aws-sdk-sagemaker 1.60.1 → 1.65.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 0ddb71cf7dd85c13f58c7c3e5ea44323fc2ac716be22c01773716ee8a99e6beb
4
- data.tar.gz: 4a78a2506ef98e80e42d1d3ab504c0c8fc2390757de5d30bc248e10c0a34080e
3
+ metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
4
+ data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
5
5
  SHA512:
6
- metadata.gz: 35f483ce8747277e78e1ae14c23cbadf86a5094abe8c3094d721393b68f3a4e056ea1820ba4fa2c79772a828c60bb43e2466a908f82251b2e17837773c1219b8
7
- data.tar.gz: a8f45cdd3f6e342341d6e77b9e1e4c76f2c526a66a338d9ec7ef1d71636406f869d779f64a7c920d56458f286d8a20bec7a1b1e4f7818c3df17a7d0a6ba61c68
6
+ metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
7
+ data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -46,6 +48,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
46
48
  # @service
47
49
  module Aws::SageMaker
48
50
 
49
- GEM_VERSION = '1.60.1'
51
+ GEM_VERSION = '1.65.0'
50
52
 
51
53
  end
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -484,7 +486,7 @@ module Aws::SageMaker
484
486
  # algorithm_name: "EntityName", # required
485
487
  # algorithm_description: "EntityDescription",
486
488
  # training_specification: { # required
487
- # training_image: "Image", # required
489
+ # training_image: "ContainerImage", # required
488
490
  # training_image_digest: "ImageDigest",
489
491
  # supported_hyper_parameters: [
490
492
  # {
@@ -538,7 +540,7 @@ module Aws::SageMaker
538
540
  # containers: [ # required
539
541
  # {
540
542
  # container_hostname: "ContainerHostname",
541
- # image: "Image", # required
543
+ # image: "ContainerImage", # required
542
544
  # image_digest: "ImageDigest",
543
545
  # model_data_url: "Url",
544
546
  # product_id: "ProductId",
@@ -650,11 +652,10 @@ module Aws::SageMaker
650
652
  end
651
653
 
652
654
  # Creates a running App for the specified UserProfile. Supported Apps
653
- # are JupyterServer, KernelGateway, and TensorBoard. This operation is
654
- # automatically invoked by Amazon SageMaker Studio upon access to the
655
- # associated Domain, and when new kernel configurations are selected by
656
- # the user. A user may have multiple Apps active simultaneously.
657
- # UserProfiles are limited to 5 concurrently running Apps at a time.
655
+ # are JupyterServer and KernelGateway. This operation is automatically
656
+ # invoked by Amazon SageMaker Studio upon access to the associated
657
+ # Domain, and when new kernel configurations are selected by the user. A
658
+ # user may have multiple Apps active simultaneously.
658
659
  #
659
660
  # @option params [required, String] :domain_id
660
661
  # The domain ID.
@@ -694,7 +695,7 @@ module Aws::SageMaker
694
695
  # },
695
696
  # ],
696
697
  # resource_spec: {
697
- # sage_maker_image_arn: "SageMakerImageArn",
698
+ # sage_maker_image_arn: "ImageArn",
698
699
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
699
700
  # },
700
701
  # })
@@ -712,15 +713,14 @@ module Aws::SageMaker
712
713
  req.send_request(options)
713
714
  end
714
715
 
715
- # Creates an AutoPilot job.
716
+ # Creates an Autopilot job.
716
717
  #
717
- # After you run an AutoPilot job, you can find the best performing model
718
- # by calling , and then deploy that model by following the steps
719
- # described in [Step 6.1: Deploy the Model to Amazon SageMaker Hosting
720
- # Services][1].
718
+ # Find the best performing model after you run an Autopilot job by
719
+ # calling . Deploy that model by following the steps described in [Step
720
+ # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
721
721
  #
722
- # For information about how to use AutoPilot, see [Use AutoPilot to
723
- # Automate Model Development][2].
722
+ # For information about how to use Autopilot, see [ Automate Model
723
+ # Development with Amazon SageMaker Autopilot][2].
724
724
  #
725
725
  #
726
726
  #
@@ -728,7 +728,7 @@ module Aws::SageMaker
728
728
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
729
729
  #
730
730
  # @option params [required, String] :auto_ml_job_name
731
- # Identifies an AutoPilot job. Must be unique to your account and is
731
+ # Identifies an Autopilot job. Must be unique to your account and is
732
732
  # case-insensitive.
733
733
  #
734
734
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
@@ -745,20 +745,21 @@ module Aws::SageMaker
745
745
  # MulticlassClassification, and Regression.
746
746
  #
747
747
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
748
- # Defines the job's objective. You provide a MetricName and AutoML will
749
- # infer minimize or maximize. If this is not provided, the most commonly
750
- # used ObjectiveMetric for problem type will be selected.
748
+ # Defines the objective of a an AutoML job. You provide a
749
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
750
+ # or maximize it. If a metric is not specified, the most commonly used
751
+ # ObjectiveMetric for problem type is automaically selected.
751
752
  #
752
753
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
753
754
  # Contains CompletionCriteria and SecurityConfig.
754
755
  #
755
756
  # @option params [required, String] :role_arn
756
- # The ARN of the role that will be used to access the data.
757
+ # The ARN of the role that is used to access the data.
757
758
  #
758
759
  # @option params [Boolean] :generate_candidate_definitions_only
759
- # This will generate possible candidates without training a model. A
760
- # candidate is a combination of data preprocessors, algorithms, and
761
- # algorithm parameter settings.
760
+ # Generates possible candidates without training a model. A candidate is
761
+ # a combination of data preprocessors, algorithms, and algorithm
762
+ # parameter settings.
762
763
  #
763
764
  # @option params [Array<Types::Tag>] :tags
764
765
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -790,7 +791,7 @@ module Aws::SageMaker
790
791
  # },
791
792
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
792
793
  # auto_ml_job_objective: {
793
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
794
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
794
795
  # },
795
796
  # auto_ml_job_config: {
796
797
  # completion_criteria: {
@@ -900,8 +901,8 @@ module Aws::SageMaker
900
901
  # * The output location for the compiled model and the device (target)
901
902
  # that the model runs on
902
903
  #
903
- # * `The Amazon Resource Name (ARN) of the IAM role that Amazon
904
- # SageMaker assumes to perform the model compilation job`
904
+ # * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
905
+ # assumes to perform the model compilation job.
