aws-sdk-sagemaker 1.341.0 → 1.343.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1674,6 +1674,26 @@ module Aws::SageMaker
1674
1674
  include Aws::Structure
1675
1675
  end
1676
1676
 
1677
+ # The data type used to describe the relationship between different
1678
+ # sources.
1679
+ #
1680
+ # @!attribute [rw] source_arn
1681
+ # The Amazon Resource Name (ARN) of the `AssociationInfo` source.
1682
+ # @return [String]
1683
+ #
1684
+ # @!attribute [rw] destination_arn
1685
+ # The Amazon Resource Name (ARN) of the `AssociationInfo` destination.
1686
+ # @return [String]
1687
+ #
1688
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AssociationInfo AWS API Documentation
1689
+ #
1690
+ class AssociationInfo < Struct.new(
1691
+ :source_arn,
1692
+ :destination_arn)
1693
+ SENSITIVE = []
1694
+ include Aws::Structure
1695
+ end
1696
+
1677
1697
  # Lists a summary of the properties of an association. An association is
1678
1698
  # an entity that links other lineage or experiment entities. An example
1679
1699
  # would be an association between a training job and a model.
@@ -3129,6 +3149,31 @@ module Aws::SageMaker
3129
3149
  include Aws::Structure
3130
3150
  end
3131
3151
 
3152
+ # Identifies the foundation model that was used as the starting point
3153
+ # for model customization.
3154
+ #
3155
+ # @!attribute [rw] hub_content_name
3156
+ # The hub content name of the base model.
3157
+ # @return [String]
3158
+ #
3159
+ # @!attribute [rw] hub_content_version
3160
+ # The hub content version of the base model.
3161
+ # @return [String]
3162
+ #
3163
+ # @!attribute [rw] recipe_name
3164
+ # The recipe name of the base model.
3165
+ # @return [String]
3166
+ #
3167
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BaseModel AWS API Documentation
3168
+ #
3169
+ class BaseModel < Struct.new(
3170
+ :hub_content_name,
3171
+ :hub_content_version,
3172
+ :recipe_name)
3173
+ SENSITIVE = []
3174
+ include Aws::Structure
3175
+ end
3176
+
3132
3177
  # Information about an error that occurred during the node addition
3133
3178
  # operation.
3134
3179
  #
@@ -3464,6 +3509,10 @@ module Aws::SageMaker
3464
3509
  # The approval status of the model.
3465
3510
  # @return [String]
3466
3511
  #
3512
+ # @!attribute [rw] model_package_registration_type
3513
+ # The package registration type of the model package summary.
3514
+ # @return [String]
3515
+ #
3467
3516
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageSummary AWS API Documentation
3468
3517
  #
3469
3518
  class BatchDescribeModelPackageSummary < Struct.new(
@@ -3474,7 +3523,8 @@ module Aws::SageMaker
3474
3523
  :creation_time,
3475
3524
  :inference_specification,
3476
3525
  :model_package_status,
3477
- :model_approval_status)
3526
+ :model_approval_status,
3527
+ :model_package_registration_type)
3478
3528
  SENSITIVE = []
3479
3529
  include Aws::Structure
3480
3530
  end
@@ -3910,6 +3960,66 @@ module Aws::SageMaker
3910
3960
  include Aws::Structure
3911
3961
  end
3912
3962
 
3963
+ # The metadata of the Amazon Bedrock custom model deployment.
3964
+ #
3965
+ # @!attribute [rw] arn
3966
+ # The Amazon Resource Name (ARN) of the metadata for the Amazon
3967
+ # Bedrock custom model deployment.
3968
+ # @return [String]
3969
+ #
3970
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BedrockCustomModelDeploymentMetadata AWS API Documentation
3971
+ #
3972
+ class BedrockCustomModelDeploymentMetadata < Struct.new(
3973
+ :arn)
3974
+ SENSITIVE = []
3975
+ include Aws::Structure
3976
+ end
3977
+
3978
+ # The metadata of the Amazon Bedrock custom model.
3979
+ #
3980
+ # @!attribute [rw] arn
3981
+ # The Amazon Resource Name (ARN) of the Amazon Bedrock custom model
3982
+ # metadata.
3983
+ # @return [String]
3984
+ #
3985
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BedrockCustomModelMetadata AWS API Documentation
3986
+ #
3987
+ class BedrockCustomModelMetadata < Struct.new(
3988
+ :arn)
3989
+ SENSITIVE = []
3990
+ include Aws::Structure
3991
+ end
3992
+
3993
+ # The metadata of the Amazon Bedrock model import.
3994
+ #
3995
+ # @!attribute [rw] arn
3996
+ # The Amazon Resource Name (ARN) of the Amazon Bedrock model import
3997
+ # metadata.
3998
+ # @return [String]
3999
+ #
4000
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BedrockModelImportMetadata AWS API Documentation
4001
+ #
4002
+ class BedrockModelImportMetadata < Struct.new(
4003
+ :arn)
4004
+ SENSITIVE = []
4005
+ include Aws::Structure
4006
+ end
4007
+
4008
+ # The metadata of the Amazon Bedrock provisioned model throughput.
4009
+ #
4010
+ # @!attribute [rw] arn
4011
+ # The Amazon Resource Name (ARN) of the Amazon Bedrock provisioned
4012
+ # model throughput metadata.
4013
+ # @return [String]
4014
+ #
4015
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BedrockProvisionedModelThroughputMetadata AWS API Documentation
4016
+ #
4017
+ class BedrockProvisionedModelThroughputMetadata < Struct.new(
4018
+ :arn)
4019
+ SENSITIVE = []
4020
+ include Aws::Structure
4021
+ end
4022
+
3913
4023
  # A structure that keeps track of which training jobs launched by your
3914
4024
  # hyperparameter tuning job are not improving model performance as
3915
4025
  # evaluated against an objective function.
@@ -5467,12 +5577,35 @@ module Aws::SageMaker
5467
5577
  # @return [Types::ClusterCapacityRequirements]
5468
5578
  #
5469
5579
  # @!attribute [rw] target_state_count
5470
- # The number of nodes running a specific image ID since the last
5471
- # software update request.
5580
+ # Represents the number of running nodes using the desired Image ID.
5581
+ #
5582
+ # 1. **During software update operations:** This count shows the
5583
+ # number of nodes running on the desired Image ID. If a rollback
5584
+ # occurs, the current image ID and desired image ID (both included
5585
+ # in the describe cluster response) swap values. The
5586
+ # TargetStateCount then shows the number of nodes running on the
5587
+ # newly designated desired image ID (which was previously the
5588
+ # current image ID).
5589
+ #
5590
+ # 2. **During simultaneous scaling and software update operations:**
5591
+ # This count shows the number of instances running on the desired
5592
+ # image ID, including any new instances created as part of the
5593
+ # scaling request. New nodes are always created using the desired
5594
+ # image ID, so TargetStateCount reflects the total count of nodes
5595
+ # running on the desired image ID, even during rollback scenarios.
5472
5596
  # @return [Integer]
5473
5597
  #
5474
5598
  # @!attribute [rw] software_update_status
5475
5599
  # Status of the last software udpate request.
5600
+ #
5601
+ # Status transitions follow these possible sequences:
5602
+ #
5603
+ # * Pending -&gt; InProgress -&gt; Succeeded
5604
+ #
5605
+ # * Pending -&gt; InProgress -&gt; RollbackInProgress -&gt;
5606
+ # RollbackComplete
5607
+ #
5608
+ # * Pending -&gt; InProgress -&gt; RollbackInProgress -&gt; Failed
5476
5609
  # @return [String]
5477
5610
  #
5478
5611
  # @!attribute [rw] active_software_update_config
@@ -10287,6 +10420,80 @@ module Aws::SageMaker
10287
10420
  include Aws::Structure
10288
10421
  end
10289
10422
 
