aws-sdk-sagemaker 1.274.0 → 1.276.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +55 -27
- data/lib/aws-sdk-sagemaker/client_api.rb +15 -3
- data/lib/aws-sdk-sagemaker/types.rb +297 -223
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +28 -14
- data/sig/types.rbs +21 -7
- metadata +2 -2
@@ -432,7 +432,6 @@ module Aws::SageMaker
|
|
432
432
|
# * MXNet (version >= 1.6)
|
433
433
|
#
|
434
434
|
# * PyTorch (version >= 1.3)
|
435
|
-
#
|
436
435
|
# * You specify at least one [MetricDefinition][2]
|
437
436
|
#
|
438
437
|
#
|
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
|
|
1795
1794
|
# * "randomforest"
|
1796
1795
|
#
|
1797
1796
|
# * "xgboost"
|
1798
|
-
#
|
1799
1797
|
# * In `HYPERPARAMETER_TUNING` mode:
|
1800
1798
|
#
|
1801
1799
|
# * "linear-learner"
|
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
|
|
1803
1801
|
# * "mlp"
|
1804
1802
|
#
|
1805
1803
|
# * "xgboost"
|
1806
|
-
#
|
1807
1804
|
# * **For the time-series forecasting problem type
|
1808
1805
|
# `TimeSeriesForecastingJobConfig`:**
|
1809
1806
|
#
|
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
|
|
2442
2439
|
#
|
2443
2440
|
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2444
2441
|
# `F1macro`, `PrecisionMacro`, `RecallMacro`
|
2445
|
-
#
|
2446
2442
|
# For a description of each metric, see [Autopilot metrics for
|
2447
2443
|
# classification and regression][1].
|
2448
2444
|
#
|
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
|
|
2453
2449
|
# * Binary classification: `F1`.
|
2454
2450
|
#
|
2455
2451
|
# * Multiclass classification: `Accuracy`.
|
2456
|
-
#
|
2457
2452
|
# * For image or text classification problem types:
|
2458
2453
|
#
|
2459
2454
|
# * List of available metrics: `Accuracy`
|
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
|
|
2462
2457
|
# text and image classification][2].
|
2463
2458
|
#
|
2464
2459
|
# * Default objective metrics: `Accuracy`
|
2465
|
-
#
|
2466
2460
|
# * For time-series forecasting problem types:
|
2467
2461
|
#
|
2468
2462
|
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
|
|
2472
2466
|
# time-series forecasting][3].
|
2473
2467
|
#
|
2474
2468
|
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2475
|
-
#
|
2476
2469
|
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2477
2470
|
# language models in Autopilot does not require setting the
|
2478
2471
|
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
|
|
3367
3360
|
# * When `AlgorithmsConfig` is not provided,
|
3368
3361
|
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3369
3362
|
# the given training mode.
|
3370
|
-
#
|
3371
3363
|
# For the list of all algorithms per training mode, see [
|
3372
3364
|
# AlgorithmConfig][2].
|
3373
3365
|
#
|
@@ -4235,6 +4227,18 @@ module Aws::SageMaker
|
|
4235
4227
|
# when the cluster instance group is created or updated.
|
4236
4228
|
# @return [Array<String>]
|
4237
4229
|
#
|
4230
|
+
# @!attribute [rw] override_vpc_config
|
4231
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4232
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4233
|
+
# control access to and from your resources by configuring a VPC. For
|
4234
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4235
|
+
# Amazon VPC][1].
|
4236
|
+
#
|
4237
|
+
#
|
4238
|
+
#
|
4239
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4240
|
+
# @return [Types::VpcConfig]
|
4241
|
+
#
|
4238
4242
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupDetails AWS API Documentation
|
4239
4243
|
#
|
4240
4244
|
class ClusterInstanceGroupDetails < Struct.new(
|
@@ -4246,7 +4250,8 @@ module Aws::SageMaker
|
|
4246
4250
|
:execution_role,
|
4247
4251
|
:threads_per_core,
|
4248
4252
|
:instance_storage_configs,
|
4249
|
-
:on_start_deep_health_checks
|
4253
|
+
:on_start_deep_health_checks,
|
4254
|
+
:override_vpc_config)
|
4250
4255
|
SENSITIVE = []
|
4251
4256
|
include Aws::Structure
|
4252
4257
|
end
|
@@ -4298,6 +4303,18 @@ module Aws::SageMaker
|
|
4298
4303
|
# when the cluster instance group is created or updated.
|
4299
4304
|
# @return [Array<String>]
|
4300
4305
|
#
|
4306
|
+
# @!attribute [rw] override_vpc_config
|
4307
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4308
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4309
|
+
# control access to and from your resources by configuring a VPC. For
|
4310
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4311
|
+
# Amazon VPC][1].
|
4312
|
+
#
|
4313
|
+
#
|
4314
|
+
#
|
4315
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4316
|
+
# @return [Types::VpcConfig]
|
4317
|
+
#
|
4301
4318
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ClusterInstanceGroupSpecification AWS API Documentation
|
4302
4319
|
#
|
4303
4320
|
class ClusterInstanceGroupSpecification < Struct.new(
|
@@ -4308,7 +4325,8 @@ module Aws::SageMaker
|
|
4308
4325
|
:execution_role,
|
4309
4326
|
:threads_per_core,
|
4310
4327
|
:instance_storage_configs,
|
4311
|
-
:on_start_deep_health_checks
|
4328
|
+
:on_start_deep_health_checks,
|
4329
|
+
:override_vpc_config)
|
4312
4330
|
SENSITIVE = []
