aws-sdk-sagemaker 1.61.0 → 1.66.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -475,7 +475,8 @@ module Aws::SageMaker
475
475
  include Aws::Structure
476
476
  end
477
477
 
478
- # Configures how labels are consolidated across human workers.
478
+ # Configures how labels are consolidated across human workers and
479
+ # processes output data.
479
480
  #
480
481
  # @note When making an API call, you may pass AnnotationConsolidationConfig
481
482
  # data as a hash:
@@ -486,11 +487,12 @@ module Aws::SageMaker
486
487
  #
487
488
  # @!attribute [rw] annotation_consolidation_lambda_arn
488
489
  # The Amazon Resource Name (ARN) of a Lambda function implements the
489
- # logic for annotation consolidation.
490
+ # logic for [annotation consolidation][1] and to process output data.
490
491
  #
491
- # For the built-in bounding box, image classification, semantic
492
- # segmentation, and text classification task types, Amazon SageMaker
493
- # Ground Truth provides the following Lambda functions:
492
+ # This parameter is required for all labeling jobs. For [built-in task
493
+ # types][2], use one of the following Amazon SageMaker Ground Truth
494
+ # Lambda function ARNs for `AnnotationConsolidationLambdaArn`. For
495
+ # custom labeling workflows, see [Post-annotation Lambda][3].
494
496
  #
495
497
  # **Bounding box** - Finds the most similar boxes from different
496
498
  # workers based on the Jaccard index of the boxes.
@@ -686,34 +688,244 @@ module Aws::SageMaker
686
688
  #
687
689
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
688
690
  #
689
- # **Bounding box verification** - Uses a variant of the Expectation
690
- # Maximization approach to estimate the true class of verification
691
- # judgement for bounding box labels based on annotations from
692
- # individual workers.
691
+ # **Named entity recognition** - Groups similar selections and
692
+ # calculates aggregate boundaries, resolving to most-assigned label.
693
693
  #
694
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
694
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition`
695
695
  #
696
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
696
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition`
697
697
  #
698
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
698
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition`
699
699
  #
700
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
700
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition`
701
701
  #
702
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
702
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition`
703
703
  #
704
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
704
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition`
705
705
  #
706
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
706
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition`
707
707
  #
708
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
708
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition`
709
709
  #
710
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
710
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition`
711
711
  #
712
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
712
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition`
713
713
  #
714
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
714
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition`
715
715
  #
716
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
716
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
717
+ #
718
+ # **Video Classification** - Use this task type when you need workers
719
+ # to classify videos using predefined labels that you specify. Workers
720
+ # are shown videos and are asked to choose one label for each video.
721
+ #
722
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass`
723
+ #
724
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass`
725
+ #
726
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass`
727
+ #
728
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass`
729
+ #
730
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass`
731
+ #
732
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass`
733
+ #
734
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass`
735
+ #
736
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass`
737
+ #
738
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass`
739
+ #
740
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass`
741
+ #
742
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass`
743
+ #
744
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass`
745
+ #
746
+ # **Video Frame Object Detection** - Use this task type to have
747
+ # workers identify and locate objects in a sequence of video frames
748
+ # (images extracted from a video) using bounding boxes. For example,
749
+ # you can use this task to ask workers to identify and localize
750
+ # various objects in a series of video frames, such as cars, bikes,
751
+ # and pedestrians.
752
+ #
753
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection`
754
+ #
755
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection`
756
+ #
757
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection`
758
+ #
759
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection`
760
+ #
761
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection`
762
+ #
763
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection`
764
+ #
765
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection`
766
+ #
767
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection`
768
+ #
769
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection`
770
+ #
771
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection`
772
+ #
773
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection`
774
+ #
775
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection`
776
+ #
777
+ # **Video Frame Object Tracking** - Use this task type to have workers
778
+ # track the movement of objects in a sequence of video frames (images
779
+ # extracted from a video) using bounding boxes. For example, you can
780
+ # use this task to ask workers to track the movement of objects, such
781
+ # as cars, bikes, and pedestrians.
782
+ #
783
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking`
784
+ #
785
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking`
786
+ #
787
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking`
788
+ #
789
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking`
790
+ #
791
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking`
792
+ #
793
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking`
794
+ #
795
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking`
796
+ #
797
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking`
798
+ #
799
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking`
800
+ #
801
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking`
802
+ #
803
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking`
804
+ #
805
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking`
806
+ #
807
+ # **3D point cloud object detection** - Use this task type when you
808
+ # want workers to classify objects in a 3D point cloud by drawing 3D
809
+ # cuboids around objects. For example, you can use this task type to
810
+ # ask workers to identify different types of objects in a point cloud,
811
+ # such as cars, bikes, and pedestrians.
812
+ #
813
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection`
814
+ #
815
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection`
816
+ #
817
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection`
818
+ #
819
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection`
820
+ #
821
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection`
822
+ #
823
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection`
824
+ #
825
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection`
826
+ #
827
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection`
828
+ #
829
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection`
830
+ #
831
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection`
832
+ #
833
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection`
834
+ #
835
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection`
836
+ #
837
+ # **3D point cloud object tracking** - Use this task type when you
838
+ # want workers to draw 3D cuboids around objects that appear in a
839
+ # sequence of 3D point cloud frames. For example, you can use this
840
+ # task type to ask workers to track the movement of vehicles across
841
+ # multiple point cloud frames.
842
+ #
843
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking`
844
+ #
845
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking`
846
+ #
847
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking`
848
+ #
849
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking`
850
+ #
851
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking`
852
+ #
853
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking`
854
+ #
855
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking`
856
+ #
857
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking`
858
+ #
859
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking`
860
+ #
861
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking`
862
+ #
863
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking`
864
+ #
865
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking`
866
+ #
867
+ # **3D point cloud semantic segmentation** - Use this task type when
868
+ # you want workers to create a point-level semantic segmentation masks
869
+ # by painting objects in a 3D point cloud using different colors where
870
+ # each color is assigned to one of the classes you specify.
871
+ #
872
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation`
873
+ #
874
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation`
875
+ #
876
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation`
877
+ #
878
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation`
879
+ #
880
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation`
881
+ #
882
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation`
883
+ #
884
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation`
885
+ #
886
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation`
887
+ #
888
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation`
889
+ #
890
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation`
891
+ #
892
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation`
893
+ #
894
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation`
895
+ #
896
+ # **Use the following ARNs for Label Verification and Adjustment
897
+ # Jobs**
898
+ #
899
+ # Use label verification and adjustment jobs to review and adjust
900
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
901
+ #
902
+ # **Semantic segmentation adjustment** - Treats each pixel in an image
903
+ # as a multi-class classification and treats pixel adjusted
904
+ # annotations from workers as "votes" for the correct label.
905
+ #
906
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
907
+ #
908
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
909
+ #
910
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
911
+ #
912
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
913
+ #
914
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
915
+ #
916
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
917
+ #
918
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
919
+ #
920
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
921
+ #
922
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
923
+ #
924
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
925
+ #
926
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
927
+ #
928
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
717
929
  #
718
930
  # **Semantic segmentation verification** - Uses a variant of the
719
931
  # Expectation Maximization approach to estimate the true class of
@@ -744,6 +956,35 @@ module Aws::SageMaker
744
956
  #
745
957
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation`
746
958
  #
959
+ # **Bounding box verification** - Uses a variant of the Expectation
960
+ # Maximization approach to estimate the true class of verification
961
+ # judgement for bounding box labels based on annotations from
962
+ # individual workers.
963
+ #
964
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
965
+ #
966
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
967
+ #
968
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
969
+ #
970
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
971
+ #
972
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
973
+ #
974
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
975
+ #
976
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
977
+ #
978
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
979
+ #
980
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
981
+ #
982
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
983
+ #
984
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
985
+ #
986
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
987
+ #
747
988
  # **Bounding box adjustment** - Finds the most similar boxes from
748
989
  # different workers based on the Jaccard index of the adjusted
749
990
  # annotations.
@@ -772,39 +1013,154 @@ module Aws::SageMaker
772
1013
  #
773
1014
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox`
774
1015
  #
775
- # **Semantic segmentation adjustment** - Treats each pixel in an image
776
- # as a multi-class classification and treats pixel adjusted
777
- # annotations from workers as "votes" for the correct label.
1016
+ # **Video Frame Object Detection Adjustment** - Use this task type
1017
+ # when you want workers to adjust bounding boxes that workers have
1018
+ # added to video frames to classify and localize objects in a sequence
1019
+ # of video frames.
778
1020
  #
779
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
1021
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection`
780
1022
  #
781
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
1023
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection`
782
1024
  #
783
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
1025
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection`
784
1026
  #
785
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
1027
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection`
786
1028
  #
787
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
1029
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection`
788
1030
  #
789
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
1031
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection`
790
1032
  #
791
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
1033
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection`
792
1034
  #
793
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
1035
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection`
794
1036
  #
795
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
1037
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection`
796
1038
  #
797
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
1039
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection`
798
1040
  #
799
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
1041
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection`
800
1042
  #
801
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
1043
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection`
1044
+ #
1045
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
1046
+ # you want workers to adjust bounding boxes that workers have added to
1047
+ # video frames to track object movement across a sequence of video
1048
+ # frames.
1049
+ #
1050
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking`
1051
+ #
1052
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking`
1053
+ #
1054
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking`
1055
+ #
1056
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking`
1057
+ #
1058
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking`
1059
+ #
1060
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking`
1061
+ #
1062
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking`
1063
+ #
1064
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking`
1065
+ #
1066
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking`
1067
+ #
1068
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking`
1069
+ #
1070
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking`
1071
+ #
1072
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking`
1073
+ #
1074
+ # **3D point cloud object detection adjustment** - Use this task type
1075
+ # when you want workers to adjust 3D cuboids around objects in a 3D
1076
+ # point cloud.
1077
+ #
1078
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1079
+ #
1080
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1081
+ #
1082
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
802
1083
  #
803
- # For more information, see [Annotation Consolidation][1].
1084
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1085
+ #
1086
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1087
+ #
1088
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1089
+ #
1090
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1091
+ #
1092
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1093
+ #
1094
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1095
+ #
1096
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1097
+ #
1098
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1099
+ #
1100
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1101
+ #
1102
+ # **3D point cloud object tracking adjustment** - Use this task type
1103
+ # when you want workers to adjust 3D cuboids around objects that
1104
+ # appear in a sequence of 3D point cloud frames.
1105
+ #
1106
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking`
1107
+ #
1108
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking`
1109
+ #
1110
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking`
1111
+ #
1112
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking`
1113
+ #
1114
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking`
1115
+ #
1116
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking`
1117
+ #
1118
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking`
1119
+ #
1120
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking`
1121
+ #
1122
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking`
1123
+ #
1124
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking`
1125
+ #
1126
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking`
1127
+ #
1128
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking`
1129
+ #
1130
+ # **3D point cloud semantic segmentation adjustment** - Use this task
1131
+ # type when you want workers to adjust a point-level semantic
1132
+ # segmentation masks using a paint tool.
1133
+ #
1134
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1135
+ #
1136
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1137
+ #
1138
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1139
+ #
1140
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1141
+ #
1142
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1143
+ #
1144
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1145
+ #
1146
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1147
+ #
1148
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1149
+ #
1150
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1151
+ #
1152
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1153
+ #
1154
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1155
+ #
1156
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
804
1157
  #
805
1158
  #
806
1159
  #
807
1160
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
1161
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
1162
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda
1163
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
808
1164
  # @return [String]
809
1165
  #
810
1166
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AnnotationConsolidationConfig AWS API Documentation
@@ -929,7 +1285,7 @@ module Aws::SageMaker
929
1285
  include Aws::Structure
930
1286
  end
931
1287
 
932
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
933
1289
  # candidate has futher details about the steps involed, and the status.
934
1290
  #
935
1291
  # @!attribute [rw] candidate_name
@@ -937,7 +1293,7 @@ module Aws::SageMaker
937
1293
  # @return [String]
938
1294
  #
939
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
940
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
941
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
942
1298
  #
943
1299
  # @!attribute [rw] objective_status
@@ -1084,7 +1440,7 @@ module Aws::SageMaker
1084
1440
  include Aws::Structure
1085
1441
  end
1086
1442
 
1087
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1088
1444
  #
1089
1445
  # @note When making an API call, you may pass AutoMLDataSource
1090
1446
  # data as a hash:
@@ -1207,17 +1563,91 @@ module Aws::SageMaker
1207
1563
  include Aws::Structure
1208
1564
  end
1209
1565
 
1210
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1211
1567
  #
1212
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1213
1569
  # data as a hash:
1214
1570
  #
1215
1571
  # {
1216
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1217
1573
  # }
1218
1574
  #
1219
1575
  # @!attribute [rw] metric_name
1220
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1221
1651
  # @return [String]
1222
1652
  #
1223
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1251,7 +1681,7 @@ module Aws::SageMaker
1251
1681
  # @return [Time]
1252
1682
  #
1253
1683
  # @!attribute [rw] end_time
1254
- # The end time.
1684
+ # The end time of an AutoML job.
1255
1685
  # @return [Time]
1256
1686
  #
1257
1687
  # @!attribute [rw] last_modified_time
@@ -1259,7 +1689,7 @@ module Aws::SageMaker
1259
1689
  # @return [Time]
1260
1690
  #
1261
1691
  # @!attribute [rw] failure_reason
1262
- # The failure reason.
1692
+ # The failure reason of a job.
1263
1693
  # @return [String]
1264
1694
  #
1265
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -1694,6 +2124,47 @@ module Aws::SageMaker
1694
2124
  include Aws::Structure
1695
2125
  end
1696
2126
 
