aws-sdk-sagemaker 1.272.0 → 1.274.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -1916,13 +1916,13 @@ module Aws::SageMaker
1916
1916
  # the input data source to run an Autopilot job. You can input
1917
1917
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
1918
1918
  #
1919
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
1919
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
1920
1920
  #
1921
1921
  # You can also specify the data type of the feature (optional) in the
1922
1922
  # format shown below:
1923
1923
  #
1924
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
1925
- # \} \}`
1924
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
1925
+ # }`
1926
1926
  #
1927
1927
  # <note markdown="1"> These column keys may not include the target column.
1928
1928
  #
@@ -2740,8 +2740,8 @@ module Aws::SageMaker
2740
2740
  #
2741
2741
  # A `ManifestFile` should have the format shown below:
2742
2742
  #
2743
- # `[ \{"prefix":
2744
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2743
+ # `[ {"prefix":
2744
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
2745
2745
  # `
2746
2746
  #
2747
2747
  # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
@@ -2759,10 +2759,10 @@ module Aws::SageMaker
2759
2759
  # Here is a minimal, single-record example of an
2760
2760
  # `AugmentedManifestFile`:
2761
2761
  #
2762
- # `\{"source-ref":
2762
+ # `{"source-ref":
2763
2763
  # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2764
2764
  #
2765
- # `"label-metadata": \{"class-name": "cat"` \\}
2765
+ # `"label-metadata": {"class-name": "cat"` }
2766
2766
  #
2767
2767
  # For more information on `AugmentedManifestFile`, see [Provide
2768
2768
  # Dataset Metadata to Training Jobs with an Augmented Manifest
@@ -3862,14 +3862,14 @@ module Aws::SageMaker
3862
3862
  # model container input in JSON Lines format. For example, if
3863
3863
  # `FeaturesAttribute` is the JMESPath expression `'myfeatures'`, it
3864
3864
  # extracts a list of features `[1,2,3]` from request data
3865
- # `'\{"myfeatures":[1,2,3]\}'`.
3865
+ # `'{"myfeatures":[1,2,3]}'`.
3866
3866
  # @return [String]
3867
3867
  #
3868
3868
  # @!attribute [rw] content_template
3869
3869
  # A template string used to format a JSON record into an acceptable
3870
3870
  # model container input. For example, a `ContentTemplate` string
3871
- # `'\{"myfeatures":$features\}'` will format a list of features
3872
- # `[1,2,3]` into the record string `'\{"myfeatures":[1,2,3]\}'`.
3871
+ # `'{"myfeatures":$features}'` will format a list of features
3872
+ # `[1,2,3]` into the record string `'{"myfeatures":[1,2,3]}'`.
3873
3873
  # Required only when the model container input is in JSON Lines
3874
3874
  # format.
3875
3875
  # @return [String]
@@ -3930,7 +3930,7 @@ module Aws::SageMaker
3930
3930
  # Lines format.
3931
3931
  #
3932
3932
  # **Example**: If the model container output of a single request is
3933
- # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3933
+ # `'{"predicted_label":1,"probability":0.6}'`, then set
3934
3934
  # `ProbabilityAttribute` to `'probability'`.
3935
3935
  # @return [String]
3936
3936
  #
@@ -3939,7 +3939,7 @@ module Aws::SageMaker
3939
3939
  # the model container output.
3940
3940
  #
3941
3941
  # **Example**: If the model container output of a batch request is
3942
- # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3942
+ # `'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'`,
3943
3943
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3944
3944
  # headers `["cat","dog","fish"]`
3945
3945
  # @return [String]
@@ -6208,7 +6208,7 @@ module Aws::SageMaker
6208
6208
  # @!attribute [rw] enable_iot_role_alias
6209
6209
  # Whether to create an Amazon Web Services IoT Role Alias during
6210
6210
  # device fleet creation. The name of the role alias generated will
6211
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
6211
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
6212
6212
  #
6213
6213
  # For example, if your device fleet is called "demo-fleet", the name
6214
6214
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -7793,8 +7793,8 @@ module Aws::SageMaker
