aws-sdk-sagemaker 1.273.0 → 1.275.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -432,7 +432,6 @@ module Aws::SageMaker
432
432
  # * MXNet (version >= 1.6)
433
433
  #
434
434
  # * PyTorch (version >= 1.3)
435
- #
436
435
  # * You specify at least one [MetricDefinition][2]
437
436
  #
438
437
  #
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
1795
1794
  # * "randomforest"
1796
1795
  #
1797
1796
  # * "xgboost"
1798
- #
1799
1797
  # * In `HYPERPARAMETER_TUNING` mode:
1800
1798
  #
1801
1799
  # * "linear-learner"
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
1803
1801
  # * "mlp"
1804
1802
  #
1805
1803
  # * "xgboost"
1806
- #
1807
1804
  # * **For the time-series forecasting problem type
1808
1805
  # `TimeSeriesForecastingJobConfig`:**
1809
1806
  #
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
2442
2439
  #
2443
2440
  # * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
2444
2441
  # `F1macro`, `PrecisionMacro`, `RecallMacro`
2445
- #
2446
2442
  # For a description of each metric, see [Autopilot metrics for
2447
2443
  # classification and regression][1].
2448
2444
  #
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
2453
2449
  # * Binary classification: `F1`.
2454
2450
  #
2455
2451
  # * Multiclass classification: `Accuracy`.
2456
- #
2457
2452
  # * For image or text classification problem types:
2458
2453
  #
2459
2454
  # * List of available metrics: `Accuracy`
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
2462
2457
  # text and image classification][2].
2463
2458
  #
2464
2459
  # * Default objective metrics: `Accuracy`
2465
- #
2466
2460
  # * For time-series forecasting problem types:
2467
2461
  #
2468
2462
  # * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
2472
2466
  # time-series forecasting][3].
2473
2467
  #
2474
2468
  # * Default objective metrics: `AverageWeightedQuantileLoss`
2475
- #
2476
2469
  # * For text generation problem types (LLMs fine-tuning): Fine-tuning
2477
2470
  # language models in Autopilot does not require setting the
2478
2471
  # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
3367
3360
  # * When `AlgorithmsConfig` is not provided,
3368
3361
  # `CandidateGenerationConfig` uses the full set of algorithms for
3369
3362
  # the given training mode.
3370
- #
3371
3363
  # For the list of all algorithms per training mode, see [
3372
3364
  # AlgorithmConfig][2].
3373
3365
  #
@@ -21701,206 +21693,206 @@ module Aws::SageMaker
21701
21693
  # in US dollars and should be based on the complexity of the task; the
21702
21694
  # longer it takes in your initial testing, the more you should offer.
21703
21695
  #
21704
- # * 0\.036
21696
+ # * 0.036
21705
21697
  #
21706
- # * 0\.048
21698
+ # * 0.048
21707
21699
  #
21708
- # * 0\.060
21700
+ # * 0.060
21709
21701
  #
21710
- # * 0\.072
21702
+ # * 0.072
21711
21703
  #
21712
- # * 0\.120
21704
+ # * 0.120
21713
21705
  #
21714
- # * 0\.240
21706
+ # * 0.240
21715
21707
  #
21716
- # * 0\.360
21708
+ # * 0.360
21717
21709
  #
21718
- # * 0\.480
21710