2127
+ # Use this parameter to configure your Amazon Cognito workforce. A
2128
+ # single Cognito workforce is created using and corresponds to a single
2129
+ # [ Amazon Cognito user pool][1].
2130
+ #
2131
+ #
2132
+ #
2133
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2134
+ #
2135
+ # @note When making an API call, you may pass CognitoConfig
2136
+ # data as a hash:
2137
+ #
2138
+ # {
2139
+ # user_pool: "CognitoUserPool", # required
2140
+ # client_id: "ClientId", # required
2141
+ # }
2142
+ #
2143
+ # @!attribute [rw] user_pool
2144
+ # A [ user pool][1] is a user directory in Amazon Cognito. With a user
2145
+ # pool, your users can sign in to your web or mobile app through
2146
+ # Amazon Cognito. Your users can also sign in through social identity
2147
+ # providers like Google, Facebook, Amazon, or Apple, and through SAML
2148
+ # identity providers.
2149
+ #
2150
+ #
2151
+ #
2152
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2153
+ # @return [String]
2154
+ #
2155
+ # @!attribute [rw] client_id
2156
+ # The client ID for your Amazon Cognito user pool.
2157
+ # @return [String]
2158
+ #
2159
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CognitoConfig AWS API Documentation
2160
+ #
2161
+ class CognitoConfig < Struct.new(
2162
+ :user_pool,
2163
+ :client_id)
2164
+ SENSITIVE = []
2165
+ include Aws::Structure
2166
+ end
2167
+
1697
2168
  # Identifies a Amazon Cognito user group. A user group can be used in on
1698
2169
  # or more work teams.
1699
2170
  #
@@ -1703,7 +2174,7 @@ module Aws::SageMaker
1703
2174
  # {
1704
2175
  # user_pool: "CognitoUserPool", # required
1705
2176
  # user_group: "CognitoUserGroup", # required
1706
- # client_id: "CognitoClientId", # required
2177
+ # client_id: "ClientId", # required
1707
2178
  # }
1708
2179
  #
1709
2180
  # @!attribute [rw] user_pool
@@ -1785,8 +2256,23 @@ module Aws::SageMaker
1785
2256
  # @return [Time]
1786
2257
  #
1787
2258
  # @!attribute [rw] compilation_target_device
1788
- # The type of device that the model will run on after compilation has
1789
- # completed.
2259
+ # The type of device that the model will run on after the compilation
2260
+ # job has completed.
2261
+ # @return [String]
2262
+ #
2263
+ # @!attribute [rw] compilation_target_platform_os
2264
+ # The type of OS that the model will run on after the compilation job
2265
+ # has completed.
2266
+ # @return [String]
2267
+ #
2268
+ # @!attribute [rw] compilation_target_platform_arch
2269
+ # The type of architecture that the model will run on after the
2270
+ # compilation job has completed.
2271
+ # @return [String]
2272
+ #
2273
+ # @!attribute [rw] compilation_target_platform_accelerator
2274
+ # The type of accelerator that the model will run on after the
2275
+ # compilation job has completed.
1790
2276
  # @return [String]
1791
2277
  #
1792
2278
  # @!attribute [rw] last_modified_time
@@ -1806,6 +2292,9 @@ module Aws::SageMaker
1806
2292
  :compilation_start_time,
1807
2293
  :compilation_end_time,
1808
2294
  :compilation_target_device,
2295
+ :compilation_target_platform_os,
2296
+ :compilation_target_platform_arch,
2297
+ :compilation_target_platform_accelerator,
1809
2298
  :last_modified_time,
1810
2299
  :compilation_job_status)
1811
2300
  SENSITIVE = []
@@ -1833,7 +2322,10 @@ module Aws::SageMaker
1833
2322
  #
1834
2323
  # {
1835
2324
  # container_hostname: "ContainerHostname",
1836
- # image: "Image",
2325
+ # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
1837
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
1838
2330
  # model_data_url: "Url",
1839
2331
  # environment: {
@@ -1877,6 +2369,18 @@ module Aws::SageMaker
1877
2369
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
1878
2370
  # @return [String]
1879
2371
  #
2372
+ # @!attribute [rw] image_config
2373
+ # Specifies whether the model container is in Amazon ECR or a private
2374
+ # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
+ # information about storing containers in a private Docker registry,
2376
+ # see [Use a Private Docker Registry for Real-Time Inference
2377
+ # Containers][1]
2378
+ #
2379
+ #
2380
+ #
2381
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2382
+ # @return [Types::ImageConfig]
2383
+ #
1880
2384
  # @!attribute [rw] mode
1881
2385
  # Whether the container hosts a single model or multiple models.
1882
2386
  # @return [String]
@@ -1923,6 +2427,7 @@ module Aws::SageMaker
1923
2427
  class ContainerDefinition < Struct.new(
1924
2428
  :container_hostname,
1925
2429
  :image,
2430
+ :image_config,
1926
2431
  :mode,
1927
2432
  :model_data_url,
1928
2433
  :environment,
@@ -2040,7 +2545,7 @@ module Aws::SageMaker
2040
2545
  # algorithm_name: "EntityName", # required
2041
2546
  # algorithm_description: "EntityDescription",
2042
2547
  # training_specification: { # required
2043
- # training_image: "Image", # required
2548
+ # training_image: "ContainerImage", # required
2044
2549
  # training_image_digest: "ImageDigest",
2045
2550
  # supported_hyper_parameters: [
2046
2551
  # {
@@ -2094,7 +2599,7 @@ module Aws::SageMaker
2094
2599
  # containers: [ # required
2095
2600
  # {
2096
2601
  # container_hostname: "ContainerHostname",
2097
- # image: "Image", # required
2602
+ # image: "ContainerImage", # required
2098
2603
  # image_digest: "ImageDigest",
2099
2604
  # model_data_url: "Url",
2100
2605
  # product_id: "ProductId",
@@ -2289,7 +2794,7 @@ module Aws::SageMaker
2289
2794
  # },
2290
2795
  # ],
2291
2796
  # resource_spec: {
2292
- # sage_maker_image_arn: "SageMakerImageArn",
2797
+ # sage_maker_image_arn: "ImageArn",
2293
2798
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2294
2799
  # },
2295
2800
  # }
@@ -2368,7 +2873,7 @@ module Aws::SageMaker
2368
2873
  # },
2369
2874
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2370
2875
  # auto_ml_job_objective: {
2371
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2876
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2372
2877
  # },
2373
2878
  # auto_ml_job_config: {
2374
2879
  # completion_criteria: {
@@ -2396,7 +2901,7 @@ module Aws::SageMaker
2396
2901
  # }
2397
2902
  #
2398
2903
  # @!attribute [rw] auto_ml_job_name
2399
- # Identifies an AutoPilot job. Must be unique to your account and is
2904
+ # Identifies an Autopilot job. Must be unique to your account and is
2400
2905
  # case-insensitive.
2401
2906
  # @return [String]
2402
2907
  #
@@ -2417,9 +2922,11 @@ module Aws::SageMaker
2417
2922
  # @return [String]
2418
2923
  #
2419
2924
  # @!attribute [rw] auto_ml_job_objective
2420
- # Defines the job's objective. You provide a MetricName and AutoML
2421
- # will infer minimize or maximize. If this is not provided, the most
2422
- # commonly used ObjectiveMetric for problem type will be selected.
2925
+ # Defines the objective of a an AutoML job. You provide a
2926
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2927
+ # minimize or maximize it. If a metric is not specified, the most
2928
+ # commonly used ObjectiveMetric for problem type is automaically
2929
+ # selected.
2423
2930
  # @return [Types::AutoMLJobObjective]
2424
2931
  #
2425
2932
  # @!attribute [rw] auto_ml_job_config
@@ -2427,13 +2934,13 @@ module Aws::SageMaker
2427
2934
  # @return [Types::AutoMLJobConfig]
2428
2935
  #
2429
2936
  # @!attribute [rw] role_arn
2430
- # The ARN of the role that will be used to access the data.
2937
+ # The ARN of the role that is used to access the data.
2431
2938
  # @return [String]
2432
2939
  #
2433
2940
  # @!attribute [rw] generate_candidate_definitions_only
2434
- # This will generate possible candidates without training a model. A
2435
- # candidate is a combination of data preprocessors, algorithms, and
2436
- # algorithm parameter settings.
2941
+ # Generates possible candidates without training a model. A candidate
2942
+ # is a combination of data preprocessors, algorithms, and algorithm
2943
+ # parameter settings.
2437
2944
  # @return [Boolean]
2438
2945
  #
2439
2946
  # @!attribute [rw] tags
@@ -2526,7 +3033,13 @@ module Aws::SageMaker
2526
3033
  # },
2527
3034
  # output_config: { # required
2528
3035
  # s3_output_location: "S3Uri", # required
2529
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
3036
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
3037
+ # target_platform: {
3038
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
3039
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
3040
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
3041
+ # },
3042
+ # compiler_options: "CompilerOptions",
2530
3043
  # },
2531
3044
  # stopping_condition: { # required
2532
3045
  # max_runtime_in_seconds: 1,
@@ -2627,19 +3140,19 @@ module Aws::SageMaker
2627
3140
  # },
2628
3141
  # jupyter_server_app_settings: {
2629
3142
  # default_resource_spec: {
2630
- # sage_maker_image_arn: "SageMakerImageArn",
3143
+ # sage_maker_image_arn: "ImageArn",
2631
3144
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2632
3145
  # },
2633
3146
  # },
2634
3147
  # kernel_gateway_app_settings: {
2635
3148
  # default_resource_spec: {
2636
- # sage_maker_image_arn: "SageMakerImageArn",
3149
+ # sage_maker_image_arn: "ImageArn",
2637
3150
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2638
3151
  # },
2639
3152
  # },
2640
3153
  # tensor_board_app_settings: {
2641
3154
  # default_resource_spec: {
2642
- # sage_maker_image_arn: "SageMakerImageArn",
3155
+ # sage_maker_image_arn: "ImageArn",
2643
3156
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2644
3157
  # },
2645
3158
  # },
@@ -3482,7 +3995,7 @@ module Aws::SageMaker
3482
3995
  # label_attribute_name: "LabelAttributeName", # required
3483
3996
  # input_config: { # required
3484
3997
  # data_source: { # required
3485
- # s3_data_source: { # required
3998
+ # s3_data_source: {
3486
3999
  # manifest_s3_uri: "S3Uri", # required
3487
4000
  # },
3488
4001
  # },
@@ -3577,7 +4090,13 @@ module Aws::SageMaker
3577
4090
  # The S3 URL of the file that defines the categories used to label the
3578
4091
  # data objects.
3579
4092
  #
3580
- # The file is a JSON structure in the following format:
4093
+ # For 3D point cloud task types, see [Create a Labeling Category
4094
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
4095
+ #
4096
+ # For all other [built-in task types][2] and [custom tasks][3], your
4097
+ # label category configuration file must be a JSON file in the
4098
+ # following format. Identify the labels you want to use by replacing
4099
+ # `label_1`, `label_2`,`...`,`label_n` with your label categories.
3581
4100
  #
3582
4101
  # `\{`
3583
4102
  #
@@ -3587,13 +4106,13 @@ module Aws::SageMaker
3587
4106
  #
3588
4107
  # ` \{`
3589
4108
  #
3590
- # ` "label": "label 1"`
4109
+ # ` "label": "label_1"`
3591
4110
  #
3592
4111
  # ` \},`
3593
4112
  #
3594
4113
  # ` \{`
3595
4114
  #
3596
- # ` "label": "label 2"`
4115
+ # ` "label": "label_2"`
3597
4116
  #
3598
4117
  # ` \},`
3599
4118
  #
@@ -3601,13 +4120,19 @@ module Aws::SageMaker
3601
4120
  #
3602
4121
  # ` \{`
3603
4122
  #
3604
- # ` "label": "label n"`
4123
+ # ` "label": "label_n"`
3605
4124
  #
3606
4125
  # ` \}`
3607
4126
  #
3608
4127
  # ` ]`
3609
4128
  #
3610
4129
  # `\}`
4130
+ #
4131
+ #
4132
+ #
4133
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
4134
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
4135
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3611
4136
  # @return [String]
3612
4137
  #
3613
4138
  # @!attribute [rw] stopping_conditions
@@ -3674,7 +4199,10 @@ module Aws::SageMaker
3674
4199
  # model_name: "ModelName", # required
3675
4200
  # primary_container: {
3676
4201
  # container_hostname: "ContainerHostname",
3677
- # image: "Image",
4202
+ # image: "ContainerImage",
4203
+ # image_config: {
4204
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4205
+ # },
3678
4206
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3679
4207
  # model_data_url: "Url",
3680
4208
  # environment: {
@@ -3685,7 +4213,10 @@ module Aws::SageMaker
3685
4213
  # containers: [
3686
4214
  # {
3687
4215
  # container_hostname: "ContainerHostname",
3688
- # image: "Image",
4216
+ # image: "ContainerImage",
4217
+ # image_config: {
4218
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4219
+ # },
3689
4220
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3690
4221
  # model_data_url: "Url",
3691
4222
  # environment: {
@@ -3804,7 +4335,7 @@ module Aws::SageMaker
3804
4335
  # containers: [ # required
3805
4336
  # {
3806
4337
  # container_hostname: "ContainerHostname",
3807
- # image: "Image", # required
4338
+ # image: "ContainerImage", # required
3808
4339
  # image_digest: "ImageDigest",
3809
4340
  # model_data_url: "Url",
3810
4341
  # product_id: "ProductId",
@@ -4501,7 +5032,14 @@ module Aws::SageMaker
4501
5032
  # @return [Array<Types::Tag>]
4502
5033
  #
4503
5034
  # @!attribute [rw] experiment_config
4504
- # Configuration for the experiment.
5035
+ # Associates a SageMaker job as a trial component with an experiment
5036
+ # and trial. Specified when you call the following APIs:
5037
+ #
5038
+ # * CreateProcessingJob
5039
+ #
5040
+ # * CreateTrainingJob
5041
+ #
5042
+ # * CreateTransformJob
4505
5043
  # @return [Types::ExperimentConfig]
4506
5044
  #
4507
5045
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateProcessingJobRequest AWS API Documentation
@@ -4833,7 +5371,14 @@ module Aws::SageMaker
4833
5371
  # @return [Types::TensorBoardOutputConfig]
4834
5372
  #
4835
5373
  # @!attribute [rw] experiment_config
4836
- # Configuration for the experiment.
5374
+ # Associates a SageMaker job as a trial component with an experiment
5375
+ # and trial. Specified when you call the following APIs:
5376
+ #
5377
+ # * CreateProcessingJob
5378
+ #
5379
+ # * CreateTrainingJob
5380
+ #
5381
+ # * CreateTransformJob
4837
5382
  # @return [Types::ExperimentConfig]
4838
5383
  #
4839
5384
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
@@ -4880,6 +5425,10 @@ module Aws::SageMaker
4880
5425
  # transform_job_name: "TransformJobName", # required
4881
5426
  # model_name: "ModelName", # required
4882
5427
  # max_concurrent_transforms: 1,
5428
+ # model_client_config: {
5429
+ # invocations_timeout_in_seconds: 1,
5430
+ # invocations_max_retries: 1,
5431
+ # },
4883
5432
  # max_payload_in_mb: 1,
4884
5433
  # batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
4885
5434
  # environment: {
@@ -4951,6 +5500,11 @@ module Aws::SageMaker
4951
5500
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests
4952
5501
  # @return [Integer]
4953
5502
  #
5503
+ # @!attribute [rw] model_client_config
5504
+ # Configures the timeout and maximum number of retries for processing
5505
+ # a transform job invocation.
5506
+ # @return [Types::ModelClientConfig]
5507
+ #
4954
5508
  # @!attribute [rw] max_payload_in_mb
4955
5509
  # The maximum allowed size of the payload, in MB. A *payload* is the
4956
5510
  # data portion of a record (without metadata). The value in
@@ -5029,7 +5583,14 @@ module Aws::SageMaker
5029
5583
  # @return [Array<Types::Tag>]
5030
5584
  #
5031
5585
  # @!attribute [rw] experiment_config
5032
- # Configuration for the experiment.
5586
+ # Associates a SageMaker job as a trial component with an experiment
5587
+ # and trial. Specified when you call the following APIs:
5588
+ #
5589
+ # * CreateProcessingJob
5590
+ #
5591
+ # * CreateTrainingJob
5592
+ #
5593
+ # * CreateTransformJob
5033
5594
  # @return [Types::ExperimentConfig]
5034
5595
  #
5035
5596
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTransformJobRequest AWS API Documentation
@@ -5038,6 +5599,7 @@ module Aws::SageMaker
5038
5599
  :transform_job_name,
5039
5600
  :model_name,
5040
5601
  :max_concurrent_transforms,
5602
+ :model_client_config,
5041
5603
  :max_payload_in_mb,
5042
5604
  :batch_strategy,
5043
5605
  :environment,
@@ -5259,19 +5821,19 @@ module Aws::SageMaker
5259
5821
  # },
5260
5822
  # jupyter_server_app_settings: {
5261
5823
  # default_resource_spec: {
5262
- # sage_maker_image_arn: "SageMakerImageArn",
5824
+ # sage_maker_image_arn: "ImageArn",
5263
5825
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5264
5826
  # },
5265
5827
  # },
5266
5828
  # kernel_gateway_app_settings: {
5267
5829
  # default_resource_spec: {
5268
- # sage_maker_image_arn: "SageMakerImageArn",
5830
+ # sage_maker_image_arn: "ImageArn",
5269
5831
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5270
5832
  # },
5271
5833
  # },
5272
5834
  # tensor_board_app_settings: {
5273
5835
  # default_resource_spec: {
5274
- # sage_maker_image_arn: "SageMakerImageArn",
5836
+ # sage_maker_image_arn: "ImageArn",
5275
5837
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5276
5838
  # },
5277
5839
  # },
@@ -5336,17 +5898,116 @@ module Aws::SageMaker
5336
5898
  include Aws::Structure
5337
5899
  end
5338
5900
 
