aws-sdk-sagemaker 1.303.0 → 1.305.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d57fbca57d2643614810169085381d392c966c4203e1e4a82adcd83119407f04
4
- data.tar.gz: 49332de295ec7e96f7d960d5739c10b12ff142629a4b9993b34264aa470c36e0
3
+ metadata.gz: 546b2d16059382552093a5b402d996c8d58011f04cb1dcef76a73df54ecb6aa8
4
+ data.tar.gz: 8ddba2dfa8c9d7629609019e64f8f4f53688b150f4a9f3ea4d12f3537aa6358e
5
5
  SHA512:
6
- metadata.gz: 305a25201e6885962e9314f6c690cdd14c2d1e72ecb0f825c358e0ae42fbe9104c0ba3c86d908f0103407c131e64bbabc10e11b1a9a1e05ff2adf6cdac60f0fd
7
- data.tar.gz: f25f1f0b2e4f47bd6d5b23b5adeec0de8f8ae2b43c505697ae8439b24e8c88315870d8935cbd78a3945248eebe87a91397f488a370e7d42a10bff813f5a8086c
6
+ metadata.gz: e4b68a40c4f0d531884d51e42445452d534c2b3f0adb229296759f746c30080bdf9b12e83cf149dd736bddfe2bff8a69af8dd11dc45cf7b442e371d87960edf8
7
+ data.tar.gz: 5819b5158e5420ff86f0f57f834069eb2214731d379b7e35e8e1e611fa3bedc6dde965b8d4524833e38b7b8e0a7f1f581f5ea992c7cd6a4111bd6e7444e078b2
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.305.0 (2025-05-12)
5
+ ------------------
6
+
7
+ * Feature - No API changes from previous release. This release migrated the model to Smithy keeping all features unchanged.
8
+
9
+ 1.304.0 (2025-05-07)
10
+ ------------------
11
+
12
+ * Feature - SageMaker AI Studio users can now migrate to SageMaker Unified Studio, which offers a unified web-based development experience that integrates AWS data, analytics, artificial intelligence (AI), and machine learning (ML) services, as well as additional tools and resource
13
+
4
14
  1.303.0 (2025-05-01)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.303.0
1
+ 1.305.0
@@ -200,8 +200,7 @@ module Aws::SageMaker
200
200
  # accepted modes and the configuration defaults that are included.
201
201
  #
202
202
  # @option options [Boolean] :disable_host_prefix_injection (false)
203
- # Set to true to disable SDK automatically adding host prefix
204
- # to default service endpoint when available.
203
+ # When `true`, the SDK will not prepend the modeled host prefix to the endpoint.
205
204
  #
206
205
  # @option options [Boolean] :disable_request_compression (false)
207
206
  # When set to 'true' the request body will not be compressed
@@ -3146,6 +3145,15 @@ module Aws::SageMaker
3146
3145
  # status: "ENABLED", # accepts ENABLED, DISABLED
3147
3146
  # q_profile_arn: "QProfileArn",
3148
3147
  # },
3148
+ # unified_studio_settings: {
3149
+ # studio_web_portal_access: "ENABLED", # accepts ENABLED, DISABLED
3150
+ # domain_account_id: "AccountId",
3151
+ # domain_region: "RegionName",
3152
+ # domain_id: "UnifiedStudioDomainId",
3153
+ # project_id: "UnifiedStudioProjectId",
3154
+ # environment_id: "UnifiedStudioEnvironmentId",
3155
+ # project_s3_path: "S3Uri",
3156
+ # },
3149
3157
  # },
3150
3158
  # subnet_ids: ["SubnetId"], # required
3151
3159
  # vpc_id: "VpcId", # required
@@ -8887,6 +8895,7 @@ module Aws::SageMaker
8887
8895
  # ebs_volume_size_in_gb: 1, # required
8888
8896
  # },
8889
8897
  # },
8898
+ # space_managed_resources: "ENABLED", # accepts ENABLED, DISABLED
8890
8899
  # custom_file_systems: [
8891
8900
  # {
8892
8901
  # efs_file_system: {
@@ -12662,9 +12671,9 @@ module Aws::SageMaker
12662
12671
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
12663
12672
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
12664
12673
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "BalancedAccuracy", "R2", "Recall", "RecallMacro", "Precision", "PrecisionMacro", "MAE", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
12674
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
12665
12675
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
12666
12676
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
12667
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
12668
12677
  # resp.best_candidate.inference_container_definitions #=> Hash
12669
12678
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
12670
12679
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -12833,9 +12842,9 @@ module Aws::SageMaker
12833
12842
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
12834
12843
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
12835
12844
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "BalancedAccuracy", "R2", "Recall", "RecallMacro", "Precision", "PrecisionMacro", "MAE", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
12845
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
12836
12846
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
12837
12847
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
12838
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
12839
12848
  # resp.best_candidate.inference_container_definitions #=> Hash
12840
12849
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
12841
12850
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -13715,6 +13724,13 @@ module Aws::SageMaker
13715
13724
  # resp.domain_settings.docker_settings.vpc_only_trusted_accounts[0] #=> String
13716
13725
  # resp.domain_settings.amazon_q_settings.status #=> String, one of "ENABLED", "DISABLED"
13717
13726
  # resp.domain_settings.amazon_q_settings.q_profile_arn #=> String
13727
+ # resp.domain_settings.unified_studio_settings.studio_web_portal_access #=> String, one of "ENABLED", "DISABLED"
13728
+ # resp.domain_settings.unified_studio_settings.domain_account_id #=> String