+ # * 0.480
21719
21711
  #
21720
- # * 0\.600
21712
+ # * 0.600
21721
21713
  #
21722
- # * 0\.720
21714
+ # * 0.720
21723
21715
  #
21724
- # * 0\.840
21716
+ # * 0.840
21725
21717
  #
21726
- # * 0\.960
21718
+ # * 0.960
21727
21719
  #
21728
- # * 1\.080
21720
+ # * 1.080
21729
21721
  #
21730
- # * 1\.200
21722
+ # * 1.200
21731
21723
  #
21732
21724
  # Use one of the following prices for image classification, text
21733
21725
  # classification, and custom tasks. Prices are in US dollars.
21734
21726
  #
21735
- # * 0\.012
21727
+ # * 0.012
21736
21728
  #
21737
- # * 0\.024
21729
+ # * 0.024
21738
21730
  #
21739
- # * 0\.036
21731
+ # * 0.036
21740
21732
  #
21741
- # * 0\.048
21733
+ # * 0.048
21742
21734
  #
21743
- # * 0\.060
21735
+ # * 0.060
21744
21736
  #
21745
- # * 0\.072
21737
+ # * 0.072
21746
21738
  #
21747
- # * 0\.120
21739
+ # * 0.120
21748
21740
  #
21749
- # * 0\.240
21741
+ # * 0.240
21750
21742
  #
21751
- # * 0\.360
21743
+ # * 0.360
21752
21744
  #
21753
- # * 0\.480
21745
+ # * 0.480
21754
21746
  #
21755
- # * 0\.600
21747
+ # * 0.600
21756
21748
  #
21757
- # * 0\.720
21749
+ # * 0.720
21758
21750
  #
21759
- # * 0\.840
21751
+ # * 0.840
21760
21752
  #
21761
- # * 0\.960
21753
+ # * 0.960
21762
21754
  #
21763
- # * 1\.080
21755
+ # * 1.080
21764
21756
  #
21765
- # * 1\.200
21757
+ # * 1.200
21766
21758
  #
21767
21759
  # Use one of the following prices for semantic segmentation tasks.
21768
21760
  # Prices are in US dollars.
21769
21761
  #
21770
- # * 0\.840
21762
+ # * 0.840
21771
21763
  #
21772
- # * 0\.960
21764
+ # * 0.960
21773
21765
  #
21774
- # * 1\.080
21766
+ # * 1.080
21775
21767
  #
21776
- # * 1\.200
21768
+ # * 1.200
21777
21769
  #
21778
21770
  # Use one of the following prices for Textract AnalyzeDocument
21779
21771
  # Important Form Key Amazon Augmented AI review tasks. Prices are in
21780
21772
  # US dollars.
21781
21773
  #
21782
- # * 2\.400
21774
+ # * 2.400
21783
21775
  #
21784
- # * 2\.280
21776
+ # * 2.280
21785
21777
  #
21786
- # * 2\.160
21778
+ # * 2.160
21787
21779
  #
21788
- # * 2\.040
21780
+ # * 2.040
21789
21781
  #
21790
- # * 1\.920
21782
+ # * 1.920
21791
21783
  #
21792
- # * 1\.800
21784
+ # * 1.800
21793
21785
  #
21794
- # * 1\.680
21786
+ # * 1.680
21795
21787
  #
21796
- # * 1\.560
21788
+ # * 1.560
21797
21789
  #
21798
- # * 1\.440
21790
+ # * 1.440
21799
21791
  #
21800
- # * 1\.320
21792
+ # * 1.320
21801
21793
  #
21802
- # * 1\.200
21794
+ # * 1.200
21803
21795
  #
21804
- # * 1\.080
21796
+ # * 1.080
21805
21797
  #
21806
- # * 0\.960
21798
+ # * 0.960
21807
21799
  #
21808
- # * 0\.840
21800
+ # * 0.840
21809
21801
  #
21810
- # * 0\.720
21802
+ # * 0.720
21811
21803
  #
21812
- # * 0\.600
21804
+ # * 0.600
21813
21805
  #
21814
- # * 0\.480
21806
+ # * 0.480
21815
21807
  #
21816
- # * 0\.360
21808
+ # * 0.360
21817
21809
  #
21818
- # * 0\.240
21810
+ # * 0.240
21819
21811
  #
21820
- # * 0\.120
21812
+ # * 0.120
21821
21813
  #
21822
- # * 0\.072
21814
+ # * 0.072
21823
21815
  #
21824
- # * 0\.060
21816