5901
+ # @note When making an API call, you may pass CreateWorkforceRequest
5902
+ # data as a hash:
5903
+ #
5904
+ # {
5905
+ # cognito_config: {
5906
+ # user_pool: "CognitoUserPool", # required
5907
+ # client_id: "ClientId", # required
5908
+ # },
5909
+ # oidc_config: {
5910
+ # client_id: "ClientId", # required
5911
+ # client_secret: "ClientSecret", # required
5912
+ # issuer: "OidcEndpoint", # required
5913
+ # authorization_endpoint: "OidcEndpoint", # required
5914
+ # token_endpoint: "OidcEndpoint", # required
5915
+ # user_info_endpoint: "OidcEndpoint", # required
5916
+ # logout_endpoint: "OidcEndpoint", # required
5917
+ # jwks_uri: "OidcEndpoint", # required
5918
+ # },
5919
+ # source_ip_config: {
5920
+ # cidrs: ["Cidr"], # required
5921
+ # },
5922
+ # workforce_name: "WorkforceName", # required
5923
+ # tags: [
5924
+ # {
5925
+ # key: "TagKey", # required
5926
+ # value: "TagValue", # required
5927
+ # },
5928
+ # ],
5929
+ # }
5930
+ #
5931
+ # @!attribute [rw] cognito_config
5932
+ # Use this parameter to configure an Amazon Cognito private workforce.
5933
+ # A single Cognito workforce is created using and corresponds to a
5934
+ # single [ Amazon Cognito user pool][1].
5935
+ #
5936
+ # Do not use `OidcConfig` if you specify values for `CognitoConfig`.
5937
+ #
5938
+ #
5939
+ #
5940
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
5941
+ # @return [Types::CognitoConfig]
5942
+ #
5943
+ # @!attribute [rw] oidc_config
5944
+ # Use this parameter to configure a private workforce using your own
5945
+ # OIDC Identity Provider.
5946
+ #
5947
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5948
+ # @return [Types::OidcConfig]
5949
+ #
5950
+ # @!attribute [rw] source_ip_config
5951
+ # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5952
+ # list of IP addresses for a private workforce. Workers will only be
5953
+ # able to login to their worker portal from an IP address within this
5954
+ # range. By default, a workforce isn't restricted to specific IP
5955
+ # addresses.
5956
+ #
5957
+ #
5958
+ #
5959
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
5960
+ # @return [Types::SourceIpConfig]
5961
+ #
5962
+ # @!attribute [rw] workforce_name
5963
+ # The name of the private workforce.
5964
+ # @return [String]
5965
+ #
5966
+ # @!attribute [rw] tags
5967
+ # An array of key-value pairs that contain metadata to help you
5968
+ # categorize and organize our workforce. Each tag consists of a key
5969
+ # and a value, both of which you define.
5970
+ # @return [Array<Types::Tag>]
5971
+ #
5972
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceRequest AWS API Documentation
5973
+ #
5974
+ class CreateWorkforceRequest < Struct.new(
5975
+ :cognito_config,
5976
+ :oidc_config,
5977
+ :source_ip_config,
5978
+ :workforce_name,
5979
+ :tags)
5980
+ SENSITIVE = []
5981
+ include Aws::Structure
5982
+ end
5983
+
5984
+ # @!attribute [rw] workforce_arn
5985
+ # The Amazon Resource Name (ARN) of the workforce.
5986
+ # @return [String]
5987
+ #
5988
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceResponse AWS API Documentation
5989
+ #
5990
+ class CreateWorkforceResponse < Struct.new(
5991
+ :workforce_arn)
5992
+ SENSITIVE = []
5993
+ include Aws::Structure
5994
+ end
5995
+
5339
5996
  # @note When making an API call, you may pass CreateWorkteamRequest
5340
5997
  # data as a hash:
5341
5998
  #
5342
5999
  # {
5343
6000
  # workteam_name: "WorkteamName", # required
6001
+ # workforce_name: "WorkforceName",
5344
6002
  # member_definitions: [ # required
5345
6003
  # {
5346
6004
  # cognito_member_definition: {
5347
6005
  # user_pool: "CognitoUserPool", # required
5348
6006
  # user_group: "CognitoUserGroup", # required
5349
- # client_id: "CognitoClientId", # required
6007
+ # client_id: "ClientId", # required
6008
+ # },
6009
+ # oidc_member_definition: {
6010
+ # groups: ["Group"], # required
5350
6011
  # },
5351
6012
  # },
5352
6013
  # ],
@@ -5366,13 +6027,31 @@ module Aws::SageMaker
5366
6027
  # The name of the work team. Use this name to identify the work team.
5367
6028
  # @return [String]
5368
6029
  #
6030
+ # @!attribute [rw] workforce_name
6031
+ # The name of the workforce.
6032
+ # @return [String]
6033
+ #
5369
6034
  # @!attribute [rw] member_definitions
5370
6035
  # A list of `MemberDefinition` objects that contains objects that
5371
- # identify the Amazon Cognito user pool that makes up the work team.
5372
- # For more information, see [Amazon Cognito User Pools][1].
6036
+ # identify the workers that make up the work team.
6037
+ #
6038
+ # Workforces can be created using Amazon Cognito or your own OIDC
6039
+ # Identity Provider (IdP). For private workforces created using Amazon
6040
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6041
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6042
+ # not provide input for both of these parameters in a single request.
6043
+ #
6044
+ # For workforces created using Amazon Cognito, private work teams
6045
+ # correspond to Amazon Cognito *user groups* within the user pool used
6046
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6047
+ # that make up the member definition must have the same `ClientId` and
6048
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6049
+ # worker pool, see [Adding groups to a User Pool](). For more
6050
+ # information about user pools, see [Amazon Cognito User Pools][1].
5373
6051
  #
5374
- # All of the `CognitoMemberDefinition` objects that make up the member
5375
- # definition must have the same `ClientId` and `UserPool` values.
6052
+ # For workforces created using your own OIDC IdP, specify the user
6053
+ # groups that you want to include in your private work team in
6054
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5376
6055
  #
5377
6056
  #
5378
6057
  #
@@ -5405,6 +6084,7 @@ module Aws::SageMaker
5405
6084
  #
5406
6085
  class CreateWorkteamRequest < Struct.new(
5407
6086
  :workteam_name,
6087
+ :workforce_name,
5408
6088
  :member_definitions,
5409
6089
  :description,
5410
6090
  :notification_configuration,
@@ -5967,6 +6647,30 @@ module Aws::SageMaker
5967
6647
  #
5968
6648
  class DeleteFlowDefinitionResponse < Aws::EmptyStructure; end
5969
6649
 
6650
+ # @note When making an API call, you may pass DeleteHumanTaskUiRequest
6651
+ # data as a hash:
6652
+ #
6653
+ # {
6654
+ # human_task_ui_name: "HumanTaskUiName", # required
6655
+ # }
6656
+ #
6657
+ # @!attribute [rw] human_task_ui_name
6658
+ # The name of the human task user interface (work task template) you
6659
+ # want to delete.
6660
+ # @return [String]
6661
+ #
6662
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiRequest AWS API Documentation
6663
+ #
6664
+ class DeleteHumanTaskUiRequest < Struct.new(
6665
+ :human_task_ui_name)
6666
+ SENSITIVE = []
6667
+ include Aws::Structure
6668
+ end
6669
+
6670
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiResponse AWS API Documentation
6671
+ #
6672
+ class DeleteHumanTaskUiResponse < Aws::EmptyStructure; end
6673
+
5970
6674
  # @note When making an API call, you may pass DeleteModelInput
5971
6675
  # data as a hash:
5972
6676
  #
@@ -6180,6 +6884,29 @@ module Aws::SageMaker
6180
6884
  include Aws::Structure
6181
6885
  end
6182
6886
 
6887
+ # @note When making an API call, you may pass DeleteWorkforceRequest
6888
+ # data as a hash:
6889
+ #
6890
+ # {
6891
+ # workforce_name: "WorkforceName", # required
6892
+ # }
6893
+ #
6894
+ # @!attribute [rw] workforce_name
6895
+ # The name of the workforce.
6896
+ # @return [String]
6897
+ #
6898
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceRequest AWS API Documentation
6899
+ #
6900
+ class DeleteWorkforceRequest < Struct.new(
6901
+ :workforce_name)
6902
+ SENSITIVE = []
6903
+ include Aws::Structure
6904
+ end
6905
+
6906
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceResponse AWS API Documentation
6907
+ #
6908
+ class DeleteWorkforceResponse < Aws::EmptyStructure; end
6909
+
6183
6910
  # @note When making an API call, you may pass DeleteWorkteamRequest
6184
6911
  # data as a hash:
6185
6912
  #
@@ -7117,6 +7844,7 @@ module Aws::SageMaker
7117
7844
  # @return [String]
7118
7845
  #
7119
7846
  # @!attribute [rw] failure_reason
7847
+ # The reason your flow definition failed.
7120
7848
  # @return [String]
7121
7849
  #
7122
7850
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeFlowDefinitionResponse AWS API Documentation
@@ -7144,8 +7872,8 @@ module Aws::SageMaker
7144
7872
  # }
7145
7873
  #
7146
7874
  # @!attribute [rw] human_task_ui_name
7147
- # The name of the human task user interface you want information
7148
- # about.
7875
+ # The name of the human task user interface (worker task template) you
7876
+ # want information about.
7149
7877
  # @return [String]
7150
7878
  #
7151
7879
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHumanTaskUiRequest AWS API Documentation
@@ -7157,11 +7885,17 @@ module Aws::SageMaker
7157
7885
  end
7158
7886
 
7159
7887
  # @!attribute [rw] human_task_ui_arn
7160
- # The Amazon Resource Name (ARN) of the human task user interface.
7888
+ # The Amazon Resource Name (ARN) of the human task user interface
7889
+ # (worker task template).
7161
7890
  # @return [String]
7162
7891
  #
7163
7892
  # @!attribute [rw] human_task_ui_name
7164
- # The name of the human task user interface.
7893
+ # The name of the human task user interface (worker task template).
7894
+ # @return [String]
7895
+ #
7896
+ # @!attribute [rw] human_task_ui_status
7897
+ # The status of the human task user interface (worker task template).
7898
+ # Valid values are listed below.
7165
7899
  # @return [String]
7166
7900
  #
7167
7901
  # @!attribute [rw] creation_time
@@ -7177,6 +7911,7 @@ module Aws::SageMaker
7177
7911
  class DescribeHumanTaskUiResponse < Struct.new(
7178
7912
  :human_task_ui_arn,
7179
7913
  :human_task_ui_name,
7914
+ :human_task_ui_status,
7180
7915
  :creation_time,
7181
7916
  :ui_template)
7182
7917
  SENSITIVE = []
@@ -7191,7 +7926,7 @@ module Aws::SageMaker
7191
7926
  # }
7192
7927
  #
7193
7928
  # @!attribute [rw] hyper_parameter_tuning_job_name
7194
- # The name of the tuning job to describe.
7929
+ # The name of the tuning job.
7195
7930
  # @return [String]
7196
7931
  #
7197
7932
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobRequest AWS API Documentation
@@ -8154,6 +8889,7 @@ module Aws::SageMaker
8154
8889
  # @return [String]
8155
8890
  #
8156
8891
  # @!attribute [rw] auto_ml_job_arn
8892
+ # The Amazon Resource Name (ARN) of an AutoML job.
8157
8893
  # @return [String]
8158
8894
  #
8159
8895
  # @!attribute [rw] model_artifacts
@@ -8220,7 +8956,7 @@ module Aws::SageMaker
8220
8956
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8221
8957
  # maximum allowed runtime.
8222
8958
  #
8223
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8959
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8224
8960
  # maximum allowed wait time.
8225
8961
  #
8226
8962
  # * `Stopped` - The training job has stopped.
@@ -8383,7 +9119,14 @@ module Aws::SageMaker
8383
9119
  # @return [Types::DebugHookConfig]
8384
9120
  #
8385
9121
  # @!attribute [rw] experiment_config
8386
- # Configuration for the experiment.
9122
+ # Associates a SageMaker job as a trial component with an experiment
9123
+ # and trial. Specified when you call the following APIs:
9124
+ #
9125
+ # * CreateProcessingJob
9126
+ #
9127
+ # * CreateTrainingJob
9128
+ #
9129
+ # * CreateTransformJob
8387
9130
  # @return [Types::ExperimentConfig]
8388
9131
  #
8389
9132
  # @!attribute [rw] debug_rule_configurations
@@ -8492,6 +9235,11 @@ module Aws::SageMaker
8492
9235
  # can be launched in a transform job. The default value is 1.
8493
9236
  # @return [Integer]
8494
9237
  #
9238
+ # @!attribute [rw] model_client_config
9239
+ # The timeout and maximum number of retries for processing a transform
9240
+ # job invocation.
9241
+ # @return [Types::ModelClientConfig]
9242
+ #
8495
9243
  # @!attribute [rw] max_payload_in_mb
8496
9244
  # The maximum payload size, in MB, used in the transform job.
8497
9245
  # @return [Integer]
@@ -8548,6 +9296,7 @@ module Aws::SageMaker
8548
9296
  # @return [String]
8549
9297
  #
8550
9298
  # @!attribute [rw] auto_ml_job_arn
9299
+ # The Amazon Resource Name (ARN) of the AutoML transform job.
8551
9300
  # @return [String]
8552
9301
  #
8553
9302
  # @!attribute [rw] data_processing
@@ -8566,7 +9315,14 @@ module Aws::SageMaker
8566
9315
  # @return [Types::DataProcessing]
8567
9316
  #
8568
9317
  # @!attribute [rw] experiment_config
8569
- # Configuration for the experiment.
9318
+ # Associates a SageMaker job as a trial component with an experiment
9319
+ # and trial. Specified when you call the following APIs:
9320
+ #
9321
+ # * CreateProcessingJob
9322
+ #
9323
+ # * CreateTrainingJob
9324
+ #
9325
+ # * CreateTransformJob
8570
9326
  # @return [Types::ExperimentConfig]
8571
9327
  #
8572
9328
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
@@ -8578,6 +9334,7 @@ module Aws::SageMaker
8578
9334
  :failure_reason,
8579
9335
  :model_name,
8580
9336
  :max_concurrent_transforms,
9337
+ :model_client_config,
8581
9338
  :max_payload_in_mb,
8582
9339
  :batch_strategy,
8583
9340
  :environment,
@@ -9258,7 +10015,14 @@ module Aws::SageMaker
9258
10015
  include Aws::Structure
9259
10016
  end
9260
10017
 
