aws-sdk-sagemaker 1.62.0 → 1.63.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 15eedc5a89d8933e1a00ba86a1ddd0b0226e08ad26fc63eebec870d1a5e7db5b
4
- data.tar.gz: 9b54d93c4388ac3be8d82ff8607911198d043f51d458b17bee8238277c7f6740
3
+ metadata.gz: e2b1b55954b73c45a95f8ac59903c73332621b75d324b782fa39efeafe385f87
4
+ data.tar.gz: 27b6289cf5d719587c4f30e5587a8dc57cafe665e5d43076c724ce8ed0e970ec
5
5
  SHA512:
6
- metadata.gz: 1eb77836dfa96aa280a38a8a28162909b694d335c0dd49d058e571ddb21415686bc03868de190852d329e5952a087ab8317bbb534c4d4563ca22d3e906fd723a
7
- data.tar.gz: 8fe2889d4f4b3bae3a50dd78b68b5aea9d796bcf56e87a787bc77cc1897b7177b2183765e3ef7a8c47dd9330a83a815ad7f6390f40e46351f4b0139c501070ae
6
+ metadata.gz: d0b3e7d6230e9e13e1a0fef46374c4879e919622c2618c3799151d06bf40ac7f70f3896febf8371b167ea20faab7c931786f4fbd01108817ec7b9b4e5d9b7fa2
7
+ data.tar.gz: 44e6169470b29bb76b5e5f5edb0e0822d89caa3101f2b70119bbbadd7f5ed8bc8b93a6627189c1104038dd0aa0a8d972af33e6457838bb82692791a253e913f7
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
48
48
  # @service
49
49
  module Aws::SageMaker
50
50
 
51
- GEM_VERSION = '1.62.0'
51
+ GEM_VERSION = '1.63.0'
52
52
 
53
53
  end
@@ -652,11 +652,10 @@ module Aws::SageMaker
652
652
  end
653
653
 
654
654
  # Creates a running App for the specified UserProfile. Supported Apps
655
- # are JupyterServer, KernelGateway, and TensorBoard. This operation is
656
- # automatically invoked by Amazon SageMaker Studio upon access to the
657
- # associated Domain, and when new kernel configurations are selected by
658
- # the user. A user may have multiple Apps active simultaneously.
659
- # UserProfiles are limited to 5 concurrently running Apps at a time.
655
+ # are JupyterServer and KernelGateway. This operation is automatically
656
+ # invoked by Amazon SageMaker Studio upon access to the associated
657
+ # Domain, and when new kernel configurations are selected by the user. A
658
+ # user may have multiple Apps active simultaneously.
660
659
  #
661
660
  # @option params [required, String] :domain_id
662
661
  # The domain ID.
@@ -1992,7 +1991,13 @@ module Aws::SageMaker
1992
1991
  # The S3 URL of the file that defines the categories used to label the
1993
1992
  # data objects.
1994
1993
  #
1995
- # The file is a JSON structure in the following format:
1994
+ # For 3D point cloud task types, see [Create a Labeling Category
1995
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
1996
+ #
1997
+ # For all other [built-in task types][2] and [custom tasks][3], your
1998
+ # label category configuration file must be a JSON file in the following
1999
+ # format. Identify the labels you want to use by replacing `label_1`,
2000
+ # `label_2`,`...`,`label_n` with your label categories.
1996
2001
  #
1997
2002
  # `\{`
1998
2003
  #
@@ -2002,13 +2007,13 @@ module Aws::SageMaker
2002
2007
  #
2003
2008
  # ` \{`
2004
2009
  #
2005
- # ` "label": "label 1"`
2010
+ # ` "label": "label_1"`
2006
2011
  #
2007
2012
  # ` \},`
2008
2013
  #
2009
2014
  # ` \{`
2010
2015
  #
2011
- # ` "label": "label 2"`
2016
+ # ` "label": "label_2"`
2012
2017
  #
2013
2018
  # ` \},`
2014
2019
  #
@@ -2016,7 +2021,7 @@ module Aws::SageMaker
2016
2021
  #
2017
2022
  # ` \{`
2018
2023
  #
2019
- # ` "label": "label n"`
2024
+ # ` "label": "label_n"`
2020
2025
  #
2021
2026
  # ` \}`
2022
2027
  #
@@ -2024,6 +2029,12 @@ module Aws::SageMaker
2024
2029
  #
2025
2030
  # `\}`
2026
2031
  #
2032
+ #
2033
+ #
2034
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
2035
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
2036
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
2037
+ #
2027
2038
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
2028
2039
  # A set of conditions for stopping the labeling job. If any of the
2029
2040
  # conditions are met, the job is automatically stopped. You can use
@@ -4168,6 +4179,33 @@ module Aws::SageMaker
4168
4179
  req.send_request(options)
4169
4180
  end
4170
4181
 