|
4313
4331
|
include Aws::Structure
|
4314
4332
|
end
|
@@ -4445,6 +4463,18 @@ module Aws::SageMaker
|
|
4445
4463
|
# The LifeCycle configuration applied to the instance.
|
4446
4464
|
# @return [Types::ClusterLifeCycleConfig]
|
4447
4465
|
#
|
4466
|
+
# @!attribute [rw] override_vpc_config
|
4467
|
+
# Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker
|
4468
|
+
# jobs, hosted models, and compute resources have access to. You can
|
4469
|
+
# control access to and from your resources by configuring a VPC. For
|
4470
|
+
# more information, see [Give SageMaker Access to Resources in your
|
4471
|
+
# Amazon VPC][1].
|
4472
|
+
#
|
4473
|
+
#
|
4474
|
+
#
|
4475
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html
|
4476
|
+
# @return [Types::VpcConfig]
|
4477
|
+
#
|
4448
4478
|
# @!attribute [rw] threads_per_core
|
4449
4479
|
# The number of threads per CPU core you specified under
|
4450
4480
|
# `CreateCluster`.
|
@@ -4477,6 +4507,7 @@ module Aws::SageMaker
|
|
4477
4507
|
:instance_type,
|
4478
4508
|
:launch_time,
|
4479
4509
|
:life_cycle_config,
|
4510
|
+
:override_vpc_config,
|
4480
4511
|
:threads_per_core,
|
4481
4512
|
:instance_storage_configs,
|
4482
4513
|
:private_primary_ip,
|
@@ -21701,206 +21732,206 @@ module Aws::SageMaker
|
|
21701
21732
|
# in US dollars and should be based on the complexity of the task; the
|
21702
21733
|
# longer it takes in your initial testing, the more you should offer.
|
21703
21734
|
#
|
21704
|
-
# * 0
|
21735
|
+
# * 0.036
|
21705
21736
|
#
|
21706
|
-
# * 0
|
21737
|
+
# * 0.048
|
21707
21738
|
#
|
21708
|
-
# * 0
|
21739
|
+
# * 0.060
|
21709
21740
|
#
|
21710
|
-
# * 0
|
21741
|
+
# * 0.072
|
21711
21742
|
#
|
21712
|
-
# * 0
|
21743
|
+
# * 0.120
|
21713
21744
|
#
|
21714
|
-
# * 0
|
21745
|
+
# * 0.240
|
21715
21746
|
#
|
21716
|
-
# * 0
|
21747
|
+
# * 0.360
|
21717
21748
|
#
|
21718
|
-
# * 0
|
21749
|
+
# * 0.480
|
21719
21750
|
#
|
21720
|
-
# * 0
|
21751
|
+
# * 0.600
|
21721
21752
|
#
|
21722
|
-
# * 0
|
21753
|
+
# * 0.720
|
21723
21754
|
#
|
21724
|
-
# * 0
|
21755
|
+
# * 0.840
|
21725
21756
|
#
|
21726
|
-
# * 0
|
21757
|
+
# * 0.960
|
21727
21758
|
#
|
21728
|
-
# * 1
|
21759
|
+
# * 1.080
|
21729
21760
|
#
|
21730
|
-
# * 1
|
21761
|
+
# * 1.200
|
21731
21762
|
#
|
21732
21763
|
# Use one of the following prices for image classification, text
|
21733
21764
|
# classification, and custom tasks. Prices are in US dollars.
|
21734
21765
|
#
|
21735
|
-
# * 0
|
21766
|
+
# * 0.012
|
21736
21767
|
#
|
21737
|
-
# * 0
|
21768
|
+
# * 0.024
|
21738
21769
|
#
|
21739
|
-
# * 0
|
21770
|
+
# * 0.036
|
21740
21771
|
#
|
21741
|
-
# * 0
|
21772
|
+
# * 0.048
|
21742
21773
|
#
|
21743
|
-
# * 0
|
21774
|
+
# * 0.060
|
21744
21775
|
#
|
21745
|
-
# * 0
|
21776
|
+
# * 0.072
|
21746
21777
|
#
|
21747
|
-
# * 0
|
21778
|
+
# * 0.120
|
21748
21779
|
#
|
21749
|
-
# * 0
|
21780
|
+
# * 0.240
|
21750
21781
|
#
|
21751
|
-
# * 0
|
21782
|
+
# * 0.360
|
21752
21783
|
#
|
21753
|
-
# * 0
|
21784
|
+
# * 0.480
|
21754
21785
|
#
|
21755
|
-
# * 0
|
21786
|
+
# * 0.600
|
21756
21787
|
#
|
21757
|
-
# * 0
|
21788
|
+
# * 0.720
|
21758
21789
|
#
|
21759
|
-
# * 0
|
21790
|
+
# * 0.840
|
21760
21791
|
#
|
21761
|
-
# * 0
|
21792
|
+
# * 0.960
|
21762
21793
|
#
|
21763
|
-
# * 1
|
21794
|
+
# * 1.080
|
21764
21795
|
#
|
21765
|
-
# * 1
|
21796
|
+
# * 1.200
|
21766
21797
|
#
|
21767
21798
|
# Use one of the following prices for semantic segmentation tasks.
|
21768
21799
|
# Prices are in US dollars.
|
21769
21800
|
#
|
21770
|
-
# * 0
|
21801
|
+
# * 0.840
|
21771
21802
|
#
|
21772
|
-
# * 0
|
21803
|
+
# * 0.960
|
21773
21804
|
#
|
21774
|
-
# * 1
|
21805
|
+
# * 1.080
|
21775
21806
|
#
|