7793
7793
  # For named entity recognition jobs, in addition to `"labels"`, you
7794
7794
  # must provide worker instructions in the label category configuration
7795
7795
  # file using the `"instructions"` parameter: `"instructions":
7796
- # \{"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7797
- # "fullInstruction":"<p>Add additional instructions.</p>"\}`. For
7796
+ # {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7797
+ # "fullInstruction":"<p>Add additional instructions.</p>"}`. For
7798
7798
  # details and an example, see [Create a Named Entity Recognition
7799
7799
  # Labeling Job (API) ][2].
7800
7800
  #
@@ -7803,14 +7803,14 @@ module Aws::SageMaker
7803
7803
  # following format. Identify the labels you want to use by replacing
7804
7804
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
7805
7805
  #
7806
- # `\{ `
7806
+ # `{ `
7807
7807
  #
7808
7808
  # `"document-version": "2018-11-28",`
7809
7809
  #
7810
- # `"labels": [\{"label": "label_1"\},\{"label":
7811
- # "label_2"\},...\{"label": "label_n"\}]`
7810
+ # `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
7811
+ # "label_n"}]`
7812
7812
  #
7813
- # `\}`
7813
+ # `}`
7814
7814
  #
7815
7815
  # Note the following about the label category configuration file:
7816
7816
  #
@@ -15463,35 +15463,35 @@ module Aws::SageMaker
15463
15463
  #
15464
15464
  # The file is a JSON structure in the following format:
15465
15465
  #
15466
- # `\{`
15466
+ # `{`
15467
15467
  #
15468
15468
  # ` "document-version": "2018-11-28"`
15469
15469
  #
15470
15470
  # ` "labels": [`
15471
15471
  #
15472
- # ` \{`
15472
+ # ` {`
15473
15473
  #
15474
15474
  # ` "label": "label 1"`
15475
15475
  #
15476
- # ` \},`
15476
+ # ` },`
15477
15477
  #
15478
- # ` \{`
15478
+ # ` {`
15479
15479
  #
15480
15480
  # ` "label": "label 2"`
15481
15481
  #
15482
- # ` \},`
15482
+ # ` },`
15483
15483
  #
15484
15484
  # ` ...`
15485
15485
  #
15486
- # ` \{`
15486
+ # ` {`
15487
15487
  #
15488
15488
  # ` "label": "label n"`
15489
15489
  #
15490
- # ` \}`
15490
+ # ` }`
15491
15491
  #
15492
15492
  # ` ]`
15493
15493
  #
15494
- # `\}`
15494
+ # `}`
15495
15495
  # @return [String]
15496
15496
  #
15497
15497
  # @!attribute [rw] stopping_conditions
@@ -20755,7 +20755,7 @@ module Aws::SageMaker
20755
20755
  # the following filter searches for training jobs with an `"accuracy"`
20756
20756
  # metric greater than `"0.9"`:
20757
20757
  #
20758
- # `\{`
20758
+ # `{`
20759
20759
  #
20760
20760
  # `"Name": "Metrics.accuracy",`
20761
20761
  #
@@ -20763,7 +20763,7 @@ module Aws::SageMaker
20763
20763
  #
20764
20764
  # `"Value": "0.9"`
20765
20765
  #
20766
- # `\}`
20766
+ # `}`
20767
20767
  #
20768
20768
  # HyperParameters
20769
20769
  #
@@ -20775,7 +20775,7 @@ module Aws::SageMaker
20775
20775
  # the following filter is satisfied by training jobs with a
20776
20776
