aws-sdk-sagemaker 1.274.0 → 1.276.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -432,7 +432,6 @@ module Aws::SageMaker
432
432
  # * MXNet (version >= 1.6)
433
433
  #
434
434
  # * PyTorch (version >= 1.3)
435
- #
436
435
  # * You specify at least one [MetricDefinition][2]
437
436
  #
438
437
  #
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
1795
1794
  # * "randomforest"
1796
1795
  #
1797
1796
  # * "xgboost"
1798
- #
1799
1797
  # * In `HYPERPARAMETER_TUNING` mode:
1800
1798
  #
1801
1799
  # * "linear-learner"
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
1803
1801
  # * "mlp"
1804
1802
  #
1805
1803
  # * "xgboost"
1806
- #
1807
1804
  # * **For the time-series forecasting problem type
1808
1805
  # `TimeSeriesForecastingJobConfig`:**
1809
1806
  #
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
2442
2439
  #
2443
2440
  # * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
2444
2441
  # `F1macro`, `PrecisionMacro`, `RecallMacro`
2445
- #
2446
2442
  # For a description of each metric, see [Autopilot metrics for
2447
2443
  # classification and regression][1].
2448
2444
  #
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
2453
2449
  # * Binary classification: `F1`.
2454
2450
  #
2455
2451
  # * Multiclass classification: `Accuracy`.
2456
- #
2457
2452
  # * For image or text classification problem types:
2458
2453
  #
2459
2454
  # * List of available metrics: `Accuracy`
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
2462
2457
  # text and image classification][2].
2463
2458
  #
2464
2459
  # * Default objective metrics: `Accuracy`
2465
- #
2466
2460
  # * For time-series forecasting problem types:
2467
2461
  #
2468
2462
  # * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
2472
2466
  # time-series forecasting][3].
2473
2467
  #
2474
2468
  # * Default objective metrics: `AverageWeightedQuantileLoss`
2475
- #
2476
2469
  # * For text generation problem types (LLMs fine-tuning): Fine-tuning
2477
2470
  # language models in Autopilot does not require setting the
2478
2471
  # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
3367
3360
  # * When `AlgorithmsConfig` is not provided,
3368
3361
  # `CandidateGenerationConfig` uses the full set of algorithms for
3369
3362
  # the given training mode.
3370
- #
3371
3363
  # For the list of all algorithms per training mode, see [
3372
3364
  # AlgorithmConfig][2].
3373
3365
  #
@@ -4235,6 +4227,18 @@ module Aws::SageMaker
4235
4227
  # when the cluster instance group is created or updated.
4236
4228
  # @return [Array<String>]
4237
4229
  #
4230
+ # @!attribute [rw] override_vpc_config
4231
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4232
+ # jobs, hosted models, and compute resources have access to. You can
4233
+ # control access to and from your resources by configuring a VPC. For
4234
+ # more information, see [Give SageMaker Access to Resources in your
4235
+ # Amazon VPC][1].
4236
+ #
4237
+ #
4238
+ #
4239
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4240
+ # @return [Types::VpcConfig]
4241
+ #
4238
4242
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupDetails AWS API Documentation
4239
4243
  #
4240
4244
  class ClusterInstanceGroupDetails < Struct.new(
@@ -4246,7 +4250,8 @@ module Aws::SageMaker
4246
4250
  :execution_role,
4247
4251
  :threads_per_core,
4248
4252
  :instance_storage_configs,
4249
- :on_start_deep_health_checks)
4253
+ :on_start_deep_health_checks,
4254
+ :override_vpc_config)
4250
4255
  SENSITIVE = []
4251
4256
  include Aws::Structure
4252
4257
  end
@@ -4298,6 +4303,18 @@ module Aws::SageMaker
4298
4303
  # when the cluster instance group is created or updated.
4299
4304
  # @return [Array<String>]
4300
4305
  #
4306
+ # @!attribute [rw] override_vpc_config
4307
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4308
+ # jobs, hosted models, and compute resources have access to. You can
4309
+ # control access to and from your resources by configuring a VPC. For
4310
+ # more information, see [Give SageMaker Access to Resources in your
4311
+ # Amazon VPC][1].