4182
+ # Use this operation to delete a worker task template (`HumanTaskUi`).
4183
+ #
4184
+ # To see a list of human task user interfaces (work task templates) in
4185
+ # your account, use . When you delete a worker task template, it no
4186
+ # longer appears when you call `ListHumanTaskUis`.
4187
+ #
4188
+ # @option params [required, String] :human_task_ui_name
4189
+ # The name of the human task user interface (work task template) you
4190
+ # want to delete.
4191
+ #
4192
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
4193
+ #
4194
+ # @example Request syntax with placeholder values
4195
+ #
4196
+ # resp = client.delete_human_task_ui({
4197
+ # human_task_ui_name: "HumanTaskUiName", # required
4198
+ # })
4199
+ #
4200
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUi AWS API Documentation
4201
+ #
4202
+ # @overload delete_human_task_ui(params = {})
4203
+ # @param [Hash] params ({})
4204
+ def delete_human_task_ui(params = {}, options = {})
4205
+ req = build_request(:delete_human_task_ui, params)
4206
+ req.send_request(options)
4207
+ end
4208
+
4171
4209
  # Deletes a model. The `DeleteModel` API deletes only the model entry
4172
4210
  # that was created in Amazon SageMaker when you called the CreateModel
4173
4211
  # API. It does not delete model artifacts, inference code, or the IAM
@@ -5143,15 +5181,18 @@ module Aws::SageMaker
5143
5181
  req.send_request(options)
5144
5182
  end
5145
5183
 
5146
- # Returns information about the requested human task user interface.
5184
+ # Returns information about the requested human task user interface
5185
+ # (worker task template).
5147
5186
  #
5148
5187
  # @option params [required, String] :human_task_ui_name
5149
- # The name of the human task user interface you want information about.
5188
+ # The name of the human task user interface (worker task template) you
5189
+ # want information about.
5150
5190
  #
5151
5191
  # @return [Types::DescribeHumanTaskUiResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5152
5192
  #
5153
5193
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_arn #human_task_ui_arn} => String
5154
5194
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_name #human_task_ui_name} => String
5195
+ # * {Types::DescribeHumanTaskUiResponse#human_task_ui_status #human_task_ui_status} => String
5155
5196
  # * {Types::DescribeHumanTaskUiResponse#creation_time #creation_time} => Time
5156
5197
  # * {Types::DescribeHumanTaskUiResponse#ui_template #ui_template} => Types::UiTemplateInfo
5157
5198
  #
@@ -5165,6 +5206,7 @@ module Aws::SageMaker
5165
5206
  #
5166
5207
  # resp.human_task_ui_arn #=> String
5167
5208
  # resp.human_task_ui_name #=> String
5209
+ # resp.human_task_ui_status #=> String, one of "Active", "Deleting"
5168
5210
  # resp.creation_time #=> Time
5169
5211
  # resp.ui_template.url #=> String
5170
5212
  # resp.ui_template.content_sha_256 #=> String
@@ -5181,7 +5223,7 @@ module Aws::SageMaker
5181
5223
  # Gets a description of a hyperparameter tuning job.
5182
5224
  #
5183
5225
  # @option params [required, String] :hyper_parameter_tuning_job_name
5184
- # The name of the tuning job to describe.
5226
+ # The name of the tuning job.
5185
5227
  #
5186
5228
  # @return [Types::DescribeHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5187
5229
  #
@@ -8917,6 +8959,9 @@ module Aws::SageMaker
8917
8959
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do not
8918
8960
  # provide a `HumanTaskUiArn` if you use the `UiTemplate` parameter.
8919
8961
  #
8962
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
8963
+ # UiConfig.
8964
+ #
8920
8965
  # @return [Types::RenderUiTemplateResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8921
8966
  #
8922
8967
  # * {Types::RenderUiTemplateResponse#rendered_content #rendered_content} => String
@@ -10397,7 +10442,7 @@ module Aws::SageMaker
10397
10442
 
10398
10443
  # Restricts access to tasks assigned to workers in the specified
10399
10444
  # workforce to those within specific ranges of IP addresses. You specify
10400
- # allowed IP addresses by creating a list of up to four [CIDRs][1].
10445
+ # allowed IP addresses by creating a list of up to ten [CIDRs][1].
10401
10446
  #
10402
10447
  # By default, a workforce isn't restricted to specific IP addresses. If
10403
10448
  # you specify a range of IP addresses, workers who attempt to access
@@ -10418,10 +10463,10 @@ module Aws::SageMaker
10418
10463
  # created and cannot be modified.
10419
10464
  #
10420
10465
  # @option params [Types::SourceIpConfig] :source_ip_config
10421
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
10422
- # be used to access tasks assigned to this workforce.
10466
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
10467
+ # used to access tasks assigned to this workforce.
10423
10468
  #
10424
- # Maximum: Four CIDR values
10469
+ # Maximum: Ten CIDR values
10425
10470
  #
10426
10471
  #
10427
10472
  #
@@ -10535,7 +10580,7 @@ module Aws::SageMaker
10535
10580
  params: params,
10536
10581
  config: config)
10537
10582
  context[:gem_name] = 'aws-sdk-sagemaker'
10538
- context[:gem_version] = '1.62.0'
10583
+ context[:gem_version] = '1.63.0'
10539
10584
  Seahorse::Client::Request.new(handlers, context)
10540
10585
  end
10541
10586
 
