aws-sdk-sagemaker 1.274.0 → 1.276.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +55 -27
- data/lib/aws-sdk-sagemaker/client_api.rb +15 -3
- data/lib/aws-sdk-sagemaker/types.rb +297 -223
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +28 -14
- data/sig/types.rbs +21 -7
- metadata +2 -2
@@ -432,7 +432,6 @@ module Aws::SageMaker
|
|
432
432
|
# * MXNet (version >= 1.6)
|
433
433
|
#
|
434
434
|
# * PyTorch (version >= 1.3)
|
435
|
-
#
|
436
435
|
# * You specify at least one [MetricDefinition][2]
|
437
436
|
#
|
438
437
|
#
|
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
|
|
1795
1794
|
# * "randomforest"
|
1796
1795
|
#
|
1797
1796
|
# * "xgboost"
|
1798
|
-
#
|
1799
1797
|
# * In `HYPERPARAMETER_TUNING` mode:
|
1800
1798
|
#
|
1801
1799
|
# * "linear-learner"
|
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
|
|
1803
1801
|
# * "mlp"
|
1804
1802
|
#
|
1805
1803
|
# * "xgboost"
|
1806
|
-
#
|
1807
1804
|
# * **For the time-series forecasting problem type
|
1808
1805
|
# `TimeSeriesForecastingJobConfig`:**
|
1809
1806
|
#
|
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
|
|
2442
2439
|
#
|
2443
2440
|
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2444
2441
|
# `F1macro`, `PrecisionMacro`, `RecallMacro`
|
2445
|
-
#
|
2446
2442
|
# For a description of each metric, see [Autopilot metrics for
|
2447
2443
|
# classification and regression][1].
|
2448
2444
|
#
|
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
|
|
2453
2449
|
# * Binary classification: `F1`.
|
2454
2450
|
#
|
2455
2451
|
# * Multiclass classification: `Accuracy`.
|
2456
|
-
#
|
2457
2452
|
# * For image or text classification problem types:
|
2458
2453
|
#
|
2459
2454
|
# * List of available metrics: `Accuracy`
|
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
|
|
2462
2457
|
# text and image classification][2].
|
2463
2458
|
#
|
2464
2459
|
# * Default objective metrics: `Accuracy`
|
2465
|
-
#
|
2466
2460
|
# * For time-series forecasting problem types:
|
2467
2461
|
#
|
2468
2462
|
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
|
|
2472
2466
|
# time-series forecasting][3].
|
2473
2467
|
#
|
2474
2468
|
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2475
|
-
#
|
2476
2469
|
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2477
2470
|
# language models in Autopilot does not require setting the
|
2478
2471
|
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
|
|
3367
3360
|
# * When `AlgorithmsConfig` is not provided,
|
3368
3361
|
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3369
3362
|
# the given training mode.
|
3370
|
-
#
|
3371
3363
|
# For the list of all algorithms per training mode, see [
|
3372
3364
|
# AlgorithmConfig][2].
|
3373
3365
|
#
|
@@ -4235,6 +4227,18 @@ module Aws::SageMaker
|
|
4235
4227
|
# when the cluster instance group is created or updated.
|
4236
4228
|
# @return [Array<String>]
|
4237
4229
|
#
|
4230
|
+
# @!attribute [rw] override_vpc_config
|
4231
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4232
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4233
|
+
# control access to and from your resources by configuring a VPC. For
|
4234
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4235
|
+
# Amazon VPC][1].
|
4236
|
+
#
|
4237
|
+
#
|
4238
|
+
#
|
4239
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4240
|
+
# @return [Types::VpcConfig]
|
4241
|
+
#
|
4238
4242
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupDetails AWS API Documentation
|
4239
4243
|
#
|
4240
4244
|
class ClusterInstanceGroupDetails < Struct.new(
|
@@ -4246,7 +4250,8 @@ module Aws::SageMaker
|
|
4246
4250
|
:execution_role,
|
4247
4251
|
:threads_per_core,
|
4248
4252
|
:instance_storage_configs,
|
4249
|
-
:on_start_deep_health_checks
|
4253
|
+
:on_start_deep_health_checks,
|
4254
|
+
:override_vpc_config)
|
4250
4255
|
SENSITIVE = []
|
4251
4256
|
include Aws::Structure
|
4252
4257
|
end
|
@@ -4298,6 +4303,18 @@ module Aws::SageMaker
|
|
4298
4303
|
# when the cluster instance group is created or updated.
|
4299
4304
|
# @return [Array<String>]
|
4300
4305
|
#
|
4306
|
+
# @!attribute [rw] override_vpc_config
|
4307
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4308
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4309
|
+
# control access to and from your resources by configuring a VPC. For
|
4310
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4311
|
+
# Amazon VPC][1].
|
4312
|
+
#
|
4313
|
+
#
|
4314
|
+
#
|
4315
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4316
|
+
# @return [Types::VpcConfig]
|
4317
|
+
#
|
4301
4318
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupSpecification AWS API Documentation
|
4302
4319
|
#
|
4303
4320
|
class ClusterInstanceGroupSpecification < Struct.new(
|
@@ -4308,7 +4325,8 @@ module Aws::SageMaker
|
|
4308
4325
|
:execution_role,
|
4309
4326
|
:threads_per_core,
|
4310
4327
|
:instance_storage_configs,
|
4311
|
-
:on_start_deep_health_checks
|
4328
|
+
:on_start_deep_health_checks,
|
4329
|
+
:override_vpc_config)
|
4312
4330
|
SENSITIVE = []
