aws-sdk-sagemaker 1.274.0 → 1.276.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -432,7 +432,6 @@ module Aws::SageMaker
432
432
  # * MXNet (version >= 1.6)
433
433
  #
434
434
  # * PyTorch (version >= 1.3)
435
- #
436
435
  # * You specify at least one [MetricDefinition][2]
437
436
  #
438
437
  #
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
1795
1794
  # * "randomforest"
1796
1795
  #
1797
1796
  # * "xgboost"
1798
- #
1799
1797
  # * In `HYPERPARAMETER_TUNING` mode:
1800
1798
  #
1801
1799
  # * "linear-learner"
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
1803
1801
  # * "mlp"
1804
1802
  #
1805
1803
  # * "xgboost"
1806
- #
1807
1804
  # * **For the time-series forecasting problem type
1808
1805
  # `TimeSeriesForecastingJobConfig`:**
1809
1806
  #
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
2442
2439
  #
2443
2440
  # * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
2444
2441
  # `F1macro`, `PrecisionMacro`, `RecallMacro`
2445
- #
2446
2442
  # For a description of each metric, see [Autopilot metrics for
2447
2443
  # classification and regression][1].
2448
2444
  #
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
2453
2449
  # * Binary classification: `F1`.
2454
2450
  #
2455
2451
  # * Multiclass classification: `Accuracy`.
2456
- #
2457
2452
  # * For image or text classification problem types:
2458
2453
  #
2459
2454
  # * List of available metrics: `Accuracy`
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
2462
2457
  # text and image classification][2].
2463
2458
  #
2464
2459
  # * Default objective metrics: `Accuracy`
2465
- #
2466
2460
  # * For time-series forecasting problem types:
2467
2461
  #
2468
2462
  # * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
2472
2466
  # time-series forecasting][3].
2473
2467
  #
2474
2468
  # * Default objective metrics: `AverageWeightedQuantileLoss`
2475
- #
2476
2469
  # * For text generation problem types (LLMs fine-tuning): Fine-tuning
2477
2470
  # language models in Autopilot does not require setting the
2478
2471
  # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
3367
3360
  # * When `AlgorithmsConfig` is not provided,
3368
3361
  # `CandidateGenerationConfig` uses the full set of algorithms for
3369
3362
  # the given training mode.
3370
- #
3371
3363
  # For the list of all algorithms per training mode, see [
3372
3364
  # AlgorithmConfig][2].
3373
3365
  #
@@ -4235,6 +4227,18 @@ module Aws::SageMaker
4235
4227
  # when the cluster instance group is created or updated.
4236
4228
  # @return [Array<String>]
4237
4229
  #
4230
+ # @!attribute [rw] override_vpc_config
4231
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4232
+ # jobs, hosted models, and compute resources have access to. You can
4233
+ # control access to and from your resources by configuring a VPC. For
4234
+ # more information, see [Give SageMaker Access to Resources in your
4235
+ # Amazon VPC][1].
4236
+ #
4237
+ #
4238
+ #
4239
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4240
+ # @return [Types::VpcConfig]
4241
+ #
4238
4242
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupDetails AWS API Documentation
4239
4243
  #
4240
4244
  class ClusterInstanceGroupDetails < Struct.new(
@@ -4246,7 +4250,8 @@ module Aws::SageMaker
4246
4250
  :execution_role,
4247
4251
  :threads_per_core,
4248
4252
  :instance_storage_configs,
4249
- :on_start_deep_health_checks)
4253
+ :on_start_deep_health_checks,
4254
+ :override_vpc_config)
4250
4255
  SENSITIVE = []
4251
4256
  include Aws::Structure
4252
4257
  end
@@ -4298,6 +4303,18 @@ module Aws::SageMaker
4298
4303
  # when the cluster instance group is created or updated.
4299
4304
  # @return [Array<String>]
4300
4305
  #
4306
+ # @!attribute [rw] override_vpc_config
4307
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4308
+ # jobs, hosted models, and compute resources have access to. You can
4309
+ # control access to and from your resources by configuring a VPC. For
4310
+ # more information, see [Give SageMaker Access to Resources in your
4311
+ # Amazon VPC][1].