+ # * 0.060
21825
21817
  #
21826
- # * 0\.048
21818
+ # * 0.048
21827
21819
  #
21828
- # * 0\.036
21820
+ # * 0.036
21829
21821
  #
21830
- # * 0\.024
21822
+ # * 0.024
21831
21823
  #
21832
- # * 0\.012
21824
+ # * 0.012
21833
21825
  #
21834
21826
  # Use one of the following prices for Rekognition
21835
21827
  # DetectModerationLabels Amazon Augmented AI review tasks. Prices are
21836
21828
  # in US dollars.
21837
21829
  #
21838
- # * 1\.200
21830
+ # * 1.200
21839
21831
  #
21840
- # * 1\.080
21832
+ # * 1.080
21841
21833
  #
21842
- # * 0\.960
21834
+ # * 0.960
21843
21835
  #
21844
- # * 0\.840
21836
+ # * 0.840
21845
21837
  #
21846
- # * 0\.720
21838
+ # * 0.720
21847
21839
  #
21848
- # * 0\.600
21840
+ # * 0.600
21849
21841
  #
21850
- # * 0\.480
21842
+ # * 0.480
21851
21843
  #
21852
- # * 0\.360
21844
+ # * 0.360
21853
21845
  #
21854
- # * 0\.240
21846
+ # * 0.240
21855
21847
  #
21856
- # * 0\.120
21848
+ # * 0.120
21857
21849
  #
21858
- # * 0\.072
21850
+ # * 0.072
21859
21851
  #
21860
- # * 0\.060
21852
+ # * 0.060
21861
21853
  #
21862
- # * 0\.048
21854
+ # * 0.048
21863
21855
  #
21864
- # * 0\.036
21856
+ # * 0.036
21865
21857
  #
21866
- # * 0\.024
21858
+ # * 0.024
21867
21859
  #
21868
- # * 0\.012
21860
+ # * 0.012
21869
21861
  #
21870
21862
  # Use one of the following prices for Amazon Augmented AI custom human
21871
21863
  # review tasks. Prices are in US dollars.
21872
21864
  #
21873
- # * 1\.200
21865
+ # * 1.200
21874
21866
  #
21875
- # * 1\.080
21867
+ # * 1.080
21876
21868
  #
21877
- # * 0\.960
21869
+ # * 0.960
21878
21870
  #
21879
- # * 0\.840
21871
+ # * 0.840
21880
21872
  #
21881
- # * 0\.720
21873
+ # * 0.720
21882
21874
  #
21883
- # * 0\.600
21875
+ # * 0.600
21884
21876
  #
21885
- # * 0\.480
21877
+ # * 0.480
21886
21878
  #
21887
- # * 0\.360
21879
+ # * 0.360
21888
21880
  #
21889
- # * 0\.240
21881
+ # * 0.240
21890
21882
  #
21891
- # * 0\.120
21883
+ # * 0.120
21892
21884
  #
21893
- # * 0\.072
21885
+ # * 0.072
21894
21886
  #
21895
- # * 0\.060
21887
+ # * 0.060
21896
21888
  #
21897
- # * 0\.048
21889
+ # * 0.048
21898
21890
  #
21899
- # * 0\.036
21891
+ # * 0.036
21900
21892
  #
21901
- # * 0\.024
21893
+ # * 0.024
21902
21894
  #
21903
- # * 0\.012
21895
+ # * 0.012
21904
21896
  # @return [Types::PublicWorkforceTaskPrice]
21905
21897
  #
21906
21898
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
@@ -24902,7 +24894,6 @@ module Aws::SageMaker
24902
24894
  # * If using the console, `{"input":[1,1024,1024,3]}`
24903
24895
  #
24904
24896
  # * If using the CLI, `{"input":[1,1024,1024,3]}`
24905
- #
24906
24897
  # * Examples for two inputs:
24907
24898
  #
24908
24899
  # * If using the console, `{"data1": [1,28,28,1],
@@ -24910,7 +24901,6 @@ module Aws::SageMaker
24910
24901
  #
24911
24902
  # * If using the CLI, `{"data1": [1,28,28,1],
24912
24903
  # "data2":[1,28,28,1]}`
24913
- #
24914
24904
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24915
24905
  # expected data inputs using a dictionary format for your trained
24916