@@ -226,6 +226,8 @@ module Aws::SageMaker
226
226
  DeleteExperimentResponse = Shapes::StructureShape.new(name: 'DeleteExperimentResponse')
227
227
  DeleteFlowDefinitionRequest = Shapes::StructureShape.new(name: 'DeleteFlowDefinitionRequest')
228
228
  DeleteFlowDefinitionResponse = Shapes::StructureShape.new(name: 'DeleteFlowDefinitionResponse')
229
+ DeleteHumanTaskUiRequest = Shapes::StructureShape.new(name: 'DeleteHumanTaskUiRequest')
230
+ DeleteHumanTaskUiResponse = Shapes::StructureShape.new(name: 'DeleteHumanTaskUiResponse')
229
231
  DeleteModelInput = Shapes::StructureShape.new(name: 'DeleteModelInput')
230
232
  DeleteModelPackageInput = Shapes::StructureShape.new(name: 'DeleteModelPackageInput')
231
233
  DeleteMonitoringScheduleRequest = Shapes::StructureShape.new(name: 'DeleteMonitoringScheduleRequest')
@@ -390,6 +392,7 @@ module Aws::SageMaker
390
392
  HumanTaskConfig = Shapes::StructureShape.new(name: 'HumanTaskConfig')
391
393
  HumanTaskUiArn = Shapes::StringShape.new(name: 'HumanTaskUiArn')
392
394
  HumanTaskUiName = Shapes::StringShape.new(name: 'HumanTaskUiName')
395
+ HumanTaskUiStatus = Shapes::StringShape.new(name: 'HumanTaskUiStatus')
393
396
  HumanTaskUiSummaries = Shapes::ListShape.new(name: 'HumanTaskUiSummaries')
394
397
  HumanTaskUiSummary = Shapes::StructureShape.new(name: 'HumanTaskUiSummary')
395
398
  HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
@@ -1591,6 +1594,11 @@ module Aws::SageMaker
1591
1594
 
1592
1595
  DeleteFlowDefinitionResponse.struct_class = Types::DeleteFlowDefinitionResponse
1593
1596
 
1597
+ DeleteHumanTaskUiRequest.add_member(:human_task_ui_name, Shapes::ShapeRef.new(shape: HumanTaskUiName, required: true, location_name: "HumanTaskUiName"))
1598
+ DeleteHumanTaskUiRequest.struct_class = Types::DeleteHumanTaskUiRequest
1599
+
1600
+ DeleteHumanTaskUiResponse.struct_class = Types::DeleteHumanTaskUiResponse
1601
+
1594
1602
  DeleteModelInput.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
1595
1603
  DeleteModelInput.struct_class = Types::DeleteModelInput
1596
1604
 
@@ -1806,6 +1814,7 @@ module Aws::SageMaker
1806
1814
 
1807
1815
  DescribeHumanTaskUiResponse.add_member(:human_task_ui_arn, Shapes::ShapeRef.new(shape: HumanTaskUiArn, required: true, location_name: "HumanTaskUiArn"))
1808
1816
  DescribeHumanTaskUiResponse.add_member(:human_task_ui_name, Shapes::ShapeRef.new(shape: HumanTaskUiName, required: true, location_name: "HumanTaskUiName"))
1817
+ DescribeHumanTaskUiResponse.add_member(:human_task_ui_status, Shapes::ShapeRef.new(shape: HumanTaskUiStatus, location_name: "HumanTaskUiStatus"))
1809
1818
  DescribeHumanTaskUiResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
1810
1819
  DescribeHumanTaskUiResponse.add_member(:ui_template, Shapes::ShapeRef.new(shape: UiTemplateInfo, required: true, location_name: "UiTemplate"))
1811
1820
  DescribeHumanTaskUiResponse.struct_class = Types::DescribeHumanTaskUiResponse
@@ -4224,6 +4233,15 @@ module Aws::SageMaker
4224
4233
  o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
4225
4234
  end)
4226
4235
 
4236
+ api.add_operation(:delete_human_task_ui, Seahorse::Model::Operation.new.tap do |o|
4237
+ o.name = "DeleteHumanTaskUi"
4238
+ o.http_method = "POST"
4239
+ o.http_request_uri = "/"
4240
+ o.input = Shapes::ShapeRef.new(shape: DeleteHumanTaskUiRequest)
4241
+ o.output = Shapes::ShapeRef.new(shape: DeleteHumanTaskUiResponse)
4242
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
4243
+ end)
4244
+
4227
4245
  api.add_operation(:delete_model, Seahorse::Model::Operation.new.tap do |o|
4228
4246
  o.name = "DeleteModel"
4229
4247
  o.http_method = "POST"
@@ -475,7 +475,8 @@ module Aws::SageMaker
475
475
  include Aws::Structure
476
476
  end
477
477
 
