aws-sdk-sagemaker 1.63.0 → 1.68.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -688,6 +688,122 @@ module Aws::SageMaker
688
688
  #
689
689
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
690
690
  #
691
+ # **Named entity recognition** - Groups similar selections and
692
+ # calculates aggregate boundaries, resolving to most-assigned label.
693
+ #
694
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition`
695
+ #
696
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition`
697
+ #
698
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition`
699
+ #
700
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition`
701
+ #
702
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition`
703
+ #
704
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition`
705
+ #
706
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition`
707
+ #
708
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition`
709
+ #
710
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition`
711
+ #
712
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition`
713
+ #
714
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition`
715
+ #
716
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
717
+ #
718
+ # **Video Classification** - Use this task type when you need workers
719
+ # to classify videos using predefined labels that you specify. Workers
720
+ # are shown videos and are asked to choose one label for each video.
721
+ #
722
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass`
723
+ #
724
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass`
725
+ #
726
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass`
727
+ #
728
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass`
729
+ #
730
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass`
731
+ #
732
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass`
733
+ #
734
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass`
735
+ #
736
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass`
737
+ #
738
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass`
739
+ #
740
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass`
741
+ #
742
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass`
743
+ #
744
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass`
745
+ #
746
+ # **Video Frame Object Detection** - Use this task type to have
747
+ # workers identify and locate objects in a sequence of video frames
748
+ # (images extracted from a video) using bounding boxes. For example,
749
+ # you can use this task to ask workers to identify and localize
750
+ # various objects in a series of video frames, such as cars, bikes,
751
+ # and pedestrians.
752
+ #
753
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection`
754
+ #
755
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection`
756
+ #
757
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection`
758
+ #
759
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection`
760
+ #
761
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection`
762
+ #
763
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection`
764
+ #
765
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection`
766
+ #
767
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection`
768
+ #
769
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection`
770
+ #
771
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection`
772
+ #
773
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection`
774
+ #
775
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection`
776
+ #
777
+ # **Video Frame Object Tracking** - Use this task type to have workers
778
+ # track the movement of objects in a sequence of video frames (images
779
+ # extracted from a video) using bounding boxes. For example, you can
780
+ # use this task to ask workers to track the movement of objects, such
781
+ # as cars, bikes, and pedestrians.
782
+ #
783
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking`
784
+ #
785
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking`
786
+ #
787
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking`
788
+ #
789
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking`
790
+ #
791
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking`
792
+ #
793
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking`
794
+ #
795
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking`
796
+ #
797
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking`
798
+ #
799
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking`
800
+ #
801
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking`
802
+ #
803
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking`
804
+ #
805
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking`
806
+ #
691
807
  # **3D point cloud object detection** - Use this task type when you
692
808
  # want workers to classify objects in a 3D point cloud by drawing 3D
693
809
  # cuboids around objects. For example, you can use this task type to
@@ -897,6 +1013,64 @@ module Aws::SageMaker
897
1013
  #
898
1014
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox`
899
1015
  #
1016
+ # **Video Frame Object Detection Adjustment** - Use this task type
1017
+ # when you want workers to adjust bounding boxes that workers have
1018
+ # added to video frames to classify and localize objects in a sequence
1019
+ # of video frames.
1020
+ #
1021
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection`
1022
+ #
1023
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection`
1024
+ #
1025
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection`
1026
+ #
1027
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection`
1028
+ #
1029
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection`
1030
+ #
1031
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection`
1032
+ #
1033
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection`
1034
+ #
1035
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection`
1036
+ #
1037
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection`
1038
+ #
1039
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection`
1040
+ #
1041
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection`
1042
+ #
1043
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection`
1044
+ #
1045
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
1046
+ # you want workers to adjust bounding boxes that workers have added to
1047
+ # video frames to track object movement across a sequence of video
1048
+ # frames.
1049
+ #
1050
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking`
1051
+ #
1052
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking`
1053
+ #
1054
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking`
1055
+ #
1056
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking`
1057
+ #
1058
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking`
1059
+ #
1060
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking`
1061
+ #
1062
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking`
1063
+ #
1064
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking`
1065
+ #
1066
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking`
1067
+ #
1068
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking`
1069
+ #
1070
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking`
1071
+ #
1072
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking`
1073
+ #
900
1074
  # **3D point cloud object detection adjustment** - Use this task type
901
1075
  # when you want workers to adjust 3D cuboids around objects in a 3D
902
1076
  # point cloud.
@@ -1111,7 +1285,7 @@ module Aws::SageMaker
1111
1285
  include Aws::Structure
1112
1286
  end
1113
1287
 
1114
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
1115
1289
  # candidate has futher details about the steps involed, and the status.
1116
1290
  #
1117
1291
  # @!attribute [rw] candidate_name
@@ -1119,7 +1293,7 @@ module Aws::SageMaker
1119
1293
  # @return [String]
1120
1294
  #
1121
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
1122
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
1123
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1124
1298
  #
1125
1299
  # @!attribute [rw] objective_status
@@ -1266,7 +1440,7 @@ module Aws::SageMaker
1266
1440
  include Aws::Structure
1267
1441
  end
1268
1442
 
1269
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1270
1444
  #
1271
1445
  # @note When making an API call, you may pass AutoMLDataSource
1272
1446
  # data as a hash:
@@ -1389,17 +1563,91 @@ module Aws::SageMaker
1389
1563
  include Aws::Structure
1390
1564
  end
1391
1565
 
1392
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1393
1567
  #
1394
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1395
1569
  # data as a hash:
1396
1570
  #
1397
1571
  # {
1398
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1399
1573
  # }
1400
1574
  #
1401
1575
  # @!attribute [rw] metric_name
1402
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1403
1651
  # @return [String]
1404
1652
  #
1405
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1433,7 +1681,7 @@ module Aws::SageMaker
1433
1681
  # @return [Time]
1434
1682
  #
1435
1683
  # @!attribute [rw] end_time
1436
- # The end time.
1684
+ # The end time of an AutoML job.
1437
1685
  # @return [Time]
1438
1686
  #
1439
1687
  # @!attribute [rw] last_modified_time
@@ -1441,7 +1689,7 @@ module Aws::SageMaker
1441
1689
  # @return [Time]
1442
1690
  #
1443
1691
  # @!attribute [rw] failure_reason
1444
- # The failure reason.
1692
+ # The failure reason of a job.
1445
1693
  # @return [String]
1446
1694
  #
1447
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -1876,6 +2124,47 @@ module Aws::SageMaker
1876
2124
  include Aws::Structure
1877
2125
  end
1878
2126
 