|
4313
4331
|
include Aws::Structure
|
4314
4332
|
end
|
@@ -4445,6 +4463,18 @@ module Aws::SageMaker
|
|
4445
4463
|
# The LifeCycle configuration applied to the instance.
|
4446
4464
|
# @return [Types::ClusterLifeCycleConfig]
|
4447
4465
|
#
|
4466
|
+
# @!attribute [rw] override_vpc_config
|
4467
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4468
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4469
|
+
# control access to and from your resources by configuring a VPC. For
|
4470
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4471
|
+
# Amazon VPC][1].
|
4472
|
+
#
|
4473
|
+
#
|
4474
|
+
#
|
4475
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4476
|
+
# @return [Types::VpcConfig]
|
4477
|
+
#
|
4448
4478
|
# @!attribute [rw] threads_per_core
|
4449
4479
|
# The number of threads per CPU core you specified under
|
4450
4480
|
# `CreateCluster`.
|
@@ -4477,6 +4507,7 @@ module Aws::SageMaker
|
|
4477
4507
|
:instance_type,
|
4478
4508
|
:launch_time,
|
4479
4509
|
:life_cycle_config,
|
4510
|
+
:override_vpc_config,
|
4480
4511
|
:threads_per_core,
|
4481
4512
|
:instance_storage_configs,
|
4482
4513
|
:private_primary_ip,
|
@@ -21701,206 +21732,206 @@ module Aws::SageMaker
|
|
21701
21732
|
# in US dollars and should be based on the complexity of the task; the
|
21702
21733
|
# longer it takes in your initial testing, the more you should offer.
|
21703
21734
|
#
|
21704
|
-
# * 0
|
21735
|
+
# * 0.036
|
21705
21736
|
#
|
21706
|
-
# * 0
|
21737
|
+
# * 0.048
|
21707
21738
|
#
|
21708
|
-
# * 0
|
21739
|
+
# * 0.060
|
21709
21740
|
#
|
21710
|
-
# * 0
|
21741
|
+
# * 0.072
|
21711
21742
|
#
|
21712
|
-
# * 0
|
21743
|
+
# * 0.120
|
21713
21744
|
#
|
21714
|
-
# * 0
|
21745
|
+
# * 0.240
|
21715
21746
|
#
|
21716
|
-
# * 0
|
21747
|
+
# * 0.360
|
21717
21748
|
#
|
21718
|
-
# * 0
|
21749
|
+
# * 0.480
|
21719
21750
|
#
|
21720
|
-
# * 0
|
21751
|
+
# * 0.600
|
21721
21752
|
#
|
21722
|
-
# * 0
|
21753
|
+
# * 0.720
|
21723
21754
|
#
|
21724
|
-
# * 0
|
21755
|
+
# * 0.840
|
21725
21756
|
#
|
21726
|
-
# * 0
|
21757
|
+
# * 0.960
|
21727
21758
|
#
|
21728
|
-
# * 1
|
21759
|
+
# * 1.080
|
21729
21760
|
#
|
21730
|
-
# * 1
|
21761
|
+
# * 1.200
|
21731
21762
|
#
|
21732
21763
|
# Use one of the following prices for image classification, text
|
21733
21764
|
# classification, and custom tasks. Prices are in US dollars.
|
21734
21765
|
#
|
21735
|
-
# * 0
|
21766
|
+
# * 0.012
|
21736
21767
|
#
|
21737
|
-
# * 0
|
21768
|
+
# * 0.024
|
21738
21769
|
#
|
21739
|
-
# * 0
|
21770
|
+
# * 0.036
|
21740
21771
|
#
|
21741
|
-
# * 0
|
21772
|
+
# * 0.048
|
21742
21773
|
#
|
21743
|
-
# * 0
|
21774
|
+
# * 0.060
|
21744
21775
|
#
|
21745
|
-
# * 0
|
21776
|
+
# * 0.072
|
21746
21777
|
#
|
21747
|
-
# * 0
|
21778
|
+
# * 0.120
|
21748
21779
|
#
|
21749
|
-
# * 0
|
21780
|
+
# * 0.240
|
21750
21781
|
#
|
21751
|
-
# * 0
|
21782
|
+
# * 0.360
|
21752
21783
|
#
|
21753
|
-
# * 0
|
21784
|
+
# * 0.480
|
21754
21785
|
#
|
21755
|
-
# * 0
|
21786
|
+
# * 0.600
|
21756
21787
|
#
|
21757
|
-
# * 0
|
21788
|
+
# * 0.720
|
21758
21789
|
#
|
21759
|
-
# * 0
|
21790
|
+
# * 0.840
|
21760
21791
|
#
|
21761
|
-
# * 0
|
21792
|
+
# * 0.960
|
21762
21793
|
#
|
21763
|
-
# * 1
|
21794
|
+
# * 1.080
|
21764
21795
|
#
|
21765
|
-
# * 1
|
21796
|
+
# * 1.200
|
21766
21797
|
#
|
21767
21798
|
# Use one of the following prices for semantic segmentation tasks.
|
21768
21799
|
# Prices are in US dollars.
|
21769
21800
|
#
|
21770
|
-
# * 0
|
21801
|
+
# * 0.840
|
21771
21802
|
#
|
21772
|
-
# * 0
|
21803
|
+
# * 0.960
|
21773
21804
|
#
|
21774
|
-
# * 1
|
21805
|
+
# * 1.080
|
21775
21806
|
#
|
21776
|
-
# * 1
|
21807
|
+
# * 1.200
|