10423
+ # @!attribute [rw] name
10424
+ # A string identifying the MLflow app name. This string is not part of
10425
+ # the tracking server ARN.
10426
+ # @return [String]
10427
+ #
10428
+ # @!attribute [rw] artifact_store_uri
10429
+ # The S3 URI for a general purpose bucket to use as the MLflow App
10430
+ # artifact store.
10431
+ # @return [String]
10432
+ #
10433
+ # @!attribute [rw] role_arn
10434
+ # The Amazon Resource Name (ARN) for an IAM role in your account that
10435
+ # the MLflow App uses to access the artifact store in Amazon S3. The
10436
+ # role should have the `AmazonS3FullAccess` permission.
10437
+ # @return [String]
10438
+ #
10439
+ # @!attribute [rw] model_registration_mode
10440
+ # Whether to enable or disable automatic registration of new MLflow
10441
+ # models to the SageMaker Model Registry. To enable automatic model
10442
+ # registration, set this value to `AutoModelRegistrationEnabled`. To
10443
+ # disable automatic model registration, set this value to
10444
+ # `AutoModelRegistrationDisabled`. If not specified,
10445
+ # `AutomaticModelRegistration` defaults to
10446
+ # `AutoModelRegistrationDisabled`.
10447
+ # @return [String]
10448
+ #
10449
+ # @!attribute [rw] weekly_maintenance_window_start
10450
+ # The day and time of the week in Coordinated Universal Time (UTC)
10451
+ # 24-hour standard time that weekly maintenance updates are scheduled.
10452
+ # For example: TUE:03:30.
10453
+ # @return [String]
10454
+ #
10455
+ # @!attribute [rw] account_default_status
10456
+ # Indicates whether this MLflow app is the default for the entire
10457
+ # account.
10458
+ # @return [String]
10459
+ #
10460
+ # @!attribute [rw] default_domain_id_list
10461
+ # List of SageMaker domain IDs for which this MLflow App is used as
10462
+ # the default.
10463
+ # @return [Array<String>]
10464
+ #
10465
+ # @!attribute [rw] tags
10466
+ # Tags consisting of key-value pairs used to manage metadata for the
10467
+ # MLflow App.
10468
+ # @return [Array<Types::Tag>]
10469
+ #
10470
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateMlflowAppRequest AWS API Documentation
10471
+ #
10472
+ class CreateMlflowAppRequest < Struct.new(
10473
+ :name,
10474
+ :artifact_store_uri,
10475
+ :role_arn,
10476
+ :model_registration_mode,
10477
+ :weekly_maintenance_window_start,
10478
+ :account_default_status,
10479
+ :default_domain_id_list,
10480
+ :tags)
10481
+ SENSITIVE = []
10482
+ include Aws::Structure
10483
+ end
10484
+
10485
+ # @!attribute [rw] arn
10486
+ # The ARN of the MLflow App.
10487
+ # @return [String]
10488
+ #
10489
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateMlflowAppResponse AWS API Documentation
10490
+ #
10491
+ class CreateMlflowAppResponse < Struct.new(
10492
+ :arn)
10493
+ SENSITIVE = []
10494
+ include Aws::Structure
10495
+ end
10496
+
10290
10497
  # @!attribute [rw] tracking_server_name
10291
10498
  # A unique string identifying the tracking server name. This string is
10292
10499
  # part of the tracking server ARN.
@@ -10793,6 +11000,10 @@ module Aws::SageMaker
10793
11000
  # A description of the model package.
10794
11001
  # @return [String]
10795
11002
  #
11003
+ # @!attribute [rw] model_package_registration_type
11004
+ # The package registration type of the model package input.
11005
+ # @return [String]
11006
+ #
10796
11007
  # @!attribute [rw] inference_specification
10797
11008
  # Specifies details about inference jobs that you can run with models
10798
11009
  # based on this model package, including the following information:
@@ -10961,6 +11172,7 @@ module Aws::SageMaker
10961
11172
  :model_package_name,
10962
11173
  :model_package_group_name,
10963
11174
  :model_package_description,
11175
+ :model_package_registration_type,
10964
11176
  :inference_specification,
10965
11177
  :validation_specification,
10966
11178
  :source_algorithm_specification,
@@ -11766,6 +11978,42 @@ module Aws::SageMaker
11766
11978
  include Aws::Structure
11767
11979
  end
11768
11980
 