2127
+ # Use this parameter to configure your Amazon Cognito workforce. A
2128
+ # single Cognito workforce is created using and corresponds to a single
2129
+ # [ Amazon Cognito user pool][1].
2130
+ #
2131
+ #
2132
+ #
2133
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2134
+ #
2135
+ # @note When making an API call, you may pass CognitoConfig
2136
+ # data as a hash:
2137
+ #
2138
+ # {
2139
+ # user_pool: "CognitoUserPool", # required
2140
+ # client_id: "ClientId", # required
2141
+ # }
2142
+ #
2143
+ # @!attribute [rw] user_pool
2144
+ # A [ user pool][1] is a user directory in Amazon Cognito. With a user
2145
+ # pool, your users can sign in to your web or mobile app through
2146
+ # Amazon Cognito. Your users can also sign in through social identity
2147
+ # providers like Google, Facebook, Amazon, or Apple, and through SAML
2148
+ # identity providers.
2149
+ #
2150
+ #
2151
+ #
2152
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2153
+ # @return [String]
2154
+ #
2155
+ # @!attribute [rw] client_id
2156
+ # The client ID for your Amazon Cognito user pool.
2157
+ # @return [String]
2158
+ #
2159
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CognitoConfig AWS API Documentation
2160
+ #
2161
+ class CognitoConfig < Struct.new(
2162
+ :user_pool,
2163
+ :client_id)
2164
+ SENSITIVE = []
2165
+ include Aws::Structure
2166
+ end
2167
+
1879
2168
  # Identifies a Amazon Cognito user group. A user group can be used in on
1880
2169
  # or more work teams.
1881
2170
  #
@@ -1885,7 +2174,7 @@ module Aws::SageMaker
1885
2174
  # {
1886
2175
  # user_pool: "CognitoUserPool", # required
1887
2176
  # user_group: "CognitoUserGroup", # required
1888
- # client_id: "CognitoClientId", # required
2177
+ # client_id: "ClientId", # required
1889
2178
  # }
1890
2179
  #
1891
2180
  # @!attribute [rw] user_pool
@@ -1967,8 +2256,23 @@ module Aws::SageMaker
1967
2256
  # @return [Time]
1968
2257
  #
1969
2258
  # @!attribute [rw] compilation_target_device
1970
- # The type of device that the model will run on after compilation has
1971
- # completed.
2259
+ # The type of device that the model will run on after the compilation
2260
+ # job has completed.
2261
+ # @return [String]
2262
+ #
2263
+ # @!attribute [rw] compilation_target_platform_os
2264
+ # The type of OS that the model will run on after the compilation job
2265
+ # has completed.
2266
+ # @return [String]
2267
+ #
2268
+ # @!attribute [rw] compilation_target_platform_arch
2269
+ # The type of architecture that the model will run on after the
2270
+ # compilation job has completed.
2271
+ # @return [String]
2272
+ #
2273
+ # @!attribute [rw] compilation_target_platform_accelerator
2274
+ # The type of accelerator that the model will run on after the
2275
+ # compilation job has completed.
1972
2276
  # @return [String]
1973
2277
  #
1974
2278
  # @!attribute [rw] last_modified_time
@@ -1988,6 +2292,9 @@ module Aws::SageMaker
1988
2292
  :compilation_start_time,
1989
2293
  :compilation_end_time,
1990
2294
  :compilation_target_device,
2295
+ :compilation_target_platform_os,
2296
+ :compilation_target_platform_arch,
2297
+ :compilation_target_platform_accelerator,
1991
2298
  :last_modified_time,
1992
2299
  :compilation_job_status)
1993
2300
  SENSITIVE = []
@@ -2015,7 +2322,10 @@ module Aws::SageMaker
2015
2322
  #
2016
2323
  # {
2017
2324
  # container_hostname: "ContainerHostname",
2018
- # image: "Image",
2325
+ # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
2019
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2020
2330
  # model_data_url: "Url",
2021
2331
  # environment: {
@@ -2046,19 +2356,33 @@ module Aws::SageMaker
2046
2356
  # @return [String]
2047
2357
  #
2048
2358
  # @!attribute [rw] image
2049
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2050
- # code is stored. If you are using your own custom algorithm instead
2051
- # of an algorithm provided by Amazon SageMaker, the inference code
2052
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2053
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2054
- # image path formats. For more information, see [Using Your Own
2055
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2056
2368
  #
2057
2369
  #
2058
2370
  #
2059
2371
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
2060
2372
  # @return [String]
2061
2373
  #
2374
+ # @!attribute [rw] image_config
2375
+ # Specifies whether the model container is in Amazon ECR or a private
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2379
+ # Containers][1]
2380
+ #
2381
+ #
2382
+ #
2383
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2384
+ # @return [Types::ImageConfig]
2385
+ #
2062
2386
  # @!attribute [rw] mode
2063
2387
  # Whether the container hosts a single model or multiple models.
2064
2388
  # @return [String]
@@ -2105,6 +2429,7 @@ module Aws::SageMaker
2105
2429
  class ContainerDefinition < Struct.new(
2106
2430
  :container_hostname,
2107
2431
  :image,
2432
+ :image_config,
2108
2433
  :mode,
2109
2434
  :model_data_url,
2110
2435
  :environment,
@@ -2222,7 +2547,7 @@ module Aws::SageMaker
2222
2547
  # algorithm_name: "EntityName", # required
2223
2548
  # algorithm_description: "EntityDescription",
2224
2549
  # training_specification: { # required
2225
- # training_image: "Image", # required
2550
+ # training_image: "ContainerImage", # required
2226
2551
  # training_image_digest: "ImageDigest",
2227
2552
  # supported_hyper_parameters: [
2228
2553
  # {
@@ -2276,7 +2601,7 @@ module Aws::SageMaker
2276
2601
  # containers: [ # required
2277
2602
  # {
2278
2603
  # container_hostname: "ContainerHostname",
2279
- # image: "Image", # required
2604
+ # image: "ContainerImage", # required
2280
2605
  # image_digest: "ImageDigest",
2281
2606
  # model_data_url: "Url",
2282
2607
  # product_id: "ProductId",
@@ -2471,7 +2796,7 @@ module Aws::SageMaker
2471
2796
  # },
2472
2797
  # ],
2473
2798
  # resource_spec: {
2474
- # sage_maker_image_arn: "SageMakerImageArn",
2799
+ # sage_maker_image_arn: "ImageArn",
2475
2800
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2476
2801
  # },
2477
2802
  # }
@@ -2550,7 +2875,7 @@ module Aws::SageMaker
2550
2875
  # },
2551
2876
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2552
2877
  # auto_ml_job_objective: {
2553
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2878
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2554
2879
  # },
2555
2880
  # auto_ml_job_config: {
2556
2881
  # completion_criteria: {
@@ -2578,7 +2903,7 @@ module Aws::SageMaker
2578
2903
  # }
2579
2904
  #
2580
2905
  # @!attribute [rw] auto_ml_job_name
2581
- # Identifies an AutoPilot job. Must be unique to your account and is
2906
+ # Identifies an Autopilot job. Must be unique to your account and is
2582
2907
  # case-insensitive.
2583
2908
  # @return [String]
2584
2909
  #
@@ -2599,9 +2924,11 @@ module Aws::SageMaker
2599
2924
  # @return [String]
2600
2925
  #
2601
2926
  # @!attribute [rw] auto_ml_job_objective
2602
- # Defines the job's objective. You provide a MetricName and AutoML
2603
- # will infer minimize or maximize. If this is not provided, the most
2604
- # commonly used ObjectiveMetric for problem type will be selected.
2927
+ # Defines the objective of a an AutoML job. You provide a
2928
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2929
+ # minimize or maximize it. If a metric is not specified, the most
2930
+ # commonly used ObjectiveMetric for problem type is automaically
2931
+ # selected.
2605
2932
  # @return [Types::AutoMLJobObjective]
2606
2933
  #
2607
2934
  # @!attribute [rw] auto_ml_job_config
@@ -2609,13 +2936,13 @@ module Aws::SageMaker
2609
2936
  # @return [Types::AutoMLJobConfig]
2610
2937
  #
2611
2938
  # @!attribute [rw] role_arn
2612
- # The ARN of the role that will be used to access the data.
2939
+ # The ARN of the role that is used to access the data.
2613
2940
  # @return [String]
2614
2941
  #
2615
2942
  # @!attribute [rw] generate_candidate_definitions_only
2616
- # This will generate possible candidates without training a model. A
2617
- # candidate is a combination of data preprocessors, algorithms, and
2618
- # algorithm parameter settings.
2943
+ # Generates possible candidates without training a model. A candidate
2944
+ # is a combination of data preprocessors, algorithms, and algorithm
2945
+ # parameter settings.
2619
2946
  # @return [Boolean]
2620
2947
  #
2621
2948
  # @!attribute [rw] tags
@@ -2708,7 +3035,13 @@ module Aws::SageMaker
2708
3035
  # },
2709
3036
  # output_config: { # required
2710
3037
  # s3_output_location: "S3Uri", # required
2711
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
3038
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
3039
+ # target_platform: {
3040
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
3041
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
3042
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
3043
+ # },
3044
+ # compiler_options: "CompilerOptions",
2712
3045
  # },
2713
3046
  # stopping_condition: { # required
2714
3047
  # max_runtime_in_seconds: 1,
@@ -2809,19 +3142,19 @@ module Aws::SageMaker
2809
3142
  # },
2810
3143
  # jupyter_server_app_settings: {
2811
3144
  # default_resource_spec: {
2812
- # sage_maker_image_arn: "SageMakerImageArn",
3145
+ # sage_maker_image_arn: "ImageArn",
2813
3146
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2814
3147
  # },
2815
3148
  # },
2816
3149
  # kernel_gateway_app_settings: {
2817
3150
  # default_resource_spec: {
2818
- # sage_maker_image_arn: "SageMakerImageArn",
3151
+ # sage_maker_image_arn: "ImageArn",
2819
3152
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2820
3153
  # },
2821
3154
  # },
2822
3155
  # tensor_board_app_settings: {
2823
3156
  # default_resource_spec: {
2824
- # sage_maker_image_arn: "SageMakerImageArn",
3157
+ # sage_maker_image_arn: "ImageArn",
2825
3158
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2826
3159
  # },
2827
3160
  # },
@@ -3664,9 +3997,12 @@ module Aws::SageMaker
3664
3997
  # label_attribute_name: "LabelAttributeName", # required
3665
3998
  # input_config: { # required
3666
3999
  # data_source: { # required
3667
- # s3_data_source: { # required
4000
+ # s3_data_source: {
3668
4001
  # manifest_s3_uri: "S3Uri", # required
3669
4002
  # },
4003
+ # sns_data_source: {
4004
+ # sns_topic_arn: "SnsTopicArn", # required
4005
+ # },
3670
4006
  # },
3671
4007
  # data_attributes: {
3672
4008
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -3675,6 +4011,7 @@ module Aws::SageMaker
3675
4011
  # output_config: { # required
3676
4012
  # s3_output_path: "S3Uri", # required
3677
4013
  # kms_key_id: "KmsKeyId",
4014
+ # sns_topic_arn: "SnsTopicArn",
3678
4015
  # },
3679
4016
  # role_arn: "RoleArn", # required
3680
4017
  # label_category_config_s3_uri: "S3Uri",
@@ -3868,7 +4205,10 @@ module Aws::SageMaker
3868
4205
  # model_name: "ModelName", # required
3869
4206
  # primary_container: {
3870
4207
  # container_hostname: "ContainerHostname",
3871
- # image: "Image",
4208
+ # image: "ContainerImage",
4209
+ # image_config: {
4210
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4211
+ # },
3872
4212
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3873
4213
  # model_data_url: "Url",
3874
4214
  # environment: {
@@ -3879,7 +4219,10 @@ module Aws::SageMaker
3879
4219
  # containers: [
3880
4220
  # {
3881
4221
  # container_hostname: "ContainerHostname",
3882
- # image: "Image",
4222
+ # image: "ContainerImage",
4223
+ # image_config: {
4224
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4225
+ # },
3883
4226
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3884
4227
  # model_data_url: "Url",
3885
4228
  # environment: {
@@ -3998,7 +4341,7 @@ module Aws::SageMaker
3998
4341
  # containers: [ # required
3999
4342
  # {
4000
4343
  # container_hostname: "ContainerHostname",
4001
- # image: "Image", # required
4344
+ # image: "ContainerImage", # required
4002
4345
  # image_digest: "ImageDigest",
4003
4346
  # model_data_url: "Url",
4004
4347
  # product_id: "ProductId",
@@ -4695,7 +5038,14 @@ module Aws::SageMaker
4695
5038
  # @return [Array<Types::Tag>]
4696
5039
  #
4697
5040
  # @!attribute [rw] experiment_config
4698
- # Configuration for the experiment.
5041
+ # Associates a SageMaker job as a trial component with an experiment
5042
+ # and trial. Specified when you call the following APIs:
5043
+ #
5044
+ # * CreateProcessingJob
5045
+ #
5046
+ # * CreateTrainingJob
5047
+ #
5048
+ # * CreateTransformJob
4699
5049
  # @return [Types::ExperimentConfig]
4700
5050
  #
4701
5051
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateProcessingJobRequest AWS API Documentation
@@ -5027,7 +5377,14 @@ module Aws::SageMaker
5027
5377
  # @return [Types::TensorBoardOutputConfig]
5028
5378
  #
5029
5379
  # @!attribute [rw] experiment_config
5030
- # Configuration for the experiment.
5380
+ # Associates a SageMaker job as a trial component with an experiment
5381
+ # and trial. Specified when you call the following APIs:
5382
+ #
5383
+ # * CreateProcessingJob
5384
+ #
5385
+ # * CreateTrainingJob
5386
+ #
5387
+ # * CreateTransformJob
5031
5388
  # @return [Types::ExperimentConfig]
5032
5389
  #
5033
5390
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
@@ -5232,7 +5589,14 @@ module Aws::SageMaker
5232
5589
  # @return [Array<Types::Tag>]
5233
5590
  #
5234
5591
  # @!attribute [rw] experiment_config
5235
- # Configuration for the experiment.
5592
+ # Associates a SageMaker job as a trial component with an experiment
5593
+ # and trial. Specified when you call the following APIs:
5594
+ #
5595
+ # * CreateProcessingJob
5596
+ #
5597
+ # * CreateTrainingJob
5598
+ #
5599
+ # * CreateTransformJob
5236
5600
  # @return [Types::ExperimentConfig]
5237
5601
  #
5238
5602
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTransformJobRequest AWS API Documentation
@@ -5463,19 +5827,19 @@ module Aws::SageMaker
5463
5827
  # },
5464
5828
  # jupyter_server_app_settings: {
5465
5829
  # default_resource_spec: {
5466
- # sage_maker_image_arn: "SageMakerImageArn",
5830
+ # sage_maker_image_arn: "ImageArn",
5467
5831
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5468
5832
  # },
5469
5833
  # },
5470
5834
  # kernel_gateway_app_settings: {
5471
5835
  # default_resource_spec: {
5472
- # sage_maker_image_arn: "SageMakerImageArn",
5836
+ # sage_maker_image_arn: "ImageArn",
5473
5837
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5474
5838
  # },
5475
5839
  # },
5476
5840
  # tensor_board_app_settings: {
5477
5841
  # default_resource_spec: {
5478
- # sage_maker_image_arn: "SageMakerImageArn",
5842
+ # sage_maker_image_arn: "ImageArn",
5479
5843
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5480
5844
  # },
5481
5845
  # },
@@ -5540,17 +5904,116 @@ module Aws::SageMaker
5540
5904
  include Aws::Structure
5541
5905
  end
5542
5906
 
