aws-sdk-sagemaker 1.273.0 → 1.275.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +24 -24
- data/lib/aws-sdk-sagemaker/types.rb +184 -212
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +14 -14
- data/sig/types.rbs +8 -8
- metadata +2 -2
@@ -432,7 +432,6 @@ module Aws::SageMaker
|
|
432
432
|
# * MXNet (version >= 1.6)
|
433
433
|
#
|
434
434
|
# * PyTorch (version >= 1.3)
|
435
|
-
#
|
436
435
|
# * You specify at least one [MetricDefinition][2]
|
437
436
|
#
|
438
437
|
#
|
@@ -1795,7 +1794,6 @@ module Aws::SageMaker
|
|
1795
1794
|
# * "randomforest"
|
1796
1795
|
#
|
1797
1796
|
# * "xgboost"
|
1798
|
-
#
|
1799
1797
|
# * In `HYPERPARAMETER_TUNING` mode:
|
1800
1798
|
#
|
1801
1799
|
# * "linear-learner"
|
@@ -1803,7 +1801,6 @@ module Aws::SageMaker
|
|
1803
1801
|
# * "mlp"
|
1804
1802
|
#
|
1805
1803
|
# * "xgboost"
|
1806
|
-
#
|
1807
1804
|
# * **For the time-series forecasting problem type
|
1808
1805
|
# `TimeSeriesForecastingJobConfig`:**
|
1809
1806
|
#
|
@@ -2442,7 +2439,6 @@ module Aws::SageMaker
|
|
2442
2439
|
#
|
2443
2440
|
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2444
2441
|
# `F1macro`, `PrecisionMacro`, `RecallMacro`
|
2445
|
-
#
|
2446
2442
|
# For a description of each metric, see [Autopilot metrics for
|
2447
2443
|
# classification and regression][1].
|
2448
2444
|
#
|
@@ -2453,7 +2449,6 @@ module Aws::SageMaker
|
|
2453
2449
|
# * Binary classification: `F1`.
|
2454
2450
|
#
|
2455
2451
|
# * Multiclass classification: `Accuracy`.
|
2456
|
-
#
|
2457
2452
|
# * For image or text classification problem types:
|
2458
2453
|
#
|
2459
2454
|
# * List of available metrics: `Accuracy`
|
@@ -2462,7 +2457,6 @@ module Aws::SageMaker
|
|
2462
2457
|
# text and image classification][2].
|
2463
2458
|
#
|
2464
2459
|
# * Default objective metrics: `Accuracy`
|
2465
|
-
#
|
2466
2460
|
# * For time-series forecasting problem types:
|
2467
2461
|
#
|
2468
2462
|
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
@@ -2472,7 +2466,6 @@ module Aws::SageMaker
|
|
2472
2466
|
# time-series forecasting][3].
|
2473
2467
|
#
|
2474
2468
|
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2475
|
-
#
|
2476
2469
|
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2477
2470
|
# language models in Autopilot does not require setting the
|
2478
2471
|
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
@@ -3367,7 +3360,6 @@ module Aws::SageMaker
|
|
3367
3360
|
# * When `AlgorithmsConfig` is not provided,
|
3368
3361
|
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3369
3362
|
# the given training mode.
|
3370
|
-
#
|
3371
3363
|
# For the list of all algorithms per training mode, see [
|
3372
3364
|
# AlgorithmConfig][2].
|
3373
3365
|
#
|
@@ -21701,206 +21693,206 @@ module Aws::SageMaker
|
|
21701
21693
|
# in US dollars and should be based on the complexity of the task; the
|
21702
21694
|
# longer it takes in your initial testing, the more you should offer.
|
21703
21695
|
#
|
21704
|
-
# * 0
|
21696
|
+
# * 0.036
|
21705
21697
|
#
|
21706
|
-
# * 0
|
21698
|
+
# * 0.048
|
21707
21699
|
#
|
21708
|
-
# * 0
|
21700
|
+