4312
+ #
4313
+ #
4314
+ #
4315
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4316
+ # @return [Types::VpcConfig]
4317
+ #
4301
4318
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupSpecification AWS API Documentation
4302
4319
  #
4303
4320
  class ClusterInstanceGroupSpecification < Struct.new(
@@ -4308,7 +4325,8 @@ module Aws::SageMaker
4308
4325
  :execution_role,
4309
4326
  :threads_per_core,
4310
4327
  :instance_storage_configs,
4311
- :on_start_deep_health_checks)
4328
+ :on_start_deep_health_checks,
4329
+ :override_vpc_config)
4312
4330
  SENSITIVE = []
4313
4331
  include Aws::Structure
4314
4332
  end
@@ -4445,6 +4463,18 @@ module Aws::SageMaker
4445
4463
  # The LifeCycle configuration applied to the instance.
4446
4464
  # @return [Types::ClusterLifeCycleConfig]
4447
4465
  #
4466
+ # @!attribute [rw] override_vpc_config
4467
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4468
+ # jobs, hosted models, and compute resources have access to. You can
4469
+ # control access to and from your resources by configuring a VPC. For
4470
+ # more information, see [Give SageMaker Access to Resources in your
4471
+ # Amazon VPC][1].
4472
+ #
4473
+ #
4474
+ #
4475
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4476
+ # @return [Types::VpcConfig]