5907
+ # @note When making an API call, you may pass CreateWorkforceRequest
5908
+ # data as a hash:
5909
+ #
5910
+ # {
5911
+ # cognito_config: {
5912
+ # user_pool: "CognitoUserPool", # required
5913
+ # client_id: "ClientId", # required
5914
+ # },
5915
+ # oidc_config: {
5916
+ # client_id: "ClientId", # required
5917
+ # client_secret: "ClientSecret", # required
5918
+ # issuer: "OidcEndpoint", # required
5919
+ # authorization_endpoint: "OidcEndpoint", # required
5920
+ # token_endpoint: "OidcEndpoint", # required
5921
+ # user_info_endpoint: "OidcEndpoint", # required
5922
+ # logout_endpoint: "OidcEndpoint", # required
5923
+ # jwks_uri: "OidcEndpoint", # required
5924
+ # },
5925
+ # source_ip_config: {
5926
+ # cidrs: ["Cidr"], # required
5927
+ # },
5928
+ # workforce_name: "WorkforceName", # required
5929
+ # tags: [
5930
+ # {
5931
+ # key: "TagKey", # required
5932
+ # value: "TagValue", # required
5933
+ # },
5934
+ # ],
5935
+ # }
5936
+ #
5937
+ # @!attribute [rw] cognito_config
5938
+ # Use this parameter to configure an Amazon Cognito private workforce.
5939
+ # A single Cognito workforce is created using and corresponds to a
5940
+ # single [ Amazon Cognito user pool][1].
5941
+ #
5942
+ # Do not use `OidcConfig` if you specify values for `CognitoConfig`.
5943
+ #
5944
+ #
5945
+ #
5946
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
5947
+ # @return [Types::CognitoConfig]
5948
+ #
5949
+ # @!attribute [rw] oidc_config
5950
+ # Use this parameter to configure a private workforce using your own
5951
+ # OIDC Identity Provider.
5952
+ #
5953
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5954
+ # @return [Types::OidcConfig]
5955
+ #
5956
+ # @!attribute [rw] source_ip_config
5957
+ # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5958
+ # list of IP addresses for a private workforce. Workers will only be
5959
+ # able to login to their worker portal from an IP address within this
5960
+ # range. By default, a workforce isn't restricted to specific IP
5961
+ # addresses.
5962
+ #
5963
+ #
5964
+ #
5965
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
5966
+ # @return [Types::SourceIpConfig]
5967
+ #
5968
+ # @!attribute [rw] workforce_name
5969
+ # The name of the private workforce.
5970
+ # @return [String]
5971
+ #
5972
+ # @!attribute [rw] tags
5973
+ # An array of key-value pairs that contain metadata to help you
5974
+ # categorize and organize our workforce. Each tag consists of a key
5975
+ # and a value, both of which you define.
5976
+ # @return [Array<Types::Tag>]
5977
+ #
5978
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceRequest AWS API Documentation
5979
+ #
5980
+ class CreateWorkforceRequest < Struct.new(
5981
+ :cognito_config,
5982
+ :oidc_config,
5983
+ :source_ip_config,
5984
+ :workforce_name,
5985
+ :tags)
5986
+ SENSITIVE = []
5987
+ include Aws::Structure
5988
+ end
5989
+
5990
+ # @!attribute [rw] workforce_arn
5991
+ # The Amazon Resource Name (ARN) of the workforce.
5992
+ # @return [String]
5993
+ #
5994
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceResponse AWS API Documentation
5995
+ #
5996
+ class CreateWorkforceResponse < Struct.new(
5997
+ :workforce_arn)
5998
+ SENSITIVE = []
5999
+ include Aws::Structure
6000
+ end
6001
+
5543
6002
  # @note When making an API call, you may pass CreateWorkteamRequest
5544
6003
  # data as a hash:
5545
6004
  #
5546
6005
  # {
5547
6006
  # workteam_name: "WorkteamName", # required
6007
+ # workforce_name: "WorkforceName",
5548
6008
  # member_definitions: [ # required
5549
6009
  # {
5550
6010
  # cognito_member_definition: {
5551
6011
  # user_pool: "CognitoUserPool", # required
5552
6012
  # user_group: "CognitoUserGroup", # required
5553
- # client_id: "CognitoClientId", # required
6013
+ # client_id: "ClientId", # required
6014
+ # },
6015
+ # oidc_member_definition: {
6016
+ # groups: ["Group"], # required
5554
6017
  # },
5555
6018
  # },
5556
6019
  # ],
@@ -5570,13 +6033,31 @@ module Aws::SageMaker
5570
6033
  # The name of the work team. Use this name to identify the work team.
5571
6034
  # @return [String]
5572
6035
  #
6036
+ # @!attribute [rw] workforce_name
6037
+ # The name of the workforce.
6038
+ # @return [String]
6039
+ #
5573
6040
  # @!attribute [rw] member_definitions
5574
6041
  # A list of `MemberDefinition` objects that contains objects that
5575
- # identify the Amazon Cognito user pool that makes up the work team.
5576
- # For more information, see [Amazon Cognito User Pools][1].
6042
+ # identify the workers that make up the work team.
5577
6043
  #
5578
- # All of the `CognitoMemberDefinition` objects that make up the member
5579
- # definition must have the same `ClientId` and `UserPool` values.
6044
+ # Workforces can be created using Amazon Cognito or your own OIDC
6045
+ # Identity Provider (IdP). For private workforces created using Amazon
6046
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6047
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6048
+ # not provide input for both of these parameters in a single request.
6049
+ #
6050
+ # For workforces created using Amazon Cognito, private work teams
6051
+ # correspond to Amazon Cognito *user groups* within the user pool used
6052
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6053
+ # that make up the member definition must have the same `ClientId` and
6054
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6055
+ # worker pool, see [Adding groups to a User Pool](). For more
6056
+ # information about user pools, see [Amazon Cognito User Pools][1].
6057
+ #
6058
+ # For workforces created using your own OIDC IdP, specify the user
6059
+ # groups that you want to include in your private work team in
6060
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5580
6061
  #
5581
6062
  #
5582
6063
  #
@@ -5609,6 +6090,7 @@ module Aws::SageMaker
5609
6090
  #
5610
6091
  class CreateWorkteamRequest < Struct.new(
5611
6092
  :workteam_name,
6093
+ :workforce_name,
5612
6094
  :member_definitions,
5613
6095
  :description,
5614
6096
  :notification_configuration,
@@ -6408,6 +6890,29 @@ module Aws::SageMaker
6408
6890
  include Aws::Structure
6409
6891
  end
6410
6892
 
6893
+ # @note When making an API call, you may pass DeleteWorkforceRequest
6894
+ # data as a hash:
6895
+ #
6896
+ # {
6897
+ # workforce_name: "WorkforceName", # required
6898
+ # }
6899
+ #
6900
+ # @!attribute [rw] workforce_name
6901
+ # The name of the workforce.
6902
+ # @return [String]
6903
+ #
6904
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceRequest AWS API Documentation
6905
+ #
6906
+ class DeleteWorkforceRequest < Struct.new(
6907
+ :workforce_name)
6908
+ SENSITIVE = []
6909
+ include Aws::Structure
6910
+ end
6911
+
6912
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceResponse AWS API Documentation
6913
+ #
6914
+ class DeleteWorkforceResponse < Aws::EmptyStructure; end
6915
+
6411
6916
  # @note When making an API call, you may pass DeleteWorkteamRequest
6412
6917
  # data as a hash:
6413
6918
  #
@@ -8457,7 +8962,7 @@ module Aws::SageMaker
8457
8962
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8458
8963
  # maximum allowed runtime.
8459
8964
  #
8460
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8965
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8461
8966
  # maximum allowed wait time.
8462
8967
  #
8463
8968
  # * `Stopped` - The training job has stopped.
@@ -8620,7 +9125,14 @@ module Aws::SageMaker
8620
9125
  # @return [Types::DebugHookConfig]
8621
9126
  #
8622
9127
  # @!attribute [rw] experiment_config
8623
- # Configuration for the experiment.
9128
+ # Associates a SageMaker job as a trial component with an experiment
9129
+ # and trial. Specified when you call the following APIs:
9130
+ #
9131
+ # * CreateProcessingJob
9132
+ #
9133
+ # * CreateTrainingJob
9134
+ #
9135
+ # * CreateTransformJob
8624
9136
  # @return [Types::ExperimentConfig]
8625
9137
  #
8626
9138
  # @!attribute [rw] debug_rule_configurations
@@ -8809,7 +9321,14 @@ module Aws::SageMaker
8809
9321
  # @return [Types::DataProcessing]
8810
9322
  #
8811
9323
  # @!attribute [rw] experiment_config
8812
- # Configuration for the experiment.
9324
+ # Associates a SageMaker job as a trial component with an experiment
9325
+ # and trial. Specified when you call the following APIs:
9326
+ #
9327
+ # * CreateProcessingJob
9328
+ #
9329
+ # * CreateTrainingJob
9330
+ #
9331
+ # * CreateTransformJob
8813
9332
  # @return [Types::ExperimentConfig]
8814
9333
  #
8815
9334
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
@@ -9502,7 +10021,14 @@ module Aws::SageMaker
9502
10021
  include Aws::Structure
9503
10022
  end
9504
10023
 
9505
- # Configuration for the experiment.
10024
+ # Associates a SageMaker job as a trial component with an experiment and
10025
+ # trial. Specified when you call the following APIs:
10026
+ #
10027
+ # * CreateProcessingJob
10028
+ #
10029
+ # * CreateTrainingJob
10030
+ #
10031
+ # * CreateTransformJob
9506
10032
  #
9507
10033
  # @note When making an API call, you may pass ExperimentConfig
9508
10034
  # data as a hash:
@@ -9514,15 +10040,18 @@ module Aws::SageMaker
9514
10040
  # }
9515
10041
  #
9516
10042
  # @!attribute [rw] experiment_name
9517
- # The name of the experiment.
10043
+ # The name of an existing experiment to associate the trial component
10044
+ # with.
9518
10045
  # @return [String]
9519
10046
  #
9520
10047
  # @!attribute [rw] trial_name
9521
- # The name of the trial.
10048
+ # The name of an existing trial to associate the trial component with.
10049
+ # If not specified, a new trial is created.
9522
10050
  # @return [String]
9523
10051
  #
9524
10052
  # @!attribute [rw] trial_component_display_name
9525
- # Display name for the trial component.
10053
+ # The display name for the trial component. If this key isn't
10054
+ # specified, the display name is the trial component name.
9526
10055
  # @return [String]
9527
10056
  #
9528
10057
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -9802,18 +10331,19 @@ module Aws::SageMaker
9802
10331
  include Aws::Structure
9803
10332
  end
9804
10333
 