21777
21808
|
#
|
21778
21809
|
# Use one of the following prices for Textract AnalyzeDocument
|
21779
21810
|
# Important Form Key Amazon Augmented AI review tasks. Prices are in
|
21780
21811
|
# US dollars.
|
21781
21812
|
#
|
21782
|
-
# * 2
|
21813
|
+
# * 2.400
|
21783
21814
|
#
|
21784
|
-
# * 2
|
21815
|
+
# * 2.280
|
21785
21816
|
#
|
21786
|
-
# * 2
|
21817
|
+
# * 2.160
|
21787
21818
|
#
|
21788
|
-
# * 2
|
21819
|
+
# * 2.040
|
21789
21820
|
#
|
21790
|
-
# * 1
|
21821
|
+
# * 1.920
|
21791
21822
|
#
|
21792
|
-
# * 1
|
21823
|
+
# * 1.800
|
21793
21824
|
#
|
21794
|
-
# * 1
|
21825
|
+
# * 1.680
|
21795
21826
|
#
|
21796
|
-
# * 1
|
21827
|
+
# * 1.560
|
21797
21828
|
#
|
21798
|
-
# * 1
|
21829
|
+
# * 1.440
|
21799
21830
|
#
|
21800
|
-
# * 1
|
21831
|
+
# * 1.320
|
21801
21832
|
#
|
21802
|
-
# * 1
|
21833
|
+
# * 1.200
|
21803
21834
|
#
|
21804
|
-
# * 1
|
21835
|
+
# * 1.080
|
21805
21836
|
#
|
21806
|
-
# * 0
|
21837
|
+
# * 0.960
|
21807
21838
|
#
|
21808
|
-
# * 0
|
21839
|
+
# * 0.840
|
21809
21840
|
#
|
21810
|
-
# * 0
|
21841
|
+
# * 0.720
|
21811
21842
|
#
|
21812
|
-
# * 0
|
21843
|
+
# * 0.600
|
21813
21844
|
#
|
21814
|
-
# * 0
|
21845
|
+
# * 0.480
|
21815
21846
|
#
|
21816
|
-
# * 0
|
21847
|
+
# * 0.360
|
21817
21848
|
#
|
21818
|
-
# * 0
|
21849
|
+
# * 0.240
|
21819
21850
|
#
|
21820
|
-
# * 0
|
21851
|
+
# * 0.120
|
21821
21852
|
#
|
21822
|
-
# * 0
|
21853
|
+
# * 0.072
|
21823
21854
|
#
|
21824
|
-
# * 0
|
21855
|
+
# * 0.060
|
21825
21856
|
#
|
21826
|
-
# * 0
|
21857
|
+
# * 0.048
|
21827
21858
|
#
|
21828
|
-
# * 0
|
21859
|
+
# * 0.036
|
21829
21860
|
#
|
21830
|
-
# * 0
|
21861
|
+
# * 0.024
|
21831
21862
|
#
|
21832
|
-
# * 0
|
21863
|
+
# * 0.012
|
21833
21864
|
#
|
21834
21865
|
# Use one of the following prices for Rekognition
|
21835
21866
|
# DetectModerationLabels Amazon Augmented AI review tasks. Prices are
|
21836
21867
|
# in US dollars.
|
21837
21868
|
#
|
21838
|
-
# * 1
|
21869
|
+
# * 1.200
|
21839
21870
|
#
|
21840
|
-
# * 1
|
21871
|
+
# * 1.080
|
21841
21872
|
#
|
21842
|
-
# * 0
|
21873
|
+
# * 0.960
|
21843
21874
|
#
|
21844
|
-
# * 0
|
21875
|
+
# * 0.840
|
21845
21876
|
#
|
21846
|
-
# * 0
|
21877
|
+
# * 0.720
|
21847
21878
|
#
|
21848
|
-
# * 0
|
21879
|
+
# * 0.600
|
21849
21880
|
#
|
21850
|
-
# * 0
|
21881
|
+
# * 0.480
|
21851
21882
|
#
|
21852
|
-
# * 0
|
21883
|
+
# * 0.360
|
21853
21884
|
#
|
21854
|
-
# * 0
|
21885
|
+
# * 0.240
|
21855
21886
|
#
|
21856
|
-
# * 0
|
21887
|
+
# * 0.120
|
21857
21888
|
#
|
21858
|
-
# * 0
|
21889
|
+
# * 0.072
|
21859
21890
|
#
|
21860
|
-
# * 0
|
21891
|
+
# * 0.060
|
21861
21892
|
#
|
21862
|
-
# * 0
|
21893
|
+
# * 0.048
|
21863
21894
|
#
|
21864
|
-
# * 0
|
21895
|
+
# * 0.036
|
21865
21896
|
#
|
21866
|
-
# * 0
|
21897
|
+
# * 0.024
|
21867
21898
|
#
|
21868
|
-
# * 0
|
21899
|
+
# * 0.012
|
21869
21900
|
#
|
21870
21901
|
# Use one of the following prices for Amazon Augmented AI custom human
|
21871
21902
|
# review tasks. Prices are in US dollars.
|
21872
21903
|
#
|
21873
|
-
# * 1
|
21904
|
+
# * 1.200
|
21874
21905
|
#
|
21875
|
-
# * 1
|
21906
|
+
# * 1.080
|
21876
21907
|
#
|
21877
|
-
# * 0
|
21908
|
+
# * 0.960
|
21878
21909
|
#
|
21879
|
-
# * 0
|
21910
|
+
# * 0.840
|
21880
21911
|
#
|
21881
|
-
# * 0
|
21912
|
+
# * 0.720
|
21882
21913
|
#
|
21883
|
-
# * 0
|
21914
|
+
# * 0.600
|
21884
21915
|
#
|
21885
|
-
# * 0
|
21916
|
+
# * 0.480
|
21886
21917
|
#
|
21887
|
-
# * 0
|
21918
|
+
# * 0.360
|
21888
21919
|
#
|
21889
|
-
# * 0
|
21920
|
+
# * 0.240
|
21890
21921
|
#
|
21891
|
-
# * 0
|
21922
|
+
# * 0.120
|
21892
21923
|
#
|
21893
|
-
# * 0
|
21924
|
+
# * 0.072
|
21894
21925
|
#
|
21895
|
-
# * 0
|
21926