905
906
  #
906
907
  # You can also provide a `Tag` to track the model compilation job's
907
908
  # resource use and costs. The response body contains the
@@ -969,7 +970,13 @@ module Aws::SageMaker
969
970
  # },
970
971
  # output_config: { # required
971
972
  # s3_output_location: "S3Uri", # required
972
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
973
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
974
+ # target_platform: {
975
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
976
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
977
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
978
+ # },
979
+ # compiler_options: "CompilerOptions",
973
980
  # },
974
981
  # stopping_condition: { # required
975
982
  # max_runtime_in_seconds: 1,
@@ -1056,19 +1063,19 @@ module Aws::SageMaker
1056
1063
  # },
1057
1064
  # jupyter_server_app_settings: {
1058
1065
  # default_resource_spec: {
1059
- # sage_maker_image_arn: "SageMakerImageArn",
1066
+ # sage_maker_image_arn: "ImageArn",
1060
1067
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1061
1068
  # },
1062
1069
  # },
1063
1070
  # kernel_gateway_app_settings: {
1064
1071
  # default_resource_spec: {
1065
- # sage_maker_image_arn: "SageMakerImageArn",
1072
+ # sage_maker_image_arn: "ImageArn",
1066
1073
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1067
1074
  # },
1068
1075
  # },
1069
1076
  # tensor_board_app_settings: {
1070
1077
  # default_resource_spec: {
1071
- # sage_maker_image_arn: "SageMakerImageArn",
1078
+ # sage_maker_image_arn: "ImageArn",
1072
1079
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1073
1080
  # },
1074
1081
  # },
@@ -1371,10 +1378,10 @@ module Aws::SageMaker
1371
1378
  req.send_request(options)
1372
1379
  end
1373
1380
 
1374
- # Creates an Amazon SageMaker *experiment*. An experiment is a
1375
- # collection of *trials* that are observed, compared and evaluated as a
1376
- # group. A trial is a set of steps, called *trial components*, that
1377
- # produce a machine learning model.
1381
+ # Creates an SageMaker *experiment*. An experiment is a collection of
1382
+ # *trials* that are observed, compared and evaluated as a group. A trial
1383
+ # is a set of steps, called *trial components*, that produce a machine
1384
+ # learning model.
1378
1385
  #
1379
1386
  # The goal of an experiment is to determine the components that produce
1380
1387
  # the best model. Multiple trials are performed, each one isolating and
@@ -1990,7 +1997,13 @@ module Aws::SageMaker
1990
1997
  # The S3 URL of the file that defines the categories used to label the
1991
1998
  # data objects.
1992
1999
  #
1993
- # The file is a JSON structure in the following format:
2000
+ # For 3D point cloud task types, see [Create a Labeling Category
2001
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
2002
+ #
2003
+ # For all other [built-in task types][2] and [custom tasks][3], your
2004
+ # label category configuration file must be a JSON file in the following
2005
+ # format. Identify the labels you want to use by replacing `label_1`,
2006
+ # `label_2`,`...`,`label_n` with your label categories.
1994
2007
  #
1995
2008
  # `\{`
1996
2009
  #
@@ -2000,13 +2013,13 @@ module Aws::SageMaker
2000
2013
  #
2001
2014
  # ` \{`
2002
2015
  #
2003
- # ` "label": "label 1"`
2016
+ # ` "label": "label_1"`
2004
2017
  #
2005
2018
  # ` \},`
2006
2019
  #
2007
2020
  # ` \{`
2008
2021
  #
2009
- # ` "label": "label 2"`
2022
+ # ` "label": "label_2"`
2010
2023
  #
2011
2024
  # ` \},`
2012
2025
  #
@@ -2014,7 +2027,7 @@ module Aws::SageMaker
2014
2027
  #
2015
2028
  # ` \{`
2016
2029
  #
2017
- # ` "label": "label n"`
2030
+ # ` "label": "label_n"`
2018
2031
  #
2019
2032
  # ` \}`
2020
2033
  #
@@ -2022,6 +2035,12 @@ module Aws::SageMaker
2022
2035
  #
2023
2036
  # `\}`
2024
2037
  #
2038
+ #
2039
+ #
2040
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
2041
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
2042
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
2043
+ #
2025
2044
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
2026
2045
  # A set of conditions for stopping the labeling job. If any of the
2027
2046
  # conditions are met, the job is automatically stopped. You can use
@@ -2056,7 +2075,7 @@ module Aws::SageMaker
2056
2075
  # label_attribute_name: "LabelAttributeName", # required
2057
2076
  # input_config: { # required
2058
2077
  # data_source: { # required
2059
- # s3_data_source: { # required
2078
+ # s3_data_source: {
2060
2079
  # manifest_s3_uri: "S3Uri", # required
2061
2080
  # },
2062
2081
  # },
@@ -2227,7 +2246,10 @@ module Aws::SageMaker
2227
2246
  # model_name: "ModelName", # required
2228
2247
  # primary_container: {
2229
2248
  # container_hostname: "ContainerHostname",
2230
- # image: "Image",
2249
+ # image: "ContainerImage",
2250
+ # image_config: {
2251
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2252
+ # },
2231
2253
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2232
2254
  # model_data_url: "Url",
2233
2255
  # environment: {
@@ -2238,7 +2260,10 @@ module Aws::SageMaker
2238
2260
  # containers: [
2239
2261
  # {
2240
2262
  # container_hostname: "ContainerHostname",
2241
- # image: "Image",
2263
+ # image: "ContainerImage",
2264
+ # image_config: {
2265
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2266
+ # },
2242
2267
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2243
2268
  # model_data_url: "Url",
2244
2269
  # environment: {
@@ -2328,7 +2353,7 @@ module Aws::SageMaker
2328
2353
  # containers: [ # required
2329
2354
  # {
2330
2355
  # container_hostname: "ContainerHostname",
2331
- # image: "Image", # required
2356
+ # image: "ContainerImage", # required
2332
2357
  # image_digest: "ImageDigest",
2333
2358
  # model_data_url: "Url",
2334
2359
  # product_id: "ProductId",
@@ -2943,7 +2968,14 @@ module Aws::SageMaker
2943
2968
  # [1]: https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL
2944
2969
  #
2945
2970
  # @option params [Types::ExperimentConfig] :experiment_config
2946
- # Configuration for the experiment.
2971
+ # Associates a SageMaker job as a trial component with an experiment and
2972
+ # trial. Specified when you call the following APIs:
2973
+ #
2974
+ # * CreateProcessingJob
2975
+ #
2976
+ # * CreateTrainingJob
2977
+ #
2978
+ # * CreateTransformJob
2947
2979
  #
2948
2980
  # @return [Types::CreateProcessingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2949
2981
  #
@@ -3250,7 +3282,14 @@ module Aws::SageMaker
3250
3282
  # Configuration of storage locations for TensorBoard output.
3251
3283
  #
3252
3284
  # @option params [Types::ExperimentConfig] :experiment_config
3253
- # Configuration for the experiment.
3285
+ # Associates a SageMaker job as a trial component with an experiment and
3286
+ # trial. Specified when you call the following APIs:
3287
+ #
3288
+ # * CreateProcessingJob
3289
+ #
3290
+ # * CreateTrainingJob
3291
+ #
3292
+ # * CreateTransformJob
3254
3293
  #
3255
3294
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3256
3295
  #
@@ -3441,6 +3480,10 @@ module Aws::SageMaker
3441
3480
  #
3442
3481
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests
3443
3482
  #
3483
+ # @option params [Types::ModelClientConfig] :model_client_config
3484
+ # Configures the timeout and maximum number of retries for processing a
3485
+ # transform job invocation.