478
- # Configures how labels are consolidated across human workers.
478
+ # Configures how labels are consolidated across human workers and
479
+ # processes output data.
479
480
  #
480
481
  # @note When making an API call, you may pass AnnotationConsolidationConfig
481
482
  # data as a hash:
@@ -486,11 +487,12 @@ module Aws::SageMaker
486
487
  #
487
488
  # @!attribute [rw] annotation_consolidation_lambda_arn
488
489
  # The Amazon Resource Name (ARN) of a Lambda function implements the
489
- # logic for annotation consolidation.
490
+ # logic for [annotation consolidation][1] and to process output data.
490
491
  #
491
- # For the built-in bounding box, image classification, semantic
492
- # segmentation, and text classification task types, Amazon SageMaker
493
- # Ground Truth provides the following Lambda functions:
492
+ # This parameter is required for all labeling jobs. For [built-in task
493
+ # types][2], use one of the following Amazon SageMaker Ground Truth
494
+ # Lambda function ARNs for `AnnotationConsolidationLambdaArn`. For
495
+ # custom labeling workflows, see [Post-annotation Lambda][3].
494
496
  #
495
497
  # **Bounding box** - Finds the most similar boxes from different
496
498
  # workers based on the Jaccard index of the boxes.
@@ -686,34 +688,128 @@ module Aws::SageMaker
686
688
  #
687
689
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
688
690
  #
689
- # **Bounding box verification** - Uses a variant of the Expectation
690
- # Maximization approach to estimate the true class of verification
691
- # judgement for bounding box labels based on annotations from
692
- # individual workers.
691
+ # **3D point cloud object detection** - Use this task type when you
692
+ # want workers to classify objects in a 3D point cloud by drawing 3D
693
+ # cuboids around objects. For example, you can use this task type to
694
+ # ask workers to identify different types of objects in a point cloud,
695
+ # such as cars, bikes, and pedestrians.
693
696
  #
694
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
697
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection`
695
698
  #
696
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
699
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection`
697
700
  #
698
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
701
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection`
699
702
  #
700
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
703
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection`
701
704
  #
702
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
705
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection`
703
706
  #
704
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
707
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection`
705
708
  #
706
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
709
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection`
707
710
  #
708
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
711
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection`
709
712
  #
710
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
713
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection`
711
714
  #
712
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
715
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection`
713
716
  #
714
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
717
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection`
715
718
  #
716
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
719
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection`
720
+ #
721
+ # **3D point cloud object tracking** - Use this task type when you
722
+ # want workers to draw 3D cuboids around objects that appear in a
723
+ # sequence of 3D point cloud frames. For example, you can use this
724
+ # task type to ask workers to track the movement of vehicles across
725
+ # multiple point cloud frames.
726
+ #
727
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking`
728
+ #
729
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking`
730
+ #
731
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking`
732
+ #
733
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking`
734
+ #
735
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking`
736
+ #
737
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking`
738
+ #
739
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking`
740
+ #
741
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking`
742
+ #
743
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking`
744
+ #
745
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking`
746
+ #
747
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking`
748
+ #
749
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking`
750
+ #
751
+ # **3D point cloud semantic segmentation** - Use this task type when
752
+ # you want workers to create a point-level semantic segmentation masks
753
+ # by painting objects in a 3D point cloud using different colors where
754
+ # each color is assigned to one of the classes you specify.
755
+ #
756
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation`
757
+ #
758
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation`
759
+ #
760
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation`
761
+ #
762
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation`
763
+ #
764
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation`
765
+ #
766
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation`
767
+ #
768
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation`
769
+ #
770
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation`
771
+ #
772
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation`
773
+ #
774
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation`
775
+ #
776
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation`
777
+ #
778
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation`
779
+ #
780
+ # **Use the following ARNs for Label Verification and Adjustment
781
+ # Jobs**
782
+ #
783
+ # Use label verification and adjustment jobs to review and adjust
784
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
785
+ #
786
+ # **Semantic segmentation adjustment** - Treats each pixel in an image
787
+ # as a multi-class classification and treats pixel adjusted
788
+ # annotations from workers as "votes" for the correct label.
789
+ #
790
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
791
+ #
792
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
793
+ #
794
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
795
+ #
796
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
797
+ #
798
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
799
+ #
800
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
801
+ #
802
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
803
+ #
804
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
805
+ #
806
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
807
+ #
808
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
809
+ #
810
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
811
+ #
812
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
717
813
  #
718
814
  # **Semantic segmentation verification** - Uses a variant of the
719
815
  # Expectation Maximization approach to estimate the true class of
@@ -744,6 +840,35 @@ module Aws::SageMaker
744
840
  #
745
841
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation`
746
842
  #
843