21776
|
-
# * 1
|
21807
|
+
# * 1.200
|
21777
21808
|
#
|
21778
21809
|
# Use one of the following prices for Textract AnalyzeDocument
|
21779
21810
|
# Important Form Key Amazon Augmented AI review tasks. Prices are in
|
21780
21811
|
# US dollars.
|
21781
21812
|
#
|
21782
|
-
# * 2
|
21813
|
+
# * 2.400
|
21783
21814
|
#
|
21784
|
-
# * 2
|
21815
|
+
# * 2.280
|
21785
21816
|
#
|
21786
|
-
# * 2
|
21817
|
+
# * 2.160
|
21787
21818
|
#
|
21788
|
-
# * 2
|
21819
|
+
# * 2.040
|
21789
21820
|
#
|
21790
|
-
# * 1
|
21821
|
+
# * 1.920
|
21791
21822
|
#
|
21792
|
-
# * 1
|
21823
|
+
# * 1.800
|
21793
21824
|
#
|
21794
|
-
# * 1
|
21825
|
+
# * 1.680
|
21795
21826
|
#
|
21796
|
-
# * 1
|
21827
|
+
# * 1.560
|
21797
21828
|
#
|
21798
|
-
# * 1
|
21829
|
+
# * 1.440
|
21799
21830
|
#
|
21800
|
-
# * 1
|
21831
|
+
# * 1.320
|
21801
21832
|
#
|
21802
|
-
# * 1
|
21833
|
+
# * 1.200
|
21803
21834
|
#
|
21804
|
-
# * 1
|
21835
|
+
# * 1.080
|
21805
21836
|
#
|
21806
|
-
# * 0
|
21837
|
+
# * 0.960
|
21807
21838
|
#
|
21808
|
-
# * 0
|
21839
|
+
# * 0.840
|
21809
21840
|
#
|
21810
|
-
# * 0
|
21841
|
+
# * 0.720
|
21811
21842
|
#
|
21812
|
-
# * 0
|
21843
|
+
# * 0.600
|
21813
21844
|
#
|
21814
|
-
# * 0
|
21845
|
+
# * 0.480
|
21815
21846
|
#
|
21816
|
-
# * 0
|
21847
|
+
# * 0.360
|
21817
21848
|
#
|
21818
|
-
# * 0
|
21849
|
+
# * 0.240
|
21819
21850
|
#
|
21820
|
-
# * 0
|
21851
|
+
# * 0.120
|
21821
21852
|
#
|
21822
|
-
# * 0
|
21853
|
+
# * 0.072
|
21823
21854
|
#
|
21824
|
-
# * 0
|
21855
|
+
# * 0.060
|
21825
21856
|
#
|
21826
|
-
# * 0
|
21857
|
+
# * 0.048
|
21827
21858
|
#
|
21828
|
-
# * 0
|
21859
|
+
# * 0.036
|
21829
21860
|
#
|
21830
|
-
# * 0
|
21861
|
+
# * 0.024
|
21831
21862
|
#
|
21832
|
-
# * 0
|
21863
|
+
# * 0.012
|
21833
21864
|
#
|
21834
21865
|
# Use one of the following prices for Rekognition
|
21835
21866
|
# DetectModerationLabels Amazon Augmented AI review tasks. Prices are
|
21836
21867
|
# in US dollars.
|
21837
21868
|
#
|
21838
|
-
# * 1
|
21869
|
+
# * 1.200
|
21839
21870
|
#
|
21840
|
-
# * 1
|
21871
|
+
# * 1.080
|
21841
21872
|
#
|
21842
|
-
# * 0
|
21873
|
+
# * 0.960
|
21843
21874
|
#
|
21844
|
-
# * 0
|
21875
|
+
# * 0.840
|
21845
21876
|
#
|
21846
|
-
# * 0
|
21877
|
+
# * 0.720
|
21847
21878
|
#
|
21848
|
-
# * 0
|
21879
|
+
# * 0.600
|
21849
21880
|
#
|
21850
|
-
# * 0
|
21881
|
+
# * 0.480
|
21851
21882
|
#
|
21852
|
-
# * 0
|
21883
|
+
# * 0.360
|
21853
21884
|
#
|
21854
|
-
# * 0
|
21885
|
+
# * 0.240
|
21855
21886
|
#
|
21856
|
-
# * 0
|
21887
|
+
# * 0.120
|
21857
21888
|
#
|
21858
|
-
# * 0
|
21889
|
+
# * 0.072
|
21859
21890
|
#
|
21860
|
-
# * 0
|
21891
|
+
# * 0.060
|
21861
21892
|
#
|
21862
|
-
# * 0
|
21893
|
+
# * 0.048
|
21863
21894
|
#
|
21864
|
-
# * 0
|
21895
|
+
# * 0.036
|
21865
21896
|
#
|
21866
|
-
# * 0
|
21897
|
+
# * 0.024
|
21867
21898
|
#
|
21868
|
-
# * 0
|
21899
|
+
# * 0.012
|
21869
21900
|
#
|
21870
21901
|
# Use one of the following prices for Amazon Augmented AI custom human
|
21871
21902
|
# review tasks. Prices are in US dollars.
|
21872
21903
|
#
|
21873
|
-
# * 1
|
21904
|
+
# * 1.200
|
21874
21905
|
#
|
21875
|
-
# * 1
|
21906
|
+
# * 1.080
|
21876
21907
|
#
|
21877
|
-
# * 0
|
21908
|
+
# * 0.960
|
21878
21909
|
#
|
21879
|
-
# * 0
|
21910
|
+
# * 0.840
|
21880
21911
|
#
|
21881
|
-
# * 0
|
21912
|
+
# * 0.720
|
21882
21913
|
#
|
21883
|
-
# * 0
|
21914
|
+
# * 0.600
|
21884
21915
|
#
|
21885
|
-
# * 0
|
21916
|
+
# * 0.480
|
21886
21917
|
#
|
21887
|
-
# * 0
|
21918
|
+
# * 0.360
|
21888
21919
|
#
|
21889
|
-
# * 0
|
21920
|
+
# * 0.240
|
21890
21921
|
#
|
21891
|
-
# * 0
|
21922
|
+
# * 0.120
|
21892
21923
|
#
|
21893
|
-
# * 0
|
21924
|
+
# * 0.072
|
21894
21925
|
#
|