4477
+ #
4448
4478
  # @!attribute [rw] threads_per_core
4449
4479
  # The number of threads per CPU core you specified under
4450
4480
  # `CreateCluster`.
@@ -4477,6 +4507,7 @@ module Aws::SageMaker
4477
4507
  :instance_type,
4478
4508
  :launch_time,
4479
4509
  :life_cycle_config,
4510
+ :override_vpc_config,
4480
4511
  :threads_per_core,
4481
4512
  :instance_storage_configs,
4482
4513
  :private_primary_ip,
@@ -21701,206 +21732,206 @@ module Aws::SageMaker
21701
21732
  # in US dollars and should be based on the complexity of the task; the
21702
21733
  # longer it takes in your initial testing, the more you should offer.
21703
21734
  #
21704
- # * 0\.036
21735
+ # * 0.036
21705
21736
  #
21706
- # * 0\.048
21737
+ # * 0.048
21707
21738
  #
21708
- # * 0\.060
21739
+ # * 0.060
21709
21740
  #
21710
- # * 0\.072
21741
+ # * 0.072
21711
21742
  #
21712
- # * 0\.120
21743
+ # * 0.120
21713
21744
  #
21714
- # * 0\.240
21745
+ # * 0.240
21715
21746
  #
21716
- # * 0\.360
21747
+ # * 0.360
21717
21748
  #
21718
- # * 0\.480
21749
+ # * 0.480
21719
21750
  #
21720
- # * 0\.600
21751
+ # * 0.600
21721
21752
  #
21722
- # * 0\.720
21753
+ # * 0.720
21723
21754
  #
21724
- # * 0\.840
21755
+ # * 0.840
21725
21756
  #
21726
- # * 0\.960
21757
+ # * 0.960
21727
21758
  #
21728
- # * 1\.080
21759
+ # * 1.080
21729
21760
  #
21730
- # * 1\.200
21761
+ # * 1.200
21731
21762
  #
21732
21763
  # Use one of the following prices for image classification, text
21733
21764
  # classification, and custom tasks. Prices are in US dollars.
21734
21765
  #
21735
- # * 0\.012
21766
+ # * 0.012
21736
21767
  #
21737
- # * 0\.024
21768
+ # * 0.024
21738
21769
  #
21739
- # * 0\.036
21770
+ # * 0.036
21740
21771
  #
21741
- # * 0\.048
21772
+ # * 0.048
21742
21773
  #
21743
- # * 0\.060
21774
+ # * 0.060
21744
21775
  #
21745
- # * 0\.072
21776
+ # * 0.072
21746
21777
  #
21747
- # * 0\.120
21778
+ # * 0.120
21748
21779
  #
21749
- # * 0\.240
21780
+ # * 0.240
21750
21781
  #
21751
- # * 0\.360
21782
+ # * 0.360
21752
21783
  #
21753
- # * 0\.480
21784
+ # * 0.480
21754
21785
  #
21755
- # * 0\.600
21786
+ # * 0.600
21756
21787
  #
21757
- # * 0\.720
21788
+ # * 0.720
21758
21789
  #
21759
- # * 0\.840
21790
+ # * 0.840
21760
21791
  #
21761
- # * 0\.960
21792
+ # * 0.960
21762
21793
  #
21763
- # * 1\.080
21794
+ # * 1.080
21764
21795
  #
21765
- # * 1\.200
21796
+ # * 1.200
21766
21797
  #
21767
21798
  # Use one of the following prices for semantic segmentation tasks.
21768
21799
  # Prices are in US dollars.
21769
21800
  #
21770
- # * 0\.840
21801
+ # * 0.840
21771
21802
  #
21772
- # * 0\.960
21803
+ # * 0.960
21773
21804
  #
21774
- # * 1\.080
21805
+ # * 1.080
21775
21806
  #
21776
- # * 1\.200
21807
+ # * 1.200
21777
21808
  #
21778
21809
  # Use one of the following prices for Textract AnalyzeDocument
21779
21810
  # Important Form Key Amazon Augmented AI review tasks. Prices are in
21780
21811
  # US dollars.
21781
21812
  #
21782
- # * 2\.400
21813
+ # * 2.400
21783
21814
  #
21784
- # * 2\.280
21815
+ # * 2.280
21785
21816
  #
21786
- # * 2\.160
21817
+ # * 2.160
21787
21818
  #
21788
- # * 2\.040
21819
+ # * 2.040
21789
21820
  #
21790
- # * 1\.920
21821
+ # * 1.920
21791
21822
  #
21792
- # * 1\.800
21823
+ # * 1.800
21793
21824
  #
21794
- # * 1\.680
21825
+ # * 1.680
21795
21826
  #
21796
- # * 1\.560
21827
+ # * 1.560
21797
21828
  #
21798
- # * 1\.440
21829
+ # * 1.440
21799
21830
  #
21800
- # * 1\.320
21831