+ # **Bounding box verification** - Uses a variant of the Expectation
844
+ # Maximization approach to estimate the true class of verification
845
+ # judgement for bounding box labels based on annotations from
846
+ # individual workers.
847
+ #
848
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
849
+ #
850
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
851
+ #
852
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
853
+ #
854
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
855
+ #
856
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
857
+ #
858
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
859
+ #
860
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
861
+ #
862
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
863
+ #
864
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
865
+ #
866
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
867
+ #
868
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
869
+ #
870
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
871
+ #
747
872
  # **Bounding box adjustment** - Finds the most similar boxes from
748
873
  # different workers based on the Jaccard index of the adjusted
749
874
  # annotations.
@@ -772,39 +897,96 @@ module Aws::SageMaker
772
897
  #
773
898
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox`
774
899
  #
775
- # **Semantic segmentation adjustment** - Treats each pixel in an image
776
- # as a multi-class classification and treats pixel adjusted
777
- # annotations from workers as "votes" for the correct label.
900
+ # **3D point cloud object detection adjustment** - Use this task type
901
+ # when you want workers to adjust 3D cuboids around objects in a 3D
902
+ # point cloud.
778
903
  #
779
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
904
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
780
905
  #
781
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
906
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
782
907
  #
783
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
908
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
784
909
  #
785
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
910
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
786
911
  #
787
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
912
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
788
913
  #
789
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
914
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
790
915
  #
791
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
916
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
792
917
  #
793
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
918
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
794
919
  #
795
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
920
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
796
921
  #
797
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
922
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
798
923
  #
799
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
924
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
800
925
  #
801
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
926
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
927
+ #
928
+ # **3D point cloud object tracking adjustment** - Use this task type
929
+ # when you want workers to adjust 3D cuboids around objects that
930
+ # appear in a sequence of 3D point cloud frames.
931
+ #
932
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking`
933
+ #
934
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking`
935
+ #
936
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking`
937
+ #
938
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking`
939
+ #
940
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking`
941
+ #
942
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking`
943
+ #
944
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking`
945
+ #
946
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking`
947
+ #
948
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking`
949
+ #
950
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking`
951
+ #
952
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking`
953
+ #
954
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking`
955
+ #
956
+ # **3D point cloud semantic segmentation adjustment** - Use this task
957
+ # type when you want workers to adjust a point-level semantic
958
+ # segmentation masks using a paint tool.
959
+ #
960
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
961
+ #
962
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
963
+ #
964
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
965
+ #
966
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
967
+ #
968
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
969
+ #
970
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
971
+ #
972
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
973
+ #
974
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
975
+ #
976
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
977
+ #
978
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
802
979
  #
803
- # For more information, see [Annotation Consolidation][1].
980
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
981
+ #
982
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
804
983
  #
805
984
  #
806
985
  #
807
986
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
987
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
988
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda
989
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
808
990
  # @return [String]
809
991
  #
810
992
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AnnotationConsolidationConfig AWS API Documentation
@@ -3577,7 +3759,13 @@ module Aws::SageMaker
3577
3759
  # The S3 URL of the file that defines the categories used to label the
3578
3760
  # data objects.
3579
3761
  #
3580
- # The file is a JSON structure in the following format:
3762
+ # For 3D point cloud task types, see [Create a Labeling Category
3763
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
3764
+ #
3765
+ # For all other [built-in task types][2] and [custom tasks][3], your
3766
+ # label category configuration file must be a JSON file in the
3767
+ # following format. Identify the labels you want to use by replacing
3768
+ # `label_1`, `label_2`,`...`,`label_n` with your label categories.
3581
3769
  #
3582
3770
  # `\{`
3583
3771
  #
@@ -3587,13 +3775,13 @@ module Aws::SageMaker
3587
3775
  #
3588
3776
  # ` \{`
3589
3777
  #
3590
- # ` "label": "label 1"`
3778
+ # ` "label": "label_1"`
3591
3779
  #
3592
3780
  # ` \},`
3593
3781
  #
3594
3782
  # ` \{`
3595
3783
  #
3596
- # ` "label": "label 2"`
3784
+ # ` "label": "label_2"`
3597
3785
  #
3598
3786
  # ` \},`
3599
3787
  #
@@ -3601,13 +3789,19 @@ module Aws::SageMaker
3601
3789
  #
3602
3790
  # ` \{`
3603
3791
  #
3604
- # ` "label": "label n"`
3792
+ # ` "label": "label_n"`
3605
3793
  #
3606
3794
  # ` \}`
3607
3795
  #
3608
3796
  # ` ]`
3609
3797
  #
3610
3798
  # `\}`
3799
+ #
3800
+ #
3801
+ #
3802
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
3803
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
3804
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3611
3805
  # @return [String]
3612
3806
  #
3613
3807
  # @!attribute [rw] stopping_conditions
@@ -5977,6 +6171,30 @@ module Aws::SageMaker
5977
6171
  #
5978
6172
  class DeleteFlowDefinitionResponse < Aws::EmptyStructure; end
5979
6173
 