21895
|
-
# * 0
|
21926
|
+
# * 0.060
|
21896
21927
|
#
|
21897
|
-
# * 0
|
21928
|
+
# * 0.048
|
21898
21929
|
#
|
21899
|
-
# * 0
|
21930
|
+
# * 0.036
|
21900
21931
|
#
|
21901
|
-
# * 0
|
21932
|
+
# * 0.024
|
21902
21933
|
#
|
21903
|
-
# * 0
|
21934
|
+
# * 0.012
|
21904
21935
|
# @return [Types::PublicWorkforceTaskPrice]
|
21905
21936
|
#
|
21906
21937
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
|
@@ -24202,9 +24233,9 @@ module Aws::SageMaker
|
|
24202
24233
|
include Aws::Structure
|
24203
24234
|
end
|
24204
24235
|
|
24205
|
-
# Defines the compute resources to allocate to run a model
|
24206
|
-
# assign to an inference component. These
|
24207
|
-
# accelerators, and memory.
|
24236
|
+
# Defines the compute resources to allocate to run a model, plus any
|
24237
|
+
# adapter models, that you assign to an inference component. These
|
24238
|
+
# resources include CPU cores, accelerators, and memory.
|
24208
24239
|
#
|
24209
24240
|
# @!attribute [rw] number_of_cpu_cores_required
|
24210
24241
|
# The number of CPU cores to allocate to run a model that you assign
|
@@ -24363,17 +24394,45 @@ module Aws::SageMaker
|
|
24363
24394
|
# @return [Types::InferenceComponentStartupParameters]
|
24364
24395
|
#
|
24365
24396
|
# @!attribute [rw] compute_resource_requirements
|
24366
|
-
# The compute resources allocated to run the model
|
24367
|
-
# inference component.
|
24397
|
+
# The compute resources allocated to run the model, plus any adapter
|
24398
|
+
# models, that you assign to the inference component.
|
24399
|
+
#
|
24400
|
+
# Omit this parameter if your request is meant to create an adapter
|
24401
|
+
# inference component. An adapter inference component is loaded by a
|
24402
|
+
# base inference component, and it uses the compute resources of the
|
24403
|
+
# base inference component.
|
24368
24404
|
# @return [Types::InferenceComponentComputeResourceRequirements]
|
24369
24405
|
#
|
24406
|
+
# @!attribute [rw] base_inference_component_name
|
24407
|
+
# The name of an existing inference component that is to contain the
|
24408
|
+
# inference component that you're creating with your request.
|
24409
|
+
#
|
24410
|
+
# Specify this parameter only if your request is meant to create an
|
24411
|
+
# adapter inference component. An adapter inference component contains
|
24412
|
+
# the path to an adapter model. The purpose of the adapter model is to
|
24413
|
+
# tailor the inference output of a base foundation model, which is
|
24414
|
+
# hosted by the base inference component. The adapter inference
|
24415
|
+
# component uses the compute resources that you assigned to the base
|
24416
|
+
# inference component.
|
24417
|
+
#
|
24418
|
+
# When you create an adapter inference component, use the `Container`
|
24419
|
+
# parameter to specify the location of the adapter artifacts. In the
|
24420
|
+
# parameter value, use the `ArtifactUrl` parameter of the
|
24421
|
+
# `InferenceComponentContainerSpecification` data type.
|
24422
|
+
#
|
24423
|
+
# Before you can create an adapter inference component, you must have
|
24424
|
+
# an existing inference component that contains the foundation model
|
24425
|
+
# that you want to adapt.
|
24426
|
+
# @return [String]
|
24427
|
+
#
|
24370
24428
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecification AWS API Documentation
|
24371
24429
|
#
|
24372
24430
|
class InferenceComponentSpecification < Struct.new(
|
24373
24431
|
:model_name,
|
24374
24432
|
:container,
|
24375
24433
|
:startup_parameters,
|
24376
|
-
:compute_resource_requirements
|
24434
|
+
:compute_resource_requirements,
|
24435
|
+
:base_inference_component_name)
|
24377
24436
|
SENSITIVE = []