4312
+ #
4313
+ #
4314
+ #
4315
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4316
+ # @return [Types::VpcConfig]
4317
+ #
4301
4318
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupSpecification AWS API Documentation
4302
4319
  #
4303
4320
  class ClusterInstanceGroupSpecification < Struct.new(
@@ -4308,7 +4325,8 @@ module Aws::SageMaker
4308
4325
  :execution_role,
4309
4326
  :threads_per_core,
4310
4327
  :instance_storage_configs,
4311
- :on_start_deep_health_checks)
4328
+ :on_start_deep_health_checks,
4329
+ :override_vpc_config)
4312
4330
  SENSITIVE = []
4313
4331
  include Aws::Structure
4314
4332
  end
@@ -4445,6 +4463,18 @@ module Aws::SageMaker
4445
4463
  # The LifeCycle configuration applied to the instance.
4446
4464
  # @return [Types::ClusterLifeCycleConfig]
4447
4465
  #
4466
+ # @!attribute [rw] override_vpc_config
4467
+ # Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
4468
+ # jobs, hosted models, and compute resources have access to. You can
4469
+ # control access to and from your resources by configuring a VPC. For
4470
+ # more information, see [Give SageMaker Access to Resources in your
4471
+ # Amazon VPC][1].
4472
+ #
4473
+ #
4474
+ #
4475
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
4476
+ # @return [Types::VpcConfig]