9805
- # The candidate result from a job.
10334
+ # The best candidate result from an AutoML training job.
9806
10335
  #
9807
10336
  # @!attribute [rw] type
9808
- # The metric type used.
10337
+ # The type of metric with the best result.
9809
10338
  # @return [String]
9810
10339
  #
9811
10340
  # @!attribute [rw] metric_name
9812
- # The name of the metric.
10341
+ # The name of the metric with the best result. For a description of
10342
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
9813
10343
  # @return [String]
9814
10344
  #
9815
10345
  # @!attribute [rw] value
9816
- # The value of the metric.
10346
+ # The value of the metric with the best result.
9817
10347
  # @return [Float]
9818
10348
  #
9819
10349
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -10131,12 +10661,13 @@ module Aws::SageMaker
10131
10661
  # @return [Integer]
10132
10662
  #
10133
10663
  # @!attribute [rw] task_availability_lifetime_in_seconds
10134
- # The length of time that a task remains available for labeling by
10135
- # human workers.
10664
+ # The length of time that a task remains available for review by human
10665
+ # workers.
10136
10666
  # @return [Integer]
10137
10667
  #
10138
10668
  # @!attribute [rw] task_time_limit_in_seconds
10139
- # The amount of time that a worker has to complete a task.
10669
+ # The amount of time that a worker has to complete a task. The default
10670
+ # value is 3,600 seconds (1 hour)
10140
10671
  # @return [Integer]
10141
10672
  #
10142
10673
  # @!attribute [rw] task_keywords
@@ -10638,18 +11169,107 @@ module Aws::SageMaker
10638
11169
  #
10639
11170
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
10640
11171
  #
10641
- # **3D Point Cloud Modalities**
11172
+ # **Video Classification** - Use this task type when you need workers
11173
+ # to classify videos using predefined labels that you specify. Workers
11174
+ # are shown videos and are asked to choose one label for each video.
10642
11175
  #
10643
- # Use the following pre-annotation lambdas for 3D point cloud labeling
10644
- # modality tasks. See [3D Point Cloud Task types ][3] to learn more.
11176
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass`
10645
11177
  #
10646
- # **3D Point Cloud Object Detection** - Use this task type when you
10647
- # want workers to classify objects in a 3D point cloud by drawing 3D
10648
- # cuboids around objects. For example, you can use this task type to
10649
- # ask workers to identify different types of objects in a point cloud,
10650
- # such as cars, bikes, and pedestrians.
11178
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass`
10651
11179
  #
10652
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
11180
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass`
11181
+ #
11182
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass`
11183
+ #
11184
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass`
11185
+ #
11186
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass`
11187
+ #
11188
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass`
11189
+ #
11190
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass`
11191
+ #
11192
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass`
11193
+ #
11194
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass`
11195
+ #
11196
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass`
11197
+ #
11198
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass`
11199
+ #
11200
+ # **Video Frame Object Detection** - Use this task type to have
11201
+ # workers identify and locate objects in a sequence of video frames
11202
+ # (images extracted from a video) using bounding boxes. For example,
11203
+ # you can use this task to ask workers to identify and localize
11204
+ # various objects in a series of video frames, such as cars, bikes,
11205
+ # and pedestrians.
11206
+ #
11207
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection`
11208
+ #
11209
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection`
11210
+ #
11211
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection`
11212
+ #
11213
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection`
11214
+ #
11215
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection`
11216
+ #
11217
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection`
11218
+ #
11219
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection`
11220
+ #
11221
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection`
11222
+ #
11223
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection`
11224
+ #
11225
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection`
11226
+ #
11227
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection`
11228
+ #
11229
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection`
11230
+ #
11231
+ # **Video Frame Object Tracking** - Use this task type to have workers
11232
+ # track the movement of objects in a sequence of video frames (images
11233
+ # extracted from a video) using bounding boxes. For example, you can
11234
+ # use this task to ask workers to track the movement of objects, such
11235
+ # as cars, bikes, and pedestrians.
11236
+ #
11237
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking`
11238
+ #
11239
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking`
11240
+ #
11241
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking`
11242
+ #
11243
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking`
11244
+ #
11245
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking`
11246
+ #
11247
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking`
11248
+ #
11249
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking`
11250
+ #
11251
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking`
11252
+ #
11253
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking`
11254
+ #
11255
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking`
11256
+ #
11257
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking`
11258
+ #
11259
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking`
11260
+ #
11261
+ # **3D Point Cloud Modalities**
11262
+ #
11263
+ # Use the following pre-annotation lambdas for 3D point cloud labeling
11264
+ # modality tasks. See [3D Point Cloud Task types ][3] to learn more.
11265
+ #
11266
+ # **3D Point Cloud Object Detection** - Use this task type when you
11267
+ # want workers to classify objects in a 3D point cloud by drawing 3D
11268
+ # cuboids around objects. For example, you can use this task type to
11269
+ # ask workers to identify different types of objects in a point cloud,
11270
+ # such as cars, bikes, and pedestrians.
11271
+ #
11272
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
10653
11273
  #
10654
11274
  # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection`
10655
11275
  #
@@ -10852,6 +11472,64 @@ module Aws::SageMaker
10852
11472
  #
10853
11473
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
10854
11474
  #
11475
+ # **Video Frame Object Detection Adjustment** - Use this task type
11476
+ # when you want workers to adjust bounding boxes that workers have
11477
+ # added to video frames to classify and localize objects in a sequence
11478
+ # of video frames.
11479
+ #
11480
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection`
11481
+ #
11482
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection`
11483
+ #
11484
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection`
11485
+ #
11486
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection`
11487
+ #
11488
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection`
11489
+ #
11490
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection`
11491
+ #
11492
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection`
11493
+ #
11494
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection`
11495
+ #
11496
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection`
11497
+ #
11498
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection`
11499
+ #
11500
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection`
11501
+ #
11502
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection`
11503
+ #
11504
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
11505
+ # you want workers to adjust bounding boxes that workers have added to
11506
+ # video frames to track object movement across a sequence of video
11507
+ # frames.
11508
+ #
11509
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking`
11510
+ #
11511
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking`
11512
+ #
11513
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking`
11514
+ #
11515
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking`
11516
+ #
11517
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking`
11518
+ #
11519
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking`
11520
+ #
11521
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking`
11522
+ #
11523
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking`
11524
+ #
11525
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking`
11526
+ #
11527
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking`
11528
+ #
11529
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking`
11530
+ #
11531
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking`
11532
+ #
10855
11533
  # **3D point cloud object detection adjustment** - Adjust 3D cuboids
10856
11534
  # in a point cloud frame.
10857
11535
  #
@@ -11807,6 +12485,34 @@ module Aws::SageMaker
11807
12485
  include Aws::Structure
11808
12486
  end
11809
12487
 
12488
+ # Specifies whether the model container is in Amazon ECR or a private
12489
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12490
+ # (VPC).
12491
+ #
12492
+ # @note When making an API call, you may pass ImageConfig
12493
+ # data as a hash:
12494
+ #
12495
+ # {
12496
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12497
+ # }
12498
+ #
12499
+ # @!attribute [rw] repository_access_mode
12500
+ # Set this to one of the following values:
12501
+ #
12502
+ # * `Platform` - The model image is hosted in Amazon ECR.
12503
+ #
12504
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12505
+ # your VPC.
12506
+ # @return [String]
12507
+ #
12508
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12509
+ #
12510
+ class ImageConfig < Struct.new(
12511
+ :repository_access_mode)
12512
+ SENSITIVE = []
12513
+ include Aws::Structure
12514
+ end
12515
+
11810
12516
  # Defines how to perform inference generation after a training job is
11811
12517
  # run.
11812
12518
  #
@@ -11817,7 +12523,7 @@ module Aws::SageMaker
11817
12523
  # containers: [ # required
11818
12524
  # {
11819
12525
  # container_hostname: "ContainerHostname",
11820
- # image: "Image", # required
12526
+ # image: "ContainerImage", # required
11821
12527
  # image_digest: "ImageDigest",
11822
12528
  # model_data_url: "Url",
11823
12529
  # product_id: "ProductId",
@@ -12090,7 +12796,7 @@ module Aws::SageMaker
12090
12796
  #
12091
12797
  # {
12092
12798
  # default_resource_spec: {
12093
- # sage_maker_image_arn: "SageMakerImageArn",
12799
+ # sage_maker_image_arn: "ImageArn",
12094
12800
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
12095
12801
  # },
12096
12802
  # }
@@ -12115,7 +12821,7 @@ module Aws::SageMaker
12115
12821
  #
12116
12822
  # {
12117
12823
  # default_resource_spec: {
12118
- # sage_maker_image_arn: "SageMakerImageArn",
12824
+ # sage_maker_image_arn: "ImageArn",
12119
12825
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
12120
12826
  # },
12121
12827
  # }
@@ -12230,10 +12936,10 @@ module Aws::SageMaker
12230
12936
  # @return [String]
12231
12937
  #
12232
12938
  # @!attribute [rw] initial_active_learning_model_arn
12233
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12234
- # the Amazon Resource Nam (ARN) of the final model used for
12235
- # auto-labeling. You can use this model as the starting point for
12236
- # subsequent similar jobs by providing the ARN of the model here.
12939
+ # At the end of an auto-label job Ground Truth sends the Amazon
12940
+ # Resource Name (ARN) of the final model used for auto-labeling. You
12941
+ # can use this model as the starting point for subsequent similar jobs
12942
+ # by providing the ARN of the model here.
12237
12943
  # @return [String]
12238
12944
  #
12239
12945
  # @!attribute [rw] labeling_job_resource_config
@@ -12277,23 +12983,43 @@ module Aws::SageMaker
12277
12983
 
12278
12984
  # Provides information about the location of input data.
12279
12985
  #
12986
+ # You must specify at least one of the following: `S3DataSource` or
12987
+ # `SnsDataSource`.
12988
+ #
12989
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
12990
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
12991
+ # Truth will create a one-time labeling job.
12992
+ #
12993
+ # Use `S3DataSource` to specify an input manifest file for both
12994
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
12995
+ # optional if you use `SnsDataSource` to create a streaming labeling
12996
+ # job.
12997
+ #
12280
12998
  # @note When making an API call, you may pass LabelingJobDataSource
12281
12999
  # data as a hash:
12282
13000
  #
12283
13001
  # {
12284
- # s3_data_source: { # required
13002
+ # s3_data_source: {
12285
13003
  # manifest_s3_uri: "S3Uri", # required
12286
13004
  # },
13005
+ # sns_data_source: {
13006
+ # sns_topic_arn: "SnsTopicArn", # required
13007
+ # },
12287
13008
  # }
12288
13009
  #
12289
13010
  # @!attribute [rw] s3_data_source
12290
13011
  # The Amazon S3 location of the input data objects.
12291
13012
  # @return [Types::LabelingJobS3DataSource]
12292
13013
  #
13014
+ # @!attribute [rw] sns_data_source
13015
+ # An Amazon SNS data source used for streaming labeling jobs.
13016
+ # @return [Types::LabelingJobSnsDataSource]
13017
+ #
12293
13018
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12294
13019
  #
12295
13020
  class LabelingJobDataSource < Struct.new(
12296
- :s3_data_source)
13021
+ :s3_data_source,
13022
+ :sns_data_source)
12297
13023
  SENSITIVE = []
12298
13024
  include Aws::Structure
12299
13025
  end
@@ -12344,9 +13070,12 @@ module Aws::SageMaker
12344
13070
  #
12345
13071
  # {
12346
13072
  # data_source: { # required
12347
- # s3_data_source: { # required
13073
+ # s3_data_source: {
12348
13074
  # manifest_s3_uri: "S3Uri", # required
12349
13075
  # },
13076
+ # sns_data_source: {
13077
+ # sns_topic_arn: "SnsTopicArn", # required
13078
+ # },
12350
13079
  # },
12351
13080
  # data_attributes: {
12352
13081
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -12398,6 +13127,7 @@ module Aws::SageMaker
12398
13127
  # {
12399
13128
  # s3_output_path: "S3Uri", # required
12400
13129
  # kms_key_id: "KmsKeyId",
13130
+ # sns_topic_arn: "SnsTopicArn",
12401
13131
  # }
12402
13132
  #
12403
13133
  # @!attribute [rw] s3_output_path
@@ -12431,11 +13161,22 @@ module Aws::SageMaker
12431
13161
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
12432
13162
  # @return [String]
12433
13163
  #
13164
+ # @!attribute [rw] sns_topic_arn
13165
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13166
+ #
13167
+ # When workers complete labeling tasks, Ground Truth will send
13168
+ # labeling task output data to the SNS output topic you specify here.
13169
+ #
13170
+ # You must provide a value for this parameter if you provide an Amazon
13171
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13172
+ # @return [String]
13173
+ #
12434
13174
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
12435
13175
  #
12436
13176
  class LabelingJobOutputConfig < Struct.new(
12437
13177
  :s3_output_path,
12438
- :kms_key_id)
13178
+ :kms_key_id,
13179
+ :sns_topic_arn)
12439
13180
  SENSITIVE = []
12440
13181
  include Aws::Structure
12441
13182
  end
@@ -12494,6 +13235,32 @@ module Aws::SageMaker
12494
13235
  include Aws::Structure
12495
13236
  end
12496
13237
 