|
24378
24437
|
include Aws::Structure
|
24379
24438
|
end
|
@@ -24396,17 +24455,23 @@ module Aws::SageMaker
|
|
24396
24455
|
# @return [Types::InferenceComponentStartupParameters]
|
24397
24456
|
#
|
24398
24457
|
# @!attribute [rw] compute_resource_requirements
|
24399
|
-
# The compute resources allocated to run the model
|
24400
|
-
# inference component.
|
24458
|
+
# The compute resources allocated to run the model, plus any adapter
|
24459
|
+
# models, that you assign to the inference component.
|
24401
24460
|
# @return [Types::InferenceComponentComputeResourceRequirements]
|
24402
24461
|
#
|
24462
|
+
# @!attribute [rw] base_inference_component_name
|
24463
|
+
# The name of the base inference component that contains this
|
24464
|
+
# inference component.
|
24465
|
+
# @return [String]
|
24466
|
+
#
|
24403
24467
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceComponentSpecificationSummary AWS API Documentation
|
24404
24468
|
#
|
24405
24469
|
class InferenceComponentSpecificationSummary < Struct.new(
|
24406
24470
|
:model_name,
|
24407
24471
|
:container,
|
24408
24472
|
:startup_parameters,
|
24409
|
-
:compute_resource_requirements
|
24473
|
+
:compute_resource_requirements,
|
24474
|
+
:base_inference_component_name)
|
24410
24475
|
SENSITIVE = []