13729
+ # resp.domain_settings.unified_studio_settings.domain_region #=> String
13730
+ # resp.domain_settings.unified_studio_settings.domain_id #=> String
13731
+ # resp.domain_settings.unified_studio_settings.project_id #=> String
13732
+ # resp.domain_settings.unified_studio_settings.environment_id #=> String
13733
+ # resp.domain_settings.unified_studio_settings.project_s3_path #=> String
13718
13734
  # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
13719
13735
  # resp.home_efs_file_system_kms_key_id #=> String
13720
13736
  # resp.subnet_ids #=> Array
@@ -17215,6 +17231,7 @@ module Aws::SageMaker
17215
17231
  # resp.space_settings.jupyter_lab_app_settings.app_lifecycle_management.idle_settings.idle_timeout_in_minutes #=> Integer
17216
17232
  # resp.space_settings.app_type #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
17217
17233
  # resp.space_settings.space_storage_settings.ebs_storage_settings.ebs_volume_size_in_gb #=> Integer
17234
+ # resp.space_settings.space_managed_resources #=> String, one of "ENABLED", "DISABLED"
17218
17235
  # resp.space_settings.custom_file_systems #=> Array
17219
17236
  # resp.space_settings.custom_file_systems[0].efs_file_system.file_system_id #=> String
17220
17237
  # resp.space_settings.custom_file_systems[0].f_sx_lustre_file_system.file_system_id #=> String
@@ -19240,9 +19257,9 @@ module Aws::SageMaker
19240
19257
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
19241
19258
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
19242
19259
  # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "BalancedAccuracy", "R2", "Recall", "RecallMacro", "Precision", "PrecisionMacro", "MAE", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
19260
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
19243
19261
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
19244
19262
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
19245
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
19246
19263
  # resp.candidates[0].inference_container_definitions #=> Hash
19247
19264
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
19248
19265
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -25322,7 +25339,7 @@ module Aws::SageMaker
25322
25339
  # SageMaker training jobs or SageMaker HyperPod clusters using Amazon
25323
25340
  # SageMaker Training Plan , see ` CreateTrainingPlan `.
25324
25341
  #
25325
- # @option params [required, String] :instance_type
25342
+ # @option params [String] :instance_type
25326
25343
  # The type of instance you want to search for in the available training
25327
25344
  # plan offerings. This field allows you to filter the search results
25328
25345
  # based on the specific compute resources you require for your SageMaker
@@ -25330,7 +25347,7 @@ module Aws::SageMaker
25330
25347
  # training plan offerings, specifying the instance type helps you find
25331
25348
  # Reserved Instances that match your computational needs.
25332
25349
  #
25333
- # @option params [required, Integer] :instance_count
25350
+ # @option params [Integer] :instance_count
25334
25351
  # The number of instances you want to reserve in the training plan
25335
25352
  # offerings. This allows you to specify the quantity of compute
25336
25353
  # resources needed for your SageMaker training jobs or SageMaker
@@ -25367,8 +25384,8 @@ module Aws::SageMaker
25367
25384
  # @example Request syntax with placeholder values
25368
25385
  #
25369
25386
  # resp = client.search_training_plan_offerings({
25370
- # instance_type: "ml.p4d.24xlarge", # required, accepts ml.p4d.24xlarge, ml.p5.48xlarge, ml.p5e.48xlarge, ml.p5en.48xlarge, ml.trn1.32xlarge, ml.trn2.48xlarge
25371
- # instance_count: 1, # required
25387
+ # instance_type: "ml.p4d.24xlarge", # accepts ml.p4d.24xlarge, ml.p5.48xlarge, ml.p5e.48xlarge, ml.p5en.48xlarge, ml.trn1.32xlarge, ml.trn2.48xlarge
25388
+ # instance_count: 1,
25372
25389
  # start_time_after: Time.now,
25373
25390
  # end_time_before: Time.now,
25374
25391
  # duration_hours: 1, # required
@@ -27086,6 +27103,15 @@ module Aws::SageMaker
27086
27103
  # status: "ENABLED", # accepts ENABLED, DISABLED
27087
27104
  # q_profile_arn: "QProfileArn",
27088
27105
  # },
27106
+ # unified_studio_settings: {
27107
+ # studio_web_portal_access: "ENABLED", # accepts ENABLED, DISABLED
27108
+ # domain_account_id: "AccountId",
27109
+ # domain_region: "RegionName",
27110
+ # domain_id: "UnifiedStudioDomainId",
27111
+ # project_id: "UnifiedStudioProjectId",
27112
+ # environment_id: "UnifiedStudioEnvironmentId",
27113
+ # project_s3_path: "S3Uri",
27114
+ # },
27089
27115
  # },
27090
27116
  # app_security_group_management: "Service", # accepts Service, Customer
27091
27117
  # default_space_settings: {
@@ -29169,6 +29195,7 @@ module Aws::SageMaker
29169
29195
  # ebs_volume_size_in_gb: 1, # required
29170
29196
  # },
29171
29197
  # },
29198
+ # space_managed_resources: "ENABLED", # accepts ENABLED, DISABLED
29172
29199
  # custom_file_systems: [
29173
29200
  # {
29174
29201
  # efs_file_system: {
@@ -29911,7 +29938,7 @@ module Aws::SageMaker
29911
29938
  tracer: tracer
29912
29939
  )
29913
29940
  context[:gem_name] = 'aws-sdk-sagemaker'
29914
- context[:gem_version] = '1.303.0'
29941
+ context[:gem_version] = '1.305.0'
29915
29942
  Seahorse::Client::Request.new(handlers, context)
29916
29943
  end
29917
29944