6174
+ # @note When making an API call, you may pass DeleteHumanTaskUiRequest
6175
+ # data as a hash:
6176
+ #
6177
+ # {
6178
+ # human_task_ui_name: "HumanTaskUiName", # required
6179
+ # }
6180
+ #
6181
+ # @!attribute [rw] human_task_ui_name
6182
+ # The name of the human task user interface (work task template) you
6183
+ # want to delete.
6184
+ # @return [String]
6185
+ #
6186
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiRequest AWS API Documentation
6187
+ #
6188
+ class DeleteHumanTaskUiRequest < Struct.new(
6189
+ :human_task_ui_name)
6190
+ SENSITIVE = []
6191
+ include Aws::Structure
6192
+ end
6193
+
6194
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiResponse AWS API Documentation
6195
+ #
6196
+ class DeleteHumanTaskUiResponse < Aws::EmptyStructure; end
6197
+
5980
6198
  # @note When making an API call, you may pass DeleteModelInput
5981
6199
  # data as a hash:
5982
6200
  #
@@ -7127,6 +7345,7 @@ module Aws::SageMaker
7127
7345
  # @return [String]
7128
7346
  #
7129
7347
  # @!attribute [rw] failure_reason
7348
+ # The reason your flow definition failed.
7130
7349
  # @return [String]
7131
7350
  #
7132
7351
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeFlowDefinitionResponse AWS API Documentation
@@ -7154,8 +7373,8 @@ module Aws::SageMaker
7154
7373
  # }
7155
7374
  #
7156
7375
  # @!attribute [rw] human_task_ui_name
7157
- # The name of the human task user interface you want information
7158
- # about.
7376
+ # The name of the human task user interface (worker task template) you
7377
+ # want information about.
7159
7378
  # @return [String]
7160
7379
  #
7161
7380
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHumanTaskUiRequest AWS API Documentation
@@ -7167,11 +7386,17 @@ module Aws::SageMaker
7167
7386
  end
7168
7387
 