9261
- # Configuration for the experiment.
10018
+ # Associates a SageMaker job as a trial component with an experiment and
10019
+ # trial. Specified when you call the following APIs:
10020
+ #
10021
+ # * CreateProcessingJob
10022
+ #
10023
+ # * CreateTrainingJob
10024
+ #
10025
+ # * CreateTransformJob
9262
10026
  #
9263
10027
  # @note When making an API call, you may pass ExperimentConfig
9264
10028
  # data as a hash:
@@ -9270,15 +10034,18 @@ module Aws::SageMaker
9270
10034
  # }
9271
10035
  #
9272
10036
  # @!attribute [rw] experiment_name
9273
- # The name of the experiment.
10037
+ # The name of an existing experiment to associate the trial component
10038
+ # with.
9274
10039
  # @return [String]
9275
10040
  #
9276
10041
  # @!attribute [rw] trial_name
9277
- # The name of the trial.
10042
+ # The name of an existing trial to associate the trial component with.
10043
+ # If not specified, a new trial is created.
9278
10044
  # @return [String]
9279
10045
  #
9280
10046
  # @!attribute [rw] trial_component_display_name
9281
- # Display name for the trial component.
10047
+ # The display name for the trial component. If this key isn't
10048
+ # specified, the display name is the trial component name.
9282
10049
  # @return [String]
9283
10050
  #
9284
10051
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -9470,6 +10237,14 @@ module Aws::SageMaker
9470
10237
  #
9471
10238
  # : The value of `Name` doesn't equal `Value`.
9472
10239
  #
10240
+ # Exists
10241
+ #
10242
+ # : The `Name` property exists.
10243
+ #
10244
+ # NotExists
10245
+ #
10246
+ # : The `Name` property does not exist.
10247
+ #
9473
10248
  # GreaterThan
9474
10249
  #
9475
10250
  # : The value of `Name` is greater than `Value`. Not supported for
@@ -9490,24 +10265,46 @@ module Aws::SageMaker
9490
10265
  # : The value of `Name` is less than or equal to `Value`. Not
9491
10266
  # supported for text properties.
9492
10267
  #
10268
+ # In
10269
+ #
10270
+ # : The value of `Name` is one of the comma delimited strings in
10271
+ # `Value`. Only supported for text properties.
10272
+ #
9493
10273
  # Contains
9494
10274
  #
9495
- # : The value of `Name` contains the string `Value`. A
9496
- # `SearchExpression` can include only one `Contains` operator. Only
9497
- # supported for text properties.
10275
+ # : The value of `Name` contains the string `Value`. Only supported
10276
+ # for text properties.
9498
10277
  #
9499
- # Exists
10278
+ # A `SearchExpression` can include the `Contains` operator multiple
10279
+ # times when the value of `Name` is one of the following:
9500
10280
  #
9501
- # : The `Name` property exists.
10281
+ # * `Experiment.DisplayName`
9502
10282
  #
9503
- # NotExists
10283
+ # * `Experiment.ExperimentName`
9504
10284
  #
9505
- # : The `Name` property does not exist.
10285
+ # * `Experiment.Tags`
9506
10286
  #
9507
- # In
10287
+ # * `Trial.DisplayName`
9508
10288
  #
9509
- # : The value of `Name` is one of the comma delimited strings in
9510
- # `Value`. Only supported for text properties.
10289
+ # * `Trial.TrialName`
10290
+ #
10291
+ # * `Trial.Tags`
10292
+ #
10293
+ # * `TrialComponent.DisplayName`
10294
+ #
10295
+ # * `TrialComponent.TrialComponentName`
10296
+ #
10297
+ # * `TrialComponent.Tags`
10298
+ #
10299
+ # * `TrialComponent.InputArtifacts`
10300
+ #
10301
+ # * `TrialComponent.OutputArtifacts`
10302
+ #
10303
+ # A `SearchExpression` can include only one `Contains` operator for
10304
+ # all other values of `Name`. In these cases, if you include
10305
+ # multiple `Contains` operators in the `SearchExpression`, the
10306
+ # result is the following error message: "`'CONTAINS' operator
10307
+ # usage limit of 1 exceeded.`"
9511
10308
  # @return [String]
9512
10309
  #
9513
10310
  # @!attribute [rw] value
@@ -9528,18 +10325,19 @@ module Aws::SageMaker
9528
10325
  include Aws::Structure
9529
10326
  end
9530
10327
 
9531
- # The candidate result from a job.
10328
+ # The best candidate result from an AutoML training job.
9532
10329
  #
9533
10330
  # @!attribute [rw] type
9534
- # The metric type used.
10331
+ # The type of metric with the best result.
9535
10332
  # @return [String]
9536
10333
  #
9537
10334
  # @!attribute [rw] metric_name
9538
- # The name of the metric.
10335
+ # The name of the metric with the best result. For a description of
10336
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
9539
10337
  # @return [String]
9540
10338
  #
9541
10339
  # @!attribute [rw] value
9542
- # The value of the metric.
10340
+ # The value of the metric with the best result.
9543
10341
  # @return [Float]
9544
10342
  #
9545
10343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -10165,9 +10963,10 @@ module Aws::SageMaker
10165
10963
  # before a data object is sent to a human worker. Use this function to
10166
10964
  # provide input to a custom labeling job.
10167
10965
  #
10168
- # For the built-in bounding box, image classification, semantic
10169
- # segmentation, and text classification task types, Amazon SageMaker
10170
- # Ground Truth provides the following Lambda functions:
10966
+ # For [built-in task types][1], use one of the following Amazon
10967
+ # SageMaker Ground Truth Lambda function ARNs for
10968
+ # `PreHumanTaskLambdaArn`. For custom labeling workflows, see
10969
+ # [Pre-annotation Lambda][2].
10171
10970
  #
10172
10971
  # **Bounding box** - Finds the most similar boxes from different
10173
10972
  # workers based on the Jaccard index of the boxes.
@@ -10339,143 +11138,478 @@ module Aws::SageMaker
10339
11138
  # **Named entity recognition** - Groups similar selections and
10340
11139
  # calculates aggregate boundaries, resolving to most-assigned label.
10341
11140
  #
10342
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition`
11141
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition`
11142
+ #
11143
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition`
11144
+ #
11145
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition`
11146
+ #
11147
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition`
11148
+ #
11149
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition`
11150
+ #
11151
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition`
11152
+ #
11153
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition`
11154
+ #
11155
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition`
11156
+ #
11157
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition`
11158
+ #
11159
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition`
11160
+ #
11161
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition`
11162
+ #
11163
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
11164
+ #
11165
+ # **Video Classification** - Use this task type when you need workers
11166
+ # to classify videos using predefined labels that you specify. Workers
11167
+ # are shown videos and are asked to choose one label for each video.
11168
+ #
11169
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass`
11170
+ #
11171
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass`
11172
+ #
11173
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass`
11174
+ #
11175
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass`
11176
+ #
11177
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass`
11178
+ #
11179
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass`
11180
+ #
11181
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass`
11182
+ #
11183
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass`
11184
+ #
11185
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass`
11186
+ #
11187
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass`
11188
+ #
11189
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass`
11190
+ #
11191
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass`
11192
+ #
11193
+ # **Video Frame Object Detection** - Use this task type to have
11194
+ # workers identify and locate objects in a sequence of video frames
11195
+ # (images extracted from a video) using bounding boxes. For example,
11196
+ # you can use this task to ask workers to identify and localize
11197
+ # various objects in a series of video frames, such as cars, bikes,
11198
+ # and pedestrians.
11199
+ #
11200
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection`
11201
+ #
11202
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection`
11203
+ #
11204
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection`
11205
+ #
11206
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection`
11207
+ #
11208
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection`
11209
+ #
11210
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection`
11211
+ #
11212
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection`
11213
+ #
11214
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection`
11215
+ #
11216
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection`
11217
+ #
11218
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection`
11219
+ #
11220
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection`
11221
+ #
11222
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection`
11223
+ #
11224
+ # **Video Frame Object Tracking** - Use this task type to have workers
11225
+ # track the movement of objects in a sequence of video frames (images
11226
+ # extracted from a video) using bounding boxes. For example, you can
11227
+ # use this task to ask workers to track the movement of objects, such
11228
+ # as cars, bikes, and pedestrians.
11229
+ #
11230
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking`
11231
+ #
11232
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking`
11233
+ #
11234
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking`
11235
+ #
11236
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking`
11237
+ #
11238
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking`
11239
+ #
11240
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking`
11241
+ #
11242
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking`
11243
+ #
11244
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking`
11245
+ #
11246
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking`
11247
+ #
11248
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking`
11249
+ #
11250
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking`
11251
+ #
11252
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking`
11253
+ #
11254
+ # **3D Point Cloud Modalities**
11255
+ #
11256
+ # Use the following pre-annotation lambdas for 3D point cloud labeling
11257
+ # modality tasks. See [3D Point Cloud Task types ][3] to learn more.
11258
+ #
11259
+ # **3D Point Cloud Object Detection** - Use this task type when you
11260
+ # want workers to classify objects in a 3D point cloud by drawing 3D
11261
+ # cuboids around objects. For example, you can use this task type to
11262
+ # ask workers to identify different types of objects in a point cloud,
11263
+ # such as cars, bikes, and pedestrians.
11264
+ #
11265
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
11266
+ #
11267
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection`
11268
+ #
11269
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection`
11270
+ #
11271
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection`
11272
+ #
11273
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection`
11274
+ #
11275
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection`
11276
+ #
11277
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection`
11278
+ #
11279
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection`
11280
+ #
11281
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection`
11282
+ #
11283
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection`
11284
+ #
11285
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection`
11286
+ #
11287
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection`
11288
+ #
11289
+ # **3D Point Cloud Object Tracking** - Use this task type when you
11290
+ # want workers to draw 3D cuboids around objects that appear in a
11291
+ # sequence of 3D point cloud frames. For example, you can use this
11292
+ # task type to ask workers to track the movement of vehicles across
11293
+ # multiple point cloud frames.
11294
+ #
11295
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking`
11296
+ #
11297
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking`
11298
+ #
11299
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking`
11300
+ #
11301
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking`
11302
+ #
11303
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking`
11304
+ #
11305
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking`
11306
+ #
11307
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking`
11308
+ #
11309
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking`
11310
+ #
11311
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking`
11312
+ #
11313
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking`
11314
+ #
11315
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking`
11316
+ #
11317
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking`
11318
+ #
11319
+ # **3D Point Cloud Semantic Segmentation** - Use this task type when
11320
+ # you want workers to create a point-level semantic segmentation masks
11321
+ # by painting objects in a 3D point cloud using different colors where
11322
+ # each color is assigned to one of the classes you specify.
11323
+ #
11324
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation`
11325
+ #
11326
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation`
11327
+ #
11328
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation`
11329
+ #
11330
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation`
11331
+ #
11332
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation`
11333
+ #
11334
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation`
11335
+ #
11336
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation`
11337
+ #
11338
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation`
11339
+ #
11340
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation`
11341
+ #
11342
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation`
11343
+ #
11344
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation`
11345
+ #
11346
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation`
11347
+ #
11348
+ # **Use the following ARNs for Label Verification and Adjustment
11349
+ # Jobs**
11350
+ #
11351
+ # Use label verification and adjustment jobs to review and adjust
11352
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
11353
+ #
11354
+ # **Bounding box verification** - Uses a variant of the Expectation
11355
+ # Maximization approach to estimate the true class of verification
11356
+ # judgement for bounding box labels based on annotations from
11357
+ # individual workers.
11358
+ #
11359
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
11360
+ #
11361
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
11362
+ #
11363
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
11364
+ #
11365
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
11366
+ #
11367
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
11368
+ #
11369
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
11370
+ #
11371
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
11372
+ #
11373
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
11374
+ #
11375
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
11376
+ #
11377
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
11378
+ #
11379
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
11380
+ #
11381
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
11382
+ #
11383
+ # **Bounding box adjustment** - Finds the most similar boxes from
11384
+ # different workers based on the Jaccard index of the adjusted
11385
+ # annotations.
11386
+ #
11387
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox`
11388
+ #
11389
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox`
11390
+ #
11391
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox`
11392
+ #
11393
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox`
11394
+ #
11395
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox`
11396
+ #
11397
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox`
11398
+ #
11399
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox`
11400
+ #
11401
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox`
11402
+ #
11403
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox`
11404
+ #
11405
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox`
11406
+ #
11407
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox`
11408
+ #
11409
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox`
11410
+ #
11411
+ # **Semantic segmentation verification** - Uses a variant of the
11412
+ # Expectation Maximization approach to estimate the true class of
11413
+ # verification judgment for semantic segmentation labels based on
11414
+ # annotations from individual workers.
11415
+ #
11416
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation`
11417
+ #
11418
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation`
11419
+ #
11420
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation`
11421
+ #
11422
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation`
11423
+ #
11424
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation`
11425
+ #
11426
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation`
11427
+ #
11428
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation`
11429
+ #
11430
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation`
11431
+ #
11432
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation`
11433
+ #
11434
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation`
11435
+ #
11436
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation`
11437
+ #
11438
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation`
11439
+ #
11440
+ # **Semantic segmentation adjustment** - Treats each pixel in an image
11441
+ # as a multi-class classification and treats pixel adjusted
11442
+ # annotations from workers as "votes" for the correct label.
11443
+ #
11444
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation`
11445
+ #
11446
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation`
11447
+ #
11448
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation`
11449
+ #
11450
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation`
11451
+ #
11452
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation`
11453
+ #
11454
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation`
11455
+ #
11456
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation`
11457
+ #
11458
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation`
11459
+ #
11460
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation`
11461
+ #
11462
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation`
11463
+ #
11464
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation`
11465
+ #
11466
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
11467
+ #
11468
+ # **Video Frame Object Detection Adjustment** - Use this task type
11469
+ # when you want workers to adjust bounding boxes that workers have
11470
+ # added to video frames to classify and localize objects in a sequence
11471
+ # of video frames.
11472
+ #
11473
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection`
11474
+ #
11475
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection`
11476
+ #
11477
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection`
11478
+ #
11479
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection`
10343
11480
  #
10344
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition`
11481
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection`
10345
11482
  #
10346
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition`
11483
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection`
10347
11484
  #
10348
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition`
11485
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection`
10349
11486
  #
10350
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition`
11487
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection`
10351
11488
  #
10352
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition`
11489
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection`
10353
11490
  #
10354
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition`
11491
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection`
10355
11492
  #
10356
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition`
11493
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection`
10357
11494
  #
10358
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition`
11495
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection`
10359
11496
  #
10360
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition`
11497
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
11498
+ # you want workers to adjust bounding boxes that workers have added to
11499
+ # video frames to track object movement across a sequence of video
11500
+ # frames.
10361
11501
  #
10362
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition`
11502
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking`
10363
11503
  #
10364
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
11504
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking`
10365
11505
  #
10366
- # **Bounding box verification** - Uses a variant of the Expectation
10367
- # Maximization approach to estimate the true class of verification
10368
- # judgement for bounding box labels based on annotations from
10369
- # individual workers.
11506
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking`
10370
11507
  #
10371
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox`
11508
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking`
10372
11509
  #
10373
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox`
11510
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking`
10374
11511
  #
10375
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox`
11512
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking`
10376
11513
  #
10377
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox`
11514
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking`
10378
11515
  #
10379
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox`
11516
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking`
10380
11517
  #
10381
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox`
11518
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking`
10382
11519
  #
10383
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox`
11520
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking`
10384
11521
  #
10385
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox`
11522
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking`
10386
11523
  #
10387
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox`
11524
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking`
10388
11525
  #
10389
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox`
11526
+ # **3D point cloud object detection adjustment** - Adjust 3D cuboids
11527
+ # in a point cloud frame.
10390
11528
  #
10391
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox`
11529
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection`
10392
11530
  #
10393
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox`
11531
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection`
10394
11532
  #
10395
- # **Bounding box adjustment** - Finds the most similar boxes from
10396
- # different workers based on the Jaccard index of the adjusted
10397
- # annotations.
11533
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection`
10398
11534
  #
10399
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox`
11535
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection`
10400
11536
  #
10401
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox`
11537
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection`
10402
11538
  #
10403
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox`
11539
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection`
10404
11540
  #
10405
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox`
11541
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection`
10406
11542
  #
10407
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox`
11543
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection`
10408
11544
  #
10409
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox`
11545
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection`
10410
11546
  #
10411
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox`
11547
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection`
10412
11548
  #
10413
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox`
11549
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection`
10414
11550
  #
10415
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox`
11551
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection`
10416
11552
  #
10417
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox`
11553
+ # **3D point cloud object tracking adjustment** - Adjust 3D cuboids
11554
+ # across a sequence of point cloud frames.
10418
11555
  #
10419
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox`
11556
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
10420
11557
  #
10421
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox`
11558
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
10422
11559
  #
10423
- # **Semantic segmentation verification** - Uses a variant of the
10424
- # Expectation Maximization approach to estimate the true class of
10425
- # verification judgment for semantic segmentation labels based on
10426
- # annotations from individual workers.
11560
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
10427
11561
  #
10428
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation`
11562
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
10429
11563
  #
10430
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation`
11564
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
10431
11565
  #
10432
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation`
11566
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
10433
11567
  #
10434
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation`
11568
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
10435
11569
  #
10436
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation`
11570
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
10437
11571
  #
10438
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation`
11572
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
10439
11573
  #
10440
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation`
11574
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
10441
11575
  #
10442
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation`
11576
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
10443
11577
  #
10444
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation`
11578
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
10445
11579
  #
10446
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation`
11580
+ # **3D point cloud semantic segmentation adjustment** - Adjust
11581
+ # semantic segmentation masks in a 3D point cloud.
10447
11582
  #
10448
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation`
11583
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10449
11584
  #
10450
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation`
11585
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10451
11586
  #
10452
- # **Semantic segmentation adjustment** - Treats each pixel in an image
10453
- # as a multi-class classification and treats pixel adjusted
10454
- # annotations from workers as "votes" for the correct label.
11587
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10455
11588
  #
10456
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation`
11589
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10457
11590
  #
10458
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation`
11591
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10459
11592
  #
10460
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation`
11593
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10461
11594
  #
10462
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation`
11595
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10463
11596
  #
10464
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation`
11597
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10465
11598
  #
10466
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation`
11599
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10467
11600
  #
10468
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation`
11601
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10469
11602
  #
10470
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation`
11603
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10471
11604
  #
10472
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation`
11605
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10473
11606
  #
10474
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation`
10475
11607
  #
10476
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation`
10477
11608
  #
10478
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
11609
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
11610
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda
11611
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html
11612
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
10479
11613
  # @return [String]
10480
11614
  #
10481
11615
  # @!attribute [rw] task_keywords
@@ -11344,6 +12478,33 @@ module Aws::SageMaker
11344
12478
  include Aws::Structure
11345
12479
  end
11346
12480
 