|
+
# * 0.060
|
21896
21927
|
#
|
21897
|
-
# * 0
|
21928
|
+
# * 0.048
|
21898
21929
|
#
|
21899
|
-
# * 0
|
21930
|
+
# * 0.036
|
21900
21931
|
#
|
21901
|
-
# * 0
|
21932
|
+
# * 0.024
|
21902
21933
|
#
|
21903
|
-
# * 0
|
21934
|
+
# * 0.012
|
21904
21935
|
# @return [Types::PublicWorkforceTaskPrice]
|
21905
21936
|
#
|
21906
21937
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
|
@@ -24202,9 +24233,9 @@ module Aws::SageMaker
|
|
24202
24233
|
include Aws::Structure
|
24203
24234
|
end
|
24204
24235
|
|
24205
|
-
# Defines the compute resources to allocate to run a model
|
24206
|
-
# assign to an inference component. These
|
24207
|
-
# accelerators, and memory.
|
24236
|
+
# Defines the compute resources to allocate to run a model, plus any
|
24237
|
+
# adapter models, that you assign to an inference component. These
|
24238
|
+
# resources include CPU cores, accelerators, and memory.
|
24208
24239
|
#
|
24209
24240
|
# @!attribute [rw] number_of_cpu_cores_required
|
24210
24241
|
# The number of CPU cores to allocate to run a model that you assign
|
@@ -24363,17 +24394,45 @@ module Aws::SageMaker
|
|
24363
24394
|
# @return [Types::InferenceComponentStartupParameters]
|
24364
24395
|
#
|
24365
24396
|
# @!attribute [rw] compute_resource_requirements
|
24366
|
-
# The compute resources allocated to run the model
|
24367
|
-
# inference component.
|
24397
|
+
# The compute resources allocated to run the model, plus any adapter
|
24398
|
+
# models, that you assign to the inference component.
|
24399
|
+
#
|
24400
|
+
# Omit this parameter if your request is meant to create an adapter
|
24401
|
+
# inference component. An adapter inference component is loaded by a
|
24402
|
+
# base inference component, and it uses the compute resources of the
|
24403
|
+
# base inference component.
|
24368
24404
|
# @return [Types::InferenceComponentComputeResourceRequirements]
|
24369
24405
|
#
|
24406
|
+
# @!attribute [rw] base_inference_component_name
|
24407
|
+
# The name of an existing inference component that is to contain the
|
24408
|
+
# inference component that you're creating with your request.
|
24409
|
+
#
|
24410
|
+
# Specify this parameter only if your request is meant to create an
|
24411
|
+
# adapter inference component. An adapter inference component contains
|
24412
|
+
# the path to an adapter model. The purpose of the adapter model is to
|
24413
|
+
# tailor the inference output of a base foundation model, which is
|
24414
|
+
# hosted by the base inference component. The adapter inference
|
24415
|
+
# component uses the compute resources that you assigned to the base
|
24416
|
+
# inference component.
|
24417
|
+
#
|
24418
|
+
# When you create an adapter inference component, use the `Container`
|
24419
|
+
# parameter to specify the location of the adapter artifacts. In the
|
24420
|
+
# parameter value, use the `ArtifactUrl` parameter of the
|
24421
|
+
# `InferenceComponentContainerSpecification` data type.
|
24422
|
+
#
|
24423
|
+
# Before you can create an adapter inference component, you must have
|
24424
|
+
# an existing inference component that contains the foundation model
|
24425
|
+
# that you want to adapt.
|
24426
|
+
# @return [String]
|
24427
|
+
#
|
24370
24428
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecification AWS API Documentation
|
24371
24429
|
#
|
24372
24430
|
class InferenceComponentSpecification < Struct.new(
|
24373
24431
|
:model_name,
|
24374
24432
|
:container,
|
24375
24433
|
:startup_parameters,
|
24376
|
-
:compute_resource_requirements
|
24434
|
+
:compute_resource_requirements,
|
24435
|
+
:base_inference_component_name)
|
24377
24436
|
SENSITIVE = []