  # `"learning_rate"` hyperparameter that is less than `"0.5"`:
20777
20777
  #
20778
- # ` \{`
20778
+ # ` {`
20779
20779
  #
20780
20780
  # ` "Name": "HyperParameters.learning_rate",`
20781
20781
  #
@@ -20783,7 +20783,7 @@ module Aws::SageMaker
20783
20783
  #
20784
20784
  # ` "Value": "0.5"`
20785
20785
  #
20786
- # ` \}`
20786
+ # ` }`
20787
20787
  #
20788
20788
  # Tags
20789
20789
  #
@@ -21345,7 +21345,7 @@ module Aws::SageMaker
21345
21345
  # repository. The secret must have a staging label of `AWSCURRENT` and
21346
21346
  # must be in the following format:
21347
21347
  #
21348
- # `\{"username": UserName, "password": Password\}`
21348
+ # `{"username": UserName, "password": Password}`
21349
21349
  # @return [String]
21350
21350
  #
21351
21351
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfig AWS API Documentation
@@ -21367,7 +21367,7 @@ module Aws::SageMaker
21367
21367
  # repository. The secret must have a staging label of `AWSCURRENT` and
21368
21368
  # must be in the following format:
21369
21369
  #
21370
- # `\{"username": UserName, "password": Password\}`
21370
+ # `{"username": UserName, "password": Password}`
21371
21371
  # @return [String]
21372
21372
  #
21373
21373
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfigForUpdate AWS API Documentation
@@ -24899,17 +24899,17 @@ module Aws::SageMaker
24899
24899
  #
24900
24900
  # * Examples for one input:
24901
24901
  #
24902
- # * If using the console, `\{"input":[1,1024,1024,3]\}`
24902
+ # * If using the console, `{"input":[1,1024,1024,3]}`
24903
24903
  #
24904
- # * If using the CLI, `\{"input":[1,1024,1024,3]\}`
24904
+ # * If using the CLI, `{"input":[1,1024,1024,3]}`
24905
24905
  #
24906
24906
  # * Examples for two inputs:
24907
24907
  #
24908
- # * If using the console, `\{"data1": [1,28,28,1],
24909
- # "data2":[1,28,28,1]\}`
24908
+ # * If using the console, `{"data1": [1,28,28,1],
24909
+ # "data2":[1,28,28,1]}`
24910
24910
  #
24911
- # * If using the CLI, `\{"data1": [1,28,28,1],
24912
- # "data2":[1,28,28,1]\}`
24911
+ # * If using the CLI, `{"data1": [1,28,28,1],
24912
+ # "data2":[1,28,28,1]}`
24913
24913
  #
24914
24914
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24915
24915
  # expected data inputs using a dictionary format for your trained
@@ -24920,17 +24920,17 @@ module Aws::SageMaker
24920
24920
  #
24921
24921
  # * Examples for one input:
24922
24922
  #
24923
- # * If using the console, `\{"input_1":[1,3,224,224]\}`
24923
+ # * If using the console, `{"input_1":[1,3,224,224]}`
24924
24924
  #
24925
- # * If using the CLI, `\{"input_1":[1,3,224,224]\}`
24925
+ # * If using the CLI, `{"input_1":[1,3,224,224]}`
24926
24926
  #
24927
24927
  # * Examples for two inputs:
24928
24928
  #
24929
- # * If using the console, `\{"input_1": [1,3,224,224],
24930
- # "input_2":[1,3,224,224]\} `
24929
+ # * If using the console, `{"input_1": [1,3,224,224],