# * 0.060
|
21709
21701
|
#
|
21710
|
-
# * 0
|
21702
|
+
# * 0.072
|
21711
21703
|
#
|
21712
|
-
# * 0
|
21704
|
+
# * 0.120
|
21713
21705
|
#
|
21714
|
-
# * 0
|
21706
|
+
# * 0.240
|
21715
21707
|
#
|
21716
|
-
# * 0
|
21708
|
+
# * 0.360
|
21717
21709
|
#
|
21718
|
-
# * 0
|
21710
|
+
# * 0.480
|
21719
21711
|
#
|
21720
|
-
# * 0
|
21712
|
+
# * 0.600
|
21721
21713
|
#
|
21722
|
-
# * 0
|
21714
|
+
# * 0.720
|
21723
21715
|
#
|
21724
|
-
# * 0
|
21716
|
+
# * 0.840
|
21725
21717
|
#
|
21726
|
-
# * 0
|
21718
|
+
# * 0.960
|
21727
21719
|
#
|
21728
|
-
# * 1
|
21720
|
+
# * 1.080
|
21729
21721
|
#
|
21730
|
-
# * 1
|
21722
|
+
# * 1.200
|
21731
21723
|
#
|
21732
21724
|
# Use one of the following prices for image classification, text
|
21733
21725
|
# classification, and custom tasks. Prices are in US dollars.
|
21734
21726
|
#
|
21735
|
-
# * 0
|
21727
|
+
# * 0.012
|
21736
21728
|
#
|
21737
|
-
# * 0
|
21729
|
+
# * 0.024
|
21738
21730
|
#
|
21739
|
-
# * 0
|
21731
|
+
# * 0.036
|
21740
21732
|
#
|
21741
|
-
# * 0
|
21733
|
+
# * 0.048
|
21742
21734
|
#
|
21743
|
-
# * 0
|
21735
|
+
# * 0.060
|
21744
21736
|
#
|
21745
|
-
# * 0
|
21737
|
+
# * 0.072
|
21746
21738
|
#
|
21747
|
-
# * 0
|
21739
|
+
# * 0.120
|
21748
21740
|
#
|
21749
|
-
# * 0
|
21741
|
+
# * 0.240
|
21750
21742
|
#
|
21751
|
-
# * 0
|
21743
|
+
# * 0.360
|
21752
21744
|
#
|
21753
|
-
# * 0
|
21745
|
+
# * 0.480
|
21754
21746
|
#
|
21755
|
-
# * 0
|
21747
|
+
# * 0.600
|
21756
21748
|
#
|
21757
|
-
# * 0
|
21749
|
+
# * 0.720
|
21758
21750
|
#
|
21759
|
-
# * 0
|
21751
|
+
# * 0.840
|
21760
21752
|
#
|
21761
|
-
# * 0
|
21753
|
+
# * 0.960
|
21762
21754
|
#
|
21763
|
-
# * 1
|
21755
|
+
# * 1.080
|
21764
21756
|
#
|
21765
|
-
# * 1
|
21757
|
+
# * 1.200
|
21766
21758
|
#
|
21767
21759
|
# Use one of the following prices for semantic segmentation tasks.
|
21768
21760
|
# Prices are in US dollars.
|
21769
21761
|
#
|
21770
|
-
# * 0
|
21762
|
+
# * 0.840
|
21771
21763
|
#
|
21772
|
-
# * 0
|
21764
|
+
# * 0.960
|
21773
21765
|
#
|
21774
|
-
# * 1
|
21766
|
+
# * 1.080
|
21775
21767
|
#
|
21776
|
-
# * 1
|
21768
|
+
# * 1.200
|
21777
21769
|
#
|
21778
21770
|
# Use one of the following prices for Textract AnalyzeDocument
|
21779
21771
|
# Important Form Key Amazon Augmented AI review tasks. Prices are in
|
21780
21772
|
# US dollars.
|
21781
21773
|
#
|
21782
|
-
# * 2
|
21774
|
+
# * 2.400
|
21783
21775
|
#
|
21784
|
-
# * 2
|
21776
|
+
# * 2.280
|
21785
21777
|
#
|
21786
|
-
# * 2
|
21778
|
+
# * 2.160
|
21787
21779
|
#
|
21788
|
-
# * 2
|
21780
|
+
# * 2.040
|
21789
21781
|
#
|
21790
|
-
# * 1
|
21782
|
+
# * 1.920
|
21791
21783
|
#
|
21792
|
-
# * 1
|
21784
|
+
# * 1.800
|
21793
21785
|
#
|
21794
|
-
# * 1
|
21786
|
+
# * 1.680
|
21795
21787
|
#
|
21796
|
-
# * 1
|
21788
|
+
# * 1.560
|
21797
21789
|
#
|
21798
|
-
# * 1
|
21790
|
+
# * 1.440
|
21799
21791
|
#
|
21800
|
-
# * 1
|
21792
|
+
# * 1.320
|
21801
21793
|
#
|
21802
|
-
# * 1
|
21794
|
+
# * 1.200
|
21803
21795
|
#
|
21804
|
-
# * 1
|
21796
|
+
# * 1.080
|
21805
21797
|
#
|
21806
|
-
# * 0
|
21798
|
+
# * 0.960
|
21807
21799
|
#
|
21808
|
-