4477
+ #
4448
4478
  # @!attribute [rw] threads_per_core
4449
4479
  # The number of threads per CPU core you specified under
4450
4480
  # `CreateCluster`.
@@ -4477,6 +4507,7 @@ module Aws::SageMaker
4477
4507
  :instance_type,
4478
4508
  :launch_time,
4479
4509
  :life_cycle_config,
4510
+ :override_vpc_config,
4480
4511
  :threads_per_core,
4481
4512
  :instance_storage_configs,
4482
4513
  :private_primary_ip,
@@ -21701,206 +21732,206 @@ module Aws::SageMaker
21701
21732
  # in US dollars and should be based on the complexity of the task; the
21702
21733
  # longer it takes in your initial testing, the more you should offer.
21703
21734
  #
21704
- # * 0\.036
21735
+ # * 0.036
21705
21736
  #
21706
- # * 0\.048
21737
+ # * 0.048
21707
21738
  #
21708
- # * 0\.060
21739
+ # * 0.060
21709
21740
  #
21710
- # * 0\.072
21741
+ # * 0.072
21711
21742
  #
21712
- # * 0\.120
21743
+ # * 0.120
21713
21744
  #
21714
- # * 0\.240
21745
+ # * 0.240
21715
21746
  #
21716
- # * 0\.360
21747
+ # * 0.360
21717
21748
  #
21718
- # * 0\.480
21749
+ # * 0.480
21719
21750
  #
21720
- # * 0\.600
21751
+ # * 0.600
21721
21752
  #
21722
- # * 0\.720
21753
+ # * 0.720
21723
21754
  #
21724
- # * 0\.840
21755
+ # * 0.840
21725
21756
  #
21726
- # * 0\.960
21757
+ # * 0.960
21727
21758
  #
21728
- # * 1\.080
21759
+ # * 1.080
21729
21760
  #
21730
- # * 1\.200
21761
+ # * 1.200
21731
21762
  #
21732
21763
  # Use one of the following prices for image classification, text
21733
21764
  # classification, and custom tasks. Prices are in US dollars.
21734
21765
  #
21735
- # * 0\.012
21766
+ # * 0.012
21736
21767
  #
21737
- # * 0\.024
21768
+ # * 0.024
21738
21769
  #
21739
- # * 0\.036
21770
+ # * 0.036
21740
21771
  #
21741
- # * 0\.048
21772
+ # * 0.048
21742
21773
  #
21743
- # * 0\.060
21774
+ # * 0.060
21744
21775
  #
21745
- # * 0\.072
21776
+ # * 0.072
21746
21777
  #
21747
- # * 0\.120
21778
+ # * 0.120
21748
21779
  #
21749
- # * 0\.240
21780
+ # * 0.240
21750
21781
  #
21751
- # * 0\.360
21782
+ # * 0.360
21752
21783
  #
21753
- # * 0\.480
21784
+ # * 0.480
21754
21785
  #
21755
- # * 0\.600
21786
+ # * 0.600
21756
21787
  #
21757
- # * 0\.720
21788
+ # * 0.720
21758
21789
  #
21759
- # * 0\.840
21790
+ # * 0.840
21760
21791
  #
21761
- # * 0\.960
21792
+ # * 0.960
21762
21793
  #
21763
- # * 1\.080
21794
+ # * 1.080
21764
21795
  #
21765
- # * 1\.200
21796
+ # * 1.200
21766
21797
  #
21767
21798
  # Use one of the following prices for semantic segmentation tasks.
21768
21799
  # Prices are in US dollars.
21769
21800
  #
21770
- # * 0\.840
21801
+ # * 0.840
21771
21802
  #
21772
- # * 0\.960
21803
+ # * 0.960
21773
21804
  #
21774
- # * 1\.080
21805
+ # * 1.080
21775
21806
  #
21776
- # * 1\.200
21807
+ # * 1.200
21777
21808
  #
21778
21809
  # Use one of the following prices for Textract AnalyzeDocument
21779
21810
  # Important Form Key Amazon Augmented AI review tasks. Prices are in
21780
21811
  # US dollars.
21781
21812
  #
21782
- # * 2\.400
21813
+ # * 2.400
21783
21814
  #
21784
- # * 2\.280
21815
+ # * 2.280
21785
21816
  #
21786
- # * 2\.160
21817
+ # * 2.160
21787
21818
  #
21788
- # * 2\.040
21819
+ # * 2.040
21789
21820
  #
21790
- # * 1\.920
21821
+ # * 1.920
21791
21822
  #
21792
- # * 1\.800
21823
+ # * 1.800
21793
21824
  #
21794
- # * 1\.680
21825
+ # * 1.680
21795
21826
  #
21796
- # * 1\.560
21827
+ # * 1.560
21797
21828
  #
21798
- # * 1\.440
21829
+ # * 1.440
21799
21830
  #
21800
- # * 1\.320
21831