|
24378
24437
|
include Aws::Structure
|
24379
24438
|
end
|
@@ -24396,17 +24455,23 @@ module Aws::SageMaker
|
|
24396
24455
|
# @return [Types::InferenceComponentStartupParameters]
|
24397
24456
|
#
|
24398
24457
|
# @!attribute [rw] compute_resource_requirements
|
24399
|
-
# The compute resources allocated to run the model
|
24400
|
-
# inference component.
|
24458
|
+
# The compute resources allocated to run the model, plus any adapter
|
24459
|
+
# models, that you assign to the inference component.
|
24401
24460
|
# @return [Types::InferenceComponentComputeResourceRequirements]
|
24402
24461
|
#
|
24462
|
+
# @!attribute [rw] base_inference_component_name
|
24463
|
+
# The name of the base inference component that contains this
|
24464
|
+
# inference component.
|
24465
|
+
# @return [String]
|
24466
|
+
#
|
24403
24467
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecificationSummary AWS API Documentation
|
24404
24468
|
#
|
24405
24469
|
class InferenceComponentSpecificationSummary < Struct.new(
|
24406
24470
|
:model_name,
|
24407
24471
|
:container,
|
24408
24472
|
:startup_parameters,
|
24409
|
-
:compute_resource_requirements
|
24473
|
+
:compute_resource_requirements,
|
24474
|
+
:base_inference_component_name)
|
24410
24475
|
SENSITIVE = []