3486
+ #
3444
3487
  # @option params [Integer] :max_payload_in_mb
3445
3488
  # The maximum allowed size of the payload, in MB. A *payload* is the
3446
3489
  # data portion of a record (without metadata). The value in
@@ -3510,7 +3553,14 @@ module Aws::SageMaker
3510
3553
  # [1]: https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
3511
3554
  #
3512
3555
  # @option params [Types::ExperimentConfig] :experiment_config
3513
- # Configuration for the experiment.
3556
+ # Associates a SageMaker job as a trial component with an experiment and
3557
+ # trial. Specified when you call the following APIs:
3558
+ #
3559
+ # * CreateProcessingJob
3560
+ #
3561
+ # * CreateTrainingJob
3562
+ #
3563
+ # * CreateTransformJob
3514
3564
  #
3515
3565
  # @return [Types::CreateTransformJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3516
3566
  #
@@ -3522,6 +3572,10 @@ module Aws::SageMaker
3522
3572
  # transform_job_name: "TransformJobName", # required
3523
3573
  # model_name: "ModelName", # required
3524
3574
  # max_concurrent_transforms: 1,
3575
+ # model_client_config: {
3576
+ # invocations_timeout_in_seconds: 1,
3577
+ # invocations_max_retries: 1,
3578
+ # },
3525
3579
  # max_payload_in_mb: 1,
3526
3580
  # batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
3527
3581
  # environment: {
@@ -3820,19 +3874,19 @@ module Aws::SageMaker
3820
3874
  # },
3821
3875
  # jupyter_server_app_settings: {
3822
3876
  # default_resource_spec: {
3823
- # sage_maker_image_arn: "SageMakerImageArn",
3877
+ # sage_maker_image_arn: "ImageArn",
3824
3878
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3825
3879
  # },
3826
3880
  # },
3827
3881
  # kernel_gateway_app_settings: {
3828
3882
  # default_resource_spec: {
3829
- # sage_maker_image_arn: "SageMakerImageArn",
3883
+ # sage_maker_image_arn: "ImageArn",
3830
3884
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3831
3885
  # },
3832
3886
  # },
3833
3887
  # tensor_board_app_settings: {
3834
3888
  # default_resource_spec: {
3835
- # sage_maker_image_arn: "SageMakerImageArn",
3889
+ # sage_maker_image_arn: "ImageArn",
3836
3890
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3837
3891
  # },
3838
3892
  # },
@@ -3852,6 +3906,112 @@ module Aws::SageMaker
3852
3906
  req.send_request(options)
3853
3907
  end
3854
3908
 
3909
+ # Use this operation to create a workforce. This operation will return
3910
+ # an error if a workforce already exists in the AWS Region that you
3911
+ # specify. You can only create one workforce in each AWS Region per AWS
3912
+ # account.
3913
+ #
3914
+ # If you want to create a new workforce in an AWS Region where a
3915
+ # workforce already exists, use the API operation to delete the existing
3916
+ # workforce and then use `CreateWorkforce` to create a new workforce.
3917
+ #
3918
+ # To create a private workforce using Amazon Cognito, you must specify a
3919
+ # Cognito user pool in `CognitoConfig`. You can also create an Amazon
3920
+ # Cognito workforce using the Amazon SageMaker console. For more
3921
+ # information, see [ Create a Private Workforce (Amazon Cognito)][1].
3922
+ #
3923
+ # To create a private workforce using your own OIDC Identity Provider
3924
+ # (IdP), specify your IdP configuration in `OidcConfig`. Your OIDC IdP
3925
+ # must support *groups* because groups are used by Ground Truth and
3926
+ # Amazon A2I to create work teams. For more information, see [ Create a
3927
+ # Private Workforce (OIDC IdP)][2].
3928
+ #
3929
+ #
3930
+ #
3931
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
3932
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private-oidc.html
3933
+ #
3934
+ # @option params [Types::CognitoConfig] :cognito_config
3935
+ # Use this parameter to configure an Amazon Cognito private workforce. A
3936
+ # single Cognito workforce is created using and corresponds to a single
3937
+ # [ Amazon Cognito user pool][1].
3938
+ #
3939
+ # Do not use `OidcConfig` if you specify values for `CognitoConfig`.
3940
+ #
3941
+ #
3942
+ #
3943
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
3944
+ #
3945
+ # @option params [Types::OidcConfig] :oidc_config
3946
+ # Use this parameter to configure a private workforce using your own
3947
+ # OIDC Identity Provider.
3948
+ #
3949
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
3950
+ #
3951
+ # @option params [Types::SourceIpConfig] :source_ip_config
3952
+ # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
3953
+ # of IP addresses for a private workforce. Workers will only be able to
3954
+ # login to their worker portal from an IP address within this range. By
3955
+ # default, a workforce isn't restricted to specific IP addresses.
3956
+ #
3957
+ #
3958
+ #
3959
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
3960
+ #
3961
+ # @option params [required, String] :workforce_name
3962
+ # The name of the private workforce.
3963
+ #
3964
+ # @option params [Array<Types::Tag>] :tags
3965
+ # An array of key-value pairs that contain metadata to help you
3966
+ # categorize and organize our workforce. Each tag consists of a key and
3967
+ # a value, both of which you define.
3968
+ #
3969
+ # @return [Types::CreateWorkforceResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3970
+ #
3971
+ # * {Types::CreateWorkforceResponse#workforce_arn #workforce_arn} => String
3972
+ #
3973
+ # @example Request syntax with placeholder values
3974
+ #
3975
+ # resp = client.create_workforce({
3976
+ # cognito_config: {
3977
+ # user_pool: "CognitoUserPool", # required
3978
+ # client_id: "ClientId", # required
3979
+ # },
3980
+ # oidc_config: {
3981
+ # client_id: "ClientId", # required
3982
+ # client_secret: "ClientSecret", # required
3983
+ # issuer: "OidcEndpoint", # required
3984
+ # authorization_endpoint: "OidcEndpoint", # required
3985
+ # token_endpoint: "OidcEndpoint", # required
3986
+ # user_info_endpoint: "OidcEndpoint", # required
3987
+ # logout_endpoint: "OidcEndpoint", # required
3988
+ # jwks_uri: "OidcEndpoint", # required
3989
+ # },
3990
+ # source_ip_config: {
3991
+ # cidrs: ["Cidr"], # required
3992
+ # },
3993
+ # workforce_name: "WorkforceName", # required
3994
+ # tags: [
3995
+ # {
3996
+ # key: "TagKey", # required
3997
+ # value: "TagValue", # required
3998
+ # },
3999
+ # ],
4000
+ # })
4001
+ #
4002
+ # @example Response structure
4003
+ #
4004
+ # resp.workforce_arn #=> String
4005
+ #
4006
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforce AWS API Documentation
4007
+ #
4008
+ # @overload create_workforce(params = {})
4009
+ # @param [Hash] params ({})
4010
+ def create_workforce(params = {}, options = {})
4011
+ req = build_request(:create_workforce, params)
4012
+ req.send_request(options)
4013
+ end
4014
+
3855
4015
  # Creates a new work team for labeling your data. A work team is defined
3856
4016
  # by one or more Amazon Cognito user pools. You must first create the
3857
4017
  # user pools before you can create a work team.
@@ -3861,13 +4021,30 @@ module Aws::SageMaker
3861
4021
  # @option params [required, String] :workteam_name
3862
4022
  # The name of the work team. Use this name to identify the work team.
3863
4023
  #
4024
+ # @option params [String] :workforce_name
4025
+ # The name of the workforce.