+ # * 1.320
21801
21832
  #
21802
- # * 1\.200
21833
+ # * 1.200
21803
21834
  #
21804
- # * 1\.080
21835
+ # * 1.080
21805
21836
  #
21806
- # * 0\.960
21837
+ # * 0.960
21807
21838
  #
21808
- # * 0\.840
21839
+ # * 0.840
21809
21840
  #
21810
- # * 0\.720
21841
+ # * 0.720
21811
21842
  #
21812
- # * 0\.600
21843
+ # * 0.600
21813
21844
  #
21814
- # * 0\.480
21845
+ # * 0.480
21815
21846
  #
21816
- # * 0\.360
21847
+ # * 0.360
21817
21848
  #
21818
- # * 0\.240
21849
+ # * 0.240
21819
21850
  #
21820
- # * 0\.120
21851
+ # * 0.120
21821
21852
  #
21822
- # * 0\.072
21853
+ # * 0.072
21823
21854
  #
21824
- # * 0\.060
21855
+ # * 0.060
21825
21856
  #
21826
- # * 0\.048
21857
+ # * 0.048
21827
21858
  #
21828
- # * 0\.036
21859
+ # * 0.036
21829
21860
  #
21830
- # * 0\.024
21861
+ # * 0.024
21831
21862
  #
21832
- # * 0\.012
21863
+ # * 0.012
21833
21864
  #
21834
21865
  # Use one of the following prices for Rekognition
21835
21866
  # DetectModerationLabels Amazon Augmented AI review tasks. Prices are
21836
21867
  # in US dollars.
21837
21868
  #
21838
- # * 1\.200
21869
+ # * 1.200
21839
21870
  #
21840
- # * 1\.080
21871
+ # * 1.080
21841
21872
  #
21842
- # * 0\.960
21873
+ # * 0.960
21843
21874
  #
21844
- # * 0\.840
21875
+ # * 0.840
21845
21876
  #
21846
- # * 0\.720
21877
+ # * 0.720
21847
21878
  #
21848
- # * 0\.600
21879
+ # * 0.600
21849
21880
  #
21850
- # * 0\.480
21881
+ # * 0.480
21851
21882
  #
21852
- # * 0\.360
21883
+ # * 0.360
21853
21884
  #
21854
- # * 0\.240
21885
+ # * 0.240
21855
21886
  #
21856
- # * 0\.120
21887
+ # * 0.120
21857
21888
  #
21858
- # * 0\.072
21889
+ # * 0.072
21859
21890
  #
21860
- # * 0\.060
21891
+ # * 0.060
21861
21892
  #
21862
- # * 0\.048
21893
+ # * 0.048
21863
21894
  #
21864
- # * 0\.036
21895
+ # * 0.036
21865
21896
  #
21866
- # * 0\.024
21897
+ # * 0.024
21867
21898
  #
21868
- # * 0\.012
21899
+ # * 0.012
21869
21900
  #
21870
21901
  # Use one of the following prices for Amazon Augmented AI custom human
21871
21902
  # review tasks. Prices are in US dollars.
21872
21903
  #
21873
- # * 1\.200
21904
+ # * 1.200
21874
21905
  #
21875
- # * 1\.080
21906
+ # * 1.080
21876
21907
  #
21877
- # * 0\.960
21908
+ # * 0.960
21878
21909
  #
21879
- # * 0\.840
21910
+ # * 0.840
21880
21911
  #
21881
- # * 0\.720
21912
+ # * 0.720
21882
21913
  #
21883
- # * 0\.600
21914
+ # * 0.600
21884
21915
  #
21885
- # * 0\.480
21916
+ # * 0.480
21886
21917
  #
21887
- # * 0\.360
21918
+ # * 0.360
21888
21919
  #
21889
- # * 0\.240
21920
+ # * 0.240
21890
21921
  #
21891
- # * 0\.120
21922
+ # * 0.120
21892
21923
  #
21893
- # * 0\.072
21924
+ # * 0.072
21894
21925
  #
21895
- # * 0\.060
21926
+ # * 0.060
21896
21927
  #
21897
- # * 0\.048
21928
+ # * 0.048
21898
21929
  #
21899
- # * 0\.036
21930
+ # * 0.036
21900
21931
  #
21901
- # * 0\.024
21932
+ # * 0.024
21902
21933
  #
21903
- # * 0\.012
21934
+ # * 0.012
21904
21935
  # @return [Types::PublicWorkforceTaskPrice]
21905
21936
  #
21906
21937
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
@@ -24202,9 +24233,9 @@ module Aws::SageMaker
24202
24233
  include Aws::Structure
24203
24234
  end
24204
24235
 
24205
- # Defines the compute resources to allocate to run a model that you
24206
- # assign to an inference component. These resources include CPU cores,
24207
- # accelerators, and memory.
24236
+ # Defines the compute resources to allocate to run a model, plus any
24237
+ # adapter models, that you assign to an inference component. These