12481
+ # Specifies whether the model container is in Amazon ECR or a private
12482
+ # Docker registry in your Amazon Virtual Private Cloud (VPC).
12483
+ #
12484
+ # @note When making an API call, you may pass ImageConfig
12485
+ # data as a hash:
12486
+ #
12487
+ # {
12488
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12489
+ # }
12490
+ #
12491
+ # @!attribute [rw] repository_access_mode
12492
+ # Set this to one of the following values:
12493
+ #
12494
+ # * `Platform` - The model image is hosted in Amazon ECR.
12495
+ #
12496
+ # * `VPC` - The model image is hosted in a private Docker registry in
12497
+ # your VPC.
12498
+ # @return [String]
12499
+ #
12500
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12501
+ #
12502
+ class ImageConfig < Struct.new(
12503
+ :repository_access_mode)
12504
+ SENSITIVE = []
12505
+ include Aws::Structure
12506
+ end
12507
+
11347
12508
  # Defines how to perform inference generation after a training job is
11348
12509
  # run.
11349
12510
  #
@@ -11354,7 +12515,7 @@ module Aws::SageMaker
11354
12515
  # containers: [ # required
11355
12516
  # {
11356
12517
  # container_hostname: "ContainerHostname",
11357
- # image: "Image", # required
12518
+ # image: "ContainerImage", # required
11358
12519
  # image_digest: "ImageDigest",
11359
12520
  # model_data_url: "Url",
11360
12521
  # product_id: "ProductId",
@@ -11627,7 +12788,7 @@ module Aws::SageMaker
11627
12788
  #
11628
12789
  # {
11629
12790
  # default_resource_spec: {
11630
- # sage_maker_image_arn: "SageMakerImageArn",
12791
+ # sage_maker_image_arn: "ImageArn",
11631
12792
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
11632
12793
  # },
11633
12794
  # }
@@ -11652,7 +12813,7 @@ module Aws::SageMaker
11652
12813
  #
11653
12814
  # {
11654
12815
  # default_resource_spec: {
11655
- # sage_maker_image_arn: "SageMakerImageArn",
12816
+ # sage_maker_image_arn: "ImageArn",
11656
12817
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
11657
12818
  # },
11658
12819
  # }
@@ -11818,7 +12979,7 @@ module Aws::SageMaker
11818
12979
  # data as a hash:
11819
12980
  #
11820
12981
  # {
11821
- # s3_data_source: { # required
12982
+ # s3_data_source: {
11822
12983
  # manifest_s3_uri: "S3Uri", # required
11823
12984
  # },
11824
12985
  # }
@@ -11881,7 +13042,7 @@ module Aws::SageMaker
11881
13042
  #
11882
13043
  # {
11883
13044
  # data_source: { # required
11884
- # s3_data_source: { # required
13045
+ # s3_data_source: {
11885
13046
  # manifest_s3_uri: "S3Uri", # required
11886
13047
  # },
11887
13048
  # },
@@ -12348,8 +13509,8 @@ module Aws::SageMaker
12348
13509
  # @return [Integer]
12349
13510
  #
12350
13511
  # @!attribute [rw] next_token
12351
- # If the previous response was truncated, you will receive this token.
12352
- # Use it in your next request to receive the next set of results.
13512
+ # If the previous response was truncated, you receive this token. Use
13513
+ # it in your next request to receive the next set of results.
12353
13514
  # @return [String]
12354
13515
  #
12355
13516
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -12374,8 +13535,8 @@ module Aws::SageMaker
12374
13535
  # @return [Array<Types::AutoMLJobSummary>]
12375
13536
  #
12376
13537
  # @!attribute [rw] next_token
12377
- # If the previous response was truncated, you will receive this token.
12378
- # Use it in your next request to receive the next set of results.
13538
+ # If the previous response was truncated, you receive this token. Use
13539
+ # it in your next request to receive the next set of results.
12379
13540
  # @return [String]
12380
13541
  #
12381
13542
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -12427,8 +13588,8 @@ module Aws::SageMaker
12427
13588
  # @return [Integer]
12428
13589
  #
12429
13590
  # @!attribute [rw] next_token
12430
- # If the previous response was truncated, you will receive this token.
12431
- # Use it in your next request to receive the next set of results.
13591
+ # If the previous response was truncated, you receive this token. Use
13592
+ # it in your next request to receive the next set of results.
12432
13593
  # @return [String]
12433
13594
  #
12434
13595
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -12450,8 +13611,8 @@ module Aws::SageMaker
12450
13611
  # @return [Array<Types::AutoMLCandidate>]
12451
13612
  #
12452
13613
  # @!attribute [rw] next_token
12453
- # If the previous response was truncated, you will receive this token.
12454
- # Use it in your next request to receive the next set of results.
13614
+ # If the previous response was truncated, you receive this token. Use
13615
+ # it in your next request to receive the next set of results.
12455
13616
  # @return [String]
12456
13617
  #
12457
13618
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -13301,7 +14462,7 @@ module Aws::SageMaker
13301
14462
  # name_contains: "NameContains",
13302
14463
  # sort_by: "Name", # accepts Name, CreationTime, Status
13303
14464
  # sort_order: "Ascending", # accepts Ascending, Descending
13304
- # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
14465
+ # status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
13305
14466
  # }
13306
14467
  #
13307
14468
  # @!attribute [rw] creation_time_after
@@ -14734,6 +15895,67 @@ module Aws::SageMaker
14734
15895
  include Aws::Structure
14735
15896
  end
14736
15897
 
15898
+ # @note When making an API call, you may pass ListWorkforcesRequest
15899
+ # data as a hash:
15900
+ #
15901
+ # {
15902
+ # sort_by: "Name", # accepts Name, CreateDate
15903
+ # sort_order: "Ascending", # accepts Ascending, Descending
15904
+ # name_contains: "WorkforceName",
15905
+ # next_token: "NextToken",
15906
+ # max_results: 1,
15907
+ # }
15908
+ #
15909
+ # @!attribute [rw] sort_by
15910
+ # Sort workforces using the workforce name or creation date.
15911
+ # @return [String]
15912
+ #
15913
+ # @!attribute [rw] sort_order
15914
+ # Sort workforces in ascending or descending order.
15915
+ # @return [String]
15916
+ #
15917
+ # @!attribute [rw] name_contains
15918
+ # A filter you can use to search for workforces using part of the
15919
+ # workforce name.
15920
+ # @return [String]
15921
+ #
15922
+ # @!attribute [rw] next_token
15923
+ # A token to resume pagination.
15924
+ # @return [String]
15925
+ #
15926
+ # @!attribute [rw] max_results
15927
+ # The maximum number of workforces returned in the response.
15928
+ # @return [Integer]
15929
+ #
15930
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesRequest AWS API Documentation
15931
+ #
15932
+ class ListWorkforcesRequest < Struct.new(
15933
+ :sort_by,
15934
+ :sort_order,
15935
+ :name_contains,
15936
+ :next_token,
15937
+ :max_results)
15938
+ SENSITIVE = []
15939
+ include Aws::Structure
15940
+ end
15941
+
15942
+ # @!attribute [rw] workforces
15943
+ # A list containing information about your workforce.
15944
+ # @return [Array<Types::Workforce>]
15945
+ #
15946
+ # @!attribute [rw] next_token
15947
+ # A token to resume pagination.
15948
+ # @return [String]
15949
+ #
15950
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesResponse AWS API Documentation
15951
+ #
15952
+ class ListWorkforcesResponse < Struct.new(
15953
+ :workforces,
15954
+ :next_token)
15955
+ SENSITIVE = []
15956
+ include Aws::Structure
15957
+ end
15958
+
14737
15959
  # @note When making an API call, you may pass ListWorkteamsRequest
14738
15960
  # data as a hash:
14739
15961
  #
@@ -14800,7 +16022,8 @@ module Aws::SageMaker
14800
16022
  include Aws::Structure
14801
16023
  end
14802
16024
 
14803
- # Defines the Amazon Cognito user group that is part of a work team.
16025
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16026
+ # of a work team.
14804
16027
  #
14805
16028
  # @note When making an API call, you may pass MemberDefinition
14806
16029
  # data as a hash:
@@ -14809,7 +16032,10 @@ module Aws::SageMaker
14809
16032
  # cognito_member_definition: {
14810
16033
  # user_pool: "CognitoUserPool", # required
14811
16034
  # user_group: "CognitoUserGroup", # required
14812
- # client_id: "CognitoClientId", # required
16035
+ # client_id: "ClientId", # required
16036
+ # },
16037
+ # oidc_member_definition: {
16038
+ # groups: ["Group"], # required
14813
16039
  # },
14814
16040
  # }
14815
16041
  #
@@ -14817,10 +16043,20 @@ module Aws::SageMaker
14817
16043
  # The Amazon Cognito user group that is part of the work team.
14818
16044
  # @return [Types::CognitoMemberDefinition]
14819
16045
  #
16046
+ # @!attribute [rw] oidc_member_definition
16047
+ # A list user groups that exist in your OIDC Identity Provider (IdP).
16048
+ # One to ten groups can be used to create a single private work team.
16049
+ # When you add a user group to the list of `Groups`, you can add that
16050
+ # user group to one or more private work teams. If you add a user
16051
+ # group to a private work team, all workers in that user group are
16052
+ # added to the work team.
16053
+ # @return [Types::OidcMemberDefinition]
16054
+ #
14820
16055
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MemberDefinition AWS API Documentation
14821
16056
  #
14822
16057
  class MemberDefinition < Struct.new(
14823
- :cognito_member_definition)
16058
+ :cognito_member_definition,
16059
+ :oidc_member_definition)
14824
16060
  SENSITIVE = []
14825
16061
  include Aws::Structure
14826
16062
  end
@@ -14907,6 +16143,34 @@ module Aws::SageMaker
14907
16143
  include Aws::Structure
14908
16144
  end
14909
16145
 
16146
+ # Configures the timeout and maximum number of retries for processing a
16147
+ # transform job invocation.
16148
+ #
16149
+ # @note When making an API call, you may pass ModelClientConfig
16150
+ # data as a hash:
16151
+ #
16152
+ # {
16153
+ # invocations_timeout_in_seconds: 1,
16154
+ # invocations_max_retries: 1,
16155
+ # }
16156
+ #
16157
+ # @!attribute [rw] invocations_timeout_in_seconds
16158
+ # The timeout value in seconds for an invocation request.
16159
+ # @return [Integer]
16160
+ #
16161
+ # @!attribute [rw] invocations_max_retries
16162
+ # The maximum number of retries when invocation requests are failing.
16163
+ # @return [Integer]
16164
+ #
16165
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
16166
+ #
16167
+ class ModelClientConfig < Struct.new(
16168
+ :invocations_timeout_in_seconds,
16169
+ :invocations_max_retries)
16170
+ SENSITIVE = []
16171
+ include Aws::Structure
16172
+ end
16173
+
14910
16174
  # Describes the Docker container for the model package.
14911
16175
  #
14912
16176
  # @note When making an API call, you may pass ModelPackageContainerDefinition
@@ -14914,7 +16178,7 @@ module Aws::SageMaker
14914
16178
  #
14915
16179
  # {
14916
16180
  # container_hostname: "ContainerHostname",
14917
- # image: "Image", # required
16181
+ # image: "ContainerImage", # required
14918
16182
  # image_digest: "ImageDigest",
14919
16183
  # model_data_url: "Url",
14920
16184
  # product_id: "ProductId",
@@ -16176,32 +17440,290 @@ module Aws::SageMaker
16176
17440
  include Aws::Structure
16177
17441
  end
16178
17442
 