# * 0
|
21800
|
+
# * 0.840
|
21809
21801
|
#
|
21810
|
-
# * 0
|
21802
|
+
# * 0.720
|
21811
21803
|
#
|
21812
|
-
# * 0
|
21804
|
+
# * 0.600
|
21813
21805
|
#
|
21814
|
-
# * 0
|
21806
|
+
# * 0.480
|
21815
21807
|
#
|
21816
|
-
# * 0
|
21808
|
+
# * 0.360
|
21817
21809
|
#
|
21818
|
-
# * 0
|
21810
|
+
# * 0.240
|
21819
21811
|
#
|
21820
|
-
# * 0
|
21812
|
+
# * 0.120
|
21821
21813
|
#
|
21822
|
-
# * 0
|
21814
|
+
# * 0.072
|
21823
21815
|
#
|
21824
|
-
# * 0
|
21816
|
+
# * 0.060
|
21825
21817
|
#
|
21826
|
-
# * 0
|
21818
|
+
# * 0.048
|
21827
21819
|
#
|
21828
|
-
# * 0
|
21820
|
+
# * 0.036
|
21829
21821
|
#
|
21830
|
-
# * 0
|
21822
|
+
# * 0.024
|
21831
21823
|
#
|
21832
|
-
# * 0
|
21824
|
+
# * 0.012
|
21833
21825
|
#
|
21834
21826
|
# Use one of the following prices for Rekognition
|
21835
21827
|
# DetectModerationLabels Amazon Augmented AI review tasks. Prices are
|
21836
21828
|
# in US dollars.
|
21837
21829
|
#
|
21838
|
-
# * 1
|
21830
|
+
# * 1.200
|
21839
21831
|
#
|
21840
|
-
# * 1
|
21832
|
+
# * 1.080
|
21841
21833
|
#
|
21842
|
-
# * 0
|
21834
|
+
# * 0.960
|
21843
21835
|
#
|
21844
|
-
# * 0
|
21836
|
+
# * 0.840
|
21845
21837
|
#
|
21846
|
-
# * 0
|
21838
|
+
# * 0.720
|
21847
21839
|
#
|
21848
|
-
# * 0
|
21840
|
+
# * 0.600
|
21849
21841
|
#
|
21850
|
-
# * 0
|
21842
|
+
# * 0.480
|
21851
21843
|
#
|
21852
|
-
# * 0
|
21844
|
+
# * 0.360
|
21853
21845
|
#
|
21854
|
-
# * 0
|
21846
|
+
# * 0.240
|
21855
21847
|
#
|
21856
|
-
# * 0
|
21848
|
+
# * 0.120
|
21857
21849
|
#
|
21858
|
-
# * 0
|
21850
|
+
# * 0.072
|
21859
21851
|
#
|
21860
|
-
# * 0
|
21852
|
+
# * 0.060
|
21861
21853
|
#
|
21862
|
-
# * 0
|
21854
|
+
# * 0.048
|
21863
21855
|
#
|
21864
|
-
# * 0
|
21856
|
+
# * 0.036
|
21865
21857
|
#
|
21866
|
-
# * 0
|
21858
|
+
# * 0.024
|
21867
21859
|
#
|
21868
|
-
# * 0
|
21860
|
+
# * 0.012
|
21869
21861
|
#
|
21870
21862
|
# Use one of the following prices for Amazon Augmented AI custom human
|
21871
21863
|
# review tasks. Prices are in US dollars.
|
21872
21864
|
#
|
21873
|
-
# * 1
|
21865
|
+
# * 1.200
|
21874
21866
|
#
|
21875
|
-
# * 1
|
21867
|
+
# * 1.080
|
21876
21868
|
#
|
21877
|
-
# * 0
|
21869
|
+
# * 0.960
|
21878
21870
|
#
|
21879
|
-
# * 0
|
21871
|
+
# * 0.840
|
21880
21872
|
#
|
21881
|
-
# * 0
|
21873
|
+
# * 0.720
|
21882
21874
|
#
|
21883
|
-
# * 0
|
21875
|
+
# * 0.600
|
21884
21876
|
#
|
21885
|
-
# * 0
|
21877
|
+
# * 0.480
|
21886
21878
|
#
|
21887
|
-
# * 0
|
21879
|
+
# * 0.360
|
21888
21880
|
#
|
21889
|
-
# * 0
|
21881
|
+
# * 0.240
|
21890
21882
|
#
|
21891
|
-
# * 0
|
21883
|
+
# * 0.120
|
21892
21884
|
#
|
21893
|
-
# * 0
|
21885
|
+
# * 0.072
|
21894
21886
|
#
|
21895
|
-
# * 0
|
21887
|
+
# * 0.060
|
21896
21888
|
#
|
21897
|
-
# * 0
|
21889
|
+
# * 0.048
|
21898
21890
|
#
|
21899
|
-
# * 0
|
21891
|
+
# * 0.036
|
21900
21892
|
#
|
21901
|
-
# * 0
|
21893
|
+
# * 0.024
|
21902
21894
|
#
|
21903
|
-
# * 0
|
21895
|
+
# * 0.012
|
21904
21896
|
# @return [Types::PublicWorkforceTaskPrice]
|
21905
21897
|
#
|
21906
21898
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopConfig AWS API Documentation