4026
+ #
3864
4027
  # @option params [required, Array<Types::MemberDefinition>] :member_definitions
3865
4028
  # A list of `MemberDefinition` objects that contains objects that
3866
- # identify the Amazon Cognito user pool that makes up the work team. For
3867
- # more information, see [Amazon Cognito User Pools][1].
4029
+ # identify the workers that make up the work team.
3868
4030
  #
3869
- # All of the `CognitoMemberDefinition` objects that make up the member
3870
- # definition must have the same `ClientId` and `UserPool` values.
4031
+ # Workforces can be created using Amazon Cognito or your own OIDC
4032
+ # Identity Provider (IdP). For private workforces created using Amazon
4033
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
4034
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
4035
+ # not provide input for both of these parameters in a single request.
4036
+ #
4037
+ # For workforces created using Amazon Cognito, private work teams
4038
+ # correspond to Amazon Cognito *user groups* within the user pool used
4039
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
4040
+ # that make up the member definition must have the same `ClientId` and
4041
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
4042
+ # worker pool, see [Adding groups to a User Pool](). For more
4043
+ # information about user pools, see [Amazon Cognito User Pools][1].
4044
+ #
4045
+ # For workforces created using your own OIDC IdP, specify the user
4046
+ # groups that you want to include in your private work team in
4047
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
3871
4048
  #
3872
4049
  #
3873
4050
  #
@@ -3899,12 +4076,16 @@ module Aws::SageMaker
3899
4076
  #
3900
4077
  # resp = client.create_workteam({
3901
4078
  # workteam_name: "WorkteamName", # required
4079
+ # workforce_name: "WorkforceName",
3902
4080
  # member_definitions: [ # required
3903
4081
  # {
3904
4082
  # cognito_member_definition: {
3905
4083
  # user_pool: "CognitoUserPool", # required
3906
4084
  # user_group: "CognitoUserGroup", # required
3907
- # client_id: "CognitoClientId", # required
4085
+ # client_id: "ClientId", # required
4086
+ # },
4087
+ # oidc_member_definition: {
4088
+ # groups: ["Group"], # required
3908
4089
  # },
3909
4090
  # },
3910
4091
  # ],
@@ -4158,6 +4339,34 @@ module Aws::SageMaker
4158
4339
  req.send_request(options)
4159
4340
  end
4160
4341
 
4342
+ # Use this operation to delete a human task user interface (worker task
4343
+ # template).
4344
+ #
4345
+ # To see a list of human task user interfaces (work task templates) in
4346
+ # your account, use . When you delete a worker task template, it no
4347
+ # longer appears when you call `ListHumanTaskUis`.
4348
+ #
4349
+ # @option params [required, String] :human_task_ui_name
4350
+ # The name of the human task user interface (work task template) you
4351
+ # want to delete.
4352
+ #
4353
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
4354
+ #
4355
+ # @example Request syntax with placeholder values
4356
+ #
4357
+ # resp = client.delete_human_task_ui({
4358
+ # human_task_ui_name: "HumanTaskUiName", # required
4359
+ # })
4360
+ #
4361
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUi AWS API Documentation
4362
+ #
4363
+ # @overload delete_human_task_ui(params = {})
4364
+ # @param [Hash] params ({})
4365
+ def delete_human_task_ui(params = {}, options = {})
4366
+ req = build_request(:delete_human_task_ui, params)
4367
+ req.send_request(options)
4368
+ end
4369
+
4161
4370
  # Deletes a model. The `DeleteModel` API deletes only the model entry
4162
4371
  # that was created in Amazon SageMaker when you called the CreateModel
4163
4372
  # API. It does not delete model artifacts, inference code, or the IAM
@@ -4408,6 +4617,37 @@ module Aws::SageMaker
4408
4617
  req.send_request(options)
4409
4618
  end
4410
4619
 
4620
+ # Use this operation to delete a workforce.
4621
+ #
4622
+ # If you want to create a new workforce in an AWS Region where a
4623
+ # workforce already exists, use this operation to delete the existing
4624
+ # workforce and then use to create a new workforce.
4625
+ #
4626
+ # If a private workforce contains one or more work teams, you must use
4627
+ # the operation to delete all work teams before you delete the
4628
+ # workforce. If you try to delete a workforce that contains one or more
4629
+ # work teams, you will recieve a `ResourceInUse` error.
4630
+ #
4631
+ # @option params [required, String] :workforce_name
4632
+ # The name of the workforce.
4633
+ #
4634
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
4635
+ #
4636
+ # @example Request syntax with placeholder values
4637
+ #
4638
+ # resp = client.delete_workforce({
4639
+ # workforce_name: "WorkforceName", # required
4640
+ # })
4641
+ #
4642
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforce AWS API Documentation
4643
+ #
4644
+ # @overload delete_workforce(params = {})
4645
+ # @param [Hash] params ({})
4646
+ def delete_workforce(params = {}, options = {})
4647
+ req = build_request(:delete_workforce, params)
4648
+ req.send_request(options)
4649
+ end
4650
+
4411
4651
  # Deletes an existing work team. This operation can't be undone.
4412
4652
  #
4413
4653
  # @option params [required, String] :workteam_name
@@ -4689,7 +4929,7 @@ module Aws::SageMaker
4689
4929
  # resp.output_data_config.kms_key_id #=> String
4690
4930
  # resp.output_data_config.s3_output_path #=> String
4691
4931
  # resp.role_arn #=> String
4692
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4932
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4693
4933
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4694
4934
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
4695
4935
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4706,7 +4946,7 @@ module Aws::SageMaker
4706
4946
  # resp.failure_reason #=> String
4707
4947
  # resp.best_candidate.candidate_name #=> String
4708
4948
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
4709
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4949
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4710
4950
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
4711
4951
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
4712
4952
  # resp.best_candidate.candidate_steps #=> Array
@@ -4728,7 +4968,7 @@ module Aws::SageMaker
4728
4968
  # resp.generate_candidate_definitions_only #=> Boolean
4729
4969
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
4730
4970
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
4731
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4971
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4732
4972
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4733
4973
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
4734
4974
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4830,7 +5070,11 @@ module Aws::SageMaker
4830
5070
  # resp.input_config.data_input_config #=> String
4831
5071
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE"
4832
5072
  # resp.output_config.s3_output_location #=> String
4833
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22"
5073
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
5074
+ # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
5075
+ # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
5076
+ # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
5077
+ # resp.output_config.compiler_options #=> String
4834
5078
  #
4835
5079
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
4836
5080
  #
@@ -5133,15 +5377,18 @@ module Aws::SageMaker
5133
5377
  req.send_request(options)
5134
5378
  end
5135
5379
 
5136
- # Returns information about the requested human task user interface.