+ # * 1.320
21801
21832
  #
21802
- # * 1\.200
21833
+ # * 1.200
21803
21834
  #
21804
- # * 1\.080
21835
+ # * 1.080
21805
21836
  #
21806
- # * 0\.960
21837
+ # * 0.960
21807
21838
  #
21808
- # * 0\.840
21839
+ # * 0.840
21809
21840
  #
21810
- # * 0\.720
21841
+ # * 0.720
21811
21842
  #
21812
- # * 0\.600
21843
+ # * 0.600
21813
21844
  #
21814
- # * 0\.480
21845
+ # * 0.480
21815
21846
  #
21816
- # * 0\.360
21847
+ # * 0.360
21817
21848
  #
21818
- # * 0\.240
21849
+ # * 0.240
21819
21850
  #
21820
- # * 0\.120
21851
+ # * 0.120
21821
21852
  #
21822
- # * 0\.072
21853
+ # * 0.072
21823
21854
  #
21824
- # * 0\.060
21855
+ # * 0.060
21825
21856
  #
21826
- # * 0\.048
21857
+ # * 0.048
21827
21858
  #
21828
- # * 0\.036
21859
+ # * 0.036
21829
21860
  #
21830
- # * 0\.024
21861
+ # * 0.024
21831
21862
  #
21832
- # * 0\.012
21863
+ # * 0.012
21833
21864
  #
21834
21865
  # Use one of the following prices for Rekognition
21835
21866
  # DetectModerationLabels Amazon Augmented AI review tasks. Prices are
21836
21867
  # in US dollars.
21837
21868
  #
21838
- # * 1\.200
21869
+ # * 1.200
21839
21870
  #
21840
- # * 1\.080
21871
+ # * 1.080
21841
21872
  #
21842
- # * 0\.960
21873
+ # * 0.960
21843
21874
  #
21844
- # * 0\.840
21875
+ # * 0.840
21845
21876
  #
21846
- # * 0\.720
21877
+ # * 0.720
21847
21878
  #
21848
- # * 0\.600
21879
+ # * 0.600
21849
21880
  #
21850
- # * 0\.480
21881
+ # * 0.480
21851
21882
  #
21852
- # * 0\.360
21883
+ # * 0.360
21853
21884
  #
21854
- # * 0\.240
21885
+ # * 0.240
21855
21886
  #
21856
- # * 0\.120
21887
+ # * 0.120
21857
21888
  #
21858
- # * 0\.072
21889
+ # * 0.072
21859
21890
  #
21860
- # * 0\.060
21891
+ # * 0.060
21861
21892
  #
21862
- # * 0\.048
21893
+ # * 0.048
21863
21894
  #
21864
- # * 0\.036
21895
+ # * 0.036
21865
21896
  #
21866
- # * 0\.024
21897
+ # * 0.024
21867
21898
  #
21868
- # * 0\.012
21899
+ # * 0.012
21869
21900
  #
21870
21901
  # Use one of the following prices for Amazon Augmented AI custom human
21871
21902
  # review tasks. Prices are in US dollars.
21872
21903
  #
21873
- # * 1\.200
21904
+ # * 1.200
21874
21905
  #
21875
- # * 1\.080
21906
+ # * 1.080
21876
21907
  #
21877
- # * 0\.960
21908
+ # * 0.960
21878
21909
  #
21879
- # * 0\.840
21910
+ # * 0.840
21880
21911
  #
21881
- # * 0\.720
21912
+ # * 0.720
21882
21913
  #
21883
- # * 0\.600
21914
+ # * 0.600
21884
21915
  #
21885
- # * 0\.480
21916
+ # * 0.480
21886
21917
  #
21887
- # * 0\.360
21918
+ # * 0.360
21888
21919
  #
21889
- # * 0\.240
21920
+ # * 0.240
21890
21921
  #
21891
- # * 0\.120
21922
+ # * 0.120
21892
21923
  #
21893
- # * 0\.072
21924
+ # * 0.072
21894
21925
  #
21895
- # * 0\.060
21926
+ # * 0.060
21896
21927
  #
21897
- # * 0\.048
21928
+ # * 0.048
21898
21929
  #
21899
- # * 0\.036
21930
+ # * 0.036
21900
21931
  #
21901
- # * 0\.024
21932
+ # * 0.024
21902
21933
  #
21903
- # * 0\.012
21934
+ # * 0.012
21904
21935
  # @return [Types::PublicWorkforceTaskPrice]
21905
21936
  #
21906
21937
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
@@ -24202,9 +24233,9 @@ module Aws::SageMaker
24202
24233
  include Aws::Structure
24203
24234
  end
24204
24235
 
24205
- # Defines the compute resources to allocate to run a model that you
24206
- # assign to an inference component. These resources include CPU cores,
24207
- # accelerators, and memory.
24236
+ # Defines the compute resources to allocate to run a model, plus any
24237
+ # adapter models, that you assign to an inference component. These