24906
  # model. Note that while Keras model artifacts should be uploaded in
@@ -24923,7 +24913,6 @@ module Aws::SageMaker
24923
24913
  # * If using the console, `{"input_1":[1,3,224,224]}`
24924
24914
  #
24925
24915
  # * If using the CLI, `{"input_1":[1,3,224,224]}`
24926
- #
24927
24916
  # * Examples for two inputs:
24928
24917
  #
24929
24918
  # * If using the console, `{"input_1": [1,3,224,224],
@@ -24931,7 +24920,6 @@ module Aws::SageMaker
24931
24920
  #
24932
24921
  # * If using the CLI, `{"input_1": [1,3,224,224],
24933
24922
  # "input_2":[1,3,224,224]}`
24934
- #
24935
24923
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24936
24924
  # format) of the expected data inputs in order using a dictionary
24937
24925
  # format for your trained model. The dictionary formats required for
@@ -24942,7 +24930,6 @@ module Aws::SageMaker
24942
24930
  # * If using the console, `{"data":[1,3,1024,1024]}`
24943
24931
  #
24944
24932
  # * If using the CLI, `{"data":[1,3,1024,1024]}`
24945
- #
24946
24933
  # * Examples for two inputs:
24947
24934
  #
24948
24935
  # * If using the console, `{"var1": [1,1,28,28],
@@ -24950,7 +24937,6 @@ module Aws::SageMaker
24950
24937
  #
24951
24938
  # * If using the CLI, `{"var1": [1,1,28,28],
24952
24939
  # "var2":[1,1,28,28]}`
24953
- #
24954
24940
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24955
24941
  # of expected data inputs in order using a dictionary format for
24956
24942
  # your trained model or you can specify the shape only using a list
@@ -24963,7 +24949,6 @@ module Aws::SageMaker
24963
24949
  # * If using the console, `{"input0":[1,3,224,224]}`
24964
24950
  #
24965
24951
  # * If using the CLI, `{"input0":[1,3,224,224]}`
24966
- #
24967
24952
  # * Example for one input in list format: `[[1,3,224,224]]`
24968
24953
  #
24969
24954
  # * Examples for two inputs in dictionary format:
@@ -24973,10 +24958,8 @@ module Aws::SageMaker
24973
24958
  #
24974
24959
  # * If using the CLI, `{"input0":[1,3,224,224],
24975
24960
  # "input1":[1,3,224,224]} `
24976
- #
24977
24961
  # * Example for two inputs in list format: `[[1,3,224,224],
24978
24962
  # [1,3,224,224]]`
24979
- #
24980
24963
  # * `XGBOOST`: input data name and shape are not needed.
24981
24964
  #
24982
24965
  # `DataInputConfig` supports the following parameters for `CoreML`
@@ -24995,7 +24978,6 @@ module Aws::SageMaker
24995
24978
  # only on a select set of inputs. You can enumerate all supported
24996
24979
  # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
24980
  # 3], [1, 160, 160, 3]]}}`
24998
- #
24999
24981
  # * `default_shape`: Default input shape. You can set a default shape
25000
24982
  # during conversion for both Range Dimension and Enumerated Shapes.
25001
24983
  # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
@@ -25023,14 +25005,12 @@ module Aws::SageMaker
25023
25005
  # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
25024
25006
  #
25025
25007
  # ^
25026
- #
25027
25008
  # * Tensor type input without input name (PyTorch):
25028