5380
+ # Returns information about the requested human task user interface
5381
+ # (worker task template).
5137
5382
  #
5138
5383
  # @option params [required, String] :human_task_ui_name
5139
- # The name of the human task user interface you want information about.
5384
+ # The name of the human task user interface (worker task template) you
5385
+ # want information about.
5140
5386
  #
5141
5387
  # @return [Types::DescribeHumanTaskUiResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5142
5388
  #
5143
5389
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_arn #human_task_ui_arn} => String
5144
5390
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_name #human_task_ui_name} => String
5391
+ # * {Types::DescribeHumanTaskUiResponse#human_task_ui_status #human_task_ui_status} => String
5145
5392
  # * {Types::DescribeHumanTaskUiResponse#creation_time #creation_time} => Time
5146
5393
  # * {Types::DescribeHumanTaskUiResponse#ui_template #ui_template} => Types::UiTemplateInfo
5147
5394
  #
@@ -5155,6 +5402,7 @@ module Aws::SageMaker
5155
5402
  #
5156
5403
  # resp.human_task_ui_arn #=> String
5157
5404
  # resp.human_task_ui_name #=> String
5405
+ # resp.human_task_ui_status #=> String, one of "Active", "Deleting"
5158
5406
  # resp.creation_time #=> Time
5159
5407
  # resp.ui_template.url #=> String
5160
5408
  # resp.ui_template.content_sha_256 #=> String
@@ -5171,7 +5419,7 @@ module Aws::SageMaker
5171
5419
  # Gets a description of a hyperparameter tuning job.
5172
5420
  #
5173
5421
  # @option params [required, String] :hyper_parameter_tuning_job_name
5174
- # The name of the tuning job to describe.
5422
+ # The name of the tuning job.
5175
5423
  #
5176
5424
  # @return [Types::DescribeHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5177
5425
  #
@@ -5431,7 +5679,7 @@ module Aws::SageMaker
5431
5679
  #
5432
5680
  # @example Response structure
5433
5681
  #
5434
- # resp.labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
5682
+ # resp.labeling_job_status #=> String, one of "Initializing", "InProgress", "Completed", "Failed", "Stopping", "Stopped"
5435
5683
  # resp.label_counters.total_labeled #=> Integer
5436
5684
  # resp.label_counters.human_labeled #=> Integer
5437
5685
  # resp.label_counters.machine_labeled #=> Integer
@@ -5514,6 +5762,7 @@ module Aws::SageMaker
5514
5762
  # resp.model_name #=> String
5515
5763
  # resp.primary_container.container_hostname #=> String
5516
5764
  # resp.primary_container.image #=> String
5765
+ # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5517
5766
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
5518
5767
  # resp.primary_container.model_data_url #=> String
5519
5768
  # resp.primary_container.environment #=> Hash
@@ -5522,6 +5771,7 @@ module Aws::SageMaker
5522
5771
  # resp.containers #=> Array
5523
5772
  # resp.containers[0].container_hostname #=> String
5524
5773
  # resp.containers[0].image #=> String
5774
+ # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5525
5775
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
5526
5776
  # resp.containers[0].model_data_url #=> String
5527
5777
  # resp.containers[0].environment #=> Hash
@@ -6151,6 +6401,7 @@ module Aws::SageMaker
6151
6401
  # * {Types::DescribeTransformJobResponse#failure_reason #failure_reason} => String
6152
6402
  # * {Types::DescribeTransformJobResponse#model_name #model_name} => String
6153
6403
  # * {Types::DescribeTransformJobResponse#max_concurrent_transforms #max_concurrent_transforms} => Integer
6404
+ # * {Types::DescribeTransformJobResponse#model_client_config #model_client_config} => Types::ModelClientConfig
6154
6405
  # * {Types::DescribeTransformJobResponse#max_payload_in_mb #max_payload_in_mb} => Integer
6155
6406
  # * {Types::DescribeTransformJobResponse#batch_strategy #batch_strategy} => String
6156
6407
  # * {Types::DescribeTransformJobResponse#environment #environment} => Hash&lt;String,String&gt;
@@ -6179,6 +6430,8 @@ module Aws::SageMaker
6179
6430
  # resp.failure_reason #=> String
6180
6431
  # resp.model_name #=> String
6181
6432
  # resp.max_concurrent_transforms #=> Integer
6433
+ # resp.model_client_config.invocations_timeout_in_seconds #=> Integer
6434
+ # resp.model_client_config.invocations_max_retries #=> Integer
6182
6435
  # resp.max_payload_in_mb #=> Integer
6183
6436
  # resp.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
6184
6437
  # resp.environment #=> Hash
@@ -6444,6 +6697,17 @@ module Aws::SageMaker
6444
6697
  # resp.workforce.last_updated_date #=> Time
6445
6698
  # resp.workforce.source_ip_config.cidrs #=> Array
6446
6699
  # resp.workforce.source_ip_config.cidrs[0] #=> String
6700
+ # resp.workforce.sub_domain #=> String
6701
+ # resp.workforce.cognito_config.user_pool #=> String
6702
+ # resp.workforce.cognito_config.client_id #=> String
6703
+ # resp.workforce.oidc_config.client_id #=> String
6704
+ # resp.workforce.oidc_config.issuer #=> String
6705
+ # resp.workforce.oidc_config.authorization_endpoint #=> String
6706
+ # resp.workforce.oidc_config.token_endpoint #=> String
6707
+ # resp.workforce.oidc_config.user_info_endpoint #=> String
6708
+ # resp.workforce.oidc_config.logout_endpoint #=> String
6709
+ # resp.workforce.oidc_config.jwks_uri #=> String
6710
+ # resp.workforce.create_date #=> Time
6447
6711
  #
6448
6712
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeWorkforce AWS API Documentation
6449
6713
  #
@@ -6478,7 +6742,10 @@ module Aws::SageMaker
6478
6742
  # resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
6479
6743
  # resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
6480
6744
  # resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
6745
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups #=> Array
6746
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups[0] #=> String
6481
6747
  # resp.workteam.workteam_arn #=> String
6748
+ # resp.workteam.workforce_arn #=> String
6482
6749
  # resp.workteam.product_listing_ids #=> Array
6483
6750
  # resp.workteam.product_listing_ids[0] #=> String
6484
6751
  # resp.workteam.description #=> String
@@ -6737,8 +7004,8 @@ module Aws::SageMaker
6737
7004
  # Request a list of jobs up to a specified limit.
6738
7005
  #
6739
7006
  # @option params [String] :next_token
6740
- # If the previous response was truncated, you will receive this token.
6741
- # Use it in your next request to receive the next set of results.
7007
+ # If the previous response was truncated, you receive this token. Use it
7008
+ # in your next request to receive the next set of results.
6742
7009
  #
6743
7010
  # @return [Types::ListAutoMLJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6744
7011
  #
@@ -6805,8 +7072,8 @@ module Aws::SageMaker
6805
7072
  # List the job's Candidates up to a specified limit.
6806
7073
  #
6807
7074
  # @option params [String] :next_token
6808
- # If the previous response was truncated, you will receive this token.