|
24411
24476
|
include Aws::Structure
|
24412
24477
|
end
|
@@ -24902,7 +24967,6 @@ module Aws::SageMaker
|
|
24902
24967
|
# * If using the console, `{"input":[1,1024,1024,3]}`
|
24903
24968
|
#
|
24904
24969
|
# * If using the CLI, `{"input":[1,1024,1024,3]}`
|
24905
|
-
#
|
24906
24970
|
# * Examples for two inputs:
|
24907
24971
|
#
|
24908
24972
|
# * If using the console, `{"data1": [1,28,28,1],
|
@@ -24910,7 +24974,6 @@ module Aws::SageMaker
|
|
24910
24974
|
#
|
24911
24975
|
# * If using the CLI, `{"data1": [1,28,28,1],
|
24912
24976
|
# "data2":[1,28,28,1]}`
|
24913
|
-
#
|
24914
24977
|
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
24915
24978
|
# expected data inputs using a dictionary format for your trained
|
24916
24979
|
# model. Note that while Keras model artifacts should be uploaded in
|
@@ -24923,7 +24986,6 @@ module Aws::SageMaker
|
|
24923
24986
|
# * If using the console, `{"input_1":[1,3,224,224]}`
|
24924
24987
|
#
|
24925
24988
|
# * If using the CLI, `{"input_1":[1,3,224,224]}`
|
24926
|
-
#
|
24927
24989
|
# * Examples for two inputs:
|
24928
24990
|
#
|
24929
24991
|
# * If using the console, `{"input_1": [1,3,224,224],
|
@@ -24931,7 +24993,6 @@ module Aws::SageMaker
|
|
24931
24993
|
#
|
24932
24994
|
# * If using the CLI, `{"input_1": [1,3,224,224],
|
24933
24995
|
# "input_2":[1,3,224,224]}`
|
24934
|
-
#
|
24935
24996
|
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
24936
24997
|
# format) of the expected data inputs in order using a dictionary
|
24937
24998
|
# format for your trained model. The dictionary formats required for
|
@@ -24942,7 +25003,6 @@ module Aws::SageMaker
|
|
24942
25003
|
# * If using the console, `{"data":[1,3,1024,1024]}`
|
24943
25004
|
#
|
24944
25005
|
# * If using the CLI, `{"data":[1,3,1024,1024]}`
|
24945
|
-
#
|
24946
25006
|
# * Examples for two inputs:
|
24947
25007
|
#
|
24948
25008
|
# * If using the console, `{"var1": [1,1,28,28],
|
@@ -24950,7 +25010,6 @@ module Aws::SageMaker
|
|
24950
25010
|
#
|
24951
25011
|
# * If using the CLI, `{"var1": [1,1,28,28],
|
24952
25012
|
# "var2":[1,1,28,28]}`
|
24953
|
-
#
|
24954
25013
|
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
24955
25014
|
# of expected data inputs in order using a dictionary format for
|
24956
25015
|
# your trained model or you can specify the shape only using a list
|
@@ -24963,7 +25022,6 @@ module Aws::SageMaker
|
|
24963
25022
|
# * If using the console, `{"input0":[1,3,224,224]}`
|
24964
25023
|
#
|
24965
25024
|
# * If using the CLI, `{"input0":[1,3,224,224]}`
|
24966
|
-
#
|
24967
25025
|
# * Example for one input in list format: `[[1,3,224,224]]`
|
24968
25026
|
#
|
24969
25027
|
# * Examples for two inputs in dictionary format:
|
@@ -24973,10 +25031,8 @@ module Aws::SageMaker
|
|
24973
25031
|
#
|
24974
25032
|
# * If using the CLI, `{"input0":[1,3,224,224],
|
24975
25033
|
# "input1":[1,3,224,224]} `
|
24976
|
-
#
|
24977
25034
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
24978
25035
|
# [1,3,224,224]]`
|
24979
|
-
#
|
24980
25036
|
# * `XGBOOST`: input data name and shape are not needed.
|
24981
25037
|
#
|
24982
25038
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
@@ -24995,7 +25051,6 @@ module Aws::SageMaker
|
|
24995
25051
|
# only on a select set of inputs. You can enumerate all supported
|
24996
25052
|
# input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
|
24997
25053
|
# 3], [1, 160, 160, 3]]}}`
|
24998
|
-
#
|
24999
25054
|
# * `default_shape`: Default input shape. You can set a default shape
|
25000
25055
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
25001
25056
|
# For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
|
@@ -25023,14 +25078,12 @@ module Aws::SageMaker
|
|
25023
25078
|
# [1,160,160,3]], "default_shape": [1,224,224,3]}}`
|
25024
25079
|
#
|
25025
25080
|
# ^
|
25026
|
-
#
|
25027
25081
|
# * Tensor type input without input name (PyTorch):
|
25028
25082
|
#
|
25029
25083
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25030
25084
|
# "default_shape": [1,3,224,224]}]`
|
25031
25085
|
#
|
25032
25086
|
# ^
|
25033
|
-
#
|
25034
25087
|
# * Image type input:
|
25035
25088
|
#
|
25036
25089
|
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
@@ -25039,7 +25092,6 @@ module Aws::SageMaker
|
|
25039
25092
|
#
|
25040
25093
|
# * `"CompilerOptions": {"class_labels":
|
25041
25094
|
# "imagenet_labels_1000.txt"}`
|
25042
|
-
#
|
25043
25095
|
# * Image type input without input name (PyTorch):
|
25044
25096
|
#
|
25045
25097
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
@@ -25061,7 +25113,6 @@ module Aws::SageMaker
|
|
25061
25113
|
# * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
|
25062
25114
|
#
|
25063
25115
|
# * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
|
25064
|
-
#
|
25065
25116
|
# * For TensorFlow models saved as a frozen graph, specify the input
|
25066
25117
|
# tensor names and shapes in `DataInputConfig` and the output tensor
|
25067
25118
|
# names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
|
@@ -33858,6 +33909,28 @@ module Aws::SageMaker
|
|
33858
33909
|
include Aws::Structure
|
33859
33910
|
end
|
33860
33911
|
|
33912
|
+
# Settings for the model sharding technique that's applied by a model
|
33913
|
+
# optimization job.
|
33914
|
+
#
|
33915
|
+
# @!attribute [rw] image
|
33916
|
+
# The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to
|
33917
|
+
# run the optimization.
|
33918
|
+
# @return [String]
|
33919
|
+
#
|
33920
|
+
# @!attribute [rw] override_environment
|
33921
|
+
# Environment variables that override the default ones in the model
|
33922
|
+
# container.
|
33923
|
+
# @return [Hash<String,String>]
|
33924
|
+
#
|
33925
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelShardingConfig AWS API Documentation
|
33926
|
+
#
|
33927
|
+
class ModelShardingConfig < Struct.new(
|
33928
|
+
:image,
|
33929
|
+
:override_environment)
|
33930
|
+
SENSITIVE = []
|
33931
|
+
include Aws::Structure
|
33932
|
+
end
|
33933
|
+
|
33861
33934
|
# Metadata for Model steps.
|
33862
33935
|
#
|
33863
33936
|
# @!attribute [rw] arn
|
@@ -35437,11 +35510,17 @@ module Aws::SageMaker
|
|
35437
35510
|
# model optimization job.
|
35438
35511
|
# @return [Types::ModelCompilationConfig]
|
35439
35512
|
#
|
35513
|
+
# @!attribute [rw] model_sharding_config
|
35514
|
+
# Settings for the model sharding technique that's applied by a model
|
35515
|
+
# optimization job.
|
35516
|
+
# @return [Types::ModelShardingConfig]
|
35517
|
+
#
|
35440
35518
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OptimizationConfig AWS API Documentation
|
35441
35519
|
#
|
35442
35520
|
class OptimizationConfig < Struct.new(
|
35443
35521
|
:model_quantization_config,
|
35444
35522
|
:model_compilation_config,
|
35523
|
+
:model_sharding_config,
|
35445
35524
|
:unknown)
|
35446
35525
|
SENSITIVE = []