7169
7388
  # @!attribute [rw] human_task_ui_arn
7170
- # The Amazon Resource Name (ARN) of the human task user interface.
7389
+ # The Amazon Resource Name (ARN) of the human task user interface
7390
+ # (worker task template).
7171
7391
  # @return [String]
7172
7392
  #
7173
7393
  # @!attribute [rw] human_task_ui_name
7174
- # The name of the human task user interface.
7394
+ # The name of the human task user interface (worker task template).
7395
+ # @return [String]
7396
+ #
7397
+ # @!attribute [rw] human_task_ui_status
7398
+ # The status of the human task user interface (worker task template).
7399
+ # Valid values are listed below.
7175
7400
  # @return [String]
7176
7401
  #
7177
7402
  # @!attribute [rw] creation_time
@@ -7187,6 +7412,7 @@ module Aws::SageMaker
7187
7412
  class DescribeHumanTaskUiResponse < Struct.new(
7188
7413
  :human_task_ui_arn,
7189
7414
  :human_task_ui_name,
7415
+ :human_task_ui_status,
7190
7416
  :creation_time,
7191
7417
  :ui_template)
7192
7418
  SENSITIVE = []
@@ -7201,7 +7427,7 @@ module Aws::SageMaker
7201
7427
  # }
7202
7428
  #
7203
7429
  # @!attribute [rw] hyper_parameter_tuning_job_name
7204
- # The name of the tuning job to describe.
7430
+ # The name of the tuning job.
7205
7431
  # @return [String]
7206
7432
  #
7207
7433
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobRequest AWS API Documentation
@@ -10213,9 +10439,10 @@ module Aws::SageMaker
10213
10439
  # before a data object is sent to a human worker. Use this function to
10214
10440
  # provide input to a custom labeling job.
10215
10441
  #
10216
- # For the built-in bounding box, image classification, semantic
10217
- # segmentation, and text classification task types, Amazon SageMaker
10218
- # Ground Truth provides the following Lambda functions:
10442
+ # For [built-in task types][1], use one of the following Amazon
10443
+ # SageMaker Ground Truth Lambda function ARNs for
10444
+ # `PreHumanTaskLambdaArn`. For custom labeling workflows, see
10445
+ # [Pre-annotation Lambda][2].
10219
10446
  #
10220
10447
  # **Bounding box** - Finds the most similar boxes from different
10221
10448
  # workers based on the Jaccard index of the boxes.
@@ -10411,34 +10638,134 @@ module Aws::SageMaker
10411
10638
  #
10412
10639
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
10413
10640
  #
10641
+ # **3D Point Cloud Modalities**
10642
+ #
10643
+ # Use the following pre-annotation lambdas for 3D point cloud labeling
10644
+ # modality tasks. See [3D Point Cloud Task types ][3] to learn more.
10645
+ #
10646
+ # **3D Point Cloud Object Detection** - Use this task type when you
10647
+ # want workers to classify objects in a 3D point cloud by drawing 3D
10648
+ # cuboids around objects. For example, you can use this task type to
10649
+ # ask workers to identify different types of objects in a point cloud,
10650
+ # such as cars, bikes, and pedestrians.
10651
+ #
10652
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
10653
+ #
10654
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection`
10655
+ #
10656
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection`
10657
+ #
10658
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection`
10659
+ #
10660
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection`
10661
+ #
10662
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection`
10663
+ #
10664
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection`
10665
+ #
10666
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection`
10667
+ #
10668
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection`
10669
+ #
10670
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection`
10671
+ #
10672
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection`
10673
+ #
10674
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection`
10675
+ #
10676
+ # **3D Point Cloud Object Tracking** - Use this task type when you
10677
+ # want workers to draw 3D cuboids around objects that appear in a
10678
+ # sequence of 3D point cloud frames. For example, you can use this
10679
+ # task type to ask workers to track the movement of vehicles across
10680
+ # multiple point cloud frames.
10681
+ #
10682
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking`
10683
+ #
10684
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking`
10685
+ #
10686
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking`
10687
+ #
10688
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking`
10689
+ #
10690
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking`
10691
+ #
10692
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking`
10693
+ #
10694
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking`
10695
+ #
10696
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking`
10697
+ #
10698
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking`
10699
+ #
10700
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking`
10701
+ #
10702
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking`
10703
+ #
10704
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking`
10705
+ #
10706
+ # **3D Point Cloud Semantic Segmentation** - Use this task type when
10707
+ # you want workers to create a point-level semantic segmentation masks
10708
+ # by painting objects in a 3D point cloud using different colors where
10709
+ # each color is assigned to one of the classes you specify.
10710
+ #
10711
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation`
10712
+ #
10713
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation`
10714
+ #
10715
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation`
10716
+ #
10717
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation`
10718
+ #
10719
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation`
10720
+ #
10721
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation`
10722
+ #
10723
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation`
10724
+ #
10725
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation`
10726
+ #
10727
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation`
10728
+ #
10729
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation`
10730
+ #
10731
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation`
10732
+ #
10733
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation`
10734
+ #
10735
+ # **Use the following ARNs for Label Verification and Adjustment
10736
+ # Jobs**
10737
+ #
10738
+ # Use label verification and adjustment jobs to review and adjust
10739
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
10740
+ #
10414
10741
  # **Bounding box verification** - Uses a variant of the Expectation
10415
10742
  # Maximization approach to estimate the true class of verification
10416
10743
  # judgement for bounding box labels based on annotations from
10417
10744
  # individual workers.
10418
10745
  #
10419
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox`
10746
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
10420
10747
  #
10421
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox`
10748
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
10422
10749
  #
10423
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox`
10750
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
10424
10751
  #
10425
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox`
10752
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
10426
10753
  #
10427
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox`
10754
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
10428
10755
  #
10429
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox`
10756
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
10430
10757
  #
10431
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox`
10758
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
10432
10759
  #
10433
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox`
10760
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
10434
10761
  #
10435
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox`
10762
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
10436
10763
  #
10437
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox`
10764
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
10438
10765
  #
10439
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox`
10766
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
10440
10767
  #
10441
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox`
10768
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
10442
10769
  #
10443
10770
  # **Bounding box adjustment** - Finds the most similar boxes from
10444
10771
  # different workers based on the Jaccard index of the adjusted
@@ -10524,6 +10851,94 @@ module Aws::SageMaker
10524
10851
  # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation`
10525
10852
  #
10526
10853
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
10854
+ #
10855
+ # **3D point cloud object detection adjustment** - Adjust 3D cuboids
10856
+ # in a point cloud frame.
10857
+ #
10858
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection`
10859
+ #
10860
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection`
10861
+ #
10862
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection`
10863
+ #
10864
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection`
10865
+ #
10866
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection`