24238
+ # resources include CPU cores, accelerators, and memory.
24208
24239
  #
24209
24240
  # @!attribute [rw] number_of_cpu_cores_required
24210
24241
  # The number of CPU cores to allocate to run a model that you assign
@@ -24363,17 +24394,45 @@ module Aws::SageMaker
24363
24394
  # @return [Types::InferenceComponentStartupParameters]
24364
24395
  #
24365
24396
  # @!attribute [rw] compute_resource_requirements
24366
- # The compute resources allocated to run the model assigned to the
24367
- # inference component.
24397
+ # The compute resources allocated to run the model, plus any adapter
24398
+ # models, that you assign to the inference component.
24399
+ #
24400
+ # Omit this parameter if your request is meant to create an adapter
24401
+ # inference component. An adapter inference component is loaded by a
24402
+ # base inference component, and it uses the compute resources of the
24403
+ # base inference component.
24368
24404
  # @return [Types::InferenceComponentComputeResourceRequirements]
24369
24405
  #
24406
+ # @!attribute [rw] base_inference_component_name
24407
+ # The name of an existing inference component that is to contain the
24408
+ # inference component that you're creating with your request.
24409
+ #
24410
+ # Specify this parameter only if your request is meant to create an
24411
+ # adapter inference component. An adapter inference component contains
24412
+ # the path to an adapter model. The purpose of the adapter model is to
24413
+ # tailor the inference output of a base foundation model, which is
24414
+ # hosted by the base inference component. The adapter inference
24415
+ # component uses the compute resources that you assigned to the base
24416
+ # inference component.
24417
+ #
24418
+ # When you create an adapter inference component, use the `Container`
24419
+ # parameter to specify the location of the adapter artifacts. In the
24420
+ # parameter value, use the `ArtifactUrl` parameter of the
24421
+ # `InferenceComponentContainerSpecification` data type.
24422
+ #
24423
+ # Before you can create an adapter inference component, you must have
24424
+ # an existing inference component that contains the foundation model
24425
+ # that you want to adapt.
24426
+ # @return [String]
24427
+ #
24370
24428
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecification AWS API Documentation
24371
24429
  #
24372
24430
  class InferenceComponentSpecification < Struct.new(
24373
24431
  :model_name,
24374
24432
  :container,
24375
24433
  :startup_parameters,
24376
- :compute_resource_requirements)
24434
+ :compute_resource_requirements,
24435
+ :base_inference_component_name)
24377
24436
  SENSITIVE = []
24378
24437
  include Aws::Structure
24379
24438
  end
@@ -24396,17 +24455,23 @@ module Aws::SageMaker
24396
24455
  # @return [Types::InferenceComponentStartupParameters]
24397
24456
  #
24398
24457
  # @!attribute [rw] compute_resource_requirements
24399
- # The compute resources allocated to run the model assigned to the
24400
- # inference component.
24458
+ # The compute resources allocated to run the model, plus any adapter
24459
+ # models, that you assign to the inference component.
24401
24460
  # @return [Types::InferenceComponentComputeResourceRequirements]
24402
24461
  #
24462
+ # @!attribute [rw] base_inference_component_name
24463
+ # The name of the base inference component that contains this
24464
+ # inference component.