25009
  #
25029
25010
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
25011
  # "default_shape": [1,3,224,224]}]`
25031
25012
  #
25032
25013
  # ^
25033
- #
25034
25014
  # * Image type input:
25035
25015
  #
25036
25016
  # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
@@ -25039,7 +25019,6 @@ module Aws::SageMaker
25039
25019
  #
25040
25020
  # * `"CompilerOptions": {"class_labels":
25041
25021
  # "imagenet_labels_1000.txt"}`
25042
- #
25043
25022
  # * Image type input without input name (PyTorch):
25044
25023
  #
25045
25024
  # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
@@ -25061,7 +25040,6 @@ module Aws::SageMaker
25061
25040
  # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
25062
25041
  #
25063
25042
  # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
25064
- #
25065
25043
  # * For TensorFlow models saved as a frozen graph, specify the input
25066
25044
  # tensor names and shapes in `DataInputConfig` and the output tensor
25067
25045
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
@@ -35728,7 +35706,6 @@ module Aws::SageMaker
35728
35706
  # * float32: Use either `"float"` or `"float32"`.
35729
35707
  #
35730
35708
  # * int64: Use either `"int64"` or `"long"`.
35731
- #
35732
35709
  # For example, `{"dtype" : "float32"}`.
35733
35710
  #
35734
35711
  # * `CPU`: Compilation for CPU supports the following compiler
@@ -35739,7 +35716,6 @@ module Aws::SageMaker
35739
35716
  #
35740
35717
  # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
35718
  # '+vfpv4']}`
35742
- #
35743
35719
  # * `ARM`: Details of ARM CPU compilations.
35744
35720
  #
35745
35721
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
@@ -35747,7 +35723,6 @@ module Aws::SageMaker
35747
35723
  #
35748
35724
  # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
35725
  # if compiling for ARM 32-bit platform with the NEON support.
35750
- #
35751
35726
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35752
35727
  # compiler options.
35753
35728
  #
@@ -35756,7 +35731,6 @@ module Aws::SageMaker
35756
35731
  # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
35757
35732
  #
35758
35733
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35759
- #
35760
35734
  # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
35735
  # 'cuda-ver': '10.1'}`
35762
35736
  #
@@ -35769,7 +35743,6 @@ module Aws::SageMaker
35769
35743
  #
35770
35744
  # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35771
35745
  # compiling for ARM 32-bit platform with NEON support.
35772
- #
35773
35746
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
35774
35747
  # options passed in as a JSON string. For example,
35775
35748
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
@@ -38126,204 +38099,204 @@ module Aws::SageMaker
38126
38099
  # US dollars and should be based on the complexity of the task; the
38127
38100
  # longer it takes in your initial testing, the more you should offer.
38128
38101
  #
38129
- # * 0\.036
38102
+ # * 0.036
38130
38103
  #
38131
- # * 0\.048