24238
+ # resources include CPU cores, accelerators, and memory.
24208
24239
  #
24209
24240
  # @!attribute [rw] number_of_cpu_cores_required
24210
24241
  # The number of CPU cores to allocate to run a model that you assign
@@ -24363,17 +24394,45 @@ module Aws::SageMaker
24363
24394
  # @return [Types::InferenceComponentStartupParameters]
24364
24395
  #
24365
24396
  # @!attribute [rw] compute_resource_requirements
24366
- # The compute resources allocated to run the model assigned to the
24367
- # inference component.
24397
+ # The compute resources allocated to run the model, plus any adapter
24398
+ # models, that you assign to the inference component.
24399
+ #
24400
+ # Omit this parameter if your request is meant to create an adapter
24401
+ # inference component. An adapter inference component is loaded by a
24402
+ # base inference component, and it uses the compute resources of the
24403
+ # base inference component.
24368
24404
  # @return [Types::InferenceComponentComputeResourceRequirements]
24369
24405
  #
24406
+ # @!attribute [rw] base_inference_component_name
24407
+ # The name of an existing inference component that is to contain the
24408
+ # inference component that you're creating with your request.
24409
+ #
24410
+ # Specify this parameter only if your request is meant to create an
24411
+ # adapter inference component. An adapter inference component contains
24412
+ # the path to an adapter model. The purpose of the adapter model is to
24413
+ # tailor the inference output of a base foundation model, which is
24414
+ # hosted by the base inference component. The adapter inference
24415
+ # component uses the compute resources that you assigned to the base
24416
+ # inference component.
24417
+ #
24418
+ # When you create an adapter inference component, use the `Container`
24419
+ # parameter to specify the location of the adapter artifacts. In the
24420
+ # parameter value, use the `ArtifactUrl` parameter of the
24421
+ # `InferenceComponentContainerSpecification` data type.
24422
+ #
24423
+ # Before you can create an adapter inference component, you must have
24424
+ # an existing inference component that contains the foundation model
24425
+ # that you want to adapt.
24426
+ # @return [String]
24427
+ #
24370
24428
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecification AWS API Documentation
24371
24429
  #
24372
24430
  class InferenceComponentSpecification < Struct.new(
24373
24431
  :model_name,
24374
24432
  :container,
24375
24433
  :startup_parameters,
24376
- :compute_resource_requirements)
24434
+ :compute_resource_requirements,
24435
+ :base_inference_component_name)
24377
24436
  SENSITIVE = []
24378
24437
  include Aws::Structure
24379
24438
  end
@@ -24396,17 +24455,23 @@ module Aws::SageMaker
24396
24455
  # @return [Types::InferenceComponentStartupParameters]
24397
24456
  #
24398
24457
  # @!attribute [rw] compute_resource_requirements
24399
- # The compute resources allocated to run the model assigned to the
24400
- # inference component.
24458
+ # The compute resources allocated to run the model, plus any adapter
24459
+ # models, that you assign to the inference component.
24401
24460
  # @return [Types::InferenceComponentComputeResourceRequirements]
24402
24461
  #
24462
+ # @!attribute [rw] base_inference_component_name
24463
+ # The name of the base inference component that contains this
24464
+ # inference component.