11981
+ # @!attribute [rw] arn
11982
+ # The ARN of the MLflow App to connect to your MLflow UI.
11983
+ # @return [String]
11984
+ #
11985
+ # @!attribute [rw] expires_in_seconds
11986
+ # The duration in seconds that your presigned URL is valid. The
11987
+ # presigned URL can be used only once.
11988
+ # @return [Integer]
11989
+ #
11990
+ # @!attribute [rw] session_expiration_duration_in_seconds
11991
+ # The duration in seconds that your presigned URL is valid. The
11992
+ # presigned URL can be used only once.
11993
+ # @return [Integer]
11994
+ #
11995
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedMlflowAppUrlRequest AWS API Documentation
11996
+ #
11997
+ class CreatePresignedMlflowAppUrlRequest < Struct.new(
11998
+ :arn,
11999
+ :expires_in_seconds,
12000
+ :session_expiration_duration_in_seconds)
12001
+ SENSITIVE = []
12002
+ include Aws::Structure
12003
+ end
12004
+
12005
+ # @!attribute [rw] authorized_url
12006
+ # A presigned URL with an authorization token.
12007
+ # @return [String]
12008
+ #
12009
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedMlflowAppUrlResponse AWS API Documentation
12010
+ #
12011
+ class CreatePresignedMlflowAppUrlResponse < Struct.new(
12012
+ :authorized_url)
12013
+ SENSITIVE = []
12014
+ include Aws::Structure
12015
+ end
12016
+
11769
12017
  # @!attribute [rw] tracking_server_name
11770
12018
  # The name of the tracking server to connect to your MLflow UI.
11771
12019
  # @return [String]
@@ -12402,6 +12650,18 @@ module Aws::SageMaker
12402
12650
  # the training job.
12403
12651
  # @return [Types::SessionChainingConfig]
12404
12652
  #
12653
+ # @!attribute [rw] serverless_job_config
12654
+ # The configuration for serverless training jobs.
12655
+ # @return [Types::ServerlessJobConfig]
12656
+ #
12657
+ # @!attribute [rw] mlflow_config
12658
+ # The MLflow configuration using SageMaker managed MLflow.
12659
+ # @return [Types::MlflowConfig]
12660
+ #
12661
+ # @!attribute [rw] model_package_config
12662
+ # The configuration for the model package.
12663
+ # @return [Types::ModelPackageConfig]
12664
+ #
12405
12665
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
12406
12666
  #
12407
12667
  class CreateTrainingJobRequest < Struct.new(
@@ -12429,7 +12689,10 @@ module Aws::SageMaker
12429
12689
  :retry_strategy,
12430
12690
  :remote_debug_config,
12431
12691
  :infra_check_config,
12432
- :session_chaining_config)
12692
+ :session_chaining_config,
12693
+ :serverless_job_config,
12694
+ :mlflow_config,
12695
+ :model_package_config)
12433
12696
  SENSITIVE = []
12434
12697
  include Aws::Structure
12435
12698
  end
@@ -13474,11 +13737,16 @@ module Aws::SageMaker
13474
13737
  # The file system that is associated with a channel.
13475
13738
  # @return [Types::FileSystemDataSource]
13476
13739
  #
13740
+ # @!attribute [rw] dataset_source
13741
+ # The dataset resource that's associated with a channel.
13742
+ # @return [Types::DatasetSource]
13743
+ #
13477
13744
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataSource AWS API Documentation
13478
13745
  #
13479
13746
  class DataSource < Struct.new(
13480
13747
  :s3_data_source,
13481
- :file_system_data_source)
13748
+ :file_system_data_source,
13749
+ :dataset_source)
13482
13750
  SENSITIVE = []
13483
13751
  include Aws::Structure
13484
13752
  end
@@ -13528,6 +13796,20 @@ module Aws::SageMaker
13528
13796
  include Aws::Structure
13529
13797
  end
13530
13798
 
13799
+ # Specifies a dataset source for a channel.
13800
+ #
13801
+ # @!attribute [rw] dataset_arn
13802
+ # The Amazon Resource Name (ARN) of the dataset resource.
13803
+ # @return [String]
13804
+ #
13805
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DatasetSource AWS API Documentation
13806
+ #
13807
+ class DatasetSource < Struct.new(
13808
+ :dataset_arn)
13809
+ SENSITIVE = []
13810
+ include Aws::Structure
13811
+ end
13812
+
13531
13813
  # Configuration information for the Amazon SageMaker Debugger hook
13532
13814
  # parameters, metric and tensor collections, and storage paths. To learn
13533
13815
  # more about how to configure the `DebugHookConfig` parameter, see [Use
@@ -14320,6 +14602,30 @@ module Aws::SageMaker
14320
14602
  include Aws::Structure
14321
14603
  end
14322
14604
 
14605
+ # @!attribute [rw] arn
14606
+ # The ARN of the MLflow App to delete.
14607
+ # @return [String]
14608
+ #
14609
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteMlflowAppRequest AWS API Documentation
14610
+ #
14611
+ class DeleteMlflowAppRequest < Struct.new(
14612
+ :arn)
14613
+ SENSITIVE = []
14614
+ include Aws::Structure
14615
+ end
14616
+
14617
+ # @!attribute [rw] arn
14618
+ # The ARN of the deleted MLflow App.
14619
+ # @return [String]
14620
+ #
14621
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteMlflowAppResponse AWS API Documentation
14622
+ #
14623
+ class DeleteMlflowAppResponse < Struct.new(
14624
+ :arn)
14625
+ SENSITIVE = []
14626
+ include Aws::Structure
14627
+ end
14628
+
14323
14629
  # @!attribute [rw] tracking_server_name
14324
14630
  # The name of the the tracking server to delete.
14325
14631
  # @return [String]
@@ -18698,6 +19004,107 @@ module Aws::SageMaker
18698
19004
  include Aws::Structure
18699
19005
  end
18700
19006
 