10867
+ #
10868
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection`
10869
+ #
10870
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection`
10871
+ #
10872
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection`
10873
+ #
10874
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection`
10875
+ #
10876
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection`
10877
+ #
10878
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection`
10879
+ #
10880
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection`
10881
+ #
10882
+ # **3D point cloud object tracking adjustment** - Adjust 3D cuboids
10883
+ # across a sequence of point cloud frames.
10884
+ #
10885
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
10886
+ #
10887
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
10888
+ #
10889
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
10890
+ #
10891
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
10892
+ #
10893
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
10894
+ #
10895
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
10896
+ #
10897
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
10898
+ #
10899
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
10900
+ #
10901
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
10902
+ #
10903
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
10904
+ #
10905
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
10906
+ #
10907
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
10908
+ #
10909
+ # **3D point cloud semantic segmentation adjustment** - Adjust
10910
+ # semantic segmentation masks in a 3D point cloud.
10911
+ #
10912
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10913
+ #
10914
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10915
+ #
10916
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10917
+ #
10918
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10919
+ #
10920
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10921
+ #
10922
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10923
+ #
10924
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10925
+ #
10926
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10927
+ #
10928
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10929
+ #
10930
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10931
+ #
10932
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10933
+ #
10934
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10935
+ #
10936
+ #
10937
+ #
10938
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
10939
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda
10940
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html
10941
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
10527
10942
  # @return [String]
10528
10943
  #
10529
10944
  # @!attribute [rw] task_keywords
@@ -17422,6 +17837,9 @@ module Aws::SageMaker
17422
17837
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do
17423
17838
  # not provide a `HumanTaskUiArn` if you use the `UiTemplate`
17424
17839
  # parameter.
17840
+ #
17841
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
17842
+ # UiConfig.
17425
17843
  # @return [String]
17426
17844
  #
17427
17845
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RenderUiTemplateRequest AWS API Documentation
@@ -17782,29 +18200,34 @@ module Aws::SageMaker
17782
18200
  # either a key name prefix or a manifest. For example:
17783
18201
  #
17784
18202
  # * A key name prefix might look like this:
17785
- # `s3://bucketname/exampleprefix`.
18203
+ # `s3://bucketname/exampleprefix`
17786
18204
  #
17787
18205
  # * A manifest might look like this:
17788
18206
  # `s3://bucketname/example.manifest`
17789
18207
  #
17790
- # The manifest is an S3 object which is a JSON file with the
17791
- # following format:
18208
+ # A manifest is an S3 object which is a JSON file consisting of an
18209
+ # array of elements. The first element is a prefix which is followed
18210
+ # by one or more suffixes. SageMaker appends the suffix elements to
18211
+ # the prefix to get a full set of `S3Uri`. Note that the prefix must
18212
+ # be a valid non-empty `S3Uri` that precludes users from specifying
18213
+ # a manifest whose individual `S3Uri` is sourced from different S3
18214
+ # buckets.
17792
18215
  #
17793
- # The preceding JSON matches the following `s3Uris`\:
18216
+ # The following code example shows a valid manifest format:
17794
18217
  #
17795
18218
  # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
17796
18219
  #
17797
- # `"relative/path/to/custdata-1",`
18220
+ # ` "relative/path/to/custdata-1",`
17798
18221
  #
17799
- # `"relative/path/custdata-2",`
18222
+ # ` "relative/path/custdata-2",`
17800
18223
  #
17801
- # `...`
18224
+ # ` ...`
17802
18225
  #
17803
- # `"relative/path/custdata-N"`
18226
+ # ` "relative/path/custdata-N"`
17804
18227
  #
17805
18228
  # `]`
17806
18229
  #
17807
- # The preceding JSON matches the following `s3Uris`\:
18230
+ # This JSON is equivalent to the following `S3Uri` list:
17808
18231
  #
17809
18232
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
17810
18233
  #
@@ -17814,8 +18237,8 @@ module Aws::SageMaker
17814
18237
  #
17815
18238
  # `s3://customer_bucket/some/prefix/relative/path/custdata-N`
17816
18239
  #
17817
- # The complete set of `s3uris` in this manifest is the input data
17818
- # for the channel for this datasource. The object that each `s3uris`
18240
+ # The complete set of `S3Uri` in this manifest is the input data for
18241
+ # the channel for this data source. The object that each `S3Uri`
17819
18242
  # points to must be readable by the IAM role that Amazon SageMaker
17820
18243
  # uses to perform tasks on your behalf.
17821
18244
  # @return [String]
@@ -18432,10 +18855,10 @@ module Aws::SageMaker
18432
18855
  # }
18433
18856
  #
18434
18857
  # @!attribute [rw] cidrs
18435
- # A list of one to four [Classless Inter-Domain Routing][1] (CIDR)
18858
+ # A list of one to ten [Classless Inter-Domain Routing][1] (CIDR)
18436
18859
  # values.
18437
18860
  #
18438
- # Maximum: Four CIDR values
18861
+ # Maximum: Ten CIDR values
18439
18862
  #
18440
18863
  # <note markdown="1"> The following Length Constraints apply to individual CIDR values in
18441
18864
  # the CIDR value list.
@@ -18742,6 +19165,7 @@ module Aws::SageMaker
18742
19165
  # @return [String]
18743
19166
  #
18744
19167
  # @!attribute [rw] listing_id
19168
+ # Marketplace product listing ID.
18745
19169
  # @return [String]
18746
19170
  #
18747
19171
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SubscribedWorkteam AWS API Documentation
@@ -20562,8 +20986,34 @@ module Aws::SageMaker
20562
20986
  #
20563
20987
  # @!attribute [rw] human_task_ui_arn
20564
20988
  # The ARN of the worker task template used to render the worker UI and
20565
- # tools for labeling job tasks. Do not use this parameter if you use
20566
- # UiTemplateS3Uri.
20989
+ # tools for labeling job tasks.
20990
+ #
20991
+ # Use this parameter when you are creating a labeling job for 3D point
20992
+ # cloud labeling modalities. Use your labeling job task type to select
20993
+ # one of the following ARN's and use it with this parameter when you
20994
+ # create a labeling job. Replace `aws-region` with the AWS region you
20995
+ # are creating your labeling job in.
20996
+ #
20997
+ # Use this `HumanTaskUiArn` for 3D point cloud object detection and 3D
20998
+ # point cloud object detection adjustment labeling jobs.
20999
+ #
21000
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection`
21001
+ #
21002
+ # ^
21003
+ #
21004
+ # Use this `HumanTaskUiArn` for 3D point cloud object tracking and 3D
21005
+ # point cloud object tracking adjustment labeling jobs.
21006
+ #
21007
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking`
21008
+ #
21009
+ # ^
21010
+ #
21011
+ # Use this `HumanTaskUiArn` for 3D point cloud semantic segmentation
21012
+ # and 3D point cloud semantic segmentation adjustment labeling jobs.
21013
+ #
21014
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation`
21015
+ #
21016
+ # ^
20567
21017
  # @return [String]
20568
21018
  #
20569
21019
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UiConfig AWS API Documentation
@@ -21432,10 +21882,10 @@ module Aws::SageMaker
21432
21882
  # @return [String]
21433
21883
  #
21434
21884
  # @!attribute [rw] source_ip_config
21435
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
21885
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can
21436
21886
  # be used to access tasks assigned to this workforce.
21437
21887
  #
21438
- # Maximum: Four CIDR values
21888
+ # Maximum: Ten CIDR values
21439
21889
  #
21440
21890
  #
21441
21891
  #
@@ -21775,7 +22225,7 @@ module Aws::SageMaker
21775
22225
  # @return [Time]
21776
22226
  #
21777
22227
  # @!attribute [rw] source_ip_config
21778
- # A list of one to four IP address ranges ([CIDRs][1]) to be added to
22228
+ # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
21779
22229
  # the workforce allow list.
21780
22230
  #
21781
22231
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.62.0
4
+ version: 1.63.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-06-26 00:00:00.000000000 Z
11
+ date: 2020-07-09 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core