24930
+ # "input_2":[1,3,224,224]} `
24931
24931
  #
24932
- # * If using the CLI, `\{"input_1": [1,3,224,224],
24933
- # "input_2":[1,3,224,224]\}`
24932
+ # * If using the CLI, `{"input_1": [1,3,224,224],
24933
+ # "input_2":[1,3,224,224]}`
24934
24934
  #
24935
24935
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24936
24936
  # format) of the expected data inputs in order using a dictionary
@@ -24939,17 +24939,17 @@ module Aws::SageMaker
24939
24939
  #
24940
24940
  # * Examples for one input:
24941
24941
  #
24942
- # * If using the console, `\{"data":[1,3,1024,1024]\}`
24942
+ # * If using the console, `{"data":[1,3,1024,1024]}`
24943
24943
  #
24944
- # * If using the CLI, `\{"data":[1,3,1024,1024]\}`
24944
+ # * If using the CLI, `{"data":[1,3,1024,1024]}`
24945
24945
  #
24946
24946
  # * Examples for two inputs:
24947
24947
  #
24948
- # * If using the console, `\{"var1": [1,1,28,28],
24949
- # "var2":[1,1,28,28]\} `
24948
+ # * If using the console, `{"var1": [1,1,28,28],
24949
+ # "var2":[1,1,28,28]} `
24950
24950
  #
24951
- # * If using the CLI, `\{"var1": [1,1,28,28],
24952
- # "var2":[1,1,28,28]\}`
24951
+ # * If using the CLI, `{"var1": [1,1,28,28],
24952
+ # "var2":[1,1,28,28]}`
24953
24953
  #
24954
24954
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24955
24955
  # of expected data inputs in order using a dictionary format for
@@ -24960,19 +24960,19 @@ module Aws::SageMaker
24960
24960
  #
24961
24961
  # * Examples for one input in dictionary format:
24962
24962
  #
24963
- # * If using the console, `\{"input0":[1,3,224,224]\}`
24963
+ # * If using the console, `{"input0":[1,3,224,224]}`
24964
24964
  #
24965
- # * If using the CLI, `\{"input0":[1,3,224,224]\}`
24965
+ # * If using the CLI, `{"input0":[1,3,224,224]}`
24966
24966
  #
24967
24967
  # * Example for one input in list format: `[[1,3,224,224]]`
24968
24968
  #
24969
24969
  # * Examples for two inputs in dictionary format:
24970
24970
  #
24971
- # * If using the console, `\{"input0":[1,3,224,224],
24972
- # "input1":[1,3,224,224]\}`
24971
+ # * If using the console, `{"input0":[1,3,224,224],
24972
+ # "input1":[1,3,224,224]}`
24973
24973
  #
24974
- # * If using the CLI, `\{"input0":[1,3,224,224],
24975
- # "input1":[1,3,224,224]\} `
24974
+ # * If using the CLI, `{"input0":[1,3,224,224],
24975
+ # "input1":[1,3,224,224]} `
24976
24976
  #
24977
24977
  # * Example for two inputs in list format: `[[1,3,224,224],
24978
24978
  # [1,3,224,224]]`
@@ -24982,24 +24982,24 @@ module Aws::SageMaker
24982
24982
  # `DataInputConfig` supports the following parameters for `CoreML`
24983
24983
  # `TargetDevice` (ML Model format):
24984
24984
  #
24985
- # * `shape`: Input shape, for example `\{"input_1": \{"shape":
24986
- # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
24985
+ # * `shape`: Input shape, for example `{"input_1": {"shape":