19007
+ # @!attribute [rw] arn
19008
+ # The ARN of the MLflow App for which to get information.
19009
+ # @return [String]
19010
+ #
19011
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeMlflowAppRequest AWS API Documentation
19012
+ #
19013
+ class DescribeMlflowAppRequest < Struct.new(
19014
+ :arn)
19015
+ SENSITIVE = []
19016
+ include Aws::Structure
19017
+ end
19018
+
19019
+ # @!attribute [rw] arn
19020
+ # The ARN of the MLflow App.
19021
+ # @return [String]
19022
+ #
19023
+ # @!attribute [rw] name
19024
+ # The name of the MLflow App.
19025
+ # @return [String]
19026
+ #
19027
+ # @!attribute [rw] artifact_store_uri
19028
+ # The S3 URI of the general purpose bucket used as the MLflow App
19029
+ # artifact store.
19030
+ # @return [String]
19031
+ #
19032
+ # @!attribute [rw] mlflow_version
19033
+ # The MLflow version used.
19034
+ # @return [String]
19035
+ #
19036
+ # @!attribute [rw] role_arn
19037
+ # The Amazon Resource Name (ARN) for an IAM role in your account that
19038
+ # the MLflow App uses to access the artifact store in Amazon S3.
19039
+ # @return [String]
19040
+ #
19041
+ # @!attribute [rw] status
19042
+ # The current creation status of the described MLflow App.
19043
+ # @return [String]
19044
+ #
19045
+ # @!attribute [rw] model_registration_mode
19046
+ # Whether automatic registration of new MLflow models to the SageMaker
19047
+ # Model Registry is enabled.
19048
+ # @return [String]
19049
+ #
19050
+ # @!attribute [rw] account_default_status
19051
+ # Indicates whether this MLflow app is the default for the entire
19052
+ # account.
19053
+ # @return [String]
19054
+ #
19055
+ # @!attribute [rw] default_domain_id_list
19056
+ # List of SageMaker Domain IDs for which this MLflow App is the
19057
+ # default.
19058
+ # @return [Array<String>]
19059
+ #
19060
+ # @!attribute [rw] creation_time
19061
+ # The timestamp when the MLflow App was created.
19062
+ # @return [Time]
19063
+ #
19064
+ # @!attribute [rw] created_by
19065
+ # Information about the user who created or modified a SageMaker
19066
+ # resource.
19067
+ # @return [Types::UserContext]
19068
+ #
19069
+ # @!attribute [rw] last_modified_time
19070
+ # The timestamp when the MLflow App was last modified.
19071
+ # @return [Time]
19072
+ #
19073
+ # @!attribute [rw] last_modified_by
19074
+ # Information about the user who created or modified a SageMaker
19075
+ # resource.
19076
+ # @return [Types::UserContext]
19077
+ #
19078
+ # @!attribute [rw] weekly_maintenance_window_start
19079
+ # The day and time of the week when weekly maintenance occurs.
19080
+ # @return [String]
19081
+ #
19082
+ # @!attribute [rw] maintenance_status
19083
+ # Current maintenance status of the MLflow App.
19084
+ # @return [String]
19085
+ #
19086
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeMlflowAppResponse AWS API Documentation
19087
+ #
19088
+ class DescribeMlflowAppResponse < Struct.new(
19089
+ :arn,
19090
+ :name,
19091
+ :artifact_store_uri,
19092
+ :mlflow_version,
19093
+ :role_arn,
19094
+ :status,
19095
+ :model_registration_mode,
19096
+ :account_default_status,
19097
+ :default_domain_id_list,
19098
+ :creation_time,
19099
+ :created_by,
19100
+ :last_modified_time,
19101
+ :last_modified_by,
19102
+ :weekly_maintenance_window_start,
19103
+ :maintenance_status)
19104
+ SENSITIVE = []
19105
+ include Aws::Structure
19106
+ end
19107
+
18701
19108
  # @!attribute [rw] tracking_server_name
18702
19109
  # The name of the MLflow Tracking Server to describe.
18703
19110
  # @return [String]
@@ -19319,6 +19726,10 @@ module Aws::SageMaker
19319
19726
  # The version of the model package.
19320
19727
  # @return [Integer]
19321
19728
  #
19729
+ # @!attribute [rw] model_package_registration_type
19730
+ # The package registration type of the model package output.
19731
+ # @return [String]
19732
+ #
19322
19733
  # @!attribute [rw] model_package_arn
19323
19734
  # The Amazon Resource Name (ARN) of the model package.
19324
19735
  # @return [String]
@@ -19472,6 +19883,7 @@ module Aws::SageMaker
19472
19883
  :model_package_name,
19473
19884
  :model_package_group_name,
19474
19885
  :model_package_version,
19886
+ :model_package_registration_type,
19475
19887
  :model_package_arn,
19476
19888
  :model_package_description,
19477
19889
  :creation_time,
@@ -20305,6 +20717,10 @@ module Aws::SageMaker
20305
20717
  # The ID of the pipeline version.
20306
20718
  # @return [Integer]
20307
20719
  #
20720
+ # @!attribute [rw] m_lflow_config
20721
+ # The MLflow configuration of the pipeline execution.
20722
+ # @return [Types::MLflowConfiguration]
20723
+ #
20308
20724
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribePipelineExecutionResponse AWS API Documentation
20309
20725
  #
20310
20726
  class DescribePipelineExecutionResponse < Struct.new(
@@ -20321,7 +20737,8 @@ module Aws::SageMaker
20321
20737
  :last_modified_by,
20322
20738
  :parallelism_configuration,
20323
20739
  :selective_execution_config,
20324
- :pipeline_version_id)
20740
+ :pipeline_version_id,
20741
+ :m_lflow_config)
20325
20742
  SENSITIVE = []
20326
20743
  include Aws::Structure
20327
20744
  end
@@ -20986,6 +21403,9 @@ module Aws::SageMaker
20986
21403
  # InProgress
20987
21404
  # : * `Starting` - Starting the training job.
20988
21405
  #
21406
+ # * `Pending` - The training job is waiting for compute capacity or
21407
+ # compute resource provision.
21408
+ #
20989
21409
  # * `Downloading` - An optional stage for algorithms that support
20990
21410
  # `File` training input mode. It indicates that data is being
20991
21411
  # downloaded to the ML storage volumes.
@@ -21184,6 +21604,10 @@ module Aws::SageMaker
21184
21604
  # `TrainingTimeInSeconds` is 500, the savings is 80%.
21185
21605
  # @return [Integer]
21186
21606
  #
21607
+ # @!attribute [rw] billable_token_count
21608
+ # The billable token count for eligible serverless training jobs.
21609
+ # @return [Integer]
21610
+ #
21187
21611
  # @!attribute [rw] debug_hook_config
21188
21612
  # Configuration information for the Amazon SageMaker Debugger hook
21189
21613
  # parameters, metric and tensor collections, and storage paths. To
@@ -21279,6 +21703,31 @@ module Aws::SageMaker
21279
21703
  # configuration for the training job.
21280
21704
  # @return [Types::InfraCheckConfig]
21281
21705
  #
21706
+ # @!attribute [rw] serverless_job_config
21707
+ # The configuration for serverless training jobs.
21708
+ # @return [Types::ServerlessJobConfig]
21709
+ #
21710
+ # @!attribute [rw] mlflow_config
21711
+ # The MLflow configuration using SageMaker managed MLflow.
21712
+ # @return [Types::MlflowConfig]
21713
+ #
21714
+ # @!attribute [rw] model_package_config
21715
+ # The configuration for the model package.
21716
+ # @return [Types::ModelPackageConfig]
21717
+ #
21718
+ # @!attribute [rw] mlflow_details
21719
+ # The MLflow details of this job.
21720
+ # @return [Types::MlflowDetails]
21721
+ #
21722
+ # @!attribute [rw] progress_info
21723
+ # The Serverless training job progress information.
21724
+ # @return [Types::TrainingProgressInfo]
21725
+ #
21726
+ # @!attribute [rw] output_model_package_arn
21727
+ # The Amazon Resource Name (ARN) of the output model package
21728
+ # containing model weights or checkpoints.
21729
+ # @return [String]
21730
+ #
21282
21731
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
21283
21732
  #
21284
21733
  class DescribeTrainingJobResponse < Struct.new(
@@ -21312,6 +21761,7 @@ module Aws::SageMaker
21312
21761
  :checkpoint_config,
21313
21762
  :training_time_in_seconds,
21314
21763
  :billable_time_in_seconds,
21764
+ :billable_token_count,
21315
21765
  :debug_hook_config,
21316
21766
  :experiment_config,
21317
21767
  :debug_rule_configurations,
@@ -21324,7 +21774,13 @@ module Aws::SageMaker
21324
21774
  :environment,
21325
21775
  :retry_strategy,
21326
21776
  :remote_debug_config,
21327
- :infra_check_config)
21777
+ :infra_check_config,
21778
+ :serverless_job_config,
21779
+ :mlflow_config,
21780
+ :model_package_config,
21781
+ :mlflow_details,
21782
+ :progress_info,
21783
+ :output_model_package_arn)
21328
21784
  SENSITIVE = []
21329
21785
  include Aws::Structure
21330
21786
  end
@@ -28304,6 +28760,20 @@ module Aws::SageMaker
28304
28760
  include Aws::Structure
28305
28761
  end
28306
28762
 