|
24411
24476
|
include Aws::Structure
|
24412
24477
|
end
|
@@ -24902,7 +24967,6 @@ module Aws::SageMaker
|
|
24902
24967
|
# * If using the console, `{"input":[1,1024,1024,3]}`
|
24903
24968
|
#
|
24904
24969
|
# * If using the CLI, `{"input":[1,1024,1024,3]}`
|
24905
|
-
#
|
24906
24970
|
# * Examples for two inputs:
|
24907
24971
|
#
|
24908
24972
|
# * If using the console, `{"data1": [1,28,28,1],
|
@@ -24910,7 +24974,6 @@ module Aws::SageMaker
|
|
24910
24974
|
#
|
24911
24975
|
# * If using the CLI, `{"data1": [1,28,28,1],
|
24912
24976
|
# "data2":[1,28,28,1]}`
|
24913
|
-
#
|
24914
24977
|
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
24915
24978
|
# expected data inputs using a dictionary format for your trained
|
24916
24979
|
# model. Note that while Keras model artifacts should be uploaded in
|
@@ -24923,7 +24986,6 @@ module Aws::SageMaker
|
|
24923
24986
|
# * If using the console, `{"input_1":[1,3,224,224]}`
|
24924
24987
|
#
|
24925
24988
|
# * If using the CLI, `{"input_1":[1,3,224,224]}`
|
24926
|
-
#
|
24927
24989
|
# * Examples for two inputs:
|
24928
24990
|
#
|
24929
24991
|
# * If using the console, `{"input_1": [1,3,224,224],
|
@@ -24931,7 +24993,6 @@ module Aws::SageMaker
|
|
24931
24993
|
#
|
24932
24994
|
# * If using the CLI, `{"input_1": [1,3,224,224],
|
24933
24995
|
# "input_2":[1,3,224,224]}`
|
24934
|
-
#
|
24935
24996
|
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
24936
24997
|
# format) of the expected data inputs in order using a dictionary
|
24937
24998
|
# format for your trained model. The dictionary formats required for
|
@@ -24942,7 +25003,6 @@ module Aws::SageMaker
|
|
24942
25003
|
# * If using the console, `{"data":[1,3,1024,1024]}`
|
24943
25004
|
#
|
24944
25005
|
# * If using the CLI, `{"data":[1,3,1024,1024]}`
|
24945
|
-
#
|
24946
25006
|
# * Examples for two inputs:
|
24947
25007
|
#
|
24948
25008
|
# * If using the console, `{"var1": [1,1,28,28],
|
@@ -24950,7 +25010,6 @@ module Aws::SageMaker
|
|
24950
25010
|
#
|
24951
25011
|
# * If using the CLI, `{"var1": [1,1,28,28],
|
24952
25012
|
# "var2":[1,1,28,28]}`
|
24953
|
-
#
|
24954
25013
|
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
24955
25014
|
# of expected data inputs in order using a dictionary format for
|
24956
25015
|
# your trained model or you can specify the shape only using a list
|
@@ -24963,7 +25022,6 @@ module Aws::SageMaker
|
|
24963
25022
|
# * If using the console, `{"input0":[1,3,224,224]}`
|
24964
25023
|
#
|
24965
25024
|
# * If using the CLI, `{"input0":[1,3,224,224]}`
|
24966
|
-
#
|
24967
25025
|
# * Example for one input in list format: `[[1,3,224,224]]`
|
24968
25026
|
#
|
24969
25027
|
# * Examples for two inputs in dictionary format:
|
@@ -24973,10 +25031,8 @@ module Aws::SageMaker
|
|
24973
25031
|
#
|
24974
25032
|
# * If using the CLI, `{"input0":[1,3,224,224],
|
24975
25033
|
# "input1":[1,3,224,224]} `
|
24976
|
-
#
|
24977
25034
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
24978
25035
|
# [1,3,224,224]]`
|
24979
|
-
#
|
24980
25036
|
# * `XGBOOST`: input data name and shape are not needed.
|
24981
25037
|
#
|
24982
25038
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
@@ -24995,7 +25051,6 @@ module Aws::SageMaker
|
|
24995
25051
|
# only on a select set of inputs. You can enumerate all supported
|
24996
25052
|
# input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
|
24997
25053
|
# 3], [1, 160, 160, 3]]}}`
|
24998
|
-
#
|
24999
25054
|
# * `default_shape`: Default input shape. You can set a default shape
|
25000
25055
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
25001
25056
|
# For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
|
@@ -25023,14 +25078,12 @@ module Aws::SageMaker
|
|
25023
25078
|
# [1,160,160,3]], "default_shape": [1,224,224,3]}}`
|
25024
25079
|
#
|
25025
25080
|
# ^
|
25026
|
-
#
|
25027
25081
|
# * Tensor type input without input name (PyTorch):
|
25028
25082
|
#
|
25029
25083
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25030
25084
|
# "default_shape": [1,3,224,224]}]`
|
25031
25085
|
#
|
25032
25086
|
# ^
|
25033
|
-
#
|
25034
25087
|
# * Image type input:
|
25035
25088
|
#
|
25036
25089
|
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
@@ -25039,7 +25092,6 @@ module Aws::SageMaker
|
|
25039
25092
|
#
|
25040
25093
|
# * `"CompilerOptions": {"class_labels":
|
25041
25094
|
# "imagenet_labels_1000.txt"}`
|
25042
|
-
#
|
25043
25095
|
# * Image type input without input name (PyTorch):
|
25044
25096
|
#
|
25045
25097
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
@@ -25061,7 +25113,6 @@ module Aws::SageMaker
|
|
25061
25113
|
# * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
|
25062
25114
|
#
|
25063
25115
|
# * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
|
25064
|
-
#
|
25065
25116
|
# * For TensorFlow models saved as a frozen graph, specify the input
|
25066
25117
|
# tensor names and shapes in `DataInputConfig` and the output tensor
|
25067
25118
|
# names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
|
@@ -33858,6 +33909,28 @@ module Aws::SageMaker
|
|
33858
33909
|
include Aws::Structure
|
33859
33910
|
end
|
33860
33911
|
|
33912
|
+
# Settings for the model sharding technique that's applied by a model
|
33913
|
+
# optimization job.
|
33914
|
+
#
|
33915
|
+
# @!attribute [rw] image
|
33916
|
+
# The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to
|
33917
|
+
# run the optimization.
|
33918
|
+
# @return [String]
|
33919
|
+
#
|
33920
|
+
# @!attribute [rw] override_environment
|
33921
|
+
# Environment variables that override the default ones in the model
|
33922
|
+
# container.
|
33923
|
+
# @return [Hash<String,String>]
|
33924
|
+
#
|
33925
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelShardingConfig AWS API Documentation
|
33926
|
+
#
|
33927
|
+
class ModelShardingConfig < Struct.new(
|
33928
|
+
:image,
|
33929
|
+
:override_environment)
|
33930
|
+
SENSITIVE = []
|
33931
|
+
include Aws::Structure
|
33932
|
+
end
|
33933
|
+
|
33861
33934
|
# Metadata for Model steps.
|
33862
33935
|
#
|
33863
33936
|
# @!attribute [rw] arn
|
@@ -35437,11 +35510,17 @@ module Aws::SageMaker
|
|
35437
35510
|
# model optimization job.
|
35438
35511
|
# @return [Types::ModelCompilationConfig]
|
35439
35512
|
#
|
35513
|
+
# @!attribute [rw] model_sharding_config
|
35514
|
+
# Settings for the model sharding technique that's applied by a model
|
35515
|
+
# optimization job.
|
35516
|
+
# @return [Types::ModelShardingConfig]
|
35517
|
+
#
|
35440
35518
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OptimizationConfig AWS API Documentation
|
35441
35519
|
#
|
35442
35520
|
class OptimizationConfig < Struct.new(
|
35443
35521
|
:model_quantization_config,
|
35444
35522
|
:model_compilation_config,
|
35523
|
+
:model_sharding_config,
|
35445
35524
|
:unknown)
|
35446
35525
|
SENSITIVE = []