13238
+ # An Amazon SNS data source used for streaming labeling jobs.
13239
+ #
13240
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13241
+ # data as a hash:
13242
+ #
13243
+ # {
13244
+ # sns_topic_arn: "SnsTopicArn", # required
13245
+ # }
13246
+ #
13247
+ # @!attribute [rw] sns_topic_arn
13248
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13249
+ # ARN of the input topic you will use to send new data objects to a
13250
+ # streaming labeling job.
13251
+ #
13252
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13253
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13254
+ # @return [String]
13255
+ #
13256
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13257
+ #
13258
+ class LabelingJobSnsDataSource < Struct.new(
13259
+ :sns_topic_arn)
13260
+ SENSITIVE = []
13261
+ include Aws::Structure
13262
+ end
13263
+
12497
13264
  # A set of conditions for stopping a labeling job. If any of the
12498
13265
  # conditions are met, the job is automatically stopped. You can use
12499
13266
  # these conditions to control the cost of data labeling.
@@ -12811,8 +13578,8 @@ module Aws::SageMaker
12811
13578
  # @return [Integer]
12812
13579
  #
12813
13580
  # @!attribute [rw] next_token
12814
- # If the previous response was truncated, you will receive this token.
12815
- # Use it in your next request to receive the next set of results.
13581
+ # If the previous response was truncated, you receive this token. Use
13582
+ # it in your next request to receive the next set of results.
12816
13583
  # @return [String]
12817
13584
  #
12818
13585
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -12837,8 +13604,8 @@ module Aws::SageMaker
12837
13604
  # @return [Array<Types::AutoMLJobSummary>]
12838
13605
  #
12839
13606
  # @!attribute [rw] next_token
12840
- # If the previous response was truncated, you will receive this token.
12841
- # Use it in your next request to receive the next set of results.
13607
+ # If the previous response was truncated, you receive this token. Use
13608
+ # it in your next request to receive the next set of results.
12842
13609
  # @return [String]
12843
13610
  #
12844
13611
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -12890,8 +13657,8 @@ module Aws::SageMaker
12890
13657
  # @return [Integer]
12891
13658
  #
12892
13659
  # @!attribute [rw] next_token
12893
- # If the previous response was truncated, you will receive this token.
12894
- # Use it in your next request to receive the next set of results.
13660
+ # If the previous response was truncated, you receive this token. Use
13661
+ # it in your next request to receive the next set of results.
12895
13662
  # @return [String]
12896
13663
  #
12897
13664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -12913,8 +13680,8 @@ module Aws::SageMaker
12913
13680
  # @return [Array<Types::AutoMLCandidate>]
12914
13681
  #
12915
13682
  # @!attribute [rw] next_token
12916
- # If the previous response was truncated, you will receive this token.
12917
- # Use it in your next request to receive the next set of results.
13683
+ # If the previous response was truncated, you receive this token. Use
13684
+ # it in your next request to receive the next set of results.
12918
13685
  # @return [String]
12919
13686
  #
12920
13687
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -13764,7 +14531,7 @@ module Aws::SageMaker
13764
14531
  # name_contains: "NameContains",
13765
14532
  # sort_by: "Name", # accepts Name, CreationTime, Status
13766
14533
  # sort_order: "Ascending", # accepts Ascending, Descending
13767
- # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
14534
+ # status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
13768
14535
  # }
13769
14536
  #
13770
14537
  # @!attribute [rw] creation_time_after
@@ -15197,6 +15964,67 @@ module Aws::SageMaker
15197
15964
  include Aws::Structure
15198
15965
  end
15199
15966
 
15967
+ # @note When making an API call, you may pass ListWorkforcesRequest
15968
+ # data as a hash:
15969
+ #
15970
+ # {
15971
+ # sort_by: "Name", # accepts Name, CreateDate
15972
+ # sort_order: "Ascending", # accepts Ascending, Descending
15973
+ # name_contains: "WorkforceName",
15974
+ # next_token: "NextToken",
15975
+ # max_results: 1,
15976
+ # }
15977
+ #
15978
+ # @!attribute [rw] sort_by
15979
+ # Sort workforces using the workforce name or creation date.
15980
+ # @return [String]
15981
+ #
15982
+ # @!attribute [rw] sort_order
15983
+ # Sort workforces in ascending or descending order.
15984
+ # @return [String]
15985
+ #
15986
+ # @!attribute [rw] name_contains
15987
+ # A filter you can use to search for workforces using part of the
15988
+ # workforce name.
15989
+ # @return [String]
15990
+ #
15991
+ # @!attribute [rw] next_token
15992
+ # A token to resume pagination.
15993
+ # @return [String]
15994
+ #
15995
+ # @!attribute [rw] max_results
15996
+ # The maximum number of workforces returned in the response.
15997
+ # @return [Integer]
15998
+ #
15999
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesRequest AWS API Documentation
16000
+ #
16001
+ class ListWorkforcesRequest < Struct.new(
16002
+ :sort_by,
16003
+ :sort_order,
16004
+ :name_contains,
16005
+ :next_token,
16006
+ :max_results)
16007
+ SENSITIVE = []
16008
+ include Aws::Structure
16009
+ end
16010
+
16011
+ # @!attribute [rw] workforces
16012
+ # A list containing information about your workforce.
16013
+ # @return [Array<Types::Workforce>]
16014
+ #
16015
+ # @!attribute [rw] next_token
16016
+ # A token to resume pagination.
16017
+ # @return [String]
16018
+ #
16019
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesResponse AWS API Documentation
16020
+ #
16021
+ class ListWorkforcesResponse < Struct.new(
16022
+ :workforces,
16023
+ :next_token)
16024
+ SENSITIVE = []
16025
+ include Aws::Structure
16026
+ end
16027
+
15200
16028
  # @note When making an API call, you may pass ListWorkteamsRequest
15201
16029
  # data as a hash:
15202
16030
  #
@@ -15263,7 +16091,8 @@ module Aws::SageMaker
15263
16091
  include Aws::Structure
15264
16092
  end
15265
16093
 
15266
- # Defines the Amazon Cognito user group that is part of a work team.
16094
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16095
+ # of a work team.
15267
16096
  #
15268
16097
  # @note When making an API call, you may pass MemberDefinition
15269
16098
  # data as a hash:
@@ -15272,7 +16101,10 @@ module Aws::SageMaker
15272
16101
  # cognito_member_definition: {
15273
16102
  # user_pool: "CognitoUserPool", # required
15274
16103
  # user_group: "CognitoUserGroup", # required
15275
- # client_id: "CognitoClientId", # required
16104
+ # client_id: "ClientId", # required
16105
+ # },
16106
+ # oidc_member_definition: {
16107
+ # groups: ["Group"], # required
15276
16108
  # },
15277
16109
  # }
15278
16110
  #
@@ -15280,10 +16112,20 @@ module Aws::SageMaker
15280
16112
  # The Amazon Cognito user group that is part of the work team.
15281
16113
  # @return [Types::CognitoMemberDefinition]
15282
16114
  #
16115
+ # @!attribute [rw] oidc_member_definition
16116
+ # A list user groups that exist in your OIDC Identity Provider (IdP).
16117
+ # One to ten groups can be used to create a single private work team.
16118
+ # When you add a user group to the list of `Groups`, you can add that
16119
+ # user group to one or more private work teams. If you add a user
16120
+ # group to a private work team, all workers in that user group are
16121
+ # added to the work team.
16122
+ # @return [Types::OidcMemberDefinition]
16123
+ #
15283
16124
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MemberDefinition AWS API Documentation
15284
16125
  #
15285
16126
  class MemberDefinition < Struct.new(
15286
- :cognito_member_definition)
16127
+ :cognito_member_definition,
16128
+ :oidc_member_definition)
15287
16129
  SENSITIVE = []
15288
16130
  include Aws::Structure
15289
16131
  end
@@ -15405,7 +16247,7 @@ module Aws::SageMaker
15405
16247
  #
15406
16248
  # {
15407
16249
  # container_hostname: "ContainerHostname",
15408
- # image: "Image", # required
16250
+ # image: "ContainerImage", # required
15409
16251
  # image_digest: "ImageDigest",
15410
16252
  # model_data_url: "Url",
15411
16253
  # product_id: "ProductId",
@@ -16667,32 +17509,290 @@ module Aws::SageMaker
16667
17509
  include Aws::Structure
16668
17510
  end
16669
17511
 