24465
+ # @return [String]
24466
+ #
24403
24467
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecificationSummary AWS API Documentation
24404
24468
  #
24405
24469
  class InferenceComponentSpecificationSummary < Struct.new(
24406
24470
  :model_name,
24407
24471
  :container,
24408
24472
  :startup_parameters,
24409
- :compute_resource_requirements)
24473
+ :compute_resource_requirements,
24474
+ :base_inference_component_name)
24410
24475
  SENSITIVE = []
24411
24476
  include Aws::Structure
24412
24477
  end
@@ -24902,7 +24967,6 @@ module Aws::SageMaker
24902
24967
  # * If using the console, `{"input":[1,1024,1024,3]}`
24903
24968
  #
24904
24969
  # * If using the CLI, `{"input":[1,1024,1024,3]}`
24905
- #
24906
24970
  # * Examples for two inputs:
24907
24971
  #
24908
24972
  # * If using the console, `{"data1": [1,28,28,1],
@@ -24910,7 +24974,6 @@ module Aws::SageMaker
24910
24974
  #
24911
24975
  # * If using the CLI, `{"data1": [1,28,28,1],
24912
24976
  # "data2":[1,28,28,1]}`
24913
- #
24914
24977
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24915
24978
  # expected data inputs using a dictionary format for your trained
24916
24979
  # model. Note that while Keras model artifacts should be uploaded in
@@ -24923,7 +24986,6 @@ module Aws::SageMaker
24923
24986
  # * If using the console, `{"input_1":[1,3,224,224]}`
24924
24987
  #
24925
24988
  # * If using the CLI, `{"input_1":[1,3,224,224]}`
24926
- #
24927
24989
  # * Examples for two inputs:
24928
24990
  #
24929
24991
  # * If using the console, `{"input_1": [1,3,224,224],
@@ -24931,7 +24993,6 @@ module Aws::SageMaker
24931
24993
  #
24932
24994
  # * If using the CLI, `{"input_1": [1,3,224,224],
24933
24995
  # "input_2":[1,3,224,224]}`
24934
- #
24935
24996
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24936
24997
  # format) of the expected data inputs in order using a dictionary
24937
24998
  # format for your trained model. The dictionary formats required for
@@ -24942,7 +25003,6 @@ module Aws::SageMaker
24942
25003
  # * If using the console, `{"data":[1,3,1024,1024]}`
24943
25004
  #
24944
25005
  # * If using the CLI, `{"data":[1,3,1024,1024]}`
24945
- #
24946
25006
  # * Examples for two inputs:
24947
25007
  #
24948
25008
  # * If using the console, `{"var1": [1,1,28,28],
@@ -24950,7 +25010,6 @@ module Aws::SageMaker
24950
25010
  #
24951
25011
  # * If using the CLI, `{"var1": [1,1,28,28],
24952
25012
  # "var2":[1,1,28,28]}`
24953
- #
24954
25013
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24955
25014
  # of expected data inputs in order using a dictionary format for
24956
25015
  # your trained model or you can specify the shape only using a list
@@ -24963,7 +25022,6 @@ module Aws::SageMaker
24963
25022
  # * If using the console, `{"input0":[1,3,224,224]}`
24964
25023
  #
24965
25024
  # * If using the CLI, `{"input0":[1,3,224,224]}`
24966
- #
24967
25025
  # * Example for one input in list format: `[[1,3,224,224]]`
24968
25026
  #
24969
25027
  # * Examples for two inputs in dictionary format:
@@ -24973,10 +25031,8 @@ module Aws::SageMaker
24973
25031
  #
24974
25032
  # * If using the CLI, `{"input0":[1,3,224,224],
24975
25033
  # "input1":[1,3,224,224]} `
24976
- #
24977
25034
  # * Example for two inputs in list format: `[[1,3,224,224],
24978
25035
  # [1,3,224,224]]`
24979
- #
24980
25036
  # * `XGBOOST`: input data name and shape are not needed.
24981
25037
  #
24982
25038
  # `DataInputConfig` supports the following parameters for `CoreML`
@@ -24995,7 +25051,6 @@ module Aws::SageMaker
24995
25051
  # only on a select set of inputs. You can enumerate all supported
24996
25052
  # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
25053
  # 3], [1, 160, 160, 3]]}}`
24998
- #
24999
25054
  # * `default_shape`: Default input shape. You can set a default shape
25000
25055
  # during conversion for both Range Dimension and Enumerated Shapes.
25001
25056
  # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
@@ -25023,14 +25078,12 @@ module Aws::SageMaker
25023
25078
  # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
25024
25079
  #
25025
25080
  # ^
25026
- #
25027
25081
  # * Tensor type input without input name (PyTorch):
25028
25082
  #
25029
25083
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
25084
  # "default_shape": [1,3,224,224]}]`
25031
25085
  #
25032
25086
  # ^
25033
- #
25034
25087
  # * Image type input:
25035
25088
  #
25036
25089
  # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
@@ -25039,7 +25092,6 @@ module Aws::SageMaker
25039
25092
  #
25040
25093
  # * `"CompilerOptions": {"class_labels":
25041
25094
  # "imagenet_labels_1000.txt"}`
25042
- #
25043
25095
  # * Image type input without input name (PyTorch):
25044
25096
  #
25045
25097
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
@@ -25061,7 +25113,6 @@ module Aws::SageMaker
25061
25113
  # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
25062
25114
  #
25063
25115
  # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
25064
- #
25065
25116
  # * For TensorFlow models saved as a frozen graph, specify the input
25066
25117
  # tensor names and shapes in `DataInputConfig` and the output tensor
25067
25118
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
@@ -33858,6 +33909,28 @@ module Aws::SageMaker
33858
33909
  include Aws::Structure
33859
33910
  end
33860
33911
 
33912
+ # Settings for the model sharding technique that's applied by a model
33913
+ # optimization job.
33914
+ #
33915
+ # @!attribute [rw] image
33916
+ # The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to
33917
+ # run the optimization.
33918
+ # @return [String]
33919
+ #
33920
+ # @!attribute [rw] override_environment
33921
+ # Environment variables that override the default ones in the model
33922
+ # container.
33923
+ # @return [Hash<String,String>]
33924
+ #
33925
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelShardingConfig AWS API Documentation
33926
+ #
33927
+ class ModelShardingConfig < Struct.new(
33928
+ :image,
33929
+ :override_environment)
33930
+ SENSITIVE = []
33931
+ include Aws::Structure
33932
+ end
33933
+
33861
33934
  # Metadata for Model steps.
33862
33935
  #
33863
33936
  # @!attribute [rw] arn
@@ -35437,11 +35510,17 @@ module Aws::SageMaker
35437
35510
  # model optimization job.
35438
35511
  # @return [Types::ModelCompilationConfig]
35439
35512
  #
35513
+ # @!attribute [rw] model_sharding_config
35514
+ # Settings for the model sharding technique that's applied by a model
35515
+ # optimization job.
35516
+ # @return [Types::ModelShardingConfig]
35517
+ #
35440
35518
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OptimizationConfig AWS API Documentation
35441
35519
  #
35442
35520
  class OptimizationConfig < Struct.new(
35443
35521
  :model_quantization_config,
35444
35522
  :model_compilation_config,
35523
+ :model_sharding_config,
35445
35524
  :unknown)
35446
35525
  SENSITIVE = []
35447
35526
  include Aws::Structure
@@ -35449,6 +35528,7 @@ module Aws::SageMaker
35449
35528
 
35450
35529
  class ModelQuantizationConfig < OptimizationConfig; end
35451
35530
  class ModelCompilationConfig < OptimizationConfig; end
35531
+ class ModelShardingConfig < OptimizationConfig; end
35452
35532
  class Unknown < OptimizationConfig; end
35453
35533
  end
35454
35534
 
