23378
|
+
#
|
23379
|
+
#
|
23380
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
21952
23381
|
# @return [Array<Types::MemberDefinition>]
|
21953
23382
|
#
|
21954
23383
|
# @!attribute [rw] description
|
@@ -22057,19 +23486,19 @@ module Aws::SageMaker
|
|
22057
23486
|
# },
|
22058
23487
|
# jupyter_server_app_settings: {
|
22059
23488
|
# default_resource_spec: {
|
22060
|
-
# sage_maker_image_arn: "
|
23489
|
+
# sage_maker_image_arn: "ImageArn",
|
22061
23490
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
22062
23491
|
# },
|
22063
23492
|
# },
|
22064
23493
|
# kernel_gateway_app_settings: {
|
22065
23494
|
# default_resource_spec: {
|
22066
|
-
# sage_maker_image_arn: "
|
23495
|
+
# sage_maker_image_arn: "ImageArn",
|
22067
23496
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
22068
23497
|
# },
|
22069
23498
|
# },
|
22070
23499
|
# tensor_board_app_settings: {
|
22071
23500
|
# default_resource_spec: {
|
22072
|
-
# sage_maker_image_arn: "
|
23501
|
+
# sage_maker_image_arn: "ImageArn",
|
22073
23502
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
|
22074
23503
|
# },
|
22075
23504
|
# },
|
@@ -22206,9 +23635,7 @@ module Aws::SageMaker
|
|
22206
23635
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
|
22207
23636
|
#
|
22208
23637
|
# @!attribute [rw] workforce_name
|
22209
|
-
# The name of the private workforce
|
22210
|
-
# `WorkforceName` is automatically set to `default` when a workforce
|
22211
|
-
# is created and cannot be modified.
|
23638
|
+
# The name of the private workforce.
|
22212
23639
|
# @return [String]
|
22213
23640
|
#
|
22214
23641
|
# @!attribute [rw] workforce_arn
|
@@ -22226,20 +23653,48 @@ module Aws::SageMaker
|
|
22226
23653
|
#
|
22227
23654
|
# @!attribute [rw] source_ip_config
|
22228
23655
|
# A list of one to ten IP address ranges ([CIDRs][1]) to be added to
|
22229
|
-
# the workforce allow list.
|
23656
|
+
# the workforce allow list. By default, a workforce isn't restricted
|
23657
|
+
# to specific IP addresses.
|
22230
23658
|
#
|
22231
23659
|
#
|
22232
23660
|
#
|
22233
23661
|
# [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
|
22234
23662
|
# @return [Types::SourceIpConfig]
|
22235
23663
|
#
|
23664
|
+
# @!attribute [rw] sub_domain
|
23665
|
+
# The subdomain for your OIDC Identity Provider.
|
23666
|
+
# @return [String]
|
23667
|
+
#
|
23668
|
+
# @!attribute [rw] cognito_config
|
23669
|
+
# The configuration of an Amazon Cognito workforce. A single Cognito
|
23670
|
+
# workforce is created using and corresponds to a single [ Amazon
|
23671
|
+
# Cognito user pool][1].
|
23672
|
+
#
|
23673
|
+
#
|
23674
|
+
#
|
23675
|
+
# [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
|
23676
|
+
# @return [Types::CognitoConfig]
|
23677
|
+
#
|
23678
|
+
# @!attribute [rw] oidc_config
|
23679
|
+
# The configuration of an OIDC Identity Provider (IdP) private
|
23680
|
+
# workforce.
|
23681
|
+
# @return [Types::OidcConfigForResponse]
|
23682
|
+
#
|
23683
|
+
# @!attribute [rw] create_date
|
23684
|
+
# The date that the workforce is created.
|
23685
|
+
# @return [Time]
|
23686
|
+
#
|
22236
23687
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Workforce AWS API Documentation
|
22237
23688
|
#
|
22238
23689
|
class Workforce < Struct.new(
|
22239
23690
|
:workforce_name,
|
22240
23691
|
:workforce_arn,
|
22241
23692
|
:last_updated_date,
|
22242
|
-
:source_ip_config
|
23693
|
+
:source_ip_config,
|
23694
|
+
:sub_domain,
|
23695
|
+
:cognito_config,
|
23696
|
+
:oidc_config,
|
23697
|
+
:create_date)
|
22243
23698
|
SENSITIVE = []
|
22244
23699
|
include Aws::Structure
|
22245
23700
|
end
|
@@ -22251,13 +23706,23 @@ module Aws::SageMaker
|
|
22251
23706
|
# @return [String]
|
22252
23707
|
#
|
22253
23708
|
# @!attribute [rw] member_definitions
|
22254
|
-
#
|
23709
|
+
# A list of `MemberDefinition` objects that contains objects that
|
23710
|
+
# identify the workers that make up the work team.
|
23711
|
+
#
|
23712
|
+
# Workforces can be created using Amazon Cognito or your own OIDC
|
23713
|
+
# Identity Provider (IdP). For private workforces created using Amazon
|
23714
|
+
# Cognito use `CognitoMemberDefinition`. For workforces created using
|
23715
|
+
# your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
|
22255
23716
|
# @return [Array<Types::MemberDefinition>]
|
22256
23717
|
#
|
22257
23718
|
# @!attribute [rw] workteam_arn
|
22258
23719
|
# The Amazon Resource Name (ARN) that identifies the work team.
|
22259
23720
|
# @return [String]
|
22260
23721
|
#
|
23722
|
+
# @!attribute [rw] workforce_arn
|
23723
|
+
# The Amazon Resource Name (ARN) of the workforce.
|
23724
|
+
# @return [String]
|
23725
|
+
#
|
22261
23726
|
# @!attribute [rw] product_listing_ids
|
22262
23727
|
# The Amazon Marketplace identifier for a vendor's work team.
|
22263
23728
|
# @return [Array<String>]
|
@@ -22290,6 +23755,7 @@ module Aws::SageMaker
|
|
22290
23755
|
:workteam_name,
|
22291
23756
|
:member_definitions,
|
22292
23757
|
:workteam_arn,
|
23758
|
+
:workforce_arn,
|
22293
23759
|
:product_listing_ids,
|
22294
23760
|
:description,
|
22295
23761
|
:sub_domain,
|