17512
+ # Use this parameter to configure your OIDC Identity Provider (IdP).
17513
+ #
17514
+ # @note When making an API call, you may pass OidcConfig
17515
+ # data as a hash:
17516
+ #
17517
+ # {
17518
+ # client_id: "ClientId", # required
17519
+ # client_secret: "ClientSecret", # required
17520
+ # issuer: "OidcEndpoint", # required
17521
+ # authorization_endpoint: "OidcEndpoint", # required
17522
+ # token_endpoint: "OidcEndpoint", # required
17523
+ # user_info_endpoint: "OidcEndpoint", # required
17524
+ # logout_endpoint: "OidcEndpoint", # required
17525
+ # jwks_uri: "OidcEndpoint", # required
17526
+ # }
17527
+ #
17528
+ # @!attribute [rw] client_id
17529
+ # The OIDC IdP client ID used to configure your private workforce.
17530
+ # @return [String]
17531
+ #
17532
+ # @!attribute [rw] client_secret
17533
+ # The OIDC IdP client secret used to configure your private workforce.
17534
+ # @return [String]
17535
+ #
17536
+ # @!attribute [rw] issuer
17537
+ # The OIDC IdP issuer used to configure your private workforce.
17538
+ # @return [String]
17539
+ #
17540
+ # @!attribute [rw] authorization_endpoint
17541
+ # The OIDC IdP authorization endpoint used to configure your private
17542
+ # workforce.
17543
+ # @return [String]
17544
+ #
17545
+ # @!attribute [rw] token_endpoint
17546
+ # The OIDC IdP token endpoint used to configure your private
17547
+ # workforce.
17548
+ # @return [String]
17549
+ #
17550
+ # @!attribute [rw] user_info_endpoint
17551
+ # The OIDC IdP user information endpoint used to configure your
17552
+ # private workforce.
17553
+ # @return [String]
17554
+ #
17555
+ # @!attribute [rw] logout_endpoint
17556
+ # The OIDC IdP logout endpoint used to configure your private
17557
+ # workforce.
17558
+ # @return [String]
17559
+ #
17560
+ # @!attribute [rw] jwks_uri
17561
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17562
+ # private workforce.
17563
+ # @return [String]
17564
+ #
17565
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfig AWS API Documentation
17566
+ #
17567
+ class OidcConfig < Struct.new(
17568
+ :client_id,
17569
+ :client_secret,
17570
+ :issuer,
17571
+ :authorization_endpoint,
17572
+ :token_endpoint,
17573
+ :user_info_endpoint,
17574
+ :logout_endpoint,
17575
+ :jwks_uri)
17576
+ SENSITIVE = [:client_secret]
17577
+ include Aws::Structure
17578
+ end
17579
+
17580
+ # Your OIDC IdP workforce configuration.
17581
+ #
17582
+ # @!attribute [rw] client_id
17583
+ # The OIDC IdP client ID used to configure your private workforce.
17584
+ # @return [String]
17585
+ #
17586
+ # @!attribute [rw] issuer
17587
+ # The OIDC IdP issuer used to configure your private workforce.
17588
+ # @return [String]
17589
+ #
17590
+ # @!attribute [rw] authorization_endpoint
17591
+ # The OIDC IdP authorization endpoint used to configure your private
17592
+ # workforce.
17593
+ # @return [String]
17594
+ #
17595
+ # @!attribute [rw] token_endpoint
17596
+ # The OIDC IdP token endpoint used to configure your private
17597
+ # workforce.
17598
+ # @return [String]
17599
+ #
17600
+ # @!attribute [rw] user_info_endpoint
17601
+ # The OIDC IdP user information endpoint used to configure your
17602
+ # private workforce.
17603
+ # @return [String]
17604
+ #
17605
+ # @!attribute [rw] logout_endpoint
17606
+ # The OIDC IdP logout endpoint used to configure your private
17607
+ # workforce.
17608
+ # @return [String]
17609
+ #
17610
+ # @!attribute [rw] jwks_uri
17611
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17612
+ # private workforce.
17613
+ # @return [String]
17614
+ #
17615
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfigForResponse AWS API Documentation
17616
+ #
17617
+ class OidcConfigForResponse < Struct.new(
17618
+ :client_id,
17619
+ :issuer,
17620
+ :authorization_endpoint,
17621
+ :token_endpoint,
17622
+ :user_info_endpoint,
17623
+ :logout_endpoint,
17624
+ :jwks_uri)
17625
+ SENSITIVE = []
17626
+ include Aws::Structure
17627
+ end
17628
+
17629
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17630
+ # One to ten groups can be used to create a single private work team.
17631
+ # When you add a user group to the list of `Groups`, you can add that
17632
+ # user group to one or more private work teams. If you add a user group
17633
+ # to a private work team, all workers in that user group are added to
17634
+ # the work team.
17635
+ #
17636
+ # @note When making an API call, you may pass OidcMemberDefinition
17637
+ # data as a hash:
17638
+ #
17639
+ # {
17640
+ # groups: ["Group"], # required
17641
+ # }
17642
+ #
17643
+ # @!attribute [rw] groups
17644
+ # A list of comma seperated strings that identifies user groups in
17645
+ # your OIDC IdP. Each user group is made up of a group of private
17646
+ # workers.
17647
+ # @return [Array<String>]
17648
+ #
17649
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcMemberDefinition AWS API Documentation
17650
+ #
17651
+ class OidcMemberDefinition < Struct.new(
17652
+ :groups)
17653
+ SENSITIVE = []
17654
+ include Aws::Structure
17655
+ end
17656
+
16670
17657
  # Contains information about the output location for the compiled model
16671
- # and the device (target) that the model runs on.
17658
+ # and the target device that the model runs on. `TargetDevice` and
17659
+ # `TargetPlatform` are mutually exclusive, so you need to choose one
17660
+ # between the two to specify your target device or platform. If you
17661
+ # cannot find your device you want to use from the `TargetDevice` list,
17662
+ # use `TargetPlatform` to describe the platform of your edge device and
17663
+ # `CompilerOptions` if there are specific settings that are required or
17664
+ # recommended to use for particular TargetPlatform.
16672
17665
  #
16673
17666
  # @note When making an API call, you may pass OutputConfig
16674
17667
  # data as a hash:
16675
17668
  #
16676
17669
  # {
16677
17670
  # s3_output_location: "S3Uri", # required
16678
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
17671
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
17672
+ # target_platform: {
17673
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
17674
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
17675
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
17676
+ # },
17677
+ # compiler_options: "CompilerOptions",
16679
17678
  # }
16680
17679
  #
16681
17680
  # @!attribute [rw] s3_output_location
16682
- # Identifies the S3 path where you want Amazon SageMaker to store the
16683
- # model artifacts. For example, s3://bucket-name/key-name-prefix.
17681
+ # Identifies the S3 bucket where you want Amazon SageMaker to store
17682
+ # the model artifacts. For example,
17683
+ # `s3://bucket-name/key-name-prefix`.
16684
17684
  # @return [String]
16685
17685
  #
16686
17686
  # @!attribute [rw] target_device
16687
- # Identifies the device that you want to run your model on after it
16688
- # has been compiled. For example: ml\_c5.
17687
+ # Identifies the target device or the machine learning instance that
17688
+ # you want to run your model on after the compilation has completed.
17689
+ # Alternatively, you can specify OS, architecture, and accelerator
17690
+ # using TargetPlatform fields. It can be used instead of
17691
+ # `TargetPlatform`.
17692
+ # @return [String]
17693
+ #
17694
+ # @!attribute [rw] target_platform
17695
+ # Contains information about a target platform that you want your
17696
+ # model to run on, such as OS, architecture, and accelerators. It is
17697
+ # an alternative of `TargetDevice`.
17698
+ #
17699
+ # The following examples show how to configure the `TargetPlatform`
17700
+ # and `CompilerOptions` JSON strings for popular target platforms:
17701
+ #
17702
+ # * Raspberry Pi 3 Model B+
17703
+ #
17704
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
17705
+ #
17706
+ # ` "CompilerOptions": \{'mattr': ['+neon']\}`
17707
+ #
17708
+ # * Jetson TX2
17709
+ #
17710
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17711
+ # "Accelerator": "NVIDIA"\},`
17712
+ #
17713
+ # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
17714
+ # 'cuda-ver': '10.0'\}`
17715
+ #
17716
+ # * EC2 m5.2xlarge instance OS
17717
+ #
17718
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
17719
+ # "Accelerator": "NVIDIA"\},`
17720
+ #
17721
+ # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
17722
+ #
17723
+ # * RK3399
17724
+ #
17725
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17726
+ # "Accelerator": "MALI"\}`
17727
+ #
17728
+ # * ARMv7 phone (CPU)
17729
+ #
17730
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
17731
+ #
17732
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
17733
+ # ['+neon']\}`
17734
+ #
17735
+ # * ARMv8 phone (CPU)
17736
+ #
17737
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
17738
+ #
17739
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
17740
+ # @return [Types::TargetPlatform]
17741
+ #
17742
+ # @!attribute [rw] compiler_options
17743
+ # Specifies additional parameters for compiler options in JSON format.
17744
+ # The compiler options are `TargetPlatform` specific. It is required
17745
+ # for NVIDIA accelerators and highly recommended for CPU compliations.
17746
+ # For any other cases, it is optional to specify `CompilerOptions.`
17747
+ #
17748
+ # * `CPU`\: Compilation for CPU supports the following compiler
17749
+ # options.
17750
+ #
17751
+ # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
17752
+ # 'skylake-avx512'\}`
17753
+ #
17754
+ # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
17755
+ # '+vfpv4']\}`
17756
+ #
17757
+ # * `ARM`\: Details of ARM CPU compilations.
17758
+ #
17759
+ # * `NEON`\: NEON is an implementation of the Advanced SIMD
17760
+ # extension used in ARMv7 processors.
17761
+ #
17762
+ # For example, add `\{'mattr': ['+neon']\}` to the compiler
17763
+ # options if compiling for ARM 32-bit platform with the NEON
17764
+ # support.
17765
+ #
17766
+ # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
17767
+ # compiler options.
17768
+ #
17769
+ # * `gpu_code`\: Specifies the targeted architecture.
17770
+ #
17771
+ # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
17772
+ #
17773
+ # * `cuda-ver`\: Specifies the CUDA version in x.y format.
17774
+ #
17775
+ # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
17776
+ # 'cuda-ver': '10.1'\}`
17777
+ #
17778
+ # * `ANDROID`\: Compilation for the Android OS supports the following
17779
+ # compiler options:
17780
+ #
17781
+ # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
17782
+ # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
17783
+ # 28\}`.
17784
+ #
17785
+ # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
17786
+ # compiling for ARM 32-bit platform with NEON support.
16689
17787
  # @return [String]
16690
17788
  #
16691
17789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
16692
17790
  #
16693
17791
  class OutputConfig < Struct.new(
16694
17792
  :s3_output_location,
16695
- :target_device)
17793
+ :target_device,
17794
+ :target_platform,
17795
+ :compiler_options)
16696
17796
  SENSITIVE = []
16697
17797
  include Aws::Structure
16698
17798
  end
@@ -17057,7 +18157,14 @@ module Aws::SageMaker
17057
18157
  # @return [String]
17058
18158
  #
17059
18159
  # @!attribute [rw] experiment_config
17060
- # Configuration for the experiment.
18160
+ # Associates a SageMaker job as a trial component with an experiment
18161
+ # and trial. Specified when you call the following APIs:
18162
+ #
18163
+ # * CreateProcessingJob
18164
+ #
18165
+ # * CreateTrainingJob
18166
+ #
18167
+ # * CreateTransformJob
17061
18168
  # @return [Types::ExperimentConfig]
17062
18169
  #
17063
18170
  # @!attribute [rw] processing_job_arn
@@ -17919,7 +19026,8 @@ module Aws::SageMaker
17919
19026
  # The resolved attributes.
17920
19027
  #
17921
19028
  # @!attribute [rw] auto_ml_job_objective
17922
- # Applies a metric to minimize or maximize for the job's objective.
19029
+ # Specifies a metric to minimize or maximize as the objective of a
19030
+ # job.
17923
19031
  # @return [Types::AutoMLJobObjective]
17924
19032
  #
17925
19033
  # @!attribute [rw] problem_type
@@ -18120,7 +19228,7 @@ module Aws::SageMaker
18120
19228
  # data as a hash:
18121
19229
  #
18122
19230
  # {
18123
- # sage_maker_image_arn: "SageMakerImageArn",
19231
+ # sage_maker_image_arn: "ImageArn",
18124
19232
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
18125
19233
  # }
18126
19234
  #
@@ -18841,7 +19949,9 @@ module Aws::SageMaker
18841
19949
  end
18842
19950
 
18843
19951
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
18844
- # of IP addresses for a private workforce. For more information, see .
19952
+ # of IP addresses for a private workforce. Workers will only be able to
19953
+ # login to their worker portal from an IP address within this range. By
19954
+ # default, a workforce isn't restricted to specific IP addresses.
18845
19955
  #
18846
19956
  #
18847
19957
  #
@@ -19232,6 +20342,65 @@ module Aws::SageMaker
19232
20342
  include Aws::Structure
19233
20343
  end
19234
20344
 
20345
+ # Contains information about a target platform that you want your model
20346
+ # to run on, such as OS, architecture, and accelerators. It is an
20347
+ # alternative of `TargetDevice`.
20348
+ #
20349
+ # @note When making an API call, you may pass TargetPlatform
20350
+ # data as a hash:
20351
+ #
20352
+ # {
20353
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
20354
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
20355
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
20356
+ # }
20357
+ #
20358
+ # @!attribute [rw] os
20359
+ # Specifies a target platform OS.
20360
+ #
20361
+ # * `LINUX`\: Linux-based operating systems.
20362
+ #
20363
+ # * `ANDROID`\: Android operating systems. Android API level can be
20364
+ # specified using the `ANDROID_PLATFORM` compiler option. For
20365
+ # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
20366
+ # @return [String]
20367
+ #
20368
+ # @!attribute [rw] arch
20369
+ # Specifies a target platform architecture.
20370
+ #
20371
+ # * `X86_64`\: 64-bit version of the x86 instruction set.
20372
+ #
20373
+ # * `X86`\: 32-bit version of the x86 instruction set.
20374
+ #
20375
+ # * `ARM64`\: ARMv8 64-bit CPU.
20376
+ #
20377
+ # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
20378
+ #
20379
+ # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
20380
+ # platform.
20381
+ # @return [String]
20382
+ #
20383
+ # @!attribute [rw] accelerator
20384
+ # Specifies a target platform accelerator (optional).
20385
+ #
20386
+ # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
20387
+ # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
20388
+ #
20389
+ # * `MALI`\: ARM Mali graphics processor
20390
+ #
20391
+ # * `INTEL_GRAPHICS`\: Integrated Intel graphics
20392
+ # @return [String]
20393
+ #
20394
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
20395
+ #
20396
+ class TargetPlatform < Struct.new(
20397
+ :os,
20398
+ :arch,
20399
+ :accelerator)
20400
+ SENSITIVE = []
20401
+ include Aws::Structure
20402
+ end
20403
+
19235
20404
  # The TensorBoard app settings.
19236
20405
  #
19237
20406
  # @note When making an API call, you may pass TensorBoardAppSettings
@@ -19239,7 +20408,7 @@ module Aws::SageMaker
19239
20408
  #
19240
20409
  # {
19241
20410
  # default_resource_spec: {
19242
- # sage_maker_image_arn: "SageMakerImageArn",
20411
+ # sage_maker_image_arn: "ImageArn",
19243
20412
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
19244
20413
  # },
19245
20414
  # }
@@ -19525,7 +20694,14 @@ module Aws::SageMaker
19525
20694
  # @return [Types::DebugHookConfig]
19526
20695
  #
19527
20696
  # @!attribute [rw] experiment_config
19528
- # Configuration for the experiment.
20697
+ # Associates a SageMaker job as a trial component with an experiment
20698
+ # and trial. Specified when you call the following APIs:
20699
+ #
20700
+ # * CreateProcessingJob
20701
+ #
20702
+ # * CreateTrainingJob
20703
+ #
20704
+ # * CreateTransformJob
19529
20705
  # @return [Types::ExperimentConfig]
19530
20706
  #
19531
20707
  # @!attribute [rw] debug_rule_configurations
@@ -19792,7 +20968,7 @@ module Aws::SageMaker
19792
20968
  # data as a hash:
19793
20969
  #
19794
20970
  # {
19795
- # training_image: "Image", # required
20971
+ # training_image: "ContainerImage", # required
19796
20972
  # training_image_digest: "ImageDigest",
19797
20973
  # supported_hyper_parameters: [
19798
20974
  # {
@@ -19970,7 +21146,12 @@ module Aws::SageMaker
19970
21146
  # request payloads contain the entire contents of an input object. Set
19971
21147
  # the value of this parameter to `Line` to split records on a newline
19972
21148
  # character boundary. `SplitType` also supports a number of
19973
- # record-oriented binary data formats.
21149
+ # record-oriented binary data formats. Currently, the supported record
21150
+ # formats are:
21151
+ #
21152
+ # * RecordIO
21153
+ #
21154
+ # * TFRecord
19974
21155
  #
19975
21156
  # When splitting is enabled, the size of a mini-batch depends on the
19976
21157
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -20010,6 +21191,186 @@ module Aws::SageMaker
20010
21191
  include Aws::Structure
20011
21192
  end
20012
21193
 