6809
- # Use it in your next request to receive the next set of results.
7075
+ # If the previous response was truncated, you receive this token. Use it
7076
+ # in your next request to receive the next set of results.
6810
7077
  #
6811
7078
  # @return [Types::ListCandidatesForAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6812
7079
  #
@@ -6832,7 +7099,7 @@ module Aws::SageMaker
6832
7099
  # resp.candidates #=> Array
6833
7100
  # resp.candidates[0].candidate_name #=> String
6834
7101
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
6835
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
7102
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
6836
7103
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
6837
7104
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
6838
7105
  # resp.candidates[0].candidate_steps #=> Array
@@ -7013,7 +7280,10 @@ module Aws::SageMaker
7013
7280
  # resp.compilation_job_summaries[0].creation_time #=> Time
7014
7281
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
7015
7282
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
7016
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22"
7283
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
7284
+ # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
7285
+ # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7286
+ # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
7017
7287
  # resp.compilation_job_summaries[0].last_modified_time #=> Time
7018
7288
  # resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
7019
7289
  # resp.next_token #=> String
@@ -7551,7 +7821,7 @@ module Aws::SageMaker
7551
7821
  # name_contains: "NameContains",
7552
7822
  # sort_by: "Name", # accepts Name, CreationTime, Status
7553
7823
  # sort_order: "Ascending", # accepts Ascending, Descending
7554
- # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
7824
+ # status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
7555
7825
  # })
7556
7826
  #
7557
7827
  # @example Response structure
@@ -7561,7 +7831,7 @@ module Aws::SageMaker
7561
7831
  # resp.labeling_job_summary_list[0].labeling_job_arn #=> String
7562
7832
  # resp.labeling_job_summary_list[0].creation_time #=> Time
7563
7833
  # resp.labeling_job_summary_list[0].last_modified_time #=> Time
7564
- # resp.labeling_job_summary_list[0].labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
7834
+ # resp.labeling_job_summary_list[0].labeling_job_status #=> String, one of "Initializing", "InProgress", "Completed", "Failed", "Stopping", "Stopped"
7565
7835
  # resp.labeling_job_summary_list[0].label_counters.total_labeled #=> Integer
7566
7836
  # resp.labeling_job_summary_list[0].label_counters.human_labeled #=> Integer
7567
7837
  # resp.labeling_job_summary_list[0].label_counters.machine_labeled #=> Integer
@@ -8820,9 +9090,76 @@ module Aws::SageMaker
8820
9090
  req.send_request(options)
8821
9091
  end
8822
9092
 
8823
- # Gets a list of work teams that you have defined in a region. The list
8824
- # may be empty if no work team satisfies the filter specified in the
8825
- # `NameContains` parameter.
9093
+ # Use this operation to list all private and vendor workforces in an AWS
9094
+ # Region. Note that you can only have one private workforce per AWS
9095
+ # Region.
9096
+ #
9097
+ # @option params [String] :sort_by
9098
+ # Sort workforces using the workforce name or creation date.
9099
+ #
9100
+ # @option params [String] :sort_order
9101
+ # Sort workforces in ascending or descending order.
9102
+ #
9103
+ # @option params [String] :name_contains
9104
+ # A filter you can use to search for workforces using part of the
9105
+ # workforce name.
9106
+ #
9107
+ # @option params [String] :next_token
9108
+ # A token to resume pagination.
9109
+ #
9110
+ # @option params [Integer] :max_results
9111
+ # The maximum number of workforces returned in the response.
9112
+ #
9113
+ # @return [Types::ListWorkforcesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9114
+ #
9115
+ # * {Types::ListWorkforcesResponse#workforces #workforces} => Array&lt;Types::Workforce&gt;
9116
+ # * {Types::ListWorkforcesResponse#next_token #next_token} => String
9117
+ #
9118
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
9119
+ #
9120
+ # @example Request syntax with placeholder values
9121
+ #
9122
+ # resp = client.list_workforces({
9123
+ # sort_by: "Name", # accepts Name, CreateDate
9124
+ # sort_order: "Ascending", # accepts Ascending, Descending
9125
+ # name_contains: "WorkforceName",
9126
+ # next_token: "NextToken",
9127
+ # max_results: 1,
9128
+ # })
9129
+ #
9130
+ # @example Response structure
9131
+ #
9132
+ # resp.workforces #=> Array
9133
+ # resp.workforces[0].workforce_name #=> String
9134
+ # resp.workforces[0].workforce_arn #=> String
9135
+ # resp.workforces[0].last_updated_date #=> Time
9136
+ # resp.workforces[0].source_ip_config.cidrs #=> Array
9137
+ # resp.workforces[0].source_ip_config.cidrs[0] #=> String
9138
+ # resp.workforces[0].sub_domain #=> String
9139
+ # resp.workforces[0].cognito_config.user_pool #=> String
9140
+ # resp.workforces[0].cognito_config.client_id #=> String
9141
+ # resp.workforces[0].oidc_config.client_id #=> String
9142
+ # resp.workforces[0].oidc_config.issuer #=> String
9143
+ # resp.workforces[0].oidc_config.authorization_endpoint #=> String
9144
+ # resp.workforces[0].oidc_config.token_endpoint #=> String
9145
+ # resp.workforces[0].oidc_config.user_info_endpoint #=> String
9146
+ # resp.workforces[0].oidc_config.logout_endpoint #=> String
9147
+ # resp.workforces[0].oidc_config.jwks_uri #=> String
9148
+ # resp.workforces[0].create_date #=> Time
9149
+ # resp.next_token #=> String
9150
+ #
9151
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforces AWS API Documentation
9152
+ #
9153
+ # @overload list_workforces(params = {})
9154
+ # @param [Hash] params ({})
9155
+ def list_workforces(params = {}, options = {})
9156
+ req = build_request(:list_workforces, params)
9157
+ req.send_request(options)
9158
+ end
9159
+
9160
+ # Gets a list of private work teams that you have defined in a region.
9161
+ # The list may be empty if no work team satisfies the filter specified
9162
+ # in the `NameContains` parameter.
8826
9163
  #
8827
9164
  # @option params [String] :sort_by
8828
9165
  # The field to sort results by. The default is `CreationTime`.
@@ -8868,7 +9205,10 @@ module Aws::SageMaker
8868
9205
  # resp.workteams[0].member_definitions[0].cognito_member_definition.user_pool #=> String
8869
9206
  # resp.workteams[0].member_definitions[0].cognito_member_definition.user_group #=> String
8870
9207
  # resp.workteams[0].member_definitions[0].cognito_member_definition.client_id #=> String
9208
+ # resp.workteams[0].member_definitions[0].oidc_member_definition.groups #=> Array
9209
+ # resp.workteams[0].member_definitions[0].oidc_member_definition.groups[0] #=> String
8871
9210
  # resp.workteams[0].workteam_arn #=> String
9211
+ # resp.workteams[0].workforce_arn #=> String
8872
9212
  # resp.workteams[0].product_listing_ids #=> Array
8873
9213
  # resp.workteams[0].product_listing_ids[0] #=> String
8874
9214
  # resp.workteams[0].description #=> String
@@ -8904,6 +9244,9 @@ module Aws::SageMaker
8904
9244
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do not
8905
9245
  # provide a `HumanTaskUiArn` if you use the `UiTemplate` parameter.
8906
9246
  #
9247
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
9248
+ # UiConfig.