17443
+ # Use this parameter to configure your OIDC Identity Provider (IdP).
17444
+ #
17445
+ # @note When making an API call, you may pass OidcConfig
17446
+ # data as a hash:
17447
+ #
17448
+ # {
17449
+ # client_id: "ClientId", # required
17450
+ # client_secret: "ClientSecret", # required
17451
+ # issuer: "OidcEndpoint", # required
17452
+ # authorization_endpoint: "OidcEndpoint", # required
17453
+ # token_endpoint: "OidcEndpoint", # required
17454
+ # user_info_endpoint: "OidcEndpoint", # required
17455
+ # logout_endpoint: "OidcEndpoint", # required
17456
+ # jwks_uri: "OidcEndpoint", # required
17457
+ # }
17458
+ #
17459
+ # @!attribute [rw] client_id
17460
+ # The OIDC IdP client ID used to configure your private workforce.
17461
+ # @return [String]
17462
+ #
17463
+ # @!attribute [rw] client_secret
17464
+ # The OIDC IdP client secret used to configure your private workforce.
17465
+ # @return [String]
17466
+ #
17467
+ # @!attribute [rw] issuer
17468
+ # The OIDC IdP issuer used to configure your private workforce.
17469
+ # @return [String]
17470
+ #
17471
+ # @!attribute [rw] authorization_endpoint
17472
+ # The OIDC IdP authorization endpoint used to configure your private
17473
+ # workforce.
17474
+ # @return [String]
17475
+ #
17476
+ # @!attribute [rw] token_endpoint
17477
+ # The OIDC IdP token endpoint used to configure your private
17478
+ # workforce.
17479
+ # @return [String]
17480
+ #
17481
+ # @!attribute [rw] user_info_endpoint
17482
+ # The OIDC IdP user information endpoint used to configure your
17483
+ # private workforce.
17484
+ # @return [String]
17485
+ #
17486
+ # @!attribute [rw] logout_endpoint
17487
+ # The OIDC IdP logout endpoint used to configure your private
17488
+ # workforce.
17489
+ # @return [String]
17490
+ #
17491
+ # @!attribute [rw] jwks_uri
17492
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17493
+ # private workforce.
17494
+ # @return [String]
17495
+ #
17496
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfig AWS API Documentation
17497
+ #
17498
+ class OidcConfig < Struct.new(
17499
+ :client_id,
17500
+ :client_secret,
17501
+ :issuer,
17502
+ :authorization_endpoint,
17503
+ :token_endpoint,
17504
+ :user_info_endpoint,
17505
+ :logout_endpoint,
17506
+ :jwks_uri)
17507
+ SENSITIVE = [:client_secret]
17508
+ include Aws::Structure
17509
+ end
17510
+
17511
+ # Your OIDC IdP workforce configuration.
17512
+ #
17513
+ # @!attribute [rw] client_id
17514
+ # The OIDC IdP client ID used to configure your private workforce.
17515
+ # @return [String]
17516
+ #
17517
+ # @!attribute [rw] issuer
17518
+ # The OIDC IdP issuer used to configure your private workforce.
17519
+ # @return [String]
17520
+ #
17521
+ # @!attribute [rw] authorization_endpoint
17522
+ # The OIDC IdP authorization endpoint used to configure your private
17523
+ # workforce.
17524
+ # @return [String]
17525
+ #
17526
+ # @!attribute [rw] token_endpoint
17527
+ # The OIDC IdP token endpoint used to configure your private
17528
+ # workforce.
17529
+ # @return [String]
17530
+ #
17531
+ # @!attribute [rw] user_info_endpoint
17532
+ # The OIDC IdP user information endpoint used to configure your
17533
+ # private workforce.
17534
+ # @return [String]
17535
+ #
17536
+ # @!attribute [rw] logout_endpoint
17537
+ # The OIDC IdP logout endpoint used to configure your private
17538
+ # workforce.
17539
+ # @return [String]
17540
+ #
17541
+ # @!attribute [rw] jwks_uri
17542
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17543
+ # private workforce.
17544
+ # @return [String]
17545
+ #
17546
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfigForResponse AWS API Documentation
17547
+ #
17548
+ class OidcConfigForResponse < Struct.new(
17549
+ :client_id,
17550
+ :issuer,
17551
+ :authorization_endpoint,
17552
+ :token_endpoint,
17553
+ :user_info_endpoint,
17554
+ :logout_endpoint,
17555
+ :jwks_uri)
17556
+ SENSITIVE = []
17557
+ include Aws::Structure
17558
+ end
17559
+
17560
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17561
+ # One to ten groups can be used to create a single private work team.
17562
+ # When you add a user group to the list of `Groups`, you can add that
17563
+ # user group to one or more private work teams. If you add a user group
17564
+ # to a private work team, all workers in that user group are added to
17565
+ # the work team.
17566
+ #
17567
+ # @note When making an API call, you may pass OidcMemberDefinition
17568
+ # data as a hash:
17569
+ #
17570
+ # {
17571
+ # groups: ["Group"], # required
17572
+ # }
17573
+ #
17574
+ # @!attribute [rw] groups
17575
+ # A list of comma seperated strings that identifies user groups in
17576
+ # your OIDC IdP. Each user group is made up of a group of private
17577
+ # workers.
17578
+ # @return [Array<String>]
17579
+ #
17580
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcMemberDefinition AWS API Documentation
17581
+ #
17582
+ class OidcMemberDefinition < Struct.new(
17583
+ :groups)
17584
+ SENSITIVE = []
17585
+ include Aws::Structure
17586
+ end
17587
+
16179
17588
  # Contains information about the output location for the compiled model
16180
- # and the device (target) that the model runs on.
17589
+ # and the target device that the model runs on. `TargetDevice` and
17590
+ # `TargetPlatform` are mutually exclusive, so you need to choose one
17591
+ # between the two to specify your target device or platform. If you
17592
+ # cannot find your device you want to use from the `TargetDevice` list,
17593
+ # use `TargetPlatform` to describe the platform of your edge device and
17594
+ # `CompilerOptions` if there are specific settings that are required or
17595
+ # recommended to use for particular TargetPlatform.
16181
17596
  #
16182
17597
  # @note When making an API call, you may pass OutputConfig
16183
17598
  # data as a hash:
16184
17599
  #
16185
- # {
16186
- # s3_output_location: "S3Uri", # required
16187
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
16188
- # }
17600
+ # {
17601
+ # s3_output_location: "S3Uri", # required
17602
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
17603
+ # target_platform: {
17604
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
17605
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
17606
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
17607
+ # },
17608
+ # compiler_options: "CompilerOptions",
17609
+ # }
17610
+ #
17611
+ # @!attribute [rw] s3_output_location
17612
+ # Identifies the S3 bucket where you want Amazon SageMaker to store
17613
+ # the model artifacts. For example,
17614
+ # `s3://bucket-name/key-name-prefix`.
17615
+ # @return [String]
17616
+ #
17617
+ # @!attribute [rw] target_device
17618
+ # Identifies the target device or the machine learning instance that
17619
+ # you want to run your model on after the compilation has completed.
17620
+ # Alternatively, you can specify OS, architecture, and accelerator
17621
+ # using TargetPlatform fields. It can be used instead of
17622
+ # `TargetPlatform`.
17623
+ # @return [String]
17624
+ #
17625
+ # @!attribute [rw] target_platform
17626
+ # Contains information about a target platform that you want your
17627
+ # model to run on, such as OS, architecture, and accelerators. It is
17628
+ # an alternative of `TargetDevice`.
17629
+ #
17630
+ # The following examples show how to configure the `TargetPlatform`
17631
+ # and `CompilerOptions` JSON strings for popular target platforms:
17632
+ #
17633
+ # * Raspberry Pi 3 Model B+
17634
+ #
17635
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
17636
+ #
17637
+ # ` "CompilerOptions": \{'mattr': ['+neon']\}`
17638
+ #
17639
+ # * Jetson TX2
17640
+ #
17641
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17642
+ # "Accelerator": "NVIDIA"\},`
17643
+ #
17644
+ # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
17645
+ # 'cuda-ver': '10.0'\}`
17646
+ #
17647
+ # * EC2 m5.2xlarge instance OS
17648
+ #
17649
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
17650
+ # "Accelerator": "NVIDIA"\},`
17651
+ #
17652
+ # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
17653
+ #
17654
+ # * RK3399
17655
+ #
17656
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17657
+ # "Accelerator": "MALI"\}`
17658
+ #
17659
+ # * ARMv7 phone (CPU)
17660
+ #
17661
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
17662
+ #
17663
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
17664
+ # ['+neon']\}`
17665
+ #
17666
+ # * ARMv8 phone (CPU)
17667
+ #
17668
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
17669
+ #
17670
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
17671
+ # @return [Types::TargetPlatform]
17672
+ #
17673
+ # @!attribute [rw] compiler_options
17674
+ # Specifies additional parameters for compiler options in JSON format.
17675
+ # The compiler options are `TargetPlatform` specific. It is required
17676
+ # for NVIDIA accelerators and highly recommended for CPU compliations.
17677
+ # For any other cases, it is optional to specify `CompilerOptions.`
17678
+ #
17679
+ # * `CPU`\: Compilation for CPU supports the following compiler
17680
+ # options.
17681
+ #
17682
+ # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
17683
+ # 'skylake-avx512'\}`
17684
+ #
17685
+ # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
17686
+ # '+vfpv4']\}`
17687
+ #
17688
+ # * `ARM`\: Details of ARM CPU compilations.
17689
+ #
17690
+ # * `NEON`\: NEON is an implementation of the Advanced SIMD
17691
+ # extension used in ARMv7 processors.
17692
+ #
17693
+ # For example, add `\{'mattr': ['+neon']\}` to the compiler
17694
+ # options if compiling for ARM 32-bit platform with the NEON
17695
+ # support.
17696
+ #
17697
+ # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
17698
+ # compiler options.
17699
+ #
17700
+ # * `gpu_code`\: Specifies the targeted architecture.
17701
+ #
17702
+ # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
17703
+ #
17704
+ # * `cuda-ver`\: Specifies the CUDA version in x.y format.
17705
+ #
17706
+ # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
17707
+ # 'cuda-ver': '10.1'\}`
16189
17708
  #
16190
- # @!attribute [rw] s3_output_location
16191
- # Identifies the S3 path where you want Amazon SageMaker to store the
16192
- # model artifacts. For example, s3://bucket-name/key-name-prefix.
16193
- # @return [String]
17709
+ # * `ANDROID`\: Compilation for the Android OS supports the following
17710
+ # compiler options:
16194
17711
  #
16195
- # @!attribute [rw] target_device
16196
- # Identifies the device that you want to run your model on after it
16197
- # has been compiled. For example: ml\_c5.
17712
+ # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
17713
+ # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
17714
+ # 28\}`.
17715
+ #
17716
+ # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
17717
+ # compiling for ARM 32-bit platform with NEON support.
16198
17718
  # @return [String]
16199
17719
  #
16200
17720
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
16201
17721
  #
16202
17722
  class OutputConfig < Struct.new(
16203
17723
  :s3_output_location,
16204
- :target_device)
17724
+ :target_device,
17725
+ :target_platform,
17726
+ :compiler_options)
16205
17727
  SENSITIVE = []
16206
17728
  include Aws::Structure
16207
17729
  end
@@ -16566,7 +18088,14 @@ module Aws::SageMaker
16566
18088
  # @return [String]
16567
18089
  #
16568
18090
  # @!attribute [rw] experiment_config
16569
- # Configuration for the experiment.
18091
+ # Associates a SageMaker job as a trial component with an experiment
18092
+ # and trial. Specified when you call the following APIs:
18093
+ #
18094
+ # * CreateProcessingJob
18095
+ #
18096
+ # * CreateTrainingJob
18097
+ #
18098
+ # * CreateTransformJob
16570
18099
  # @return [Types::ExperimentConfig]
16571
18100
  #
16572
18101
  # @!attribute [rw] processing_job_arn
@@ -17346,6 +18875,9 @@ module Aws::SageMaker
17346
18875
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do
17347
18876
  # not provide a `HumanTaskUiArn` if you use the `UiTemplate`
17348
18877
  # parameter.
18878
+ #
18879
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
18880
+ # UiConfig.
17349
18881
  # @return [String]
17350
18882
  #
17351
18883
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RenderUiTemplateRequest AWS API Documentation
@@ -17425,7 +18957,8 @@ module Aws::SageMaker
17425
18957
  # The resolved attributes.
17426
18958
  #
17427
18959
  # @!attribute [rw] auto_ml_job_objective
17428
- # Applies a metric to minimize or maximize for the job's objective.
18960
+ # Specifies a metric to minimize or maximize as the objective of a
18961
+ # job.
17429
18962
  # @return [Types::AutoMLJobObjective]
17430
18963
  #
17431
18964
  # @!attribute [rw] problem_type
@@ -17626,7 +19159,7 @@ module Aws::SageMaker
17626
19159
  # data as a hash:
17627
19160
  #
17628
19161
  # {
17629
- # sage_maker_image_arn: "SageMakerImageArn",
19162
+ # sage_maker_image_arn: "ImageArn",
17630
19163
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
17631
19164
  # }
17632
19165
  #
@@ -17706,29 +19239,34 @@ module Aws::SageMaker
17706
19239
  # either a key name prefix or a manifest. For example:
17707
19240
  #
17708
19241
  # * A key name prefix might look like this:
17709
- # `s3://bucketname/exampleprefix`.
19242
+ # `s3://bucketname/exampleprefix`
17710
19243
  #
17711
19244
  # * A manifest might look like this:
17712
19245
  # `s3://bucketname/example.manifest`
17713
19246
  #
17714
- # The manifest is an S3 object which is a JSON file with the
17715
- # following format:
19247
+ # A manifest is an S3 object which is a JSON file consisting of an
19248
+ # array of elements. The first element is a prefix which is followed
19249
+ # by one or more suffixes. SageMaker appends the suffix elements to
19250
+ # the prefix to get a full set of `S3Uri`. Note that the prefix must
19251
+ # be a valid non-empty `S3Uri` that precludes users from specifying
19252
+ # a manifest whose individual `S3Uri` is sourced from different S3
19253
+ # buckets.
17716
19254
  #
17717
- # The preceding JSON matches the following `s3Uris`\:
19255
+ # The following code example shows a valid manifest format:
17718
19256
  #
17719
19257
  # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
17720
19258
  #
17721
- # `"relative/path/to/custdata-1",`
19259
+ # ` "relative/path/to/custdata-1",`
17722
19260
  #
17723
- # `"relative/path/custdata-2",`
19261
+ # ` "relative/path/custdata-2",`
17724
19262
  #
17725
- # `...`
19263
+ # ` ...`
17726
19264
  #
17727
- # `"relative/path/custdata-N"`
19265
+ # ` "relative/path/custdata-N"`
17728
19266
  #
17729
19267
  # `]`
17730
19268
  #
17731
- # The preceding JSON matches the following `s3Uris`\:
19269
+ # This JSON is equivalent to the following `S3Uri` list:
17732
19270
  #
17733
19271
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
17734
19272
  #
@@ -17738,8 +19276,8 @@ module Aws::SageMaker
17738
19276
  #
17739
19277
  # `s3://customer_bucket/some/prefix/relative/path/custdata-N`
17740
19278
  #
17741
- # The complete set of `s3uris` in this manifest is the input data
17742
- # for the channel for this datasource. The object that each `s3uris`
19279
+ # The complete set of `S3Uri` in this manifest is the input data for
19280
+ # the channel for this data source. The object that each `S3Uri`
17743
19281
  # points to must be readable by the IAM role that Amazon SageMaker
17744
19282
  # uses to perform tasks on your behalf.
17745
19283
  # @return [String]
@@ -17855,8 +19393,7 @@ module Aws::SageMaker
17855
19393
  #
17856
19394
  # * A list of `Filter` objects. Each filter defines a simple Boolean
17857
19395
  # expression comprised of a resource property name, Boolean operator,
17858
- # and value. A `SearchExpression` can include only one `Contains`
17859
- # operator.
19396
+ # and value.
17860
19397
  #
17861
19398
  # * A list of `NestedFilter` objects. Each nested filter defines a list
17862
19399
  # of Boolean expressions using a list of resource properties. A nested
@@ -18343,7 +19880,9 @@ module Aws::SageMaker
18343
19880
  end
18344
19881
 