24465
+ # @return [String]
24466
+ #
24403
24467
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecificationSummary AWS API Documentation
24404
24468
  #
24405
24469
  class InferenceComponentSpecificationSummary < Struct.new(
24406
24470
  :model_name,
24407
24471
  :container,
24408
24472
  :startup_parameters,
24409
- :compute_resource_requirements)
24473
+ :compute_resource_requirements,
24474
+ :base_inference_component_name)
24410
24475
  SENSITIVE = []
24411
24476
  include Aws::Structure
24412
24477
  end
@@ -24902,7 +24967,6 @@ module Aws::SageMaker
24902
24967
  # * If using the console, `{"input":[1,1024,1024,3]}`
24903
24968
  #
24904
24969
  # * If using the CLI, `{"input":[1,1024,1024,3]}`
24905
- #
24906
24970
  # * Examples for two inputs:
24907
24971
  #
24908
24972
  # * If using the console, `{"data1": [1,28,28,1],
@@ -24910,7 +24974,6 @@ module Aws::SageMaker
24910
24974
  #
24911
24975
  # * If using the CLI, `{"data1": [1,28,28,1],
24912
24976
  # "data2":[1,28,28,1]}`
24913
- #
24914
24977
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24915
24978
  # expected data inputs using a dictionary format for your trained
24916
24979
  # model. Note that while Keras model artifacts should be uploaded in
@@ -24923,7 +24986,6 @@ module Aws::SageMaker
24923
24986
  # * If using the console, `{"input_1":[1,3,224,224]}`
24924
24987
  #
24925
24988
  # * If using the CLI, `{"input_1":[1,3,224,224]}`
24926
- #
24927
24989
  # * Examples for two inputs:
24928
24990
  #
24929
24991
  # * If using the console, `{"input_1": [1,3,224,224],
@@ -24931,7 +24993,6 @@ module Aws::SageMaker
24931
24993
  #
24932
24994
  # * If using the CLI, `{"input_1": [1,3,224,224],
24933
24995
  # "input_2":[1,3,224,224]}`
24934
- #
24935
24996
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24936
24997
  # format) of the expected data inputs in order using a dictionary
24937
24998
  # format for your trained model. The dictionary formats required for
@@ -24942,7 +25003,6 @@ module Aws::SageMaker
24942
25003
  # * If using the console, `{"data":[1,3,1024,1024]}`
24943
25004
  #
24944
25005
  # * If using the CLI, `{"data":[1,3,1024,1024]}`
24945
- #
24946
25006
  # * Examples for two inputs:
24947
25007
  #
24948
25008
  # * If using the console, `{"var1": [1,1,28,28],
@@ -24950,7 +25010,6 @@ module Aws::SageMaker
24950
25010
  #
24951
25011
  # * If using the CLI, `{"var1": [1,1,28,28],
24952
25012
  # "var2":[1,1,28,28]}`
24953
- #
24954
25013
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24955
25014
  # of expected data inputs in order using a dictionary format for
24956
25015
  # your trained model or you can specify the shape only using a list
@@ -24963,7 +25022,6 @@ module Aws::SageMaker
24963
25022
  # * If using the console, `{"input0":[1,3,224,224]}`
24964
25023
  #
24965
25024
  # * If using the CLI, `{"input0":[1,3,224,224]}`
24966
- #
24967
25025
  # * Example for one input in list format: `[[1,3,224,224]]`
24968
25026
  #
24969
25027
  # * Examples for two inputs in dictionary format:
@@ -24973,10 +25031,8 @@ module Aws::SageMaker
24973
25031
  #
24974
25032
  # * If using the CLI, `{"input0":[1,3,224,224],
24975
25033
  # "input1":[1,3,224,224]} `
24976
- #
24977
25034
  # * Example for two inputs in list format: `[[1,3,224,224],
24978
25035
  # [1,3,224,224]]`
24979
- #
24980
25036
  # * `XGBOOST`: input data name and shape are not needed.
24981
25037
  #
24982
25038
  # `DataInputConfig` supports the following parameters for `CoreML`
@@ -24995,7 +25051,6 @@ module Aws::SageMaker
24995
25051
  # only on a select set of inputs. You can enumerate all supported
24996
25052
  # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
25053
  # 3], [1, 160, 160, 3]]}}`
24998
- #
24999
25054
  # * `default_shape`: Default input shape. You can set a default shape
25000
25055
  # during conversion for both Range Dimension and Enumerated Shapes.
25001
25056
  # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
@@ -25023,14 +25078,12 @@ module Aws::SageMaker
25023
25078
  # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
25024
25079
  #
25025
25080
  # ^
25026
- #
25027
25081
  # * Tensor type input without input name (PyTorch):
25028
25082
  #
25029
25083
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
25084
  # "default_shape": [1,3,224,224]}]`
25031
25085
  #
25032
25086
  # ^
25033
- #
25034
25087
  # * Image type input:
25035
25088
  #
25036
25089
  # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
@@ -25039,7 +25092,6 @@ module Aws::SageMaker
25039
25092
  #
25040
25093
  # * `"CompilerOptions": {"class_labels":
25041
25094
  # "imagenet_labels_1000.txt"}`
25042
- #
25043
25095
  # * Image type input without input name (PyTorch):
25044
25096
  #
25045
25097
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
@@ -25061,7 +25113,6 @@ module Aws::SageMaker
25061
25113
  # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
25062
25114
  #
25063
25115
  # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
25064
- #
25065
25116
  # * For TensorFlow models saved as a frozen graph, specify the input
25066
25117
  # tensor names and shapes in `DataInputConfig` and the output tensor
25067
25118
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
@@ -33858,6 +33909,28 @@ module Aws::SageMaker
33858
33909
  include Aws::Structure
33859
33910
  end
33860
33911
 
33912
+ # Settings for the model sharding technique that's applied by a model
33913
+ # optimization job.
33914
+ #
33915
+ # @!attribute [rw] image
33916
+ # The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to
33917
+ # run the optimization.
33918
+ # @return [String]
33919
+ #
33920
+ # @!attribute [rw] override_environment
33921
+ # Environment variables that override the default ones in the model
33922
+ # container.
33923
+ # @return [Hash<String,String>]
33924
+ #
33925
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelShardingConfig AWS API Documentation
33926
+ #
33927
+ class ModelShardingConfig < Struct.new(
33928
+ :image,
33929
+ :override_environment)
33930
+ SENSITIVE = []
33931
+ include Aws::Structure
33932
+ end
33933
+
33861
33934
  # Metadata for Model steps.
33862
33935
  #
33863
33936
  # @!attribute [rw] arn
@@ -35437,11 +35510,17 @@ module Aws::SageMaker
35437
35510
  # model optimization job.
35438
35511
  # @return [Types::ModelCompilationConfig]
35439
35512
  #
35513
+ # @!attribute [rw] model_sharding_config
35514
+ # Settings for the model sharding technique that's applied by a model
35515
+ # optimization job.
35516
+ # @return [Types::ModelShardingConfig]
35517
+ #
35440
35518
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OptimizationConfig AWS API Documentation
35441
35519
  #
35442
35520
  class OptimizationConfig < Struct.new(
35443
35521
  :model_quantization_config,
35444
35522
  :model_compilation_config,
35523
+ :model_sharding_config,
35445
35524
  :unknown)
35446
35525
  SENSITIVE = []
35447
35526
  include Aws::Structure
@@ -35449,6 +35528,7 @@ module Aws::SageMaker
35449
35528
 
35450
35529
  class ModelQuantizationConfig < OptimizationConfig; end
35451
35530
  class ModelCompilationConfig < OptimizationConfig; end
35531
+ class ModelShardingConfig < OptimizationConfig; end
35452
35532
  class Unknown < OptimizationConfig; end
35453
35533
  end
35454
35534
 