24986
+ # [1,224,224,3]}}`. In addition to static input shapes, CoreML
24987
24987
  # converter supports Flexible input shapes:
24988
24988
  #
24989
24989
  # * Range Dimension. You can use the Range Dimension feature if you
24990
24990
  # know the input shape will be within some specific interval in
24991
- # that dimension, for example: `\{"input_1": \{"shape": ["1..10",
24992
- # 224, 224, 3]\}\}`
24991
+ # that dimension, for example: `{"input_1": {"shape": ["1..10",
24992
+ # 224, 224, 3]}}`
24993
24993
  #
24994
24994
  # * Enumerated shapes. Sometimes, the models are trained to work
24995
24995
  # only on a select set of inputs. You can enumerate all supported
24996
- # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
24997
- # 224, 3], [1, 160, 160, 3]]\}\}`
24996
+ # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
+ # 3], [1, 160, 160, 3]]}}`
24998
24998
  #
24999
24999
  # * `default_shape`: Default input shape. You can set a default shape
25000
25000
  # during conversion for both Range Dimension and Enumerated Shapes.
25001
- # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
25002
- # "default_shape": [1, 224, 224, 3]\}\}`
25001
+ # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
25002
+ # "default_shape": [1, 224, 224, 3]}}`
25003
25003
  #
25004
25004
  # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
25005
25005
  # default, the converter generates an ML Model with inputs of type
@@ -25019,35 +25019,35 @@ module Aws::SageMaker
25019
25019
  #
25020
25020
  # * Tensor type input:
25021
25021
  #
25022
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
25023
- # [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
25022
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
25023
+ # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
25024
25024
  #
25025
25025
  # ^
25026
25026
  #
25027
25027
  # * Tensor type input without input name (PyTorch):
25028
25028
  #
25029
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
25030
- # "default_shape": [1,3,224,224]\}]`
25029
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
+ # "default_shape": [1,3,224,224]}]`
25031
25031
  #
25032
25032
  # ^
25033
25033
  #
25034
25034
  # * Image type input:
25035
25035
  #
25036
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
25036
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
25037
25037
  # [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
25038
- # "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
25038
+ # "bias": [-1,-1,-1], "scale": 0.007843137255}}`
25039
25039
  #
25040
- # * `"CompilerOptions": \{"class_labels":
25041
- # "imagenet_labels_1000.txt"\}`
25040
+ # * `"CompilerOptions": {"class_labels":
25041
+ # "imagenet_labels_1000.txt"}`
25042
25042
  #
25043
25043
  # * Image type input without input name (PyTorch):
25044
25044
  #
25045
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
25045
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25046
25046
  # "default_shape": [1,3,224,224], "type": "Image", "bias":
25047
- # [-1,-1,-1], "scale": 0.007843137255\}]`
25047
+ # [-1,-1,-1], "scale": 0.007843137255}]`
25048
25048
  #
25049
- # * `"CompilerOptions": \{"class_labels":
25050
- # "imagenet_labels_1000.txt"\}`
25049
+ # * `"CompilerOptions": {"class_labels":
25050
+ # "imagenet_labels_1000.txt"}`
25051
25051
  #
25052
25052
  # Depending on the model format, `DataInputConfig` requires the
25053
25053
  # following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
@@ -25058,18 +25058,18 @@ module Aws::SageMaker
25058
25058
  # `OutputConfig:CompilerOptions` ][3] if the model does not use
25059
25059
  # TensorFlow's default signature def key. For example:
25060
25060
  #
25061
- # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
25061
+ # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
25062
25062
  #
25063
- # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
25063
+ # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
25064
25064
  #
25065
25065
  # * For TensorFlow models saved as a frozen graph, specify the input
25066
25066
  # tensor names and shapes in `DataInputConfig` and the output tensor
25067
25067
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
25068
25068
  # For example:
25069
25069
  #
25070
- # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
25070
+ # * `"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}`
25071
25071
  #
25072
- # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
25072
+ # * `"CompilerOptions": {"output_names": ["output_tensor:0"]}`
25073
25073
  #
25074
25074
  #
25075
25075
  #
@@ -34800,11 +34800,11 @@ module Aws::SageMaker
34800
34800
  # with a specific channel name and `S3Uri` prefix, define the following
34801
34801
  # filters:
34802
34802
  #
34803
- # * `'\{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34804
- # "Value":"train"\}',`
34803
+ # * `'{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34804
+ # "Value":"train"}',`
34805
34805
  #
34806
- # * `'\{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34807
- # "Operator":"Contains", "Value":"mybucket/catdata"\}'`
34806