28763
+ # The metadata of the inference component.
28764
+ #
28765
+ # @!attribute [rw] arn
28766
+ # The Amazon Resource Name (ARN) of the inference component metadata.
28767
+ # @return [String]
28768
+ #
28769
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentMetadata AWS API Documentation
28770
+ #
28771
+ class InferenceComponentMetadata < Struct.new(
28772
+ :arn)
28773
+ SENSITIVE = []
28774
+ include Aws::Structure
28775
+ end
28776
+
28307
28777
  # Specifies a rolling deployment strategy for updating a SageMaker AI
28308
28778
  # inference component.
28309
28779
  #
@@ -30246,6 +30716,36 @@ module Aws::SageMaker
30246
30716
  include Aws::Structure
30247
30717
  end
30248
30718
 
30719
+ # The metadata that tracks relationships between ML artifacts, actions,
30720
+ # and contexts.
30721
+ #
30722
+ # @!attribute [rw] action_arns
30723
+ # The Amazon Resource Name (ARN) of the lineage metadata action.
30724
+ # @return [Hash<String,String>]
30725
+ #
30726
+ # @!attribute [rw] artifact_arns
30727
+ # The Amazon Resource Name (ARN) of the lineage metadata artifact.
30728
+ # @return [Hash<String,String>]
30729
+ #
30730
+ # @!attribute [rw] context_arns
30731
+ # The Amazon Resource Name (ARN) of the lineage metadata context.
30732
+ # @return [Hash<String,String>]
30733
+ #
30734
+ # @!attribute [rw] associations
30735
+ # The lineage metadata associations.
30736
+ # @return [Array<Types::AssociationInfo>]
30737
+ #
30738
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LineageMetadata AWS API Documentation
30739
+ #
30740
+ class LineageMetadata < Struct.new(
30741
+ :action_arns,
30742
+ :artifact_arns,
30743
+ :context_arns,
30744
+ :associations)
30745
+ SENSITIVE = []
30746
+ include Aws::Structure
30747
+ end
30748
+
30249
30749
  # @!attribute [rw] source_uri
30250
30750
  # A filter that returns only actions with the specified source URI.
30251
30751
  # @return [String]
@@ -33454,6 +33954,92 @@ module Aws::SageMaker
33454
33954
  include Aws::Structure
33455
33955
  end
33456
33956
 
33957
+ # @!attribute [rw] created_after
33958
+ # Use the `CreatedAfter` filter to only list MLflow Apps created after
33959
+ # a specific date and time. Listed MLflow Apps are shown with a date
33960
+ # and time such as `"2024-03-16T01:46:56+00:00"`. The `CreatedAfter`
33961
+ # parameter takes in a Unix timestamp.
33962
+ # @return [Time]
33963
+ #
33964
+ # @!attribute [rw] created_before
33965
+ # Use the `CreatedBefore` filter to only list MLflow Apps created
33966
+ # before a specific date and time. Listed MLflow Apps are shown with a
33967
+ # date and time such as `"2024-03-16T01:46:56+00:00"`. The
33968
+ # `CreatedAfter` parameter takes in a Unix timestamp.
33969
+ # @return [Time]
33970
+ #
33971
+ # @!attribute [rw] status
33972
+ # Filter for Mlflow apps with a specific creation status.
33973
+ # @return [String]
33974
+ #
33975
+ # @!attribute [rw] mlflow_version
33976
+ # Filter for Mlflow Apps with the specified version.
33977
+ # @return [String]
33978
+ #
33979
+ # @!attribute [rw] default_for_domain_id
33980
+ # Filter for MLflow Apps with the specified default SageMaker Domain
33981
+ # ID.
33982
+ # @return [String]
33983
+ #
33984
+ # @!attribute [rw] account_default_status
33985
+ # Filter for MLflow Apps with the specified `AccountDefaultStatus`.
33986
+ # @return [String]
33987
+ #
33988
+ # @!attribute [rw] sort_by
33989
+ # Filter for MLflow Apps sorting by name, creation time, or creation
33990
+ # status.
33991
+ # @return [String]
33992
+ #
33993
+ # @!attribute [rw] sort_order
33994
+ # Change the order of the listed MLflow Apps. By default, MLflow Apps
33995
+ # are listed in `Descending` order by creation time. To change the
33996
+ # list order, specify `SortOrder` to be `Ascending`.
33997
+ # @return [String]
33998
+ #
33999
+ # @!attribute [rw] next_token
34000
+ # If the previous response was truncated, use this token in your next
34001
+ # request to receive the next set of results.
34002
+ # @return [String]
34003
+ #
34004
+ # @!attribute [rw] max_results
34005
+ # The maximum number of MLflow Apps to list.
34006
+ # @return [Integer]
34007
+ #
34008
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListMlflowAppsRequest AWS API Documentation
34009
+ #
34010
+ class ListMlflowAppsRequest < Struct.new(
34011
+ :created_after,
34012
+ :created_before,
34013
+ :status,
34014
+ :mlflow_version,
34015
+ :default_for_domain_id,
34016
+ :account_default_status,
34017
+ :sort_by,
34018
+ :sort_order,
34019
+ :next_token,
34020
+ :max_results)
34021
+ SENSITIVE = []
34022
+ include Aws::Structure
34023
+ end
34024
+
34025
+ # @!attribute [rw] summaries
34026
+ # A list of MLflow Apps according to chosen filters.
34027
+ # @return [Array<Types::MlflowAppSummary>]
34028
+ #
34029
+ # @!attribute [rw] next_token
34030
+ # If the previous response was truncated, you will receive this token.
34031
+ # Use it in your next request to receive the next set of results.
34032
+ # @return [String]
34033
+ #
34034
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListMlflowAppsResponse AWS API Documentation
34035
+ #
34036
+ class ListMlflowAppsResponse < Struct.new(
34037
+ :summaries,
34038
+ :next_token)
34039
+ SENSITIVE = []
34040
+ include Aws::Structure
34041
+ end
34042
+
33457
34043
  # @!attribute [rw] created_after
33458
34044
  # Use the `CreatedAfter` filter to only list tracking servers created
33459
34045
  # after a specific date and time. Listed tracking servers are shown
@@ -36401,6 +36987,25 @@ module Aws::SageMaker
36401
36987
  include Aws::Structure
36402
36988
  end
36403
36989
 
