aws-sdk-sagemaker 1.272.0 → 1.273.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +13 -13
- data/lib/aws-sdk-sagemaker/types.rb +127 -129
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 9ff30ce7a59c166a8ad213700ae78bbb6ea0d4f8f9171ab7fca8c004c95a7f83
|
4
|
+
data.tar.gz: b935073677d63c61c93d26c04147aed42111e79e0825102ef2b42142220cc180
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: bfe8d35314adea41f41bd13fe2e7072b72aba67199ad93031aea55f7e2412f24bc02d0ed8d78d50427de9f0c9f79327eb1611415b824e7a6d14d2af75c31aa75
|
7
|
+
data.tar.gz: 7a41110dd14c5952050de1403971384bda1c3d0151d846ed2e94cc34caaea2a654ff2753d695a2af6c598e60bbe239abc37869efcb349236a98f441c64bc50f2
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.273.0
|
@@ -2504,7 +2504,7 @@ module Aws::SageMaker
|
|
2504
2504
|
# @option params [Boolean] :enable_iot_role_alias
|
2505
2505
|
# Whether to create an Amazon Web Services IoT Role Alias during device
|
2506
2506
|
# fleet creation. The name of the role alias generated will match this
|
2507
|
-
# pattern: "SageMakerEdge
|
2507
|
+
# pattern: "SageMakerEdge-\{DeviceFleetName}".
|
2508
2508
|
#
|
2509
2509
|
# For example, if your device fleet is called "demo-fleet", the name
|
2510
2510
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|
@@ -5533,24 +5533,24 @@ module Aws::SageMaker
|
|
5533
5533
|
# For named entity recognition jobs, in addition to `"labels"`, you must
|
5534
5534
|
# provide worker instructions in the label category configuration file
|
5535
5535
|
# using the `"instructions"` parameter: `"instructions":
|
5536
|
-
#
|
5537
|
-
# "fullInstruction":"<p>Add additional instructions.</p>"
|
5538
|
-
#
|
5539
|
-
#
|
5536
|
+
# {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
|
5537
|
+
# "fullInstruction":"<p>Add additional instructions.</p>"}`. For details
|
5538
|
+
# and an example, see [Create a Named Entity Recognition Labeling Job
|
5539
|
+
# (API) ][2].
|
5540
5540
|
#
|
5541
5541
|
# For all other [built-in task types][3] and [custom tasks][4], your
|
5542
5542
|
# label category configuration file must be a JSON file in the following
|
5543
5543
|
# format. Identify the labels you want to use by replacing `label_1`,
|
5544
5544
|
# `label_2`,`...`,`label_n` with your label categories.
|
5545
5545
|
#
|
5546
|
-
#
|
5546
|
+
# `{ `
|
5547
5547
|
#
|
5548
5548
|
# `"document-version": "2018-11-28",`
|
5549
5549
|
#
|
5550
|
-
# `"labels": [
|
5551
|
-
# "
|
5550
|
+
# `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
|
5551
|
+
# "label_n"}]`
|
5552
5552
|
#
|
5553
|
-
#
|
5553
|
+
# `}`
|
5554
5554
|
#
|
5555
5555
|
# Note the following about the label category configuration file:
|
5556
5556
|
#
|
@@ -22848,7 +22848,7 @@ module Aws::SageMaker
|
|
22848
22848
|
# For example, if `ListTrainingJobs` is invoked with the following
|
22849
22849
|
# parameters:
|
22850
22850
|
#
|
22851
|
-
#
|
22851
|
+
# `{ ... MaxResults: 100, StatusEquals: InProgress ... }`
|
22852
22852
|
#
|
22853
22853
|
# First, 100 trainings jobs with any status, including those other than
|
22854
22854
|
# `InProgress`, are selected (sorted according to the creation time,
|
@@ -24994,7 +24994,7 @@ module Aws::SageMaker
|
|
24994
24994
|
# The secret must have a staging label of `AWSCURRENT` and must be in
|
24995
24995
|
# the following format:
|
24996
24996
|
#
|
24997
|
-
#
|
24997
|
+
# `{"username": UserName, "password": Password}`
|
24998
24998
|
#
|
24999
24999
|
# @return [Types::UpdateCodeRepositoryOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
25000
25000
|
#
|
@@ -25081,7 +25081,7 @@ module Aws::SageMaker
|
|
25081
25081
|
# @option params [Boolean] :enable_iot_role_alias
|
25082
25082
|
# Whether to create an Amazon Web Services IoT Role Alias during device
|
25083
25083
|
# fleet creation. The name of the role alias generated will match this
|
25084
|
-
# pattern: "SageMakerEdge
|
25084
|
+
# pattern: "SageMakerEdge-\{DeviceFleetName}".
|
25085
25085
|
#
|
25086
25086
|
# For example, if your device fleet is called "demo-fleet", the name
|
25087
25087
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|
@@ -27961,7 +27961,7 @@ module Aws::SageMaker
|
|
27961
27961
|
tracer: tracer
|
27962
27962
|
)
|
27963
27963
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
27964
|
-
context[:gem_version] = '1.