+ # * `'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34807
+ # "Operator":"Contains", "Value":"mybucket/catdata"}'`
34808
34808
  #
34809
34809
  #
34810
34810
  #
@@ -35677,42 +35677,41 @@ module Aws::SageMaker
35677
35677
  #
35678
35678
  # * Raspberry Pi 3 Model B+
35679
35679
  #
35680
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
35680
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},`
35681
35681
  #
35682
- # ` "CompilerOptions": \{'mattr': ['+neon']\}`
35682
+ # ` "CompilerOptions": {'mattr': ['+neon']}`
35683
35683
  #
35684
35684
  # * Jetson TX2
35685
35685
  #
35686
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35687
- # "Accelerator": "NVIDIA"\},`
35686
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35687
+ # "NVIDIA"},`
35688
35688
  #
35689
- # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35690
- # 'cuda-ver': '10.0'\}`
35689
+ # ` "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35690
+ # 'cuda-ver': '10.0'}`
35691
35691
  #
35692
35692
  # * EC2 m5.2xlarge instance OS
35693
35693
  #
35694
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
35695
- # "Accelerator": "NVIDIA"\},`
35694
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
35695
+ # "Accelerator": "NVIDIA"},`
35696
35696
  #
35697
- # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
35697
+ # ` "CompilerOptions": {'mcpu': 'skylake-avx512'}`
35698
35698
  #
35699
35699
  # * RK3399
35700
35700
  #
35701
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35702
- # "Accelerator": "MALI"\}`
35701
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35702
+ # "MALI"}`
35703
35703
  #
35704
35704
  # * ARMv7 phone (CPU)
35705
35705
  #
35706
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
35706
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},`
35707
35707
  #
35708
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
35709
- # ['+neon']\}`
35708
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}`
35710
35709
  #
35711
35710
  # * ARMv8 phone (CPU)
35712
35711
  #
35713
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
35712
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},`
35714
35713
  #
35715
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
35714
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 29}`
35716
35715
  # @return [Types::TargetPlatform]
35717
35716
  #
35718
35717
  # @!attribute [rw] compiler_options
@@ -35730,25 +35729,24 @@ module Aws::SageMaker
35730
35729
  #
35731
35730
  # * int64: Use either `"int64"` or `"long"`.
35732
35731
  #
35733
- # For example, `\{"dtype" : "float32"\}`.
35732
+ # For example, `{"dtype" : "float32"}`.
35734
35733
  #
35735
35734
  # * `CPU`: Compilation for CPU supports the following compiler
35736
35735
  # options.
35737
35736
  #
35738
- # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
35739
- # 'skylake-avx512'\}`
35737
+ # * `mcpu`: CPU micro-architecture. For example, `{'mcpu':
35738
+ # 'skylake-avx512'}`
35740
35739
  #
35741
- # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
35742
- # '+vfpv4']\}`
35740
+ # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
+ # '+vfpv4']}`
35743
35742
  #
35744
35743
  # * `ARM`: Details of ARM CPU compilations.
35745
35744
  #
35746
35745
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
35747
35746
  # used in ARMv7 processors.
35748
35747
  #
35749
- # For example, add `\{'mattr': ['+neon']\}` to the compiler
35750
- # options if compiling for ARM 32-bit platform with the NEON
35751
- # support.
35748
+ # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
+ # if compiling for ARM 32-bit platform with the NEON support.
35752
35750
  #
35753
35751
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35754
35752
  # compiler options.
@@ -35759,17 +35757,17 @@ module Aws::SageMaker
35759
35757
  #
35760
35758
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35761
35759
  #
35762
- # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35763
- # 'cuda-ver': '10.1'\}`
35760
+ # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
+ # 'cuda-ver': '10.1'}`
35764
35762
  #
35765
35763
  # * `ANDROID`: Compilation for the Android OS supports the following
35766
35764
  # compiler options:
35767
35765
  #
35768
35766
  # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
35769
- # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
35770
- # 28\}`.
35767
+ # levels range from 21 to 29. For example, `{'ANDROID_PLATFORM':
35768
+ # 28}`.
35771
35769
  #
35772
- # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
35770
+ # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35773
35771
  # compiling for ARM 32-bit platform with NEON support.
35774
35772
  #
35775
35773
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
@@ -35783,8 +35781,8 @@ module Aws::SageMaker
35783
35781
  # `TargetDevice` supports the following compiler options:
35784
35782
  #
35785
35783
  # * `class_labels`: Specifies the classification labels file name
35786
- # inside input tar.gz file. For example, `\{"class_labels":
35787
- # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
35784
+ # inside input tar.gz file. For example, `{"class_labels":