9249
+ #
8907
9250
  # @return [Types::RenderUiTemplateResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8908
9251
  #
8909
9252
  # * {Types::RenderUiTemplateResponse#rendered_content #rendered_content} => String
@@ -9347,6 +9690,44 @@ module Aws::SageMaker
9347
9690
  # resp.results[0].trial_component.source_detail.processing_job.tags #=> Array
9348
9691
  # resp.results[0].trial_component.source_detail.processing_job.tags[0].key #=> String
9349
9692
  # resp.results[0].trial_component.source_detail.processing_job.tags[0].value #=> String
9693
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_name #=> String
9694
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_arn #=> String
9695
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9696
+ # resp.results[0].trial_component.source_detail.transform_job.failure_reason #=> String
9697
+ # resp.results[0].trial_component.source_detail.transform_job.model_name #=> String
9698
+ # resp.results[0].trial_component.source_detail.transform_job.max_concurrent_transforms #=> Integer
9699
+ # resp.results[0].trial_component.source_detail.transform_job.model_client_config.invocations_timeout_in_seconds #=> Integer
9700
+ # resp.results[0].trial_component.source_detail.transform_job.model_client_config.invocations_max_retries #=> Integer
9701
+ # resp.results[0].trial_component.source_detail.transform_job.max_payload_in_mb #=> Integer
9702
+ # resp.results[0].trial_component.source_detail.transform_job.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
9703
+ # resp.results[0].trial_component.source_detail.transform_job.environment #=> Hash
9704
+ # resp.results[0].trial_component.source_detail.transform_job.environment["TransformEnvironmentKey"] #=> String
9705
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
9706
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.data_source.s3_data_source.s3_uri #=> String
9707
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.content_type #=> String
9708
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.compression_type #=> String, one of "None", "Gzip"
9709
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.split_type #=> String, one of "None", "Line", "RecordIO", "TFRecord"
9710
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.s3_output_path #=> String
9711
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.accept #=> String
9712
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.assemble_with #=> String, one of "None", "Line"
9713
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.kms_key_id #=> String
9714
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9715
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_count #=> Integer
9716
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.volume_kms_key_id #=> String
9717
+ # resp.results[0].trial_component.source_detail.transform_job.creation_time #=> Time
9718
+ # resp.results[0].trial_component.source_detail.transform_job.transform_start_time #=> Time
9719
+ # resp.results[0].trial_component.source_detail.transform_job.transform_end_time #=> Time
9720
+ # resp.results[0].trial_component.source_detail.transform_job.labeling_job_arn #=> String
9721
+ # resp.results[0].trial_component.source_detail.transform_job.auto_ml_job_arn #=> String
9722
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.input_filter #=> String
9723
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.output_filter #=> String
9724
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.join_source #=> String, one of "Input", "None"
9725
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.experiment_name #=> String
9726
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.trial_name #=> String
9727
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.trial_component_display_name #=> String
9728
+ # resp.results[0].trial_component.source_detail.transform_job.tags #=> Array
9729
+ # resp.results[0].trial_component.source_detail.transform_job.tags[0].key #=> String
9730
+ # resp.results[0].trial_component.source_detail.transform_job.tags[0].value #=> String
9350
9731
  # resp.results[0].trial_component.tags #=> Array
9351
9732
  # resp.results[0].trial_component.tags[0].key #=> String
9352
9733
  # resp.results[0].trial_component.tags[0].value #=> String
@@ -9721,19 +10102,19 @@ module Aws::SageMaker
9721
10102
  # },
9722
10103
  # jupyter_server_app_settings: {
9723
10104
  # default_resource_spec: {
9724
- # sage_maker_image_arn: "SageMakerImageArn",
10105
+ # sage_maker_image_arn: "ImageArn",
9725
10106
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9726
10107
  # },
9727
10108
  # },
9728
10109
  # kernel_gateway_app_settings: {
9729
10110
  # default_resource_spec: {
9730
- # sage_maker_image_arn: "SageMakerImageArn",
10111
+ # sage_maker_image_arn: "ImageArn",
9731
10112
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9732
10113
  # },
9733
10114
  # },
9734
10115
  # tensor_board_app_settings: {
9735
10116
  # default_resource_spec: {
9736
- # sage_maker_image_arn: "SageMakerImageArn",
10117
+ # sage_maker_image_arn: "ImageArn",
9737
10118
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9738
10119
  # },
9739
10120
  # },
@@ -10350,19 +10731,19 @@ module Aws::SageMaker
10350
10731
  # },
10351
10732
  # jupyter_server_app_settings: {
10352
10733
  # default_resource_spec: {
10353
- # sage_maker_image_arn: "SageMakerImageArn",
10734
+ # sage_maker_image_arn: "ImageArn",
10354
10735
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10355
10736
  # },
10356
10737
  # },
10357
10738
  # kernel_gateway_app_settings: {
10358
10739
  # default_resource_spec: {
10359
- # sage_maker_image_arn: "SageMakerImageArn",
10740
+ # sage_maker_image_arn: "ImageArn",
10360
10741
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10361
10742
  # },
10362
10743
  # },
10363
10744
  # tensor_board_app_settings: {
10364
10745
  # default_resource_spec: {
10365
- # sage_maker_image_arn: "SageMakerImageArn",
10746
+ # sage_maker_image_arn: "ImageArn",
10366
10747
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10367
10748
  # },
10368
10749
  # },
@@ -10382,38 +10763,54 @@ module Aws::SageMaker
10382
10763
  req.send_request(options)
10383
10764
  end
10384
10765
 
10385
- # Restricts access to tasks assigned to workers in the specified
10386
- # workforce to those within specific ranges of IP addresses. You specify
10387
- # allowed IP addresses by creating a list of up to four [CIDRs][1].
10766
+ # Use this operation to update your workforce. You can use this
10767
+ # operation to require that workers use specific IP addresses to work on
10768
+ # tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP)
10769
+ # workforce configuration.
10388
10770
  #
10389
- # By default, a workforce isn't restricted to specific IP addresses. If
10390
- # you specify a range of IP addresses, workers who attempt to access
10391
- # tasks using any IP address outside the specified range are denied
10392
- # access and get a `Not Found` error message on the worker portal. After
10393
- # restricting access with this operation, you can see the allowed IP
10394
- # values for a private workforce with the operation.
10771
+ # Use `SourceIpConfig` to restrict worker access to tasks to a specific
10772
+ # range of IP addresses. You specify allowed IP addresses by creating a
10773
+ # list of up to ten [CIDRs][1]. By default, a workforce isn't
10774
+ # restricted to specific IP addresses. If you specify a range of IP
10775
+ # addresses, workers who attempt to access tasks using any IP address
10776
+ # outside the specified range are denied and get a `Not Found` error
10777
+ # message on the worker portal.