@@ -35728,7 +35808,6 @@ module Aws::SageMaker
35728
35808
  # * float32: Use either `"float"` or `"float32"`.
35729
35809
  #
35730
35810
  # * int64: Use either `"int64"` or `"long"`.
35731
- #
35732
35811
  # For example, `{"dtype" : "float32"}`.
35733
35812
  #
35734
35813
  # * `CPU`: Compilation for CPU supports the following compiler
@@ -35739,7 +35818,6 @@ module Aws::SageMaker
35739
35818
  #
35740
35819
  # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
35820
  # '+vfpv4']}`
35742
- #
35743
35821
  # * `ARM`: Details of ARM CPU compilations.
35744
35822
  #
35745
35823
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
@@ -35747,7 +35825,6 @@ module Aws::SageMaker
35747
35825
  #
35748
35826
  # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
35827
  # if compiling for ARM 32-bit platform with the NEON support.
35750
- #
35751
35828
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35752
35829
  # compiler options.
35753
35830
  #
@@ -35756,7 +35833,6 @@ module Aws::SageMaker
35756
35833
  # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
35757
35834
  #
35758
35835
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35759
- #
35760
35836
  # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
35837
  # 'cuda-ver': '10.1'}`
35762
35838
  #
@@ -35769,7 +35845,6 @@ module Aws::SageMaker
35769
35845
  #
35770
35846
  # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35771
35847
  # compiling for ARM 32-bit platform with NEON support.
35772
- #
35773
35848
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
35774
35849
  # options passed in as a JSON string. For example,
35775
35850
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
@@ -38126,204 +38201,204 @@ module Aws::SageMaker
38126
38201
  # US dollars and should be based on the complexity of the task; the
38127
38202
  # longer it takes in your initial testing, the more you should offer.
38128
38203
  #
38129
- # * 0\.036
38204
+ # * 0.036
38130
38205
  #
38131
- # * 0\.048
38206
+ # * 0.048
38132
38207
  #
38133
- # * 0\.060
38208
+ # * 0.060
38134
38209
  #
38135
- # * 0\.072
38210
+ # * 0.072
38136
38211
  #
38137
- # * 0\.120
38212
+ # * 0.120
38138
38213
  #
38139
- # * 0\.240
38214
+ # * 0.240
38140
38215
  #
38141
- # * 0\.360
38216
+ # * 0.360
38142
38217
  #
38143
- # * 0\.480
38218
+ # * 0.480
38144
38219
  #
38145
- # * 0\.600
38220
+ # * 0.600
38146
38221
  #
38147
- # * 0\.720
38222
+ # * 0.720
38148
38223
  #
38149
- # * 0\.840
38224
+ # * 0.840
38150
38225
  #
38151
- # * 0\.960
38226
+ # * 0.960
38152
38227
  #
38153
- # * 1\.080
38228
+ # * 1.080
38154
38229
  #
38155
- # * 1\.200
38230
+ # * 1.200
38156
38231
  #
38157
38232
  # Use one of the following prices for image classification, text
38158
38233
  # classification, and custom tasks. Prices are in US dollars.
38159
38234
  #
38160
- # * 0\.012
38235
+ # * 0.012
38161
38236
  #
38162
- # * 0\.024
38237
+ # * 0.024
38163
38238
  #
38164
- # * 0\.036
38239
+ # * 0.036
38165
38240
  #
38166
- # * 0\.048
38241
+ # * 0.048
38167
38242
  #
38168
- # * 0\.060
38243
+ # * 0.060
38169
38244
  #
38170
- # * 0\.072
38245
+ # * 0.072
38171
38246
  #
38172
- # * 0\.120
38247
+ # * 0.120
38173
38248
  #
38174
- # * 0\.240
38249
+ # * 0.240
38175
38250
  #
38176
- # * 0\.360
38251
+ # * 0.360
38177
38252
  #
38178
- # * 0\.480
38253
+ # * 0.480
38179
38254
  #
38180
- # * 0\.600
38255
+ # * 0.600
38181
38256
  #
38182
- # * 0\.720
38257
+ # * 0.720
38183
38258
  #
38184
- # * 0\.840
38259
+ # * 0.840
38185
38260
  #
38186
- # * 0\.960
38261
+ # * 0.960
38187
38262
  #
38188
- # * 1\.080
38263
+ # * 1.080
38189
38264
  #
38190
- # * 1\.200
38265
+ # * 1.200
38191
38266
  #
38192
38267
  # Use one of the following prices for semantic segmentation tasks.
38193
38268
  # Prices are in US dollars.
38194
38269
  #
38195
- # * 0\.840
38270
+ # * 0.840
38196
38271
  #
38197
- # * 0\.960
38272
+ # * 0.960
38198
38273
  #
38199
- # * 1\.080
38274
+ # * 1.080
38200
38275
  #
38201
- # * 1\.200
38276
+ # * 1.200
38202
38277
  #
38203
38278