|
@@ -24902,7 +24894,6 @@ module Aws::SageMaker
|
|
24902
24894
|
# * If using the console, `{"input":[1,1024,1024,3]}`
|
24903
24895
|
#
|
24904
24896
|
# * If using the CLI, `{"input":[1,1024,1024,3]}`
|
24905
|
-
#
|
24906
24897
|
# * Examples for two inputs:
|
24907
24898
|
#
|
24908
24899
|
# * If using the console, `{"data1": [1,28,28,1],
|
@@ -24910,7 +24901,6 @@ module Aws::SageMaker
|
|
24910
24901
|
#
|
24911
24902
|
# * If using the CLI, `{"data1": [1,28,28,1],
|
24912
24903
|
# "data2":[1,28,28,1]}`
|
24913
|
-
#
|
24914
24904
|
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
24915
24905
|
# expected data inputs using a dictionary format for your trained
|
24916
24906
|
# model. Note that while Keras model artifacts should be uploaded in
|
@@ -24923,7 +24913,6 @@ module Aws::SageMaker
|
|
24923
24913
|
# * If using the console, `{"input_1":[1,3,224,224]}`
|
24924
24914
|
#
|
24925
24915
|
# * If using the CLI, `{"input_1":[1,3,224,224]}`
|
24926
|
-
#
|
24927
24916
|
# * Examples for two inputs:
|
24928
24917
|
#
|
24929
24918
|
# * If using the console, `{"input_1": [1,3,224,224],
|
@@ -24931,7 +24920,6 @@ module Aws::SageMaker
|
|
24931
24920
|
#
|
24932
24921
|
# * If using the CLI, `{"input_1": [1,3,224,224],
|
24933
24922
|
# "input_2":[1,3,224,224]}`
|
24934
|
-
#
|
24935
24923
|
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
24936
24924
|
# format) of the expected data inputs in order using a dictionary
|
24937
24925
|
# format for your trained model. The dictionary formats required for
|
@@ -24942,7 +24930,6 @@ module Aws::SageMaker
|
|
24942
24930
|
# * If using the console, `{"data":[1,3,1024,1024]}`
|
24943
24931
|
#
|
24944
24932
|
# * If using the CLI, `{"data":[1,3,1024,1024]}`
|
24945
|
-
#
|
24946
24933
|
# * Examples for two inputs:
|
24947
24934
|
#
|
24948
24935
|
# * If using the console, `{"var1": [1,1,28,28],
|
@@ -24950,7 +24937,6 @@ module Aws::SageMaker
|
|
24950
24937
|
#
|
24951
24938
|
# * If using the CLI, `{"var1": [1,1,28,28],
|
24952
24939
|
# "var2":[1,1,28,28]}`
|
24953
|
-
#
|
24954
24940
|
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
24955
24941
|
# of expected data inputs in order using a dictionary format for
|
24956
24942
|
# your trained model or you can specify the shape only using a list
|
@@ -24963,7 +24949,6 @@ module Aws::SageMaker
|
|
24963
24949
|
# * If using the console, `{"input0":[1,3,224,224]}`
|
24964
24950
|
#
|
24965
24951
|
# * If using the CLI, `{"input0":[1,3,224,224]}`
|
24966
|
-
#
|
24967
24952
|
# * Example for one input in list format: `[[1,3,224,224]]`
|
24968
24953
|
#
|
24969
24954
|
# * Examples for two inputs in dictionary format:
|
@@ -24973,10 +24958,8 @@ module Aws::SageMaker
|
|
24973
24958
|
#
|
24974