18345
19882
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
18346
- # of IP addresses for a private workforce. For more information, see .
19883
+ # of IP addresses for a private workforce. Workers will only be able to
19884
+ # login to their worker portal from an IP address within this range. By
19885
+ # default, a workforce isn't restricted to specific IP addresses.
18347
19886
  #
18348
19887
  #
18349
19888
  #
@@ -18357,10 +19896,10 @@ module Aws::SageMaker
18357
19896
  # }
18358
19897
  #
18359
19898
  # @!attribute [rw] cidrs
18360
- # A list of one to four [Classless Inter-Domain Routing][1] (CIDR)
19899
+ # A list of one to ten [Classless Inter-Domain Routing][1] (CIDR)
18361
19900
  # values.
18362
19901
  #
18363
- # Maximum: Four CIDR values
19902
+ # Maximum: Ten CIDR values
18364
19903
  #
18365
19904
  # <note markdown="1"> The following Length Constraints apply to individual CIDR values in
18366
19905
  # the CIDR value list.
@@ -18667,6 +20206,7 @@ module Aws::SageMaker
18667
20206
  # @return [String]
18668
20207
  #
18669
20208
  # @!attribute [rw] listing_id
20209
+ # Marketplace product listing ID.
18670
20210
  # @return [String]
18671
20211
  #
18672
20212
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SubscribedWorkteam AWS API Documentation
@@ -18733,6 +20273,65 @@ module Aws::SageMaker
18733
20273
  include Aws::Structure
18734
20274
  end
18735
20275
 
20276
+ # Contains information about a target platform that you want your model
20277
+ # to run on, such as OS, architecture, and accelerators. It is an
20278
+ # alternative of `TargetDevice`.
20279
+ #
20280
+ # @note When making an API call, you may pass TargetPlatform
20281
+ # data as a hash:
20282
+ #
20283
+ # {
20284
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
20285
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
20286
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
20287
+ # }
20288
+ #
20289
+ # @!attribute [rw] os
20290
+ # Specifies a target platform OS.
20291
+ #
20292
+ # * `LINUX`\: Linux-based operating systems.
20293
+ #
20294
+ # * `ANDROID`\: Android operating systems. Android API level can be
20295
+ # specified using the `ANDROID_PLATFORM` compiler option. For
20296
+ # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
20297
+ # @return [String]
20298
+ #
20299
+ # @!attribute [rw] arch
20300
+ # Specifies a target platform architecture.
20301
+ #
20302
+ # * `X86_64`\: 64-bit version of the x86 instruction set.
20303
+ #
20304
+ # * `X86`\: 32-bit version of the x86 instruction set.
20305
+ #
20306
+ # * `ARM64`\: ARMv8 64-bit CPU.
20307
+ #
20308
+ # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
20309
+ #
20310
+ # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
20311
+ # platform.
20312
+ # @return [String]
20313
+ #
20314
+ # @!attribute [rw] accelerator
20315
+ # Specifies a target platform accelerator (optional).
20316
+ #
20317
+ # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
20318
+ # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
20319
+ #
20320
+ # * `MALI`\: ARM Mali graphics processor
20321
+ #
20322
+ # * `INTEL_GRAPHICS`\: Integrated Intel graphics
20323
+ # @return [String]
20324
+ #
20325
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
20326
+ #
20327
+ class TargetPlatform < Struct.new(
20328
+ :os,
20329
+ :arch,
20330
+ :accelerator)
20331
+ SENSITIVE = []
20332
+ include Aws::Structure
20333
+ end
20334
+
18736
20335
  # The TensorBoard app settings.
18737
20336
  #
18738
20337
  # @note When making an API call, you may pass TensorBoardAppSettings
@@ -18740,7 +20339,7 @@ module Aws::SageMaker
18740
20339
  #
18741
20340
  # {
18742
20341
  # default_resource_spec: {
18743
- # sage_maker_image_arn: "SageMakerImageArn",
20342
+ # sage_maker_image_arn: "ImageArn",
18744
20343
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
18745
20344
  # },
18746
20345
  # }
@@ -19026,7 +20625,14 @@ module Aws::SageMaker
19026
20625
  # @return [Types::DebugHookConfig]
19027
20626
  #
19028
20627
  # @!attribute [rw] experiment_config
19029
- # Configuration for the experiment.
20628
+ # Associates a SageMaker job as a trial component with an experiment
20629
+ # and trial. Specified when you call the following APIs:
20630
+ #
20631
+ # * CreateProcessingJob
20632
+ #
20633
+ # * CreateTrainingJob
20634
+ #
20635
+ # * CreateTransformJob
19030
20636
  # @return [Types::ExperimentConfig]
19031
20637
  #
19032
20638
  # @!attribute [rw] debug_rule_configurations
@@ -19293,7 +20899,7 @@ module Aws::SageMaker
19293
20899
  # data as a hash:
19294
20900
  #
19295
20901
  # {
19296
- # training_image: "Image", # required
20902
+ # training_image: "ContainerImage", # required
19297
20903
  # training_image_digest: "ImageDigest",
19298
20904
  # supported_hyper_parameters: [
19299
20905
  # {
@@ -19471,7 +21077,12 @@ module Aws::SageMaker
19471
21077
  # request payloads contain the entire contents of an input object. Set
19472
21078
  # the value of this parameter to `Line` to split records on a newline
19473
21079
  # character boundary. `SplitType` also supports a number of
19474
- # record-oriented binary data formats.
21080
+ # record-oriented binary data formats. Currently, the supported record
21081
+ # formats are:
21082
+ #
21083
+ # * RecordIO
21084
+ #
21085
+ # * TFRecord
19475
21086
  #
19476
21087
  # When splitting is enabled, the size of a mini-batch depends on the
19477
21088
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -19511,6 +21122,186 @@ module Aws::SageMaker
19511
21122
  include Aws::Structure
19512
21123
  end
19513
21124
 
21125
+ # A batch transform job. For information about SageMaker batch
21126
+ # transform, see [Use Batch Transform][1].
21127
+ #
21128
+ #
21129
+ #
21130
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
21131
+ #
21132
+ # @!attribute [rw] transform_job_name
21133
+ # The name of the transform job.
21134
+ # @return [String]
21135
+ #
21136
+ # @!attribute [rw] transform_job_arn
21137
+ # The Amazon Resource Name (ARN) of the transform job.
21138
+ # @return [String]
21139
+ #
21140
+ # @!attribute [rw] transform_job_status
21141
+ # The status of the transform job.
21142
+ #
21143
+ # Transform job statuses are:
21144
+ #
21145
+ # * `InProgress` - The job is in progress.
21146
+ #
21147
+ # * `Completed` - The job has completed.
21148
+ #
21149
+ # * `Failed` - The transform job has failed. To see the reason for the
21150
+ # failure, see the `FailureReason` field in the response to a
21151
+ # `DescribeTransformJob` call.
21152
+ #
21153
+ # * `Stopping` - The transform job is stopping.
21154
+ #
21155
+ # * `Stopped` - The transform job has stopped.
21156
+ # @return [String]
21157
+ #
21158
+ # @!attribute [rw] failure_reason
21159
+ # If the transform job failed, the reason it failed.
21160
+ # @return [String]
21161
+ #
21162
+ # @!attribute [rw] model_name
21163
+ # The name of the model associated with the transform job.
21164
+ # @return [String]
21165
+ #
21166
+ # @!attribute [rw] max_concurrent_transforms
21167
+ # The maximum number of parallel requests that can be sent to each
21168
+ # instance in a transform job. If `MaxConcurrentTransforms` is set to
21169
+ # 0 or left unset, SageMaker checks the optional execution-parameters
21170
+ # to determine the settings for your chosen algorithm. If the
21171
+ # execution-parameters endpoint is not enabled, the default value is
21172
+ # 1. For built-in algorithms, you don't need to set a value for
21173
+ # `MaxConcurrentTransforms`.
21174
+ # @return [Integer]
21175
+ #
21176
+ # @!attribute [rw] model_client_config
21177
+ # Configures the timeout and maximum number of retries for processing
21178
+ # a transform job invocation.
21179
+ # @return [Types::ModelClientConfig]
21180
+ #
21181
+ # @!attribute [rw] max_payload_in_mb
21182
+ # The maximum allowed size of the payload, in MB. A payload is the
21183
+ # data portion of a record (without metadata). The value in
21184
+ # `MaxPayloadInMB` must be greater than, or equal to, the size of a
21185
+ # single record. To estimate the size of a record in MB, divide the
21186
+ # size of your dataset by the number of records. To ensure that the
21187
+ # records fit within the maximum payload size, we recommend using a
21188
+ # slightly larger value. The default value is 6 MB. For cases where
21189
+ # the payload might be arbitrarily large and is transmitted using HTTP
21190
+ # chunked encoding, set the value to 0. This feature works only in
21191
+ # supported algorithms. Currently, SageMaker built-in algorithms do
21192
+ # not support HTTP chunked encoding.
21193
+ # @return [Integer]
21194
+ #
21195
+ # @!attribute [rw] batch_strategy
21196
+ # Specifies the number of records to include in a mini-batch for an
21197
+ # HTTP inference request. A record is a single unit of input data that
21198
+ # inference can be made on. For example, a single line in a CSV file
21199
+ # is a record.
21200
+ # @return [String]
21201
+ #
21202
+ # @!attribute [rw] environment
21203
+ # The environment variables to set in the Docker container. We support
21204
+ # up to 16 key and values entries in the map.
21205
+ # @return [Hash<String,String>]
21206
+ #
21207
+ # @!attribute [rw] transform_input
21208
+ # Describes the input source of a transform job and the way the
21209
+ # transform job consumes it.
21210
+ # @return [Types::TransformInput]
21211
+ #
21212
+ # @!attribute [rw] transform_output
21213
+ # Describes the results of a transform job.
21214
+ # @return [Types::TransformOutput]
21215
+ #
21216
+ # @!attribute [rw] transform_resources
21217
+ # Describes the resources, including ML instance types and ML instance
21218
+ # count, to use for transform job.
21219
+ # @return [Types::TransformResources]
21220
+ #
21221
+ # @!attribute [rw] creation_time
21222
+ # A timestamp that shows when the transform Job was created.
21223
+ # @return [Time]
21224
+ #
21225
+ # @!attribute [rw] transform_start_time
21226
+ # Indicates when the transform job starts on ML instances. You are
21227
+ # billed for the time interval between this time and the value of
21228
+ # `TransformEndTime`.
21229
+ # @return [Time]
21230
+ #
21231
+ # @!attribute [rw] transform_end_time
21232
+ # Indicates when the transform job has been completed, or has stopped
21233
+ # or failed. You are billed for the time interval between this time
21234
+ # and the value of `TransformStartTime`.
21235
+ # @return [Time]
21236
+ #
21237
+ # @!attribute [rw] labeling_job_arn
21238
+ # The Amazon Resource Name (ARN) of the labeling job that created the
21239
+ # transform job.
21240
+ # @return [String]
21241
+ #
21242
+ # @!attribute [rw] auto_ml_job_arn
21243
+ # The Amazon Resource Name (ARN) of the AutoML job that created the
21244
+ # transform job.
21245
+ # @return [String]
21246
+ #
21247
+ # @!attribute [rw] data_processing
21248
+ # The data structure used to specify the data to be used for inference
21249
+ # in a batch transform job and to associate the data that is relevant
21250
+ # to the prediction results in the output. The input filter provided
21251
+ # allows you to exclude input data that is not needed for inference in
21252
+ # a batch transform job. The output filter provided allows you to
21253
+ # include input data relevant to interpreting the predictions in the
21254
+ # output from the job. For more information, see [Associate Prediction
21255
+ # Results with their Corresponding Input Records][1].
21256
+ #
21257
+ #
21258
+ #
21259
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
21260
+ # @return [Types::DataProcessing]
21261
+ #
21262
+ # @!attribute [rw] experiment_config
21263
+ # Associates a SageMaker job as a trial component with an experiment
21264
+ # and trial. Specified when you call the following APIs:
21265
+ #
21266
+ # * CreateProcessingJob
21267
+ #
21268
+ # * CreateTrainingJob
21269
+ #
21270
+ # * CreateTransformJob
21271
+ # @return [Types::ExperimentConfig]
21272
+ #
21273
+ # @!attribute [rw] tags
21274
+ # A list of tags associated with the transform job.
21275
+ # @return [Array<Types::Tag>]
21276
+ #
21277
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformJob AWS API Documentation
21278
+ #
21279
+ class TransformJob < Struct.new(
21280
+ :transform_job_name,
21281
+ :transform_job_arn,
21282
+ :transform_job_status,
21283
+ :failure_reason,
21284
+ :model_name,
21285
+ :max_concurrent_transforms,
21286
+ :model_client_config,
21287
+ :max_payload_in_mb,
21288
+ :batch_strategy,
21289
+ :environment,
21290
+ :transform_input,
21291
+ :transform_output,
21292
+ :transform_resources,
21293
+ :creation_time,
21294
+ :transform_start_time,
21295
+ :transform_end_time,
21296
+ :labeling_job_arn,
21297
+ :auto_ml_job_arn,
21298
+ :data_processing,
21299
+ :experiment_config,
21300
+ :tags)
21301
+ SENSITIVE = []
21302
+ include Aws::Structure
21303
+ end
21304
+
19514
21305
  # Defines the input needed to run a transform job using the inference
19515
21306
  # specification specified in the algorithm.
19516
21307
  #
@@ -19839,7 +21630,7 @@ module Aws::SageMaker
19839
21630
  #
19840
21631
  # `]`
19841
21632
  #
19842
- # The preceding JSON matches the following `s3Uris`\:
21633
+ # The preceding JSON matches the following `S3Uris`\:
19843
21634
  #
19844
21635
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
19845
21636
  #
@@ -20237,12 +22028,18 @@ module Aws::SageMaker
20237
22028
  # component.
20238
22029
  # @return [Types::ProcessingJob]
20239
22030
  #
22031
+ # @!attribute [rw] transform_job
22032
+ # Information about a transform job that's the source of the trial
22033
+ # component.
22034
+ # @return [Types::TransformJob]
22035
+ #
20240
22036
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrialComponentSourceDetail AWS API Documentation
20241
22037
  #
20242
22038
  class TrialComponentSourceDetail < Struct.new(
20243
22039
  :source_arn,
20244
22040
  :training_job,
20245
- :processing_job)
22041
+ :processing_job,
22042
+ :transform_job)
20246
22043
  SENSITIVE = []
20247
22044
  include Aws::Structure
20248
22045
  end
@@ -20418,7 +22215,7 @@ module Aws::SageMaker
20418
22215
  # }
20419
22216
  #
20420
22217
  # @!attribute [rw] target_objective_metric_value
20421
- # The objective metric's value.
22218
+ # The value of the objective metric.
20422
22219
  # @return [Float]
20423
22220
  #
20424
22221
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -20487,8 +22284,52 @@ module Aws::SageMaker
20487
22284
  #
20488
22285
  # @!attribute [rw] human_task_ui_arn
20489
22286
  # The ARN of the worker task template used to render the worker UI and
20490
- # tools for labeling job tasks. Do not use this parameter if you use
20491
- # UiTemplateS3Uri.
22287
+ # tools for labeling job tasks.
22288
+ #
22289
+ # Use this parameter when you are creating a labeling job for 3D point
22290
+ # cloud and video fram labeling jobs. Use your labeling job task type
22291
+ # to select one of the following ARN's and use it with this parameter
22292
+ # when you create a labeling job. Replace `aws-region` with the AWS
22293
+ # region you are creating your labeling job in.
22294
+ #
22295
+ # **3D Point Cloud HumanTaskUiArns**
22296
+ #
22297
+ # Use this `HumanTaskUiArn` for 3D point cloud object detection and 3D
22298
+ # point cloud object detection adjustment labeling jobs.
22299
+ #
22300
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection`
22301
+ #
22302
+ # ^
22303
+ #
22304
+ # Use this `HumanTaskUiArn` for 3D point cloud object tracking and 3D
22305
+ # point cloud object tracking adjustment labeling jobs.
22306
+ #
22307
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking`
22308
+ #
22309
+ # ^
22310
+ #
22311
+ # Use this `HumanTaskUiArn` for 3D point cloud semantic segmentation
22312
+ # and 3D point cloud semantic segmentation adjustment labeling jobs.
22313
+ #
22314
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation`
22315
+ #
22316
+ # ^
22317
+ #
22318
+ # **Video Frame HumanTaskUiArns**
22319
+ #
22320
+ # Use this `HumanTaskUiArn` for video frame object detection and video
22321
+ # frame object detection adjustment labeling jobs.
22322
+ #
22323
+ # * `arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection`
22324
+ #
22325
+ # ^
22326
+ #
22327
+ # Use this `HumanTaskUiArn` for video frame object tracking and video
22328
+ # frame object tracking adjustment labeling jobs.
22329
+ #
22330
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking`
22331
+ #
22332
+ # ^
20492
22333
  # @return [String]
20493
22334
  #
20494
22335
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UiConfig AWS API Documentation
@@ -20600,19 +22441,19 @@ module Aws::SageMaker
20600
22441
  # },
20601
22442
  # jupyter_server_app_settings: {
20602
22443
  # default_resource_spec: {
20603
- # sage_maker_image_arn: "SageMakerImageArn",
22444
+ # sage_maker_image_arn: "ImageArn",
20604
22445
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20605
22446
  # },
20606
22447
  # },
20607
22448
  # kernel_gateway_app_settings: {
20608
22449
  # default_resource_spec: {
20609
- # sage_maker_image_arn: "SageMakerImageArn",
22450
+ # sage_maker_image_arn: "ImageArn",
20610
22451
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20611
22452
  # },
20612
22453
  # },
20613
22454
  # tensor_board_app_settings: {
20614
22455
  # default_resource_spec: {
20615
- # sage_maker_image_arn: "SageMakerImageArn",
22456
+ # sage_maker_image_arn: "ImageArn",
20616
22457
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20617
22458
  # },
20618
22459
  # },
@@ -21287,19 +23128,19 @@ module Aws::SageMaker
21287
23128
  # },
21288
23129
  # jupyter_server_app_settings: {
21289
23130
  # default_resource_spec: {
21290
- # sage_maker_image_arn: "SageMakerImageArn",
23131
+ # sage_maker_image_arn: "ImageArn",
21291
23132
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21292
23133
  # },
21293
23134
  # },
21294
23135
  # kernel_gateway_app_settings: {
21295
23136
  # default_resource_spec: {
21296
- # sage_maker_image_arn: "SageMakerImageArn",
23137
+ # sage_maker_image_arn: "ImageArn",
21297
23138
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21298
23139
  # },
21299
23140
  # },
21300
23141
  # tensor_board_app_settings: {
21301
23142
  # default_resource_spec: {
21302
- # sage_maker_image_arn: "SageMakerImageArn",
23143
+ # sage_maker_image_arn: "ImageArn",
21303
23144
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21304
23145
  # },
21305
23146
  # },
@@ -21348,41 +23189,55 @@ module Aws::SageMaker
21348
23189
  # source_ip_config: {
21349
23190
  # cidrs: ["Cidr"], # required
21350
23191
  # },
23192
+ # oidc_config: {
23193
+ # client_id: "ClientId", # required
23194
+ # client_secret: "ClientSecret", # required
23195
+ # issuer: "OidcEndpoint", # required
23196
+ # authorization_endpoint: "OidcEndpoint", # required
23197
+ # token_endpoint: "OidcEndpoint", # required
23198
+ # user_info_endpoint: "OidcEndpoint", # required
23199
+ # logout_endpoint: "OidcEndpoint", # required
23200
+ # jwks_uri: "OidcEndpoint", # required
23201
+ # },
21351
23202
  # }
21352
23203
  #
21353
23204
  # @!attribute [rw] workforce_name
21354
- # The name of the private workforce whose access you want to restrict.
21355
- # `WorkforceName` is automatically set to `default` when a workforce
21356
- # is created and cannot be modified.
23205
+ # The name of the private workforce that you want to update. You can
23206
+ # find your workforce name by using the operation.
21357
23207
  # @return [String]
21358
23208
  #
21359
23209
  # @!attribute [rw] source_ip_config
21360
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
23210
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can
21361
23211
  # be used to access tasks assigned to this workforce.
21362
23212
  #
21363
- # Maximum: Four CIDR values
23213
+ # Maximum: Ten CIDR values
21364
23214
  #
21365
23215
  #
21366
23216
  #
21367
23217
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
21368
23218
  # @return [Types::SourceIpConfig]
21369
23219
  #
23220
+ # @!attribute [rw] oidc_config
23221
+ # Use this parameter to update your OIDC Identity Provider (IdP)
23222
+ # configuration for a workforce made using your own IdP.
23223
+ # @return [Types::OidcConfig]
23224
+ #
21370
23225
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforceRequest AWS API Documentation
21371
23226
  #
21372
23227
  class UpdateWorkforceRequest < Struct.new(
21373
23228
  :workforce_name,
21374
- :source_ip_config)
23229
+ :source_ip_config,
23230
+ :oidc_config)
21375
23231
  SENSITIVE = []
21376
23232
  include Aws::Structure
21377
23233
  end
21378
23234
 