36990
+ # The MLflow configuration.
36991
+ #
36992
+ # @!attribute [rw] mlflow_resource_arn
36993
+ # The Amazon Resource Name (ARN) of MLflow configuration resource.
36994
+ # @return [String]
36995
+ #
36996
+ # @!attribute [rw] mlflow_experiment_name
36997
+ # The name of the MLflow configuration.
36998
+ # @return [String]
36999
+ #
37000
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MLflowConfiguration AWS API Documentation
37001
+ #
37002
+ class MLflowConfiguration < Struct.new(
37003
+ :mlflow_resource_arn,
37004
+ :mlflow_experiment_name)
37005
+ SENSITIVE = []
37006
+ include Aws::Structure
37007
+ end
37008
+
36404
37009
  # Defines an Amazon Cognito or your own OIDC IdP user group that is part
36405
37010
  # of a work team.
36406
37011
  #
@@ -36630,6 +37235,88 @@ module Aws::SageMaker
36630
37235
  include Aws::Structure
36631
37236
  end
36632
37237
 
37238
+ # The summary of the Mlflow App to list.
37239
+ #
37240
+ # @!attribute [rw] arn
37241
+ # The ARN of a listed MLflow App.
37242
+ # @return [String]
37243
+ #
37244
+ # @!attribute [rw] name
37245
+ # The name of the MLflow App.
37246
+ # @return [String]
37247
+ #
37248
+ # @!attribute [rw] status
37249
+ # The status of the MLflow App.
37250
+ # @return [String]
37251
+ #
37252
+ # @!attribute [rw] creation_time
37253
+ # The creation time of a listed MLflow App.
37254
+ # @return [Time]
37255
+ #
37256
+ # @!attribute [rw] last_modified_time
37257
+ # The last modified time of a listed MLflow App.
37258
+ # @return [Time]
37259
+ #
37260
+ # @!attribute [rw] mlflow_version
37261
+ # The version of a listed MLflow App.
37262
+ # @return [String]
37263
+ #
37264
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MlflowAppSummary AWS API Documentation
37265
+ #
37266
+ class MlflowAppSummary < Struct.new(
37267
+ :arn,
37268
+ :name,
37269
+ :status,
37270
+ :creation_time,
37271
+ :last_modified_time,
37272
+ :mlflow_version)
37273
+ SENSITIVE = []
37274
+ include Aws::Structure
37275
+ end
37276
+
37277
+ # The MLflow configuration using SageMaker managed MLflow.
37278
+ #
37279
+ # @!attribute [rw] mlflow_resource_arn
37280
+ # The Amazon Resource Name (ARN) of the MLflow resource.
37281
+ # @return [String]
37282
+ #
37283
+ # @!attribute [rw] mlflow_experiment_name
37284
+ # The MLflow experiment name used for this job.
37285
+ # @return [String]
37286
+ #
37287
+ # @!attribute [rw] mlflow_run_name
37288
+ # The MLflow run name used for this job.
37289
+ # @return [String]
37290
+ #
37291
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MlflowConfig AWS API Documentation
37292
+ #
37293
+ class MlflowConfig < Struct.new(
37294
+ :mlflow_resource_arn,
37295
+ :mlflow_experiment_name,
37296
+ :mlflow_run_name)
37297
+ SENSITIVE = []
37298
+ include Aws::Structure
37299
+ end
37300
+
37301
+ # The MLflow details of this job.
37302
+ #
37303
+ # @!attribute [rw] mlflow_experiment_id
37304
+ # The MLflow experiment ID used for this job.
37305
+ # @return [String]
37306
+ #
37307
+ # @!attribute [rw] mlflow_run_id
37308
+ # The MLflow run ID used for this job.
37309
+ # @return [String]
37310
+ #
37311
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MlflowDetails AWS API Documentation
37312
+ #
37313
+ class MlflowDetails < Struct.new(
37314
+ :mlflow_experiment_id,
37315
+ :mlflow_run_id)
37316
+ SENSITIVE = []
37317
+ include Aws::Structure
37318
+ end
37319
+
36633
37320
  # The properties of a model as returned by the [Search][1] API.
36634
37321
  #
36635
37322
  #
@@ -37831,6 +38518,10 @@ module Aws::SageMaker
37831
38518
  # The version number of a versioned model.
37832
38519
  # @return [Integer]
37833
38520
  #
38521
+ # @!attribute [rw] model_package_registration_type
38522
+ # The package registration type of the model package.
38523
+ # @return [String]
38524
+ #
37834
38525
  # @!attribute [rw] model_package_arn
37835
38526
  # The Amazon Resource Name (ARN) of the model package.
37836
38527
  # @return [String]
@@ -38012,6 +38703,7 @@ module Aws::SageMaker
38012
38703
  :model_package_name,
38013
38704
  :model_package_group_name,
38014
38705
  :model_package_version,
38706
+ :model_package_registration_type,
38015
38707
  :model_package_arn,
38016
38708
  :model_package_description,
38017
38709
  :creation_time,
@@ -38044,6 +38736,27 @@ module Aws::SageMaker
38044
38736
  include Aws::Structure
38045
38737
  end
38046
38738
 