24959
|
# * If using the CLI, `{"input0":[1,3,224,224],
|
24975
24960
|
# "input1":[1,3,224,224]} `
|
24976
|
-
#
|
24977
24961
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
24978
24962
|
# [1,3,224,224]]`
|
24979
|
-
#
|
24980
24963
|
# * `XGBOOST`: input data name and shape are not needed.
|
24981
24964
|
#
|
24982
24965
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
@@ -24995,7 +24978,6 @@ module Aws::SageMaker
|
|
24995
24978
|
# only on a select set of inputs. You can enumerate all supported
|
24996
24979
|
# input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
|
24997
24980
|
# 3], [1, 160, 160, 3]]}}`
|
24998
|
-
#
|
24999
24981
|
# * `default_shape`: Default input shape. You can set a default shape
|
25000
24982
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
25001
24983
|
# For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
|
@@ -25023,14 +25005,12 @@ module Aws::SageMaker
|
|
25023
25005
|
# [1,160,160,3]], "default_shape": [1,224,224,3]}}`
|
25024
25006
|
#
|
25025
25007
|
# ^
|
25026
|
-
#
|
25027
25008
|
# * Tensor type input without input name (PyTorch):
|
25028
25009
|
#
|
25029
25010
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25030
25011
|
# "default_shape": [1,3,224,224]}]`
|
25031
25012
|
#
|
25032
25013
|
# ^
|
25033
|
-
#
|
25034
25014
|
# * Image type input:
|
25035
25015
|
#
|
25036
25016
|
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
@@ -25039,7 +25019,6 @@ module Aws::SageMaker
|
|
25039
25019
|
#
|
25040
25020
|
# * `"CompilerOptions": {"class_labels":
|
25041
25021
|
# "imagenet_labels_1000.txt"}`
|
25042
|
-
#
|
25043
25022
|
# * Image type input without input name (PyTorch):
|
25044
25023
|
#
|
25045
25024
|
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
@@ -25061,7 +25040,6 @@ module Aws::SageMaker
|
|
25061
25040
|
# * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
|
25062
25041
|
#
|
25063
25042
|
# * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
|
25064
|
-
#
|
25065
25043
|
# * For TensorFlow models saved as a frozen graph, specify the input
|
25066
25044
|
# tensor names and shapes in `DataInputConfig` and the output tensor
|
25067
25045
|
# names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
|
@@ -35728,7 +35706,6 @@ module Aws::SageMaker
|
|
35728
35706
|
# * float32: Use either `"float"` or `"float32"`.
|
35729
35707
|
#
|
35730
35708
|
# * int64: Use either `"int64"` or `"long"`.
|
35731
|
-
#
|
35732
35709
|
# For example, `{"dtype" : "float32"}`.
|
35733
35710
|
#
|
35734
35711
|
# * `CPU`: Compilation for CPU supports the following compiler
|
@@ -35739,7 +35716,6 @@ module Aws::SageMaker
|
|
35739
35716
|
#
|
35740
35717
|
# * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
|
35741
35718