  # Use one of the following prices for Textract AnalyzeDocument Important
38204
38279
  # Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
38205
38280
  #
38206
- # * 2\.400
38281
+ # * 2.400
38207
38282
  #
38208
- # * 2\.280
38283
+ # * 2.280
38209
38284
  #
38210
- # * 2\.160
38285
+ # * 2.160
38211
38286
  #
38212
- # * 2\.040
38287
+ # * 2.040
38213
38288
  #
38214
- # * 1\.920
38289
+ # * 1.920
38215
38290
  #
38216
- # * 1\.800
38291
+ # * 1.800
38217
38292
  #
38218
- # * 1\.680
38293
+ # * 1.680
38219
38294
  #
38220
- # * 1\.560
38295
+ # * 1.560
38221
38296
  #
38222
- # * 1\.440
38297
+ # * 1.440
38223
38298
  #
38224
- # * 1\.320
38299
+ # * 1.320
38225
38300
  #
38226
- # * 1\.200
38301
+ # * 1.200
38227
38302
  #
38228
- # * 1\.080
38303
+ # * 1.080
38229
38304
  #
38230
- # * 0\.960
38305
+ # * 0.960
38231
38306
  #
38232
- # * 0\.840
38307
+ # * 0.840
38233
38308
  #
38234
- # * 0\.720
38309
+ # * 0.720
38235
38310
  #
38236
- # * 0\.600
38311
+ # * 0.600
38237
38312
  #
38238
- # * 0\.480
38313
+ # * 0.480
38239
38314
  #
38240
- # * 0\.360
38315
+ # * 0.360
38241
38316
  #
38242
- # * 0\.240
38317
+ # * 0.240
38243
38318
  #
38244
- # * 0\.120
38319
+ # * 0.120
38245
38320
  #
38246
- # * 0\.072
38321
+ # * 0.072
38247
38322
  #
38248
- # * 0\.060
38323
+ # * 0.060
38249
38324
  #
38250
- # * 0\.048
38325
+ # * 0.048
38251
38326
  #
38252
- # * 0\.036
38327
+ # * 0.036
38253
38328
  #
38254
- # * 0\.024
38329
+ # * 0.024
38255
38330
  #
38256
- # * 0\.012
38331
+ # * 0.012
38257
38332
  #
38258
38333
  # Use one of the following prices for Rekognition DetectModerationLabels
38259
38334
  # Amazon Augmented AI review tasks. Prices are in US dollars.
38260
38335
  #
38261
- # * 1\.200
38336
+ # * 1.200
38262
38337
  #
38263
- # * 1\.080
38338
+ # * 1.080
38264
38339
  #
38265
- # * 0\.960
38340
+ # * 0.960
38266
38341
  #
38267
- # * 0\.840
38342
+ # * 0.840
38268
38343
  #
38269
- # * 0\.720
38344
+ # * 0.720
38270
38345
  #
38271
- # * 0\.600
38346
+ # * 0.600
38272
38347
  #
38273
- # * 0\.480
38348
+ # * 0.480
38274
38349
  #
38275
- # * 0\.360
38350
+ # * 0.360
38276
38351
  #
38277
- # * 0\.240
38352
+ # * 0.240
38278
38353
  #
38279
- # * 0\.120
38354
+ # * 0.120
38280
38355
  #
38281
- # * 0\.072
38356
+ # * 0.072
38282
38357
  #
38283
- # * 0\.060
38358
+ # * 0.060
38284
38359
  #
38285
- # * 0\.048
38360
+ # * 0.048
38286
38361
  #
38287
- # * 0\.036
38362
+ # * 0.036
38288
38363
  #
38289
- # * 0\.024
38364
+ # * 0.024
38290
38365
  #
38291
- # * 0\.012
38366
+ # * 0.012
38292
38367
  #
38293
38368
  # Use one of the following prices for Amazon Augmented AI custom human
38294
38369
  # review tasks. Prices are in US dollars.
38295
38370
  #
38296
- # * 1\.200
38371
+ # * 1.200
38297
38372
  #
38298
- # * 1\.080
38373
+ # * 1.080
38299
38374
  #
38300
- # * 0\.960
38375
+ # * 0.960
38301
38376
  #
38302
- # * 0\.840
38377
+ # * 0.840
38303
38378
  #
38304
- # * 0\.720
38379
+ # * 0.720
38305
38380
  #
38306
- # * 0\.600
38381
+ # * 0.600
38307
38382
  #
38308
- # * 0\.480
38383
+ # * 0.480
38309
38384
  #
38310
- # * 0\.360
38385
+ # * 0.360
38311
38386
  #
38312
- # * 0\.240
38387
+ # * 0.240
38313
38388
  #
38314
- # * 0\.120
38389
+ # * 0.120
38315
38390
  #
38316
- # * 0\.072
38391
+ # * 0.072
38317
38392
  #
38318
- # * 0\.060
38393
+ # * 0.060
38319
38394
  #
38320
- # * 0\.048
38395
+ # * 0.048
38321
38396
  #
38322
- # * 0\.036
38397
+ # * 0.036
38323
38398
  #
38324
- # * 0\.024
38399
+ # * 0.024
38325
38400
  #
38326
- # * 0\.012
38401
+ # * 0.012
38327
38402
  #
38328
38403
  # @!attribute [rw] amount_in_usd
38329
38404
  # Defines the amount of money paid to an Amazon Mechanical Turk worker
@@ -40089,7 +40164,6 @@ module Aws::SageMaker
40089
40164
  # * A single dot (`.`)
40090
40165
  #
40091
40166
  # * A double dot (`..`)
40092
- #
40093
40167
  # * Ambiguous file names will result in model deployment failure. For
40094
40168
  # example, if your uncompressed ML model consists of two S3 objects
40095
40169
  # `s3://mybucket/model/weights` and