38739
+ # The configuration for the Model package.
38740
+ #
38741
+ # @!attribute [rw] model_package_group_arn
38742
+ # The Amazon Resource Name (ARN) of the model package group of output
38743
+ # model package.
38744
+ # @return [String]
38745
+ #
38746
+ # @!attribute [rw] source_model_package_arn
38747
+ # The Amazon Resource Name (ARN) of the source model package used for
38748
+ # continued fine-tuning and custom model evaluation.
38749
+ # @return [String]
38750
+ #
38751
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageConfig AWS API Documentation
38752
+ #
38753
+ class ModelPackageConfig < Struct.new(
38754
+ :model_package_group_arn,
38755
+ :source_model_package_arn)
38756
+ SENSITIVE = []
38757
+ include Aws::Structure
38758
+ end
38759
+
38047
38760
  # Describes the Docker container for the model package.
38048
38761
  #
38049
38762
  # @!attribute [rw] container_hostname
@@ -38125,6 +38838,14 @@ module Aws::SageMaker
38125
38838
  # The ETag associated with Model Data URL.
38126
38839
  # @return [String]
38127
38840
  #
38841
+ # @!attribute [rw] is_checkpoint
38842
+ # The checkpoint of the model package.
38843
+ # @return [Boolean]
38844
+ #
38845
+ # @!attribute [rw] base_model
38846
+ # The base model of the package.
38847
+ # @return [Types::BaseModel]
38848
+ #
38128
38849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageContainerDefinition AWS API Documentation
38129
38850
  #
38130
38851
  class ModelPackageContainerDefinition < Struct.new(
@@ -38140,7 +38861,9 @@ module Aws::SageMaker
38140
38861
  :framework_version,
38141
38862
  :nearest_model_name,
38142
38863
  :additional_s3_data_source,
38143
- :model_data_etag)
38864
+ :model_data_etag,
38865
+ :is_checkpoint,
38866
+ :base_model)
38144
38867
  SENSITIVE = []
38145
38868
  include Aws::Structure
38146
38869
  end
@@ -38405,6 +39128,10 @@ module Aws::SageMaker
38405
39128
  # cycle.
38406
39129
  # @return [Types::ModelLifeCycle]
38407
39130
  #
39131
+ # @!attribute [rw] model_package_registration_type
39132
+ # The package registration type of the model package summary.
39133
+ # @return [String]
39134
+ #
38408
39135
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageSummary AWS API Documentation
38409
39136
  #
38410
39137
  class ModelPackageSummary < Struct.new(
@@ -38416,7 +39143,8 @@ module Aws::SageMaker
38416
39143
  :creation_time,
38417
39144
  :model_package_status,
38418
39145
  :model_approval_status,
38419
- :model_life_cycle)
39146
+ :model_life_cycle,
39147
+ :model_package_registration_type)
38420
39148
  SENSITIVE = []
38421
39149
  include Aws::Structure
38422
39150
  end
@@ -41679,6 +42407,35 @@ module Aws::SageMaker
41679
42407
  # step execution.
41680
42408
  # @return [Types::EndpointConfigStepMetadata]
41681
42409
  #
42410
+ # @!attribute [rw] bedrock_custom_model
42411
+ # The metadata of the Amazon Bedrock custom model used in the pipeline
42412
+ # execution step.
42413
+ # @return [Types::BedrockCustomModelMetadata]
42414
+ #
42415
+ # @!attribute [rw] bedrock_custom_model_deployment
42416
+ # The metadata of the Amazon Bedrock custom model deployment used in
42417
+ # pipeline execution step.
42418
+ # @return [Types::BedrockCustomModelDeploymentMetadata]
42419
+ #
42420
+ # @!attribute [rw] bedrock_provisioned_model_throughput
42421
+ # The metadata of the Amazon Bedrock provisioned model throughput used
42422
+ # in the pipeline execution step.
42423
+ # @return [Types::BedrockProvisionedModelThroughputMetadata]
42424
+ #
42425
+ # @!attribute [rw] bedrock_model_import
42426
+ # The metadata of Amazon Bedrock model import used in pipeline
42427
+ # execution step.
42428
+ # @return [Types::BedrockModelImportMetadata]
42429
+ #
42430
+ # @!attribute [rw] inference_component
42431
+ # The metadata of the inference component used in pipeline execution
42432
+ # step.
42433
+ # @return [Types::InferenceComponentMetadata]
42434
+ #
42435
+ # @!attribute [rw] lineage
42436
+ # The metadata of the lineage used in pipeline execution step.
42437
+ # @return [Types::LineageMetadata]
42438
+ #
41682
42439
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStepMetadata AWS API Documentation
41683
42440
  #
41684
42441
  class PipelineExecutionStepMetadata < Struct.new(
@@ -41697,7 +42454,13 @@ module Aws::SageMaker
41697
42454
  :fail,
41698
42455
  :auto_ml_job,
41699
42456
  :endpoint,
41700
- :endpoint_config)
42457
+ :endpoint_config,
42458
+ :bedrock_custom_model,
42459
+ :bedrock_custom_model_deployment,
42460
+ :bedrock_provisioned_model_throughput,
42461
+ :bedrock_model_import,
42462
+ :inference_component,
42463
+ :lineage)
41701
42464
  SENSITIVE = []
41702
42465
  include Aws::Structure
41703
42466
  end
@@ -45033,6 +45796,9 @@ module Aws::SageMaker
45033
45796
  # @!attribute [rw] volume_size_in_gb
45034
45797
  # The size of the ML storage volume that you want to provision.
45035
45798
  #
45799
+ # SageMaker automatically selects the volume size for serverless
45800
+ # training jobs. You cannot customize this setting.
45801
+ #
45036
45802
  # ML storage volumes store model artifacts and incremental states.
45037
45803
  # Training algorithms might also use the ML storage volume for scratch
45038
45804
  # space. If you want to store the training data in the ML storage
@@ -46665,6 +47431,68 @@ module Aws::SageMaker
46665
47431
  include Aws::Structure
46666
47432
  end
46667
47433
 
47434
+ # The configuration for the serverless training job.
47435
+ #
47436
+ # @!attribute [rw] base_model_arn
47437
+ # The base model Amazon Resource Name (ARN) in [SageMaker Public
47438
+ # Hub][1]. SageMaker always selects the latest version of the provided
47439
+ # model.
47440
+ #
47441
+ #
47442
+ #
47443
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-use.html
47444
+ # @return [String]
47445
+ #
47446
+ # @!attribute [rw] accept_eula
47447
+ # Specifies agreement to the model end-user license agreement (EULA).
47448
+ # The `AcceptEula` value must be explicitly defined as `True` in order
47449
+ # to accept the EULA that this model requires. You are responsible for
47450
+ # reviewing and complying with any applicable license terms and making
47451
+ # sure they are acceptable for your use case before downloading or
47452
+ # using a model. For more information, see [End-user license
47453
+ # agreements][1] section for more details on accepting the EULA.
47454
+ #
47455
+ #
47456
+ #
47457
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula
47458
+ # @return [Boolean]
47459
+ #
47460
+ # @!attribute [rw] job_type
47461
+ # The serverless training job type.
47462
+ # @return [String]
47463
+ #
47464
+ # @!attribute [rw] customization_technique
47465
+ # The model customization technique.
47466
+ # @return [String]
47467
+ #
47468
+ # @!attribute [rw] peft
47469
+ # The parameter-efficient fine-tuning configuration.
47470
+ # @return [String]
47471
+ #
47472
+ # @!attribute [rw] evaluation_type
47473
+ # The evaluation job type. Required when serverless job type is
47474
+ # `Evaluation`.
47475
+ # @return [String]
47476
+ #
47477
+ # @!attribute [rw] evaluator_arn
47478
+ # The evaluator Amazon Resource Name (ARN) used as reward function or
47479
+ # reward prompt.
47480
+ # @return [String]
47481
+ #
47482
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ServerlessJobConfig AWS API Documentation
47483
+ #
47484
+ class ServerlessJobConfig < Struct.new(
47485
+ :base_model_arn,
47486
+ :accept_eula,
47487
+ :job_type,
47488
+ :customization_technique,
47489
+ :peft,
47490
+ :evaluation_type,
47491
+ :evaluator_arn)
47492
+ SENSITIVE = []
47493
+ include Aws::Structure
47494
+ end
47495
+
46668
47496
  # Details of a provisioned service catalog product. For information
46669
47497
  # about service catalog, see [What is Amazon Web Services Service
46670
47498
  # Catalog][1].
@@ -47441,6 +48269,10 @@ module Aws::SageMaker
47441
48269
  # The ID of the pipeline version to start execution from.
47442
48270
  # @return [Integer]
47443
48271
  #
48272
+ # @!attribute [rw] mlflow_experiment_name
48273
+ # The MLflow experiment name of the start execution.
48274
+ # @return [String]
48275
+ #
47444
48276
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StartPipelineExecutionRequest AWS API Documentation
47445
48277
  #
47446
48278
  class StartPipelineExecutionRequest < Struct.new(
@@ -47451,7 +48283,8 @@ module Aws::SageMaker
47451
48283
  :client_request_token,
47452
48284
  :parallelism_configuration,
47453
48285
  :selective_execution_config,
47454
- :pipeline_version_id)
48286
+ :pipeline_version_id,
48287
+ :mlflow_experiment_name)
47455
48288
  SENSITIVE = []
47456
48289
  include Aws::Structure
47457
48290
  end
@@ -49289,6 +50122,15 @@ module Aws::SageMaker
49289
50122
  # training job.
49290
50123
  # @return [Array<Types::DebugRuleEvaluationStatus>]
49291
50124
  #
50125
+ # @!attribute [rw] output_model_package_arn
50126
+ # The output model package Amazon Resource Name (ARN) that contains
50127
+ # model weights or checkpoint.
50128
+ # @return [String]
50129
+ #
50130
+ # @!attribute [rw] model_package_config
50131
+ # The model package configuration.
50132
+ # @return [Types::ModelPackageConfig]
50133
+ #
49292
50134
  # @!attribute [rw] profiler_config
49293
50135
  # Configuration information for Amazon SageMaker Debugger system
49294
50136
  # monitoring, framework profiling, and storage paths.
@@ -49351,6 +50193,8 @@ module Aws::SageMaker
49351
50193
  :debug_rule_configurations,
49352
50194
  :tensor_board_output_config,
49353
50195
  :debug_rule_evaluation_statuses,
50196
+ :output_model_package_arn,
50197
+ :model_package_config,
49354
50198
  :profiler_config,
49355
50199
  :environment,
49356
50200
  :retry_strategy,
@@ -49782,6 +50626,35 @@ module Aws::SageMaker
49782
50626
  include Aws::Structure
49783
50627
  end
49784
50628
 