|
# '+vfpv4']}`
|
35742
|
-
#
|
35743
35719
|
# * `ARM`: Details of ARM CPU compilations.
|
35744
35720
|
#
|
35745
35721
|
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
@@ -35747,7 +35723,6 @@ module Aws::SageMaker
|
|
35747
35723
|
#
|
35748
35724
|
# For example, add `{'mattr': ['+neon']}` to the compiler options
|
35749
35725
|
# if compiling for ARM 32-bit platform with the NEON support.
|
35750
|
-
#
|
35751
35726
|
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
35752
35727
|
# compiler options.
|
35753
35728
|
#
|
@@ -35756,7 +35731,6 @@ module Aws::SageMaker
|
|
35756
35731
|
# * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
|
35757
35732
|
#
|
35758
35733
|
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
35759
|
-
#
|
35760
35734
|
# For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
35761
35735
|
# 'cuda-ver': '10.1'}`
|
35762
35736
|
#
|
@@ -35769,7 +35743,6 @@ module Aws::SageMaker
|
|
35769
35743
|
#
|
35770
35744
|
# * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
|
35771
35745
|
# compiling for ARM 32-bit platform with NEON support.
|
35772
|
-
#
|
35773
35746
|
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
35774
35747
|
# options passed in as a JSON string. For example,
|
35775
35748
|
# `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
|
@@ -38126,204 +38099,204 @@ module Aws::SageMaker
|
|
38126
38099
|
# US dollars and should be based on the complexity of the task; the
|
38127
38100
|
# longer it takes in your initial testing, the more you should offer.
|
38128
38101
|
#
|
38129
|
-
# * 0
|
38102
|
+
# * 0.036
|
38130
38103
|
#
|
38131
|
-
# * 0
|
38104
|
+
# * 0.048
|
38132
38105
|
#
|
38133
|
-
# * 0
|
38106
|
+
# * 0.060
|
38134
38107
|
#
|
38135
|
-
# * 0
|
38108
|
+
# * 0.072
|
38136
38109
|
#
|
38137
|
-
# * 0
|
38110
|
+
# * 0.120
|
38138
38111
|
#
|
38139
|
-
# * 0
|
38112
|
+
# * 0.240
|
38140
38113
|
#
|
38141
|
-
# * 0
|
38114
|
+
# * 0.360
|
38142
38115
|
#
|
38143
|
-
# * 0
|
38116
|
+
# * 0.480
|
38144
38117
|
#
|
38145
|
-
# * 0
|
38118
|
+
# * 0.600
|
38146
38119
|
#
|
38147
|
-
# * 0
|
38120
|
+
# * 0.720
|
38148
38121
|
#
|
38149
|
-
# * 0
|
38122
|
+
# * 0.840
|
38150
38123
|
#
|
38151
|
-
# * 0
|
38124
|
+
# * 0.960
|
38152
38125
|
#
|
38153
|
-
# * 1
|
38126
|
+
# * 1.080
|
38154
38127
|
#
|
38155
|
-
# * 1
|
38128
|
+
# * 1.200
|
38156
38129
|
#
|
38157
38130
|
# Use one of the following prices for image classification, text
|
38158
38131
|
# classification, and custom tasks. Prices are in US dollars.
|
38159
38132
|
#
|
38160
|
-
# * 0
|
38133
|
+
# * 0.012
|
38161
38134
|
#
|
38162
|
-
# * 0
|
38135
|
+
# * 0.024
|
38163
38136
|
#
|
38164
|
-
# * 0
|
38137
|
+
# * 0.036
|
38165
38138
|
#
|
38166
|
-
# * 0
|
38139