|
35447
35526
|
include Aws::Structure
|
@@ -35449,6 +35528,7 @@ module Aws::SageMaker
|
|
35449
35528
|
|
35450
35529
|
class ModelQuantizationConfig < OptimizationConfig; end
|
35451
35530
|
class ModelCompilationConfig < OptimizationConfig; end
|
35531
|
+
class ModelShardingConfig < OptimizationConfig; end
|
35452
35532
|
class Unknown < OptimizationConfig; end
|
35453
35533
|
end
|
35454
35534
|
|
@@ -35728,7 +35808,6 @@ module Aws::SageMaker
|
|
35728
35808
|
# * float32: Use either `"float"` or `"float32"`.
|
35729
35809
|
#
|
35730
35810
|
# * int64: Use either `"int64"` or `"long"`.
|
35731
|
-
#
|
35732
35811
|
# For example, `{"dtype" : "float32"}`.
|
35733
35812
|
#
|
35734
35813
|
# * `CPU`: Compilation for CPU supports the following compiler
|
@@ -35739,7 +35818,6 @@ module Aws::SageMaker
|
|
35739
35818
|
#
|
35740
35819
|
# * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
|
35741
35820
|
# '+vfpv4']}`
|
35742
|
-
#
|
35743
35821
|
# * `ARM`: Details of ARM CPU compilations.
|
35744
35822
|
#
|
35745
35823
|
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
@@ -35747,7 +35825,6 @@ module Aws::SageMaker
|
|
35747
35825
|
#
|
35748
35826
|
# For example, add `{'mattr': ['+neon']}` to the compiler options
|
35749
35827
|
# if compiling for ARM 32-bit platform with the NEON support.
|
35750
|
-
#
|
35751
35828
|
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
35752
35829
|
# compiler options.
|
35753
35830
|
#
|
@@ -35756,7 +35833,6 @@ module Aws::SageMaker
|
|
35756
35833
|
# * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
|
35757
35834
|
#
|
35758
35835
|
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
35759
|
-
#
|
35760
35836
|
# For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
35761
35837
|
# 'cuda-ver': '10.1'}`
|
35762
35838
|
#
|
@@ -35769,7 +35845,6 @@ module Aws::SageMaker
|
|
35769
35845
|
#
|
35770
35846
|
# * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
|
35771
35847
|
# compiling for ARM 32-bit platform with NEON support.
|
35772
|
-
#
|
35773
35848
|
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
35774
35849
|
# options passed in as a JSON string. For example,
|
35775
35850
|
# `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
|
@@ -38126,204 +38201,204 @@ module Aws::SageMaker
|
|
38126
38201
|
# US dollars and should be based on the complexity of the task; the
|
38127
38202
|
# longer it takes in your initial testing, the more you should offer.
|
38128
38203
|
#
|
38129
|
-
# * 0
|
38204
|
+
# * 0.036
|
38130
38205
|
#
|
38131
|
-
# * 0
|
38206
|
+
# * 0.048
|
38132
38207
|
#
|
38133
|
-
# * 0
|
38208
|
+
# * 0.060
|
38134
38209
|
#
|
38135
|
-
# * 0
|
38210
|
+
# * 0.072
|
38136
38211
|
#
|
38137
|
-
# * 0
|
38212
|
+
# * 0.120
|
38138
38213
|
#
|
38139
|
-
# * 0
|
38214
|
+
# * 0.240
|
38140
38215
|
#
|
38141
|
-
# * 0
|
38216
|
+
# * 0.360
|
38142
38217
|
#
|
38143
|
-
# * 0
|
38218
|
+
# * 0.480
|
38144
38219
|
#
|
38145
|
-
# * 0
|
38220
|
+
# * 0.600
|
38146
38221
|
#
|
38147
|
-
# * 0
|
38222
|
+
# * 0.720
|
38148
38223
|
#
|
38149
|
-
# * 0
|
38224
|
+
# * 0.840
|
38150
38225
|
#
|
38151
|
-
# * 0
|
38226
|
+
# * 0.960
|
38152
38227
|
#
|
38153
|
-
# * 1
|
38228
|
+
# * 1.080
|
38154
38229
|
#
|
38155
|
-
# * 1
|
38230
|
+
# * 1.200
|
38156
38231
|
#
|
38157
38232
|
# Use one of the following prices for image classification, text
|
38158
38233
|
# classification, and custom tasks. Prices are in US dollars.
|
38159
38234
|
#
|
38160
|
-
# * 0
|
38235
|
+
# * 0.012
|
38161
38236
|
#
|
38162
|
-
# * 0
|
38237
|
+
# * 0.024
|
38163
38238
|
#
|
38164
|
-
# * 0
|
38239
|
+
# * 0.036
|
38165
38240
|
#
|
38166
|
-
# * 0
|
38241
|
+
# * 0.048
|
38167
38242
|
#
|
38168
|
-
# * 0
|
38243
|
+
# * 0.060
|
38169
38244
|
#
|
38170
|
-
# * 0
|
38245
|
+
# * 0.072
|
38171
38246
|
#
|
38172
|
-
# * 0
|
38247
|
+
# * 0.120
|
38173
38248
|
#
|
38174
|
-
# * 0
|
38249
|
+
# * 0.240
|
38175
38250
|
#
|
38176
|
-
# * 0
|
38251
|
+
# * 0.360
|
38177
38252
|
#
|
38178
|
-
# * 0
|
38253
|
+
# * 0.480
|
38179
38254
|
#
|
38180
|
-
# * 0
|
38255
|
+
# * 0.600
|
38181
38256
|
#
|
38182
|
-
# * 0
|
38257
|
+
# * 0.720
|
38183
38258
|
#
|
38184
|
-
# * 0
|
38259
|
+
# * 0.840
|
38185
38260
|
#
|
38186
|
-
# * 0
|
38261
|
+
# * 0.960
|
38187
38262
|
#
|
38188
|
-
# * 1
|
38263
|
+
# * 1.080
|
38189
38264
|
#
|
38190
|
-
# * 1
|
38265
|
+
# * 1.200
|
38191
38266
|
#
|
38192
38267
|
# Use one of the following prices for semantic segmentation tasks.
|
38193
38268
|
# Prices are in US dollars.
|
38194
38269
|
#
|
38195
|
-
# * 0
|
38270
|
+
# * 0.840
|