21194
+ # A batch transform job. For information about SageMaker batch
21195
+ # transform, see [Use Batch Transform][1].
21196
+ #
21197
+ #
21198
+ #
21199
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
21200
+ #
21201
+ # @!attribute [rw] transform_job_name
21202
+ # The name of the transform job.
21203
+ # @return [String]
21204
+ #
21205
+ # @!attribute [rw] transform_job_arn
21206
+ # The Amazon Resource Name (ARN) of the transform job.
21207
+ # @return [String]
21208
+ #
21209
+ # @!attribute [rw] transform_job_status
21210
+ # The status of the transform job.
21211
+ #
21212
+ # Transform job statuses are:
21213
+ #
21214
+ # * `InProgress` - The job is in progress.
21215
+ #
21216
+ # * `Completed` - The job has completed.
21217
+ #
21218
+ # * `Failed` - The transform job has failed. To see the reason for the
21219
+ # failure, see the `FailureReason` field in the response to a
21220
+ # `DescribeTransformJob` call.
21221
+ #
21222
+ # * `Stopping` - The transform job is stopping.
21223
+ #
21224
+ # * `Stopped` - The transform job has stopped.
21225
+ # @return [String]
21226
+ #
21227
+ # @!attribute [rw] failure_reason
21228
+ # If the transform job failed, the reason it failed.
21229
+ # @return [String]
21230
+ #
21231
+ # @!attribute [rw] model_name
21232
+ # The name of the model associated with the transform job.
21233
+ # @return [String]
21234
+ #
21235
+ # @!attribute [rw] max_concurrent_transforms
21236
+ # The maximum number of parallel requests that can be sent to each
21237
+ # instance in a transform job. If `MaxConcurrentTransforms` is set to
21238
+ # 0 or left unset, SageMaker checks the optional execution-parameters
21239
+ # to determine the settings for your chosen algorithm. If the
21240
+ # execution-parameters endpoint is not enabled, the default value is
21241
+ # 1. For built-in algorithms, you don't need to set a value for
21242
+ # `MaxConcurrentTransforms`.
21243
+ # @return [Integer]
21244
+ #
21245
+ # @!attribute [rw] model_client_config
21246
+ # Configures the timeout and maximum number of retries for processing
21247
+ # a transform job invocation.
21248
+ # @return [Types::ModelClientConfig]
21249
+ #
21250
+ # @!attribute [rw] max_payload_in_mb
21251
+ # The maximum allowed size of the payload, in MB. A payload is the
21252
+ # data portion of a record (without metadata). The value in
21253
+ # `MaxPayloadInMB` must be greater than, or equal to, the size of a
21254
+ # single record. To estimate the size of a record in MB, divide the
21255
+ # size of your dataset by the number of records. To ensure that the
21256
+ # records fit within the maximum payload size, we recommend using a
21257
+ # slightly larger value. The default value is 6 MB. For cases where
21258
+ # the payload might be arbitrarily large and is transmitted using HTTP
21259
+ # chunked encoding, set the value to 0. This feature works only in
21260
+ # supported algorithms. Currently, SageMaker built-in algorithms do
21261
+ # not support HTTP chunked encoding.
21262
+ # @return [Integer]
21263
+ #
21264
+ # @!attribute [rw] batch_strategy
21265
+ # Specifies the number of records to include in a mini-batch for an
21266
+ # HTTP inference request. A record is a single unit of input data that
21267
+ # inference can be made on. For example, a single line in a CSV file
21268
+ # is a record.
21269
+ # @return [String]
21270
+ #
21271
+ # @!attribute [rw] environment
21272
+ # The environment variables to set in the Docker container. We support
21273
+ # up to 16 key and values entries in the map.
21274
+ # @return [Hash<String,String>]
21275
+ #
21276
+ # @!attribute [rw] transform_input
21277
+ # Describes the input source of a transform job and the way the
21278
+ # transform job consumes it.
21279
+ # @return [Types::TransformInput]
21280
+ #
21281
+ # @!attribute [rw] transform_output
21282
+ # Describes the results of a transform job.
21283
+ # @return [Types::TransformOutput]
21284
+ #
21285
+ # @!attribute [rw] transform_resources
21286
+ # Describes the resources, including ML instance types and ML instance
21287
+ # count, to use for transform job.
21288
+ # @return [Types::TransformResources]
21289
+ #
21290
+ # @!attribute [rw] creation_time
21291
+ # A timestamp that shows when the transform Job was created.
21292
+ # @return [Time]
21293
+ #
21294
+ # @!attribute [rw] transform_start_time
21295
+ # Indicates when the transform job starts on ML instances. You are
21296
+ # billed for the time interval between this time and the value of
21297
+ # `TransformEndTime`.
21298
+ # @return [Time]
21299
+ #
21300
+ # @!attribute [rw] transform_end_time
21301
+ # Indicates when the transform job has been completed, or has stopped
21302
+ # or failed. You are billed for the time interval between this time
21303
+ # and the value of `TransformStartTime`.
21304
+ # @return [Time]
21305
+ #
21306
+ # @!attribute [rw] labeling_job_arn
21307
+ # The Amazon Resource Name (ARN) of the labeling job that created the
21308
+ # transform job.
21309
+ # @return [String]
21310
+ #
21311
+ # @!attribute [rw] auto_ml_job_arn
21312
+ # The Amazon Resource Name (ARN) of the AutoML job that created the
21313
+ # transform job.
21314
+ # @return [String]
21315
+ #
21316
+ # @!attribute [rw] data_processing
21317
+ # The data structure used to specify the data to be used for inference
21318
+ # in a batch transform job and to associate the data that is relevant
21319
+ # to the prediction results in the output. The input filter provided
21320
+ # allows you to exclude input data that is not needed for inference in
21321
+ # a batch transform job. The output filter provided allows you to
21322
+ # include input data relevant to interpreting the predictions in the
21323
+ # output from the job. For more information, see [Associate Prediction
21324
+ # Results with their Corresponding Input Records][1].
21325
+ #
21326
+ #
21327
+ #
21328
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
21329
+ # @return [Types::DataProcessing]
21330
+ #
21331
+ # @!attribute [rw] experiment_config
21332
+ # Associates a SageMaker job as a trial component with an experiment
21333
+ # and trial. Specified when you call the following APIs:
21334
+ #
21335
+ # * CreateProcessingJob
21336
+ #
21337
+ # * CreateTrainingJob
21338
+ #
21339
+ # * CreateTransformJob
21340
+ # @return [Types::ExperimentConfig]
21341
+ #
21342
+ # @!attribute [rw] tags
21343
+ # A list of tags associated with the transform job.
21344
+ # @return [Array<Types::Tag>]
21345
+ #
21346
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformJob AWS API Documentation
21347
+ #
21348
+ class TransformJob < Struct.new(
21349
+ :transform_job_name,
21350
+ :transform_job_arn,
21351
+ :transform_job_status,
21352
+ :failure_reason,
21353
+ :model_name,
21354
+ :max_concurrent_transforms,
21355
+ :model_client_config,
21356
+ :max_payload_in_mb,
21357
+ :batch_strategy,
21358
+ :environment,
21359
+ :transform_input,
21360
+ :transform_output,
21361
+ :transform_resources,
21362
+ :creation_time,
21363
+ :transform_start_time,
21364
+ :transform_end_time,
21365
+ :labeling_job_arn,
21366
+ :auto_ml_job_arn,
21367
+ :data_processing,
21368
+ :experiment_config,
21369
+ :tags)
21370
+ SENSITIVE = []
21371
+ include Aws::Structure
21372
+ end
21373
+
20013
21374
  # Defines the input needed to run a transform job using the inference
20014
21375
  # specification specified in the algorithm.
20015
21376
  #
@@ -20338,7 +21699,7 @@ module Aws::SageMaker
20338
21699
  #
20339
21700
  # `]`
20340
21701
  #
20341
- # The preceding JSON matches the following `s3Uris`\:
21702
+ # The preceding JSON matches the following `S3Uris`\:
20342
21703
  #
20343
21704
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
20344
21705
  #
@@ -20736,12 +22097,18 @@ module Aws::SageMaker
20736
22097
  # component.
20737
22098
  # @return [Types::ProcessingJob]
20738
22099
  #
22100
+ # @!attribute [rw] transform_job
22101
+ # Information about a transform job that's the source of the trial
22102
+ # component.
22103
+ # @return [Types::TransformJob]
22104
+ #
20739
22105
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrialComponentSourceDetail AWS API Documentation
20740
22106
  #
20741
22107
  class TrialComponentSourceDetail < Struct.new(
20742
22108
  :source_arn,
20743
22109
  :training_job,
20744
- :processing_job)
22110
+ :processing_job,
22111
+ :transform_job)
20745
22112
  SENSITIVE = []
20746
22113
  include Aws::Structure
20747
22114
  end
@@ -20917,7 +22284,7 @@ module Aws::SageMaker
20917
22284
  # }
20918
22285
  #
20919
22286
  # @!attribute [rw] target_objective_metric_value
20920
- # The objective metric's value.
22287
+ # The value of the objective metric.
20921
22288
  # @return [Float]
20922
22289
  #
20923
22290
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -20989,10 +22356,12 @@ module Aws::SageMaker
20989
22356
  # tools for labeling job tasks.
20990
22357
  #
20991
22358
  # Use this parameter when you are creating a labeling job for 3D point
20992
- # cloud labeling modalities. Use your labeling job task type to select
20993
- # one of the following ARN's and use it with this parameter when you
20994
- # create a labeling job. Replace `aws-region` with the AWS region you
20995
- # are creating your labeling job in.
22359
+ # cloud and video fram labeling jobs. Use your labeling job task type
22360
+ # to select one of the following ARN's and use it with this parameter
22361
+ # when you create a labeling job. Replace `aws-region` with the AWS
22362
+ # region you are creating your labeling job in.
22363
+ #
22364
+ # **3D Point Cloud HumanTaskUiArns**
20996
22365
  #
20997
22366
  # Use this `HumanTaskUiArn` for 3D point cloud object detection and 3D
20998
22367
  # point cloud object detection adjustment labeling jobs.
@@ -21014,6 +22383,22 @@ module Aws::SageMaker
21014
22383
  # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation`
21015
22384
  #
21016
22385
  # ^
22386
+ #
22387
+ # **Video Frame HumanTaskUiArns**
22388
+ #
22389
+ # Use this `HumanTaskUiArn` for video frame object detection and video
22390
+ # frame object detection adjustment labeling jobs.
22391
+ #
22392
+ # * `arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection`
22393
+ #
22394
+ # ^
22395
+ #
22396
+ # Use this `HumanTaskUiArn` for video frame object tracking and video
22397
+ # frame object tracking adjustment labeling jobs.
22398
+ #
22399
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking`
22400
+ #
22401
+ # ^
21017
22402
  # @return [String]
21018
22403
  #
21019
22404
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UiConfig AWS API Documentation
@@ -21125,19 +22510,19 @@ module Aws::SageMaker
21125
22510
  # },
21126
22511
  # jupyter_server_app_settings: {
21127
22512
  # default_resource_spec: {
21128
- # sage_maker_image_arn: "SageMakerImageArn",
22513
+ # sage_maker_image_arn: "ImageArn",
21129
22514
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21130
22515
  # },
21131
22516
  # },
21132
22517
  # kernel_gateway_app_settings: {
21133
22518
  # default_resource_spec: {
21134
- # sage_maker_image_arn: "SageMakerImageArn",
22519
+ # sage_maker_image_arn: "ImageArn",
21135
22520
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21136
22521
  # },
21137
22522
  # },
21138
22523
  # tensor_board_app_settings: {
21139
22524
  # default_resource_spec: {
21140
- # sage_maker_image_arn: "SageMakerImageArn",
22525
+ # sage_maker_image_arn: "ImageArn",
21141
22526
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21142
22527
  # },
21143
22528
  # },
@@ -21812,19 +23197,19 @@ module Aws::SageMaker
21812
23197
  # },
21813
23198
  # jupyter_server_app_settings: {
21814
23199
  # default_resource_spec: {
21815
- # sage_maker_image_arn: "SageMakerImageArn",
23200
+ # sage_maker_image_arn: "ImageArn",
21816
23201
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21817
23202
  # },
21818
23203
  # },
21819
23204
  # kernel_gateway_app_settings: {
21820
23205
  # default_resource_spec: {
21821
- # sage_maker_image_arn: "SageMakerImageArn",
23206
+ # sage_maker_image_arn: "ImageArn",
21822
23207
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21823
23208
  # },
21824
23209
  # },
21825
23210
  # tensor_board_app_settings: {
21826
23211
  # default_resource_spec: {
21827
- # sage_maker_image_arn: "SageMakerImageArn",
23212
+ # sage_maker_image_arn: "ImageArn",
21828
23213
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21829
23214
  # },
21830
23215
  # },
@@ -21873,12 +23258,21 @@ module Aws::SageMaker
21873
23258
  # source_ip_config: {
21874
23259
  # cidrs: ["Cidr"], # required
21875
23260
  # },
23261
+ # oidc_config: {
23262
+ # client_id: "ClientId", # required
23263
+ # client_secret: "ClientSecret", # required
23264
+ # issuer: "OidcEndpoint", # required
23265
+ # authorization_endpoint: "OidcEndpoint", # required
23266
+ # token_endpoint: "OidcEndpoint", # required
23267
+ # user_info_endpoint: "OidcEndpoint", # required
23268
+ # logout_endpoint: "OidcEndpoint", # required
23269
+ # jwks_uri: "OidcEndpoint", # required
23270
+ # },
21876
23271
  # }
21877
23272
  #
21878
23273
  # @!attribute [rw] workforce_name
21879
- # The name of the private workforce whose access you want to restrict.
21880
- # `WorkforceName` is automatically set to `default` when a workforce
21881
- # is created and cannot be modified.
23274
+ # The name of the private workforce that you want to update. You can
23275
+ # find your workforce name by using the operation.
21882
23276
  # @return [String]
21883
23277
  #
21884
23278
  # @!attribute [rw] source_ip_config
@@ -21892,22 +23286,27 @@ module Aws::SageMaker
21892
23286
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
21893
23287
  # @return [Types::SourceIpConfig]
21894
23288
  #
23289
+ # @!attribute [rw] oidc_config
23290
+ # Use this parameter to update your OIDC Identity Provider (IdP)
23291
+ # configuration for a workforce made using your own IdP.
23292
+ # @return [Types::OidcConfig]
23293
+ #
21895
23294
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforceRequest AWS API Documentation
21896
23295
  #
21897
23296
  class UpdateWorkforceRequest < Struct.new(
21898
23297
  :workforce_name,
21899
- :source_ip_config)
23298
+ :source_ip_config,
23299
+ :oidc_config)
21900
23300
  SENSITIVE = []
21901
23301
  include Aws::Structure
21902
23302
  end
21903
23303
 