38104
+ # * 0.048
38132
38105
  #
38133
- # * 0\.060
38106
+ # * 0.060
38134
38107
  #
38135
- # * 0\.072
38108
+ # * 0.072
38136
38109
  #
38137
- # * 0\.120
38110
+ # * 0.120
38138
38111
  #
38139
- # * 0\.240
38112
+ # * 0.240
38140
38113
  #
38141
- # * 0\.360
38114
+ # * 0.360
38142
38115
  #
38143
- # * 0\.480
38116
+ # * 0.480
38144
38117
  #
38145
- # * 0\.600
38118
+ # * 0.600
38146
38119
  #
38147
- # * 0\.720
38120
+ # * 0.720
38148
38121
  #
38149
- # * 0\.840
38122
+ # * 0.840
38150
38123
  #
38151
- # * 0\.960
38124
+ # * 0.960
38152
38125
  #
38153
- # * 1\.080
38126
+ # * 1.080
38154
38127
  #
38155
- # * 1\.200
38128
+ # * 1.200
38156
38129
  #
38157
38130
  # Use one of the following prices for image classification, text
38158
38131
  # classification, and custom tasks. Prices are in US dollars.
38159
38132
  #
38160
- # * 0\.012
38133
+ # * 0.012
38161
38134
  #
38162
- # * 0\.024
38135
+ # * 0.024
38163
38136
  #
38164
- # * 0\.036
38137
+ # * 0.036
38165
38138
  #
38166
- # * 0\.048
38139
+ # * 0.048
38167
38140
  #
38168
- # * 0\.060
38141
+ # * 0.060
38169
38142
  #
38170
- # * 0\.072
38143
+ # * 0.072
38171
38144
  #
38172
- # * 0\.120
38145
+ # * 0.120
38173
38146
  #
38174
- # * 0\.240
38147
+ # * 0.240
38175
38148
  #
38176
- # * 0\.360
38149
+ # * 0.360
38177
38150
  #
38178
- # * 0\.480
38151
+ # * 0.480
38179
38152
  #
38180
- # * 0\.600
38153
+ # * 0.600
38181
38154
  #
38182
- # * 0\.720
38155
+ # * 0.720
38183
38156
  #
38184
- # * 0\.840
38157
+ # * 0.840
38185
38158
  #
38186
- # * 0\.960
38159
+ # * 0.960
38187
38160
  #
38188
- # * 1\.080
38161
+ # * 1.080
38189
38162
  #
38190
- # * 1\.200
38163
+ # * 1.200
38191
38164
  #
38192
38165
  # Use one of the following prices for semantic segmentation tasks.
38193
38166
  # Prices are in US dollars.
38194
38167
  #
38195
- # * 0\.840
38168
+ # * 0.840
38196
38169
  #
38197
- # * 0\.960
38170
+ # * 0.960
38198
38171
  #
38199
- # * 1\.080
38172
+ # * 1.080
38200
38173
  #
38201
- # * 1\.200
38174
+ # * 1.200
38202
38175
  #
38203
38176
  # Use one of the following prices for Textract AnalyzeDocument Important
38204
38177
  # Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
38205
38178
  #
38206
- # * 2\.400
38179
+ # * 2.400
38207
38180
  #
38208
- # * 2\.280
38181
+ # * 2.280
38209
38182
  #
38210
- # * 2\.160
38183
+ # * 2.160
38211
38184
  #
38212
- # * 2\.040
38185
+ # * 2.040
38213
38186
  #
38214
- # * 1\.920
38187
+ # * 1.920
38215
38188
  #
38216
- # * 1\.800
38189
+ # * 1.800
38217
38190
  #
38218
- # * 1\.680
38191
+ # * 1.680
38219
38192
  #
38220
- # * 1\.560
38193
+ # * 1.560
38221
38194
  #
38222
- # * 1\.440
38195
+ # * 1.440
38223
38196
  #
38224
- # * 1\.320
38197
+ # * 1.320
38225
38198
  #
38226
- # * 1\.200
38199
+ # * 1.200
38227
38200
  #
38228
- # * 1\.080
38201
+ # * 1.080
38229
38202
  #
38230
- # * 0\.960
38203
+ # * 0.960
38231
38204
  #
38232
- # * 0\.840
38205
+ # * 0.840
38233
38206
  #
38234
- # * 0\.720
38207
+ # * 0.720
38235
38208
  #
38236
- # * 0\.600
38209
+ # * 0.600
38237
38210