35785
+ # "imagenet_labels_1000.txt"}`. Labels inside the txt file should
35788
35786
  # be separated by newlines.
35789
35787
  #
35790
35788
  # ^
@@ -39950,7 +39948,7 @@ module Aws::SageMaker
39950
39948
  #
39951
39949
  # The following code example shows a valid manifest format:
39952
39950
  #
39953
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
39951
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
39954
39952
  #
39955
39953
  # ` "relative/path/to/custdata-1",`
39956
39954
  #
@@ -42102,13 +42100,13 @@ module Aws::SageMaker
42102
42100
  # the input data source to run an Autopilot job V2. You can input
42103
42101
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
42104
42102
  #
42105
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42103
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42106
42104
  #
42107
42105
  # You can also specify the data type of the feature (optional) in the
42108
42106
  # format shown below:
42109
42107
  #
42110
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42111
- # \} \}`
42108
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42109
+ # }`
42112
42110
  #
42113
42111
  # <note markdown="1"> These column keys may not include the target column.
42114
42112
  #
@@ -42296,7 +42294,7 @@ module Aws::SageMaker
42296
42294
  #
42297
42295
  # * `ANDROID`: Android operating systems. Android API level can be
42298
42296
  # specified using the `ANDROID_PLATFORM` compiler option. For
42299
- # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
42297
+ # example, `"CompilerOptions": {'ANDROID_PLATFORM': 28}`
42300
42298
  # @return [String]
42301
42299
  #
42302
42300
  # @!attribute [rw] arch
@@ -42487,8 +42485,8 @@ module Aws::SageMaker
42487
42485
  #
42488
42486
  # Here is an example where all four hyperparameters are configured.
42489
42487
  #
42490
- # `\{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42491
- # "learningRateWarmupSteps": "10" \}`
42488
+ # `{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42489
+ # "learningRateWarmupSteps": "10" }`
42492
42490
  #
42493
42491
  #
42494
42492
  #
@@ -42723,13 +42721,13 @@ module Aws::SageMaker
42723
42721
  # You can input `FeatureAttributeNames` (optional) in JSON format as
42724
42722
  # shown below:
42725
42723
  #
42726
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42724
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42727
42725
  #
42728
42726
  # You can also specify the data type of the feature (optional) in the
42729
42727
  # format shown below:
42730
42728
  #
42731
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42732
- # \} \}`
42729
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42730
+ # }`
42733
42731
  #
42734
42732
  # Autopilot supports the following data types: `numeric`,
42735
42733
  # `categorical`, `text`, and `datetime`.
@@ -44252,7 +44250,7 @@ module Aws::SageMaker
44252
44250
  # The manifest is an S3 object which is a JSON file with the
44253
44251
  # following format:
44254
44252
  #
44255
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
44253
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
44256
44254
  #
44257
44255
  # `"relative/path/to/custdata-1",`
44258
44256
  #
@@ -45281,7 +45279,7 @@ module Aws::SageMaker
45281
45279
  # repository. The secret must have a staging label of `AWSCURRENT` and
45282
45280
  # must be in the following format:
45283
45281
  #
45284
- # `\{"username": UserName, "password": Password\}`
45282
+ # `{"username": UserName, "password": Password}`
45285
45283
  # @return [Types::GitConfigForUpdate]
45286
45284
  #
45287
45285
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateCodeRepositoryInput AWS API Documentation
@@ -45363,7 +45361,7 @@ module Aws::SageMaker
45363
45361
  # @!attribute [rw] enable_iot_role_alias
45364
45362
  # Whether to create an Amazon Web Services IoT Role Alias during
45365
45363
  # device fleet creation. The name of the role alias generated will
45366
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
45364
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
45367
45365
  #
45368
45366
  # For example, if your device fleet is called "demo-fleet", the name
45369
45367
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -55,7 +55,7 @@ module Aws::SageMaker
55
55
  autoload :EndpointProvider, 'aws-sdk-sagemaker/endpoint_provider'
56
56
  autoload :Endpoints, 'aws-sdk-sagemaker/endpoints'
57
57
 
58
- GEM_VERSION = '1.272.0'
58
+ GEM_VERSION = '1.274.0'
59
59
 
60
60
  end
61
61