10395
10778
  #
10396
- # This operation applies only to private workforces.
10779
+ # Use `OidcConfig` to update the configuration of a workforce created
10780
+ # using your own OIDC IdP.
10781
+ #
10782
+ # You can only update your OIDC IdP configuration when there are no work
10783
+ # teams associated with your workforce. You can delete work teams using
10784
+ # the operation.
10785
+ #
10786
+ # After restricting access to a range of IP addresses or updating your
10787
+ # OIDC IdP configuration with this operation, you can view details about
10788
+ # your update workforce using the operation.
10789
+ #
10790
+ # This operation only applies to private workforces.
10397
10791
  #
10398
10792
  #
10399
10793
  #
10400
10794
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10401
10795
  #
10402
10796
  # @option params [required, String] :workforce_name
10403
- # The name of the private workforce whose access you want to restrict.
10404
- # `WorkforceName` is automatically set to `default` when a workforce is
10405
- # created and cannot be modified.
10797
+ # The name of the private workforce that you want to update. You can
10798
+ # find your workforce name by using the operation.
10406
10799
  #
10407
10800
  # @option params [Types::SourceIpConfig] :source_ip_config
10408
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
10409
- # be used to access tasks assigned to this workforce.
10801
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
10802
+ # used to access tasks assigned to this workforce.
10410
10803
  #
10411
- # Maximum: Four CIDR values
10804
+ # Maximum: Ten CIDR values
10412
10805
  #
10413
10806
  #
10414
10807
  #
10415
10808
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10416
10809
  #
10810
+ # @option params [Types::OidcConfig] :oidc_config
10811
+ # Use this parameter to update your OIDC Identity Provider (IdP)
10812
+ # configuration for a workforce made using your own IdP.
10813
+ #
10417
10814
  # @return [Types::UpdateWorkforceResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10418
10815
  #
10419
10816
  # * {Types::UpdateWorkforceResponse#workforce #workforce} => Types::Workforce
@@ -10425,6 +10822,16 @@ module Aws::SageMaker
10425
10822
  # source_ip_config: {
10426
10823
  # cidrs: ["Cidr"], # required
10427
10824
  # },
10825
+ # oidc_config: {
10826
+ # client_id: "ClientId", # required
10827
+ # client_secret: "ClientSecret", # required
10828
+ # issuer: "OidcEndpoint", # required
10829
+ # authorization_endpoint: "OidcEndpoint", # required
10830
+ # token_endpoint: "OidcEndpoint", # required
10831
+ # user_info_endpoint: "OidcEndpoint", # required
10832
+ # logout_endpoint: "OidcEndpoint", # required
10833
+ # jwks_uri: "OidcEndpoint", # required
10834
+ # },
10428
10835
  # })
10429
10836
  #
10430
10837
  # @example Response structure
@@ -10434,6 +10841,17 @@ module Aws::SageMaker
10434
10841
  # resp.workforce.last_updated_date #=> Time
10435
10842
  # resp.workforce.source_ip_config.cidrs #=> Array
10436
10843
  # resp.workforce.source_ip_config.cidrs[0] #=> String
10844
+ # resp.workforce.sub_domain #=> String
10845
+ # resp.workforce.cognito_config.user_pool #=> String
10846
+ # resp.workforce.cognito_config.client_id #=> String
10847
+ # resp.workforce.oidc_config.client_id #=> String
10848
+ # resp.workforce.oidc_config.issuer #=> String
10849
+ # resp.workforce.oidc_config.authorization_endpoint #=> String
10850
+ # resp.workforce.oidc_config.token_endpoint #=> String
10851
+ # resp.workforce.oidc_config.user_info_endpoint #=> String
10852
+ # resp.workforce.oidc_config.logout_endpoint #=> String
10853
+ # resp.workforce.oidc_config.jwks_uri #=> String
10854
+ # resp.workforce.create_date #=> Time
10437
10855
  #
10438
10856
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforce AWS API Documentation
10439
10857
  #
@@ -10451,8 +10869,35 @@ module Aws::SageMaker
10451
10869
  # The name of the work team to update.
10452
10870
  #
10453
10871
  # @option params [Array<Types::MemberDefinition>] :member_definitions
10454
- # A list of `MemberDefinition` objects that contain the updated work
10455
- # team members.
10872
+ # A list of `MemberDefinition` objects that contains objects that
10873
+ # identify the workers that make up the work team.
10874
+ #
10875
+ # Workforces can be created using Amazon Cognito or your own OIDC
10876
+ # Identity Provider (IdP). For private workforces created using Amazon
10877
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
10878
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. You
10879
+ # should not provide input for both of these parameters in a single
10880
+ # request.
10881
+ #
10882
+ # For workforces created using Amazon Cognito, private work teams
10883
+ # correspond to Amazon Cognito *user groups* within the user pool used
10884
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
10885
+ # that make up the member definition must have the same `ClientId` and
10886
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
10887
+ # worker pool, see [Adding groups to a User Pool](). For more
10888
+ # information about user pools, see [Amazon Cognito User Pools][1].
10889
+ #
10890
+ # For workforces created using your own OIDC IdP, specify the user
10891
+ # groups that you want to include in your private work team in
10892
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
10893
+ # that user groups that are already in the work team must also be listed
10894
+ # in `Groups` when you make this request to remain on the work team. If
10895
+ # you do not include these user groups, they will no longer be
10896
+ # associated with the work team you update.
10897
+ #
10898
+ #
10899
+ #
10900
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
10456
10901
  #
10457
10902
  # @option params [String] :description
10458
10903
  # An updated description for the work team.
@@ -10474,7 +10919,10 @@ module Aws::SageMaker
10474
10919
  # cognito_member_definition: {
10475
10920
  # user_pool: "CognitoUserPool", # required
10476
10921
  # user_group: "CognitoUserGroup", # required
10477
- # client_id: "CognitoClientId", # required
10922
+ # client_id: "ClientId", # required
10923
+ # },
10924
+ # oidc_member_definition: {
10925
+ # groups: ["Group"], # required
10478
10926
  # },
10479
10927
  # },
10480
10928
  # ],
@@ -10491,7 +10939,10 @@ module Aws::SageMaker
10491
10939
  # resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
10492
10940
  # resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
10493
10941
  # resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
10942
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups #=> Array
10943
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups[0] #=> String
10494
10944
  # resp.workteam.workteam_arn #=> String
10945
+ # resp.workteam.workforce_arn #=> String
10495
10946
  # resp.workteam.product_listing_ids #=> Array
10496
10947
  # resp.workteam.product_listing_ids[0] #=> String
10497
10948
  # resp.workteam.description #=> String
@@ -10522,7 +10973,7 @@ module Aws::SageMaker
10522
10973
  params: params,
10523
10974
  config: config)
10524
10975
  context[:gem_name] = 'aws-sdk-sagemaker'
10525
- context[:gem_version] = '1.60.1'
10976
+ context[:gem_version] = '1.65.0'
10526
10977
  Seahorse::Client::Request.new(handlers, context)
10527
10978
  end
10528
10979