|
35447
35526
|
include Aws::Structure
|
@@ -35449,6 +35528,7 @@ module Aws::SageMaker
|
|
35449
35528
|
|
35450
35529
|
class ModelQuantizationConfig < OptimizationConfig; end
|
35451
35530
|
class ModelCompilationConfig < OptimizationConfig; end
|
35531
|
+
class ModelShardingConfig < OptimizationConfig; end
|
35452
35532
|
class Unknown < OptimizationConfig; end
|
35453
35533
|
end
|
35454
35534
|
|
@@ -35728,7 +35808,6 @@ module Aws::SageMaker
|
|
35728
35808
|
# * float32: Use either `"float"` or `"float32"`.
|
35729
35809
|
#
|
35730
35810
|
# * int64: Use either `"int64"` or `"long"`.
|
35731
|
-
#
|
35732
35811
|
# For example, `{"dtype" : "float32"}`.
|
35733
35812
|
#
|
35734
35813
|
# * `CPU`: Compilation for CPU supports the following compiler
|
@@ -35739,7 +35818,6 @@ module Aws::SageMaker
|
|
35739
35818
|
#
|
35740
35819
|
# * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
|
35741
35820
|
# '+vfpv4']}`
|
35742
|
-
#
|
35743
35821
|
# * `ARM`: Details of ARM CPU compilations.
|
35744
35822
|
#
|
35745
35823
|
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
@@ -35747,7 +35825,6 @@ module Aws::SageMaker
|
|
35747
35825
|
#
|
35748
35826
|
# For example, add `{'mattr': ['+neon']}` to the compiler options
|
35749
35827
|
# if compiling for ARM 32-bit platform with the NEON support.
|
35750
|
-
#
|
35751
35828
|
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
35752
35829
|
# compiler options.
|
35753
35830
|
#
|
@@ -35756,7 +35833,6 @@ module Aws::SageMaker
|
|
35756
35833
|
# * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
|
35757
35834
|
#
|
35758
35835
|
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
35759
|
-
#
|
35760
35836
|
# For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
35761
35837
|
# 'cuda-ver': '10.1'}`
|
35762
35838
|
#
|
@@ -35769,7 +35845,6 @@ module Aws::SageMaker
|
|
35769
35845
|
#
|
35770
35846
|
# * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
|
35771
35847
|
# compiling for ARM 32-bit platform with NEON support.
|
35772
|
-
#
|
35773
35848
|
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
35774
35849
|
# options passed in as a JSON string. For example,
|
35775
35850
|
# `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
|
@@ -38126,204 +38201,204 @@ module Aws::SageMaker
|
|
38126
38201
|
# US dollars and should be based on the complexity of the task; the
|
38127
38202
|
# longer it takes in your initial testing, the more you should offer.
|
38128
38203
|
#
|
38129
|
-
# * 0
|
38204
|
+
# * 0.036
|
38130
38205
|
#
|
38131
|
-
# * 0
|
38206
|
+
# * 0.048
|
38132
38207
|
#
|
38133
|
-
# * 0
|
38208
|
+
# * 0.060
|
38134
38209
|
#
|
38135
|
-
# * 0
|
38210
|
+
# * 0.072
|
38136
38211
|
#
|
38137
|
-
# * 0
|
38212
|
+
# * 0.120
|
38138
38213
|
#
|
38139
|
-
# * 0
|
38214
|
+
# * 0.240
|
38140
38215
|
#
|
38141
|
-
# * 0
|
38216
|
+
# * 0.360
|
38142
38217
|
#
|
38143
|
-
# * 0
|
38218
|
+
# * 0.480
|
38144
38219
|
#
|
38145
|
-
# * 0
|
38220
|
+
# * 0.600
|
38146
38221
|
#
|
38147
|
-
# * 0
|
38222
|
+
# * 0.720
|
38148
38223
|
#
|
38149
|
-
# * 0
|
38224
|
+
# * 0.840
|
38150
38225
|
#
|
38151
|
-
# * 0
|
38226
|
+
# * 0.960
|
38152
38227
|
#
|
38153
|
-
# * 1
|
38228
|
+
# * 1.080
|
38154
38229
|
#
|
38155
|
-
# * 1
|
38230
|
+
# * 1.200
|
38156
38231
|
#
|
38157
38232
|
# Use one of the following prices for image classification, text
|
38158
38233
|
# classification, and custom tasks. Prices are in US dollars.
|
38159
38234
|
#
|
38160
|
-
# * 0
|
38235
|
+
# * 0.012
|
38161
38236
|
#
|
38162
|
-
# * 0
|
38237
|
+
# * 0.024
|
38163
38238
|
#
|
38164
|
-
# * 0
|
38239
|
+
# * 0.036
|
38165
38240
|
#
|
38166
|
-
# * 0
|
38241
|
+
# * 0.048
|
38167
38242
|
#
|
38168
|
-
# * 0
|
38243
|
+
# * 0.060
|
38169
38244
|
#
|
38170
|
-
# * 0
|
38245
|
+
# * 0.072
|
38171
38246
|
#
|
38172
|
-
# * 0
|
38247
|
+
# * 0.120
|
38173
38248
|
#
|
38174
|
-
# * 0
|
38249
|
+
# * 0.240
|
38175
38250
|
#
|
38176
|
-
# * 0
|
38251
|
+
# * 0.360
|
38177
38252
|
#
|
38178
|
-
# * 0
|
38253
|
+
# * 0.480
|
38179
38254
|
#
|
38180
|
-
# * 0
|
38255
|
+
# * 0.600
|
38181
38256
|
#
|
38182
|
-
# * 0
|
38257
|
+
# * 0.720
|
38183
38258
|
#
|
38184
|
-
# * 0
|
38259
|
+
# * 0.840
|
38185
38260
|
#
|
38186
|
-
# * 0
|
38261
|
+
# * 0.960
|
38187
38262
|
#
|
38188
|
-
# * 1
|
38263
|
+
# * 1.080
|
38189
38264
|
#
|
38190
|
-
# * 1
|
38265
|
+
# * 1.200
|
38191
38266
|
#
|
38192
38267
|
# Use one of the following prices for semantic segmentation tasks.
|
38193
38268
|
# Prices are in US dollars.
|
38194
38269
|
#
|
38195
|
-
# * 0
|
38270
|
+
# * 0.840
|