21904
23304
  # @!attribute [rw] workforce
21905
- # A single private workforce, which is automatically created when you
21906
- # create your first private work team. You can create one private work
21907
- # force in each AWS Region. By default, any workforce-related API
21908
- # operation used in a specific region will apply to the workforce
21909
- # created in that region. To learn how to create a private workforce,
21910
- # see [Create a Private Workforce][1].
23305
+ # A single private workforce. You can create one private work force in
23306
+ # each AWS Region. By default, any workforce-related API operation
23307
+ # used in a specific region will apply to the workforce created in
23308
+ # that region. To learn how to create a private workforce, see [Create
23309
+ # a Private Workforce][1].
21911
23310
  #
21912
23311
  #
21913
23312
  #
@@ -21932,7 +23331,10 @@ module Aws::SageMaker
21932
23331
  # cognito_member_definition: {
21933
23332
  # user_pool: "CognitoUserPool", # required
21934
23333
  # user_group: "CognitoUserGroup", # required
21935
- # client_id: "CognitoClientId", # required
23334
+ # client_id: "ClientId", # required
23335
+ # },
23336
+ # oidc_member_definition: {
23337
+ # groups: ["Group"], # required
21936
23338
  # },
21937
23339
  # },
21938
23340
  # ],
@@ -21947,8 +23349,35 @@ module Aws::SageMaker
21947
23349
  # @return [String]
21948
23350
  #
21949
23351
  # @!attribute [rw] member_definitions
21950
- # A list of `MemberDefinition` objects that contain the updated work
21951
- # team members.
23352
+ # A list of `MemberDefinition` objects that contains objects that
23353
+ # identify the workers that make up the work team.
23354
+ #
23355
+ # Workforces can be created using Amazon Cognito or your own OIDC
23356
+ # Identity Provider (IdP). For private workforces created using Amazon
23357
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23358
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23359
+ # You should not provide input for both of these parameters in a
23360
+ # single request.
23361
+ #
23362
+ # For workforces created using Amazon Cognito, private work teams
23363
+ # correspond to Amazon Cognito *user groups* within the user pool used
23364
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23365
+ # that make up the member definition must have the same `ClientId` and
23366
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23367
+ # worker pool, see [Adding groups to a User Pool](). For more
23368
+ # information about user pools, see [Amazon Cognito User Pools][1].
23369
+ #
23370
+ # For workforces created using your own OIDC IdP, specify the user
23371
+ # groups that you want to include in your private work team in
23372
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23373
+ # that user groups that are already in the work team must also be
23374
+ # listed in `Groups` when you make this request to remain on the work
23375
+ # team. If you do not include these user groups, they will no longer
23376
+ # be associated with the work team you update.
23377
+ #
23378
+ #
23379
+ #
23380
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
21952
23381
  # @return [Array<Types::MemberDefinition>]
21953
23382
  #
21954
23383
  # @!attribute [rw] description
@@ -22057,19 +23486,19 @@ module Aws::SageMaker
22057
23486
  # },
22058
23487
  # jupyter_server_app_settings: {
22059
23488
  # default_resource_spec: {
22060
- # sage_maker_image_arn: "SageMakerImageArn",
23489
+ # sage_maker_image_arn: "ImageArn",
22061
23490
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
22062
23491
  # },
22063
23492
  # },
22064
23493
  # kernel_gateway_app_settings: {
22065
23494
  # default_resource_spec: {
22066
- # sage_maker_image_arn: "SageMakerImageArn",
23495
+ # sage_maker_image_arn: "ImageArn",
22067
23496
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
22068
23497
  # },
22069
23498
  # },
22070
23499
  # tensor_board_app_settings: {
22071
23500
  # default_resource_spec: {
22072
- # sage_maker_image_arn: "SageMakerImageArn",
23501
+ # sage_maker_image_arn: "ImageArn",
22073
23502
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
22074
23503
  # },
22075
23504
  # },
@@ -22206,9 +23635,7 @@ module Aws::SageMaker
22206
23635
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
22207
23636
  #
22208
23637
  # @!attribute [rw] workforce_name
22209
- # The name of the private workforce whose access you want to restrict.
22210
- # `WorkforceName` is automatically set to `default` when a workforce
22211
- # is created and cannot be modified.
23638
+ # The name of the private workforce.
22212
23639
  # @return [String]
22213
23640
  #
22214
23641
  # @!attribute [rw] workforce_arn
@@ -22226,20 +23653,48 @@ module Aws::SageMaker
22226
23653
  #
22227
23654
  # @!attribute [rw] source_ip_config
22228
23655
  # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
22229
- # the workforce allow list.
23656
+ # the workforce allow list. By default, a workforce isn't restricted
23657
+ # to specific IP addresses.
22230
23658
  #
22231
23659
  #
22232
23660
  #
22233
23661
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
22234
23662
  # @return [Types::SourceIpConfig]
22235
23663
  #
23664
+ # @!attribute [rw] sub_domain
23665
+ # The subdomain for your OIDC Identity Provider.
23666
+ # @return [String]
23667
+ #
23668
+ # @!attribute [rw] cognito_config
23669
+ # The configuration of an Amazon Cognito workforce. A single Cognito
23670
+ # workforce is created using and corresponds to a single [ Amazon
23671
+ # Cognito user pool][1].
23672
+ #
23673
+ #
23674
+ #
23675
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23676
+ # @return [Types::CognitoConfig]
23677
+ #
23678
+ # @!attribute [rw] oidc_config
23679
+ # The configuration of an OIDC Identity Provider (IdP) private
23680
+ # workforce.
23681
+ # @return [Types::OidcConfigForResponse]
23682
+ #
23683
+ # @!attribute [rw] create_date
23684
+ # The date that the workforce is created.
23685
+ # @return [Time]
23686
+ #
22236
23687
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Workforce AWS API Documentation
22237
23688
  #
22238
23689
  class Workforce < Struct.new(
22239
23690
  :workforce_name,
22240
23691
  :workforce_arn,
22241
23692
  :last_updated_date,
22242
- :source_ip_config)
23693
+ :source_ip_config,
23694
+ :sub_domain,
23695
+ :cognito_config,
23696
+ :oidc_config,
23697
+ :create_date)
22243
23698
  SENSITIVE = []
22244
23699
  include Aws::Structure
22245
23700
  end
@@ -22251,13 +23706,23 @@ module Aws::SageMaker
22251
23706
  # @return [String]
22252
23707
  #
22253
23708
  # @!attribute [rw] member_definitions
22254
- # The Amazon Cognito user groups that make up the work team.
23709
+ # A list of `MemberDefinition` objects that contains objects that
23710
+ # identify the workers that make up the work team.
23711
+ #
23712
+ # Workforces can be created using Amazon Cognito or your own OIDC
23713
+ # Identity Provider (IdP). For private workforces created using Amazon
23714
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23715
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
22255
23716
  # @return [Array<Types::MemberDefinition>]
22256
23717
  #
22257
23718
  # @!attribute [rw] workteam_arn
22258
23719
  # The Amazon Resource Name (ARN) that identifies the work team.
22259
23720
  # @return [String]
22260
23721
  #
23722
+ # @!attribute [rw] workforce_arn
23723
+ # The Amazon Resource Name (ARN) of the workforce.
23724
+ # @return [String]
23725
+ #
22261
23726
  # @!attribute [rw] product_listing_ids
22262
23727
  # The Amazon Marketplace identifier for a vendor's work team.
22263
23728
  # @return [Array<String>]
@@ -22290,6 +23755,7 @@ module Aws::SageMaker
22290
23755
  :workteam_name,
22291
23756
  :member_definitions,
22292
23757
  :workteam_arn,
23758
+ :workforce_arn,
22293
23759
  :product_listing_ids,
22294
23760
  :description,
22295
23761
  :sub_domain,