@@ -35728,7 +35808,6 @@ module Aws::SageMaker
35728
35808
  # * float32: Use either `"float"` or `"float32"`.
35729
35809
  #
35730
35810
  # * int64: Use either `"int64"` or `"long"`.
35731
- #
35732
35811
  # For example, `{"dtype" : "float32"}`.
35733
35812
  #
35734
35813
  # * `CPU`: Compilation for CPU supports the following compiler
@@ -35739,7 +35818,6 @@ module Aws::SageMaker
35739
35818
  #
35740
35819
  # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
35820
  # '+vfpv4']}`
35742
- #
35743
35821
  # * `ARM`: Details of ARM CPU compilations.
35744
35822
  #
35745
35823
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
@@ -35747,7 +35825,6 @@ module Aws::SageMaker
35747
35825
  #
35748
35826
  # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
35827
  # if compiling for ARM 32-bit platform with the NEON support.
35750
- #
35751
35828
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35752
35829
  # compiler options.
35753
35830
  #
@@ -35756,7 +35833,6 @@ module Aws::SageMaker
35756
35833
  # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
35757
35834
  #
35758
35835
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35759
- #
35760
35836
  # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
35837
  # 'cuda-ver': '10.1'}`
35762
35838
  #
@@ -35769,7 +35845,6 @@ module Aws::SageMaker
35769
35845
  #
35770
35846
  # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35771
35847
  # compiling for ARM 32-bit platform with NEON support.
35772
- #
35773
35848
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
35774
35849
  # options passed in as a JSON string. For example,
35775
35850
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
@@ -38126,204 +38201,204 @@ module Aws::SageMaker
38126
38201
  # US dollars and should be based on the complexity of the task; the
38127
38202
  # longer it takes in your initial testing, the more you should offer.
38128
38203
  #
38129
- # * 0\.036
38204
+ # * 0.036
38130
38205
  #
38131
- # * 0\.048
38206
+ # * 0.048
38132
38207
  #
38133
- # * 0\.060
38208
+ # * 0.060
38134
38209
  #
38135
- # * 0\.072
38210
+ # * 0.072
38136
38211
  #
38137
- # * 0\.120
38212
+ # * 0.120
38138
38213
  #
38139
- # * 0\.240
38214
+ # * 0.240
38140
38215
  #
38141
- # * 0\.360
38216
+ # * 0.360
38142
38217
  #
38143
- # * 0\.480
38218
+ # * 0.480
38144
38219
  #
38145
- # * 0\.600
38220
+ # * 0.600
38146
38221
  #
38147
- # * 0\.720
38222
+ # * 0.720
38148
38223
  #
38149
- # * 0\.840
38224
+ # * 0.840
38150
38225
  #
38151
- # * 0\.960
38226
+ # * 0.960
38152
38227
  #
38153
- # * 1\.080
38228
+ # * 1.080
38154
38229
  #
38155
- # * 1\.200
38230
+ # * 1.200
38156
38231
  #
38157
38232
  # Use one of the following prices for image classification, text
38158
38233
  # classification, and custom tasks. Prices are in US dollars.
38159
38234
  #
38160
- # * 0\.012
38235
+ # * 0.012
38161
38236
  #
38162
- # * 0\.024
38237
+ # * 0.024
38163
38238
  #
38164
- # * 0\.036
38239
+ # * 0.036
38165
38240
  #
38166
- # * 0\.048
38241
+ # * 0.048
38167
38242
  #
38168
- # * 0\.060
38243
+ # * 0.060
38169
38244
  #
38170
- # * 0\.072
38245
+ # * 0.072
38171
38246
  #
38172
- # * 0\.120
38247
+ # * 0.120
38173
38248
  #
38174
- # * 0\.240
38249
+ # * 0.240
38175
38250
  #
38176
- # * 0\.360
38251
+ # * 0.360
38177
38252
  #
38178
- # * 0\.480
38253
+ # * 0.480
38179
38254
  #
38180
- # * 0\.600
38255
+ # * 0.600
38181
38256
  #
38182
- # * 0\.720
38257
+ # * 0.720
38183
38258
  #
38184
- # * 0\.840
38259
+ # * 0.840
38185
38260
  #
38186
- # * 0\.960
38261
+ # * 0.960
38187
38262
  #
38188
- # * 1\.080
38263
+ # * 1.080
38189
38264
  #
38190
- # * 1\.200
38265
+ # * 1.200
38191
38266
  #
38192
38267
  # Use one of the following prices for semantic segmentation tasks.
38193
38268
  # Prices are in US dollars.
38194
38269
  #
38195
- # * 0\.840
38270
+ # * 0.840
38196
38271
  #
38197
- # * 0\.960
38272
+ # * 0.960
38198
38273
  #
38199
- # * 1\.080
38274
+ # * 1.080
38200
38275
  #
38201
- # * 1\.200
38276
+ # * 1.200
38202
38277
  #
38203
38278