38196
38271
|
#
|
38197
|
-
# * 0
|
38272
|
+
# * 0.960
|
38198
38273
|
#
|
38199
|
-
# * 1
|
38274
|
+
# * 1.080
|
38200
38275
|
#
|
38201
|
-
# * 1
|
38276
|
+
# * 1.200
|
38202
38277
|
#
|
38203
38278
|
# Use one of the following prices for Textract AnalyzeDocument Important
|
38204
38279
|
# Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
|
38205
38280
|
#
|
38206
|
-
# * 2
|
38281
|
+
# * 2.400
|
38207
38282
|
#
|
38208
|
-
# * 2
|
38283
|
+
# * 2.280
|
38209
38284
|
#
|
38210
|
-
# * 2
|
38285
|
+
# * 2.160
|
38211
38286
|
#
|
38212
|
-
# * 2
|
38287
|
+
# * 2.040
|
38213
38288
|
#
|
38214
|
-
# * 1
|
38289
|
+
# * 1.920
|
38215
38290
|
#
|
38216
|
-
# * 1
|
38291
|
+
# * 1.800
|
38217
38292
|
#
|
38218
|
-
# * 1
|
38293
|
+
# * 1.680
|
38219
38294
|
#
|
38220
|
-
# * 1
|
38295
|
+
# * 1.560
|
38221
38296
|
#
|
38222
|
-
# * 1
|
38297
|
+
# * 1.440
|
38223
38298
|
#
|
38224
|
-
# * 1
|
38299
|
+
# * 1.320
|
38225
38300
|
#
|
38226
|
-
# * 1
|
38301
|
+
# * 1.200
|
38227
38302
|
#
|
38228
|
-
# * 1
|
38303
|
+
# * 1.080
|
38229
38304
|
#
|
38230
|
-
# * 0
|
38305
|
+
# * 0.960
|
38231
38306
|
#
|
38232
|
-
# * 0
|
38307
|
+
# * 0.840
|
38233
38308
|
#
|
38234
|
-
# * 0
|
38309
|
+
# * 0.720
|
38235
38310
|
#
|
38236
|
-
# * 0
|
38311
|
+
# * 0.600
|
38237
38312
|
#
|
38238
|
-
# * 0
|
38313
|
+
# * 0.480
|
38239
38314
|
#
|
38240
|
-
# * 0
|
38315
|
+
# * 0.360
|
38241
38316
|
#
|
38242
|
-
# * 0
|
38317
|
+
# * 0.240
|
38243
38318
|
#
|
38244
|
-
# * 0
|
38319
|
+
# * 0.120
|
38245
38320
|
#
|
38246
|
-
# * 0
|
38321
|
+
# * 0.072
|
38247
38322
|
#
|
38248
|
-
# * 0
|
38323
|
+
# * 0.060
|
38249
38324
|
#
|
38250
|
-
# * 0
|
38325
|
+
# * 0.048
|
38251
38326
|
#
|
38252
|
-
# * 0
|
38327
|
+
# * 0.036
|
38253
38328
|
#
|
38254
|
-
# * 0
|
38329
|
+
# * 0.024
|
38255
38330
|
#
|
38256
|
-
# * 0
|
38331
|
+
# * 0.012
|
38257
38332
|
#
|
38258
38333
|
# Use one of the following prices for Rekognition DetectModerationLabels
|
38259
38334
|
# Amazon Augmented AI review tasks. Prices are in US dollars.
|
38260
38335
|
#
|
38261
|
-
# * 1
|
38336
|
+
# * 1.200
|
38262
38337
|
#
|
38263
|
-
# * 1
|
38338
|
+
# * 1.080
|
38264
38339
|
#
|
38265
|
-
# * 0
|
38340
|
+
# * 0.960
|
38266
38341
|
#
|
38267
|
-
# * 0
|
38342
|
+
# * 0.840
|
38268
38343
|
#
|
38269
|
-
# * 0
|
38344
|
+
# * 0.720
|
38270
38345
|
#
|
38271
|
-
# * 0
|
38346
|
+
# * 0.600
|
38272
38347
|
#
|
38273
|
-
# * 0
|
38348
|
+
# * 0.480
|
38274
38349
|
#
|
38275
|
-
# * 0
|
38350
|
+
# * 0.360
|
38276
38351
|
#
|
38277
|
-
# * 0
|
38352
|
+
# * 0.240
|
38278
38353
|
#
|
38279
|
-
# * 0
|
38354
|
+
# * 0.120
|
38280
38355
|
#
|
38281
|
-
# * 0
|
38356
|
+
# * 0.072
|
38282
38357
|
#
|
38283
|
-
# * 0
|
38358
|
+
# * 0.060
|
38284
38359
|
#
|
38285
|
-
# * 0
|
38360
|
+
# * 0.048
|
38286
38361
|
#
|
38287
|
-
# * 0
|
38362
|
+
# * 0.036
|
38288
38363
|
#
|
38289
|
-
# * 0
|
38364
|
+
# * 0.024
|
38290
38365
|
#
|
38291
|
-
# * 0
|
38366
|
+
# * 0.012
|
38292
38367
|
#
|
38293
38368
|
# Use one of the following prices for Amazon Augmented AI custom human
|
38294
38369
|
# review tasks. Prices are in US dollars.
|
38295
38370
|
#
|
38296
|
-
# * 1
|
38371
|
+
# * 1.200
|
38297
38372
|
#
|
38298
|
-
# * 1
|
38373
|
+
# * 1.080
|
38299
38374
|
#
|
38300
|
-
# * 0
|
38375
|
+
# * 0.960
|
38301
38376
|
#
|
38302
|
-
# * 0
|
38377
|
+
# * 0.840
|
38303
38378
|
#
|
38304
|
-
# * 0
|
38379
|
+
# * 0.720
|
38305
38380
|
#
|
38306
|
-
# * 0
|
38381
|
+
# * 0.600
|
38307
38382
|
#
|
38308
|
-
# * 0
|
38383
|
+
# * 0.480
|
38309
38384
|
#
|
38310
|
-
# * 0
|
38385
|
+
# * 0.360
|
38311
38386
|
#
|
38312
|
-
# * 0
|
38387
|
+
# * 0.240
|
38313
38388
|
#
|
38314
|
-
# * 0
|
38389
|
+
# * 0.120
|
38315
38390
|
#
|
38316
|
-
# * 0
|
38391
|
+
# * 0.072
|
38317
38392
|
#
|
38318
|
-
# * 0
|
38393
|
+
# * 0.060
|
38319
38394
|
#
|
38320
|
-
# * 0
|
38395
|
+
# * 0.048
|
38321
38396
|
#
|
38322
|
-
# * 0
|
38397
|
+
# * 0.036
|
38323
38398
|
#
|
38324
|
-
# * 0
|
38399
|
+
# * 0.024
|
38325
38400
|
#
|
38326
|
-
# * 0
|
38401
|
+
# * 0.012
|
38327
38402
|
#
|
38328
38403
|
# @!attribute [rw] amount_in_usd
|
38329
38404
|
# Defines the amount of money paid to an Amazon Mechanical Turk worker
|
@@ -40089,7 +40164,6 @@ module Aws::SageMaker
|
|
40089
40164
|
# * A single dot (`.`)
|
40090
40165
|
#
|
40091
40166
|
# * A double dot (`..`)
|
40092
|
-
#
|
40093
40167
|
# * Ambiguous file names will result in model deployment failure. For
|
40094
40168
|
# example, if your uncompressed ML model consists of two S3 objects
|
40095
40169
|
# `s3://mybucket/model/weights` and
|