|
+
# * 0.048
|
38167
38140
|
#
|
38168
|
-
# * 0
|
38141
|
+
# * 0.060
|
38169
38142
|
#
|
38170
|
-
# * 0
|
38143
|
+
# * 0.072
|
38171
38144
|
#
|
38172
|
-
# * 0
|
38145
|
+
# * 0.120
|
38173
38146
|
#
|
38174
|
-
# * 0
|
38147
|
+
# * 0.240
|
38175
38148
|
#
|
38176
|
-
# * 0
|
38149
|
+
# * 0.360
|
38177
38150
|
#
|
38178
|
-
# * 0
|
38151
|
+
# * 0.480
|
38179
38152
|
#
|
38180
|
-
# * 0
|
38153
|
+
# * 0.600
|
38181
38154
|
#
|
38182
|
-
# * 0
|
38155
|
+
# * 0.720
|
38183
38156
|
#
|
38184
|
-
# * 0
|
38157
|
+
# * 0.840
|
38185
38158
|
#
|
38186
|
-
# * 0
|
38159
|
+
# * 0.960
|
38187
38160
|
#
|
38188
|
-
# * 1
|
38161
|
+
# * 1.080
|
38189
38162
|
#
|
38190
|
-
# * 1
|
38163
|
+
# * 1.200
|
38191
38164
|
#
|
38192
38165
|
# Use one of the following prices for semantic segmentation tasks.
|
38193
38166
|
# Prices are in US dollars.
|
38194
38167
|
#
|
38195
|
-
# * 0
|
38168
|
+
# * 0.840
|
38196
38169
|
#
|
38197
|
-
# * 0
|
38170
|
+
# * 0.960
|
38198
38171
|
#
|
38199
|
-
# * 1
|
38172
|
+
# * 1.080
|
38200
38173
|
#
|
38201
|
-
# * 1
|
38174
|
+
# * 1.200
|
38202
38175
|
#
|
38203
38176
|
# Use one of the following prices for Textract AnalyzeDocument Important
|
38204
38177
|
# Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
|
38205
38178
|
#
|
38206
|
-
# * 2
|
38179
|
+
# * 2.400
|
38207
38180
|
#
|
38208
|
-
# * 2
|
38181
|
+
# * 2.280
|
38209
38182
|
#
|
38210
|
-
# * 2
|
38183
|
+
# * 2.160
|
38211
38184
|
#
|
38212
|
-
# * 2
|
38185
|
+
# * 2.040
|
38213
38186
|
#
|
38214
|
-
# * 1
|
38187
|
+
# * 1.920
|
38215
38188
|
#
|
38216
|
-
# * 1
|
38189
|
+
# * 1.800
|
38217
38190
|
#
|
38218
|
-
# * 1
|
38191
|
+
# * 1.680
|
38219
38192
|
#
|
38220
|
-
# * 1
|
38193
|
+
# * 1.560
|
38221
38194
|
#
|
38222
|
-
# * 1
|
38195
|
+
# * 1.440
|
38223
38196
|
#
|
38224
|
-
# * 1
|
38197
|
+
# * 1.320
|
38225
38198
|
#
|
38226
|
-
# * 1
|
38199
|
+
# * 1.200
|
38227
38200
|
#
|
38228
|
-
# * 1
|
38201
|
+
# * 1.080
|
38229
38202
|
#
|
38230
|
-
# * 0
|
38203
|
+
# * 0.960
|
38231
38204
|
#
|
38232
|
-
# * 0
|
38205
|
+
# * 0.840
|
38233
38206
|
#
|
38234
|
-
# * 0
|
38207
|
+
# * 0.720
|
38235
38208
|
#
|
38236
|
-
# * 0
|
38209
|
+
# * 0.600
|
38237
38210
|
#
|
38238
|
-
# * 0
|
38211
|
+
# * 0.480
|
38239
38212
|
#
|
38240
|
-
# * 0
|
38213
|
+
# * 0.360
|
38241
38214
|
#
|
38242
|
-
# * 0
|
38215
|
+
# * 0.240
|
38243
38216
|
#
|
38244
|
-
# * 0
|
38217
|
+
# * 0.120
|
38245
38218
|
#
|
38246
|
-
# * 0
|
38219
|
+
# * 0.072
|
38247
38220
|
#
|
38248
|
-
# * 0
|
38221
|
+
# * 0.060
|
38249
38222
|
#
|
38250
|
-
# * 0
|
38223
|
+
# * 0.048
|
38251
38224
|
#
|
38252
|
-
# * 0
|
38225
|
+
# * 0.036
|
38253
38226
|
#
|
38254
|
-
# * 0
|
38227
|
+
# * 0.024
|
38255
38228
|
#
|
38256
|
-
# * 0
|
38229