50629
+ # The serverless training job progress information.
50630
+ #
50631
+ # @!attribute [rw] total_step_count_per_epoch
50632
+ # The total step count per epoch.
50633
+ # @return [Integer]
50634
+ #
50635
+ # @!attribute [rw] current_step
50636
+ # The current step number.
50637
+ # @return [Integer]
50638
+ #
50639
+ # @!attribute [rw] current_epoch
50640
+ # The current epoch number.
50641
+ # @return [Integer]
50642
+ #
50643
+ # @!attribute [rw] max_epoch
50644
+ # The maximum number of epochs for this job.
50645
+ # @return [Integer]
50646
+ #
50647
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingProgressInfo AWS API Documentation
50648
+ #
50649
+ class TrainingProgressInfo < Struct.new(
50650
+ :total_step_count_per_epoch,
50651
+ :current_step,
50652
+ :current_epoch,
50653
+ :max_epoch)
50654
+ SENSITIVE = []
50655
+ include Aws::Structure
50656
+ end
50657
+
49785
50658
  # An object containing authentication information for a private Docker
49786
50659
  # registry.
49787
50660
  #
@@ -52790,6 +53663,71 @@ module Aws::SageMaker
52790
53663
  include Aws::Structure
52791
53664
  end
52792
53665
 
53666
+ # @!attribute [rw] arn
53667
+ # The ARN of the MLflow App to update.
53668
+ # @return [String]
53669
+ #
53670
+ # @!attribute [rw] name
53671
+ # The name of the MLflow App to update.
53672
+ # @return [String]
53673
+ #
53674
+ # @!attribute [rw] artifact_store_uri
53675
+ # The new S3 URI for the general purpose bucket to use as the artifact
53676
+ # store for the MLflow App.
53677
+ # @return [String]
53678
+ #
53679
+ # @!attribute [rw] model_registration_mode
53680
+ # Whether to enable or disable automatic registration of new MLflow
53681
+ # models to the SageMaker Model Registry. To enable automatic model
53682
+ # registration, set this value to `AutoModelRegistrationEnabled`. To
53683
+ # disable automatic model registration, set this value to
53684
+ # `AutoModelRegistrationDisabled`. If not specified,
53685
+ # `AutomaticModelRegistration` defaults to
53686
+ # `AutoModelRegistrationEnabled`
53687
+ # @return [String]
53688
+ #
53689
+ # @!attribute [rw] weekly_maintenance_window_start
53690
+ # The new weekly maintenance window start day and time to update. The
53691
+ # maintenance window day and time should be in Coordinated Universal
53692
+ # Time (UTC) 24-hour standard time. For example: TUE:03:30.
53693
+ # @return [String]
53694
+ #
53695
+ # @!attribute [rw] default_domain_id_list
53696
+ # List of SageMaker Domain IDs for which this MLflow App is the
53697
+ # default.
53698
+ # @return [Array<String>]
53699
+ #
53700
+ # @!attribute [rw] account_default_status
53701
+ # Indicates whether this this MLflow App is the default for the
53702
+ # account.
53703
+ # @return [String]
53704
+ #
53705
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateMlflowAppRequest AWS API Documentation
53706
+ #
53707
+ class UpdateMlflowAppRequest < Struct.new(
53708
+ :arn,
53709
+ :name,
53710
+ :artifact_store_uri,
53711
+ :model_registration_mode,
53712
+ :weekly_maintenance_window_start,
53713
+ :default_domain_id_list,
53714
+ :account_default_status)
53715
+ SENSITIVE = []
53716
+ include Aws::Structure
53717
+ end
53718
+
53719
+ # @!attribute [rw] arn
53720
+ # The ARN of the updated MLflow App.
53721
+ # @return [String]
53722
+ #
53723
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateMlflowAppResponse AWS API Documentation
53724
+ #
53725
+ class UpdateMlflowAppResponse < Struct.new(
53726
+ :arn)
53727
+ SENSITIVE = []
53728
+ include Aws::Structure
53729
+ end
53730
+
52793
53731
  # @!attribute [rw] tracking_server_name
52794
53732
  # The name of the MLflow Tracking Server to update.
52795
53733
  # @return [String]
@@ -52902,6 +53840,10 @@ module Aws::SageMaker
52902
53840
  # The approval status of the model.
52903
53841
  # @return [String]
52904
53842
  #
53843
+ # @!attribute [rw] model_package_registration_type
53844
+ # The package registration type of the model package input.
53845
+ # @return [String]
53846
+ #
52905
53847
  # @!attribute [rw] approval_description
52906
53848
  # A description for the approval status of the model.
52907
53849
  # @return [String]
@@ -52975,6 +53917,7 @@ module Aws::SageMaker
52975
53917
  class UpdateModelPackageInput < Struct.new(
52976
53918
  :model_package_arn,
52977
53919
  :model_approval_status,
53920
+ :model_package_registration_type,
52978
53921
  :approval_description,
52979
53922
  :customer_metadata_properties,
52980
53923
  :customer_metadata_properties_to_remove,