38196
38271
|
#
|
38197
|
-
# * 0
|
38272
|
+
# * 0.960
|
38198
38273
|
#
|
38199
|
-
# * 1
|
38274
|
+
# * 1.080
|
38200
38275
|
#
|
38201
|
-
# * 1
|
38276
|
+
# * 1.200
|
38202
38277
|
#
|
38203
38278
|
# Use one of the following prices for Textract AnalyzeDocument Important
|
38204
38279
|
# Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
|
38205
38280
|
#
|
38206
|
-
# * 2
|
38281
|
+
# * 2.400
|
38207
38282
|
#
|
38208
|
-
# * 2
|
38283
|
+
# * 2.280
|
38209
38284
|
#
|
38210
|
-
# * 2
|
38285
|
+
# * 2.160
|
38211
38286
|
#
|
38212
|
-
# * 2
|
38287
|
+
# * 2.040
|
38213
38288
|
#
|
38214
|
-
# * 1
|
38289
|
+
# * 1.920
|
38215
38290
|
#
|
38216
|
-
# * 1
|
38291
|
+
# * 1.800
|
38217
38292
|
#
|
38218
|
-
# * 1
|
38293
|
+
# * 1.680
|
38219
38294
|
#
|
38220
|
-
# * 1
|
38295
|
+
# * 1.560
|
38221
38296
|
#
|
38222
|
-
# * 1
|
38297
|
+
# * 1.440
|
38223
38298
|
#
|
38224
|
-
# * 1
|
38299
|
+
# * 1.320
|
38225
38300
|
#
|
38226
|
-
# * 1
|
38301
|
+
# * 1.200
|
38227
38302
|
#
|
38228
|
-
# * 1
|
38303
|
+
# * 1.080
|
38229
38304
|
#
|
38230
|
-
# * 0
|
38305
|
+
# * 0.960
|
38231
38306
|
#
|
38232
|
-
# * 0
|
38307
|
+
# * 0.840
|
38233
38308
|
#
|
38234
|
-
# * 0
|
38309
|
+
# * 0.720
|
38235
38310
|
#
|
38236
|
-
# * 0
|
38311
|
+
# * 0.600
|
38237
38312
|
#
|
38238
|
-
# * 0
|
38313
|
+
# * 0.480
|
38239
38314
|
#
|
38240
|
-
# * 0
|
38315
|
+
# * 0.360
|
38241
38316
|
#
|
38242
|
-
# * 0
|
38317
|
+
# * 0.240
|
38243
38318
|
#
|
38244
|
-
# * 0
|
38319
|
+
# * 0.120
|
38245
38320
|
#
|
38246
|
-
# * 0
|
38321
|
+
# * 0.072
|
38247
38322
|
#
|
38248
|
-
# * 0
|
38323
|
+
# * 0.060
|
38249
38324
|
#
|
38250
|
-
# * 0
|
38325
|
+
# * 0.048
|
38251
38326
|
#
|
38252
|
-
# * 0
|
38327
|
+
# * 0.036
|
38253
38328
|
#
|
38254
|
-
# * 0
|
38329
|
+
# * 0.024
|
38255
38330
|
#
|
38256
|
-
# * 0
|
38331
|
+
# * 0.012
|
38257
38332
|
#
|
38258
38333
|
# Use one of the following prices for Rekognition DetectModerationLabels
|
38259
38334
|
# Amazon Augmented AI review tasks. Prices are in US dollars.
|
38260
38335
|
#
|
38261
|
-
# * 1
|
38336
|
+
# * 1.200
|
38262
38337
|
#
|
38263
|
-
# * 1
|
38338
|
+
# * 1.080
|
38264
38339
|
#
|
38265
|
-
# * 0
|
38340
|
+
# * 0.960
|
38266
38341
|
#
|
38267
|
-
# * 0
|
38342
|
+
# * 0.840
|
38268
38343
|
#
|
38269
|
-
# * 0
|
38344
|
+
# * 0.720
|
38270
38345
|
#
|
38271
|
-
# * 0
|
38346
|
+
# * 0.600
|
38272
38347
|
#
|
38273
|
-
# * 0
|
38348
|
+
# * 0.480
|
38274
38349
|
#
|
38275
|
-
# * 0
|
38350
|
+
# * 0.360
|
38276
38351
|
#
|
38277
|
-
# * 0
|
38352
|
+
# * 0.240
|
38278
38353
|
#
|
38279
|
-
# * 0
|
38354
|
+
# * 0.120
|
38280
38355
|
#
|
38281
|
-
# * 0
|
38356
|
+
# * 0.072
|
38282
38357
|
#
|
38283
|
-
# * 0
|
38358
|
+
# * 0.060
|
38284
38359
|
#
|
38285
|
-
# * 0
|
38360
|
+
# * 0.048
|
38286
38361
|
#
|
38287
|
-
# * 0
|
38362
|
+
# * 0.036
|
38288
38363
|
#
|
38289
|
-
# * 0
|
38364
|
+
# * 0.024
|
38290
38365
|
#
|
38291
|
-
# * 0
|
38366
|
+
# * 0.012
|
38292
38367
|
#
|
38293
38368
|
# Use one of the following prices for Amazon Augmented AI custom human
|
38294
38369
|
# review tasks. Prices are in US dollars.
|
38295
38370
|
#
|
38296
|
-
# * 1
|
38371
|
+
# * 1.200
|
38297
38372
|
#
|
38298
|
-
# * 1
|
38373
|
+
# * 1.080
|
38299
38374
|
#
|
38300
|
-
# * 0
|
38375
|
+
# * 0.960
|
38301
38376
|
#
|
38302
|
-
# * 0
|
38377
|
+
# * 0.840
|
38303
38378
|
#
|
38304
|
-
# * 0
|
38379
|
+
# * 0.720
|
38305
38380
|
#
|
38306
|
-
# * 0
|
38381
|
+
# * 0.600
|
38307
38382
|
#
|
38308
|
-
# * 0
|
38383
|
+
# * 0.480
|
38309
38384
|
#
|
38310
|
-
# * 0
|
38385
|
+
# * 0.360
|
38311
38386
|
#
|
38312
|
-
# * 0
|
38387
|
+
# * 0.240
|
38313
38388
|
#
|
38314
|
-
# * 0
|
38389
|
+
# * 0.120
|
38315
38390
|
#
|
38316
|
-
# * 0
|
38391
|
+
# * 0.072
|
38317
38392
|
#
|
38318
|
-
# * 0
|
38393
|
+
# * 0.060
|
38319
38394
|
#
|
38320
|
-
# * 0
|
38395
|
+
# * 0.048
|
38321
38396
|
#
|
38322
|
-
# * 0
|
38397
|
+
# * 0.036
|
38323
38398
|
#
|
38324
|
-
# * 0
|
38399
|
+
# * 0.024
|
38325
38400
|
#
|
38326
|
-
# * 0
|
38401
|
+
# * 0.012
|
38327
38402
|
#
|
38328
38403
|
# @!attribute [rw] amount_in_usd
|
38329
38404
|
# Defines the amount of money paid to an Amazon Mechanical Turk worker
|
@@ -40089,7 +40164,6 @@ module Aws::SageMaker
|
|
40089
40164
|
# * A single dot (`.`)
|
40090
40165
|
#
|
40091
40166
|
# * A double dot (`..`)
|
40092
|
-
#
|
40093
40167
|
# * Ambiguous file names will result in model deployment failure. For
|
40094
40168
|
# example, if your uncompressed ML model consists of two S3 objects
|
40095
40169
|
# `s3://mybucket/model/weights` and
|