  # Use one of the following prices for Textract AnalyzeDocument Important
38204
38279
  # Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
38205
38280
  #
38206
- # * 2\.400
38281
+ # * 2.400
38207
38282
  #
38208
- # * 2\.280
38283
+ # * 2.280
38209
38284
  #
38210
- # * 2\.160
38285
+ # * 2.160
38211
38286
  #
38212
- # * 2\.040
38287
+ # * 2.040
38213
38288
  #
38214
- # * 1\.920
38289
+ # * 1.920
38215
38290
  #
38216
- # * 1\.800
38291
+ # * 1.800
38217
38292
  #
38218
- # * 1\.680
38293
+ # * 1.680
38219
38294
  #
38220
- # * 1\.560
38295
+ # * 1.560
38221
38296
  #
38222
- # * 1\.440
38297
+ # * 1.440
38223
38298
  #
38224
- # * 1\.320
38299
+ # * 1.320
38225
38300
  #
38226
- # * 1\.200
38301
+ # * 1.200
38227
38302
  #
38228
- # * 1\.080
38303
+ # * 1.080
38229
38304
  #
38230
- # * 0\.960
38305
+ # * 0.960
38231
38306
  #
38232
- # * 0\.840
38307
+ # * 0.840
38233
38308
  #
38234
- # * 0\.720
38309
+ # * 0.720
38235
38310
  #
38236
- # * 0\.600
38311
+ # * 0.600
38237
38312
  #
38238
- # * 0\.480
38313
+ # * 0.480
38239
38314
  #
38240
- # * 0\.360
38315
+ # * 0.360
38241
38316
  #
38242
- # * 0\.240
38317
+ # * 0.240
38243
38318
  #
38244
- # * 0\.120
38319
+ # * 0.120
38245
38320
  #
38246
- # * 0\.072
38321
+ # * 0.072
38247
38322
  #
38248
- # * 0\.060
38323
+ # * 0.060
38249
38324
  #
38250
- # * 0\.048
38325
+ # * 0.048
38251
38326
  #
38252
- # * 0\.036
38327
+ # * 0.036
38253
38328
  #
38254
- # * 0\.024
38329
+ # * 0.024
38255
38330
  #
38256
- # * 0\.012
38331
+ # * 0.012
38257
38332
  #
38258
38333
  # Use one of the following prices for Rekognition DetectModerationLabels
38259
38334
  # Amazon Augmented AI review tasks. Prices are in US dollars.
38260
38335
  #
38261
- # * 1\.200
38336
+ # * 1.200
38262
38337
  #
38263
- # * 1\.080
38338
+ # * 1.080
38264
38339
  #
38265
- # * 0\.960
38340
+ # * 0.960
38266
38341
  #
38267
- # * 0\.840
38342
+ # * 0.840
38268
38343
  #
38269
- # * 0\.720
38344
+ # * 0.720
38270
38345
  #
38271
- # * 0\.600
38346
+ # * 0.600
38272
38347
  #
38273
- # * 0\.480
38348
+ # * 0.480
38274
38349
  #
38275
- # * 0\.360
38350
+ # * 0.360
38276
38351
  #
38277
- # * 0\.240
38352
+ # * 0.240
38278
38353
  #
38279
- # * 0\.120
38354
+ # * 0.120
38280
38355
  #
38281
- # * 0\.072
38356
+ # * 0.072
38282
38357
  #
38283
- # * 0\.060
38358
+ # * 0.060
38284
38359
  #
38285
- # * 0\.048
38360
+ # * 0.048
38286
38361
  #
38287
- # * 0\.036
38362
+ # * 0.036
38288
38363
  #
38289
- # * 0\.024
38364
+ # * 0.024
38290
38365
  #
38291
- # * 0\.012
38366
+ # * 0.012
38292
38367
  #
38293
38368
  # Use one of the following prices for Amazon Augmented AI custom human
38294
38369
  # review tasks. Prices are in US dollars.
38295
38370
  #
38296
- # * 1\.200
38371
+ # * 1.200
38297
38372
  #
38298
- # * 1\.080
38373
+ # * 1.080
38299
38374
  #
38300
- # * 0\.960
38375
+ # * 0.960
38301
38376
  #
38302
- # * 0\.840
38377
+ # * 0.840
38303
38378
  #
38304
- # * 0\.720
38379
+ # * 0.720
38305
38380
  #
38306
- # * 0\.600
38381
+ # * 0.600
38307
38382
  #
38308
- # * 0\.480
38383
+ # * 0.480
38309
38384
  #
38310
- # * 0\.360
38385
+ # * 0.360
38311
38386
  #
38312
- # * 0\.240
38387
+ # * 0.240
38313
38388
  #
38314
- # * 0\.120
38389
+ # * 0.120
38315
38390
  #
38316
- # * 0\.072
38391
+ # * 0.072
38317
38392
  #
38318
- # * 0\.060
38393
+ # * 0.060
38319
38394
  #
38320
- # * 0\.048
38395
+ # * 0.048
38321
38396
  #
38322
- # * 0\.036
38397
+ # * 0.036
38323
38398
  #
38324
- # * 0\.024
38399
+ # * 0.024
38325
38400
  #
38326
- # * 0\.012
38401
+ # * 0.012
38327
38402
  #
38328
38403
  # @!attribute [rw] amount_in_usd
38329
38404
  # Defines the amount of money paid to an Amazon Mechanical Turk worker
@@ -40089,7 +40164,6 @@ module Aws::SageMaker
40089
40164
  # * A single dot (`.`)
40090
40165
  #
40091
40166
  # * A double dot (`..`)
40092
- #
40093
40167
  # * Ambiguous file names will result in model deployment failure. For
40094
40168
  # example, if your uncompressed ML model consists of two S3 objects
40095
40169
  # `s3://mybucket/model/weights` and