  #
38238
- # * 0\.480
38211
+ # * 0.480
38239
38212
  #
38240
- # * 0\.360
38213
+ # * 0.360
38241
38214
  #
38242
- # * 0\.240
38215
+ # * 0.240
38243
38216
  #
38244
- # * 0\.120
38217
+ # * 0.120
38245
38218
  #
38246
- # * 0\.072
38219
+ # * 0.072
38247
38220
  #
38248
- # * 0\.060
38221
+ # * 0.060
38249
38222
  #
38250
- # * 0\.048
38223
+ # * 0.048
38251
38224
  #
38252
- # * 0\.036
38225
+ # * 0.036
38253
38226
  #
38254
- # * 0\.024
38227
+ # * 0.024
38255
38228
  #
38256
- # * 0\.012
38229
+ # * 0.012
38257
38230
  #
38258
38231
  # Use one of the following prices for Rekognition DetectModerationLabels
38259
38232
  # Amazon Augmented AI review tasks. Prices are in US dollars.
38260
38233
  #
38261
- # * 1\.200
38234
+ # * 1.200
38262
38235
  #
38263
- # * 1\.080
38236
+ # * 1.080
38264
38237
  #
38265
- # * 0\.960
38238
+ # * 0.960
38266
38239
  #
38267
- # * 0\.840
38240
+ # * 0.840
38268
38241
  #
38269
- # * 0\.720
38242
+ # * 0.720
38270
38243
  #
38271
- # * 0\.600
38244
+ # * 0.600
38272
38245
  #
38273
- # * 0\.480
38246
+ # * 0.480
38274
38247
  #
38275
- # * 0\.360
38248
+ # * 0.360
38276
38249
  #
38277
- # * 0\.240
38250
+ # * 0.240
38278
38251
  #
38279
- # * 0\.120
38252
+ # * 0.120
38280
38253
  #
38281
- # * 0\.072
38254
+ # * 0.072
38282
38255
  #
38283
- # * 0\.060
38256
+ # * 0.060
38284
38257
  #
38285
- # * 0\.048
38258
+ # * 0.048
38286
38259
  #
38287
- # * 0\.036
38260
+ # * 0.036
38288
38261
  #
38289
- # * 0\.024
38262
+ # * 0.024
38290
38263
  #
38291
- # * 0\.012
38264
+ # * 0.012
38292
38265
  #
38293
38266
  # Use one of the following prices for Amazon Augmented AI custom human
38294
38267
  # review tasks. Prices are in US dollars.
38295
38268
  #
38296
- # * 1\.200
38269
+ # * 1.200
38297
38270
  #
38298
- # * 1\.080
38271
+ # * 1.080
38299
38272
  #
38300
- # * 0\.960
38273
+ # * 0.960
38301
38274
  #
38302
- # * 0\.840
38275
+ # * 0.840
38303
38276
  #
38304
- # * 0\.720
38277
+ # * 0.720
38305
38278
  #
38306
- # * 0\.600
38279
+ # * 0.600
38307
38280
  #
38308
- # * 0\.480
38281
+ # * 0.480
38309
38282
  #
38310
- # * 0\.360
38283
+ # * 0.360
38311
38284
  #
38312
- # * 0\.240
38285
+ # * 0.240
38313
38286
  #
38314
- # * 0\.120
38287
+ # * 0.120
38315
38288
  #
38316
- # * 0\.072
38289
+ # * 0.072
38317
38290
  #
38318
- # * 0\.060
38291
+ # * 0.060
38319
38292
  #
38320
- # * 0\.048
38293
+ # * 0.048
38321
38294
  #
38322
- # * 0\.036
38295
+ # * 0.036
38323
38296
  #
38324
- # * 0\.024
38297
+ # * 0.024
38325
38298
  #
38326
- # * 0\.012
38299
+ # * 0.012
38327
38300
  #
38328
38301
  # @!attribute [rw] amount_in_usd
38329
38302
  # Defines the amount of money paid to an Amazon Mechanical Turk worker
@@ -40089,7 +40062,6 @@ module Aws::SageMaker
40089
40062
  # * A single dot (`.`)
40090
40063
  #
40091
40064
  # * A double dot (`..`)
40092
- #
40093
40065
  # * Ambiguous file names will result in model deployment failure. For
40094
40066
  # example, if your uncompressed ML model consists of two S3 objects
40095
40067
  # `s3://mybucket/model/weights` and