|
+
# * 0.012
|
38257
38230
|
#
|
38258
38231
|
# Use one of the following prices for Rekognition DetectModerationLabels
|
38259
38232
|
# Amazon Augmented AI review tasks. Prices are in US dollars.
|
38260
38233
|
#
|
38261
|
-
# * 1
|
38234
|
+
# * 1.200
|
38262
38235
|
#
|
38263
|
-
# * 1
|
38236
|
+
# * 1.080
|
38264
38237
|
#
|
38265
|
-
# * 0
|
38238
|
+
# * 0.960
|
38266
38239
|
#
|
38267
|
-
# * 0
|
38240
|
+
# * 0.840
|
38268
38241
|
#
|
38269
|
-
# * 0
|
38242
|
+
# * 0.720
|
38270
38243
|
#
|
38271
|
-
# * 0
|
38244
|
+
# * 0.600
|
38272
38245
|
#
|
38273
|
-
# * 0
|
38246
|
+
# * 0.480
|
38274
38247
|
#
|
38275
|
-
# * 0
|
38248
|
+
# * 0.360
|
38276
38249
|
#
|
38277
|
-
# * 0
|
38250
|
+
# * 0.240
|
38278
38251
|
#
|
38279
|
-
# * 0
|
38252
|
+
# * 0.120
|
38280
38253
|
#
|
38281
|
-
# * 0
|
38254
|
+
# * 0.072
|
38282
38255
|
#
|
38283
|
-
# * 0
|
38256
|
+
# * 0.060
|
38284
38257
|
#
|
38285
|
-
# * 0
|
38258
|
+
# * 0.048
|
38286
38259
|
#
|
38287
|
-
# * 0
|
38260
|
+
# * 0.036
|
38288
38261
|
#
|
38289
|
-
# * 0
|
38262
|
+
# * 0.024
|
38290
38263
|
#
|
38291
|
-
# * 0
|
38264
|
+
# * 0.012
|
38292
38265
|
#
|
38293
38266
|
# Use one of the following prices for Amazon Augmented AI custom human
|
38294
38267
|
# review tasks. Prices are in US dollars.
|
38295
38268
|
#
|
38296
|
-
# * 1
|
38269
|
+
# * 1.200
|
38297
38270
|
#
|
38298
|
-
# * 1
|
38271
|
+
# * 1.080
|
38299
38272
|
#
|
38300
|
-
# * 0
|
38273
|
+
# * 0.960
|
38301
38274
|
#
|
38302
|
-
# * 0
|
38275
|
+
# * 0.840
|
38303
38276
|
#
|
38304
|
-
# * 0
|
38277
|
+
# * 0.720
|
38305
38278
|
#
|
38306
|
-
# * 0
|
38279
|
+
# * 0.600
|
38307
38280
|
#
|
38308
|
-
# * 0
|
38281
|
+
# * 0.480
|
38309
38282
|
#
|
38310
|
-
# * 0
|
38283
|
+
# * 0.360
|
38311
38284
|
#
|
38312
|
-
# * 0
|
38285
|
+
# * 0.240
|
38313
38286
|
#
|
38314
|
-
# * 0
|
38287
|
+
# * 0.120
|
38315
38288
|
#
|
38316
|
-
# * 0
|
38289
|
+
# * 0.072
|
38317
38290
|
#
|
38318
|
-
# * 0
|
38291
|
+
# * 0.060
|
38319
38292
|
#
|
38320
|
-
# * 0
|
38293
|
+
# * 0.048
|
38321
38294
|
#
|
38322
|
-
# * 0
|
38295
|
+
# * 0.036
|
38323
38296
|
#
|
38324
|
-
# * 0
|
38297
|
+
# * 0.024
|
38325
38298
|
#
|
38326
|
-
# * 0
|
38299
|
+
# * 0.012
|
38327
38300
|
#
|
38328
38301
|
# @!attribute [rw] amount_in_usd
|
38329
38302
|
# Defines the amount of money paid to an Amazon Mechanical Turk worker
|
@@ -40089,7 +40062,6 @@ module Aws::SageMaker
|
|
40089
40062
|
# * A single dot (`.`)
|
40090
40063
|
#
|
40091
40064
|
# * A double dot (`..`)
|
40092
|
-
#
|
40093
40065
|
# * Ambiguous file names will result in model deployment failure. For
|
40094
40066
|
# example, if your uncompressed ML model consists of two S3 objects
|
40095
40067
|
# `s3://mybucket/model/weights` and
|