21379
23235
  # @!attribute [rw] workforce
21380
- # A single private workforce, which is automatically created when you
21381
- # create your first private work team. You can create one private work
21382
- # force in each AWS Region. By default, any workforce-related API
21383
- # operation used in a specific region will apply to the workforce
21384
- # created in that region. To learn how to create a private workforce,
21385
- # see [Create a Private Workforce][1].
23236
+ # A single private workforce. You can create one private work force in
23237
+ # each AWS Region. By default, any workforce-related API operation
23238
+ # used in a specific region will apply to the workforce created in
23239
+ # that region. To learn how to create a private workforce, see [Create
23240
+ # a Private Workforce][1].
21386
23241
  #
21387
23242
  #
21388
23243
  #
@@ -21407,7 +23262,10 @@ module Aws::SageMaker
21407
23262
  # cognito_member_definition: {
21408
23263
  # user_pool: "CognitoUserPool", # required
21409
23264
  # user_group: "CognitoUserGroup", # required
21410
- # client_id: "CognitoClientId", # required
23265
+ # client_id: "ClientId", # required
23266
+ # },
23267
+ # oidc_member_definition: {
23268
+ # groups: ["Group"], # required
21411
23269
  # },
21412
23270
  # },
21413
23271
  # ],
@@ -21422,8 +23280,35 @@ module Aws::SageMaker
21422
23280
  # @return [String]
21423
23281
  #
21424
23282
  # @!attribute [rw] member_definitions
21425
- # A list of `MemberDefinition` objects that contain the updated work
21426
- # team members.
23283
+ # A list of `MemberDefinition` objects that contains objects that
23284
+ # identify the workers that make up the work team.
23285
+ #
23286
+ # Workforces can be created using Amazon Cognito or your own OIDC
23287
+ # Identity Provider (IdP). For private workforces created using Amazon
23288
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23289
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23290
+ # You should not provide input for both of these parameters in a
23291
+ # single request.
23292
+ #
23293
+ # For workforces created using Amazon Cognito, private work teams
23294
+ # correspond to Amazon Cognito *user groups* within the user pool used
23295
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23296
+ # that make up the member definition must have the same `ClientId` and
23297
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23298
+ # worker pool, see [Adding groups to a User Pool](). For more
23299
+ # information about user pools, see [Amazon Cognito User Pools][1].
23300
+ #
23301
+ # For workforces created using your own OIDC IdP, specify the user
23302
+ # groups that you want to include in your private work team in
23303
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23304
+ # that user groups that are already in the work team must also be
23305
+ # listed in `Groups` when you make this request to remain on the work
23306
+ # team. If you do not include these user groups, they will no longer
23307
+ # be associated with the work team you update.
23308
+ #
23309
+ #
23310
+ #
23311
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
21427
23312
  # @return [Array<Types::MemberDefinition>]
21428
23313
  #
21429
23314
  # @!attribute [rw] description
@@ -21532,19 +23417,19 @@ module Aws::SageMaker
21532
23417
  # },
21533
23418
  # jupyter_server_app_settings: {
21534
23419
  # default_resource_spec: {
21535
- # sage_maker_image_arn: "SageMakerImageArn",
23420
+ # sage_maker_image_arn: "ImageArn",
21536
23421
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21537
23422
  # },
21538
23423
  # },
21539
23424
  # kernel_gateway_app_settings: {
21540
23425
  # default_resource_spec: {
21541
- # sage_maker_image_arn: "SageMakerImageArn",
23426
+ # sage_maker_image_arn: "ImageArn",
21542
23427
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21543
23428
  # },
21544
23429
  # },
21545
23430
  # tensor_board_app_settings: {
21546
23431
  # default_resource_spec: {
21547
- # sage_maker_image_arn: "SageMakerImageArn",
23432
+ # sage_maker_image_arn: "ImageArn",
21548
23433
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21549
23434
  # },
21550
23435
  # },
@@ -21681,9 +23566,7 @@ module Aws::SageMaker
21681
23566
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
21682
23567
  #
21683
23568
  # @!attribute [rw] workforce_name
21684
- # The name of the private workforce whose access you want to restrict.
21685
- # `WorkforceName` is automatically set to `default` when a workforce
21686
- # is created and cannot be modified.
23569
+ # The name of the private workforce.
21687
23570
  # @return [String]
21688
23571
  #
21689
23572
  # @!attribute [rw] workforce_arn
@@ -21700,21 +23583,49 @@ module Aws::SageMaker
21700
23583
  # @return [Time]
21701
23584
  #
21702
23585
  # @!attribute [rw] source_ip_config
21703
- # A list of one to four IP address ranges ([CIDRs][1]) to be added to
21704
- # the workforce allow list.
23586
+ # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23587
+ # the workforce allow list. By default, a workforce isn't restricted
23588
+ # to specific IP addresses.
21705
23589
  #
21706
23590
  #
21707
23591
  #
21708
23592
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
21709
23593
  # @return [Types::SourceIpConfig]
21710
23594
  #
23595
+ # @!attribute [rw] sub_domain
23596
+ # The subdomain for your OIDC Identity Provider.
23597
+ # @return [String]
23598
+ #
23599
+ # @!attribute [rw] cognito_config
23600
+ # The configuration of an Amazon Cognito workforce. A single Cognito
23601
+ # workforce is created using and corresponds to a single [ Amazon
23602
+ # Cognito user pool][1].
23603
+ #
23604
+ #
23605
+ #
23606
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23607
+ # @return [Types::CognitoConfig]
23608
+ #
23609
+ # @!attribute [rw] oidc_config
23610
+ # The configuration of an OIDC Identity Provider (IdP) private
23611
+ # workforce.
23612
+ # @return [Types::OidcConfigForResponse]
23613
+ #
23614
+ # @!attribute [rw] create_date
23615
+ # The date that the workforce is created.
23616
+ # @return [Time]
23617
+ #
21711
23618
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Workforce AWS API Documentation
21712
23619
  #
21713
23620
  class Workforce < Struct.new(
21714
23621
  :workforce_name,
21715
23622
  :workforce_arn,
21716
23623
  :last_updated_date,
21717
- :source_ip_config)
23624
+ :source_ip_config,
23625
+ :sub_domain,
23626
+ :cognito_config,
23627
+ :oidc_config,
23628
+ :create_date)
21718
23629
  SENSITIVE = []
21719
23630
  include Aws::Structure
21720
23631
  end
@@ -21726,13 +23637,23 @@ module Aws::SageMaker
21726
23637
  # @return [String]
21727
23638
  #
21728
23639
  # @!attribute [rw] member_definitions
21729
- # The Amazon Cognito user groups that make up the work team.
23640
+ # A list of `MemberDefinition` objects that contains objects that
23641
+ # identify the workers that make up the work team.
23642
+ #
23643
+ # Workforces can be created using Amazon Cognito or your own OIDC
23644
+ # Identity Provider (IdP). For private workforces created using Amazon
23645
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23646
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
21730
23647
  # @return [Array<Types::MemberDefinition>]
21731
23648
  #
21732
23649
  # @!attribute [rw] workteam_arn
21733
23650
  # The Amazon Resource Name (ARN) that identifies the work team.
21734
23651
  # @return [String]
21735
23652
  #
23653
+ # @!attribute [rw] workforce_arn
23654
+ # The Amazon Resource Name (ARN) of the workforce.
23655
+ # @return [String]
23656
+ #
21736
23657
  # @!attribute [rw] product_listing_ids
21737
23658
  # The Amazon Marketplace identifier for a vendor's work team.
21738
23659
  # @return [Array<String>]
@@ -21765,6 +23686,7 @@ module Aws::SageMaker
21765
23686
  :workteam_name,
21766
23687
  :member_definitions,
21767
23688
  :workteam_arn,
23689
+ :workforce_arn,
21768
23690
  :product_listing_ids,
21769
23691
  :description,
21770
23692
  :sub_domain,