|
27964
|
+
context[:gem_version] = '1.273.0'
|
27965
27965
|
Seahorse::Client::Request.new(handlers, context)
|
27966
27966
|
end
|
27967
27967
|
|
@@ -1916,13 +1916,13 @@ module Aws::SageMaker
|
|
1916
1916
|
# the input data source to run an Autopilot job. You can input
|
1917
1917
|
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
1918
1918
|
#
|
1919
|
-
#
|
1919
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
1920
1920
|
#
|
1921
1921
|
# You can also specify the data type of the feature (optional) in the
|
1922
1922
|
# format shown below:
|
1923
1923
|
#
|
1924
|
-
#
|
1925
|
-
#
|
1924
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
1925
|
+
# }`
|
1926
1926
|
#
|
1927
1927
|
# <note markdown="1"> These column keys may not include the target column.
|
1928
1928
|
#
|
@@ -2740,8 +2740,8 @@ module Aws::SageMaker
|
|
2740
2740
|
#
|
2741
2741
|
# A `ManifestFile` should have the format shown below:
|
2742
2742
|
#
|
2743
|
-
# `[
|
2744
|
-
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"
|
2743
|
+
# `[ {"prefix":
|
2744
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
|
2745
2745
|
# `
|
2746
2746
|
#
|
2747
2747
|
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
|
@@ -2759,10 +2759,10 @@ module Aws::SageMaker
|
|
2759
2759
|
# Here is a minimal, single-record example of an
|
2760
2760
|
# `AugmentedManifestFile`:
|
2761
2761
|
#
|
2762
|
-
#
|
2762
|
+
# `{"source-ref":
|
2763
2763
|
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
|
2764
2764
|
#
|
2765
|
-
# `"label-metadata":
|
2765
|
+
# `"label-metadata": {"class-name": "cat"` }
|
2766
2766
|
#
|
2767
2767
|
# For more information on `AugmentedManifestFile`, see [Provide
|
2768
2768
|
# Dataset Metadata to Training Jobs with an Augmented Manifest
|
@@ -3862,14 +3862,14 @@ module Aws::SageMaker
|
|
3862
3862
|
# model container input in JSON Lines format. For example, if
|
3863
3863
|
# `FeaturesAttribute` is the JMESPath expression `'myfeatures'`, it
|
3864
3864
|
# extracts a list of features `[1,2,3]` from request data
|
3865
|
-
# `'
|
3865
|
+
# `'{"myfeatures":[1,2,3]}'`.
|
3866
3866
|
# @return [String]
|
3867
3867
|
#
|
3868
3868
|
# @!attribute [rw] content_template
|
3869
3869
|
# A template string used to format a JSON record into an acceptable
|
3870
3870
|
# model container input. For example, a `ContentTemplate` string
|
3871
|
-
# `'
|
3872
|
-
# `[1,2,3]` into the record string `'
|
3871
|
+
# `'{"myfeatures":$features}'` will format a list of features
|
3872
|
+
# `[1,2,3]` into the record string `'{"myfeatures":[1,2,3]}'`.
|
3873
3873
|
# Required only when the model container input is in JSON Lines
|
3874
3874
|
# format.
|
3875
3875
|
# @return [String]
|
@@ -3930,7 +3930,7 @@ module Aws::SageMaker
|
|
3930
3930
|
# Lines format.
|
3931
3931
|
#
|
3932
3932
|
# **Example**: If the model container output of a single request is
|
3933
|
-
# `'
|
3933
|
+
# `'{"predicted_label":1,"probability":0.6}'`, then set
|
3934
3934
|
# `ProbabilityAttribute` to `'probability'`.
|
3935
3935
|
# @return [String]
|
3936
3936
|
#
|
@@ -3939,7 +3939,7 @@ module Aws::SageMaker
|
|
3939
3939
|
# the model container output.
|
3940
3940
|
#
|
3941
3941
|
# **Example**: If the model container output of a batch request is
|
3942
|
-
# `'
|
3942
|
+
# `'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'`,
|
3943
3943
|
# then set `LabelAttribute` to `'labels'` to extract the list of label
|
3944
3944
|
# headers `["cat","dog","fish"]`
|
3945
3945
|
# @return [String]
|
@@ -6208,7 +6208,7 @@ module Aws::SageMaker
|
|
6208
6208
|
# @!attribute [rw] enable_iot_role_alias
|
6209
6209
|
# Whether to create an Amazon Web Services IoT Role Alias during
|
6210
6210
|
# device fleet creation. The name of the role alias generated will
|
6211
|
-
# match this pattern: "SageMakerEdge
|
6211
|
+
# match this pattern: "SageMakerEdge-\{DeviceFleetName}".
|
6212
6212
|
#
|
6213
6213
|
# For example, if your device fleet is called "demo-fleet", the name
|
6214
6214
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|
@@ -7793,8 +7793,8 @@ module Aws::SageMaker
|
|
7793
7793
|
# For named entity recognition jobs, in addition to `"labels"`, you
|
7794
7794
|
# must provide worker instructions in the label category configuration
|
7795
7795
|
# file using the `"instructions"` parameter: `"instructions":
|
7796
|
-
#
|
7797
|
-
# "fullInstruction":"<p>Add additional instructions.</p>"
|
7796
|
+
# {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
|
7797
|
+
# "fullInstruction":"<p>Add additional instructions.</p>"}`. For
|
7798
7798
|
# details and an example, see [Create a Named Entity Recognition
|
7799
7799
|
# Labeling Job (API) ][2].
|
7800
7800
|
#
|
@@ -7803,14 +7803,14 @@ module Aws::SageMaker
|
|
7803
7803
|
# following format. Identify the labels you want to use by replacing
|
7804
7804
|
# `label_1`, `label_2`,`...`,`label_n` with your label categories.
|
7805
7805
|
#
|
7806
|
-
#
|
7806
|
+
# `{ `
|
7807
7807
|
#
|
7808
7808
|
# `"document-version": "2018-11-28",`
|
7809
7809
|
#
|
7810
|
-
# `"labels": [
|
7811
|
-
# "
|
7810
|
+
# `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
|
7811
|
+
# "label_n"}]`
|
7812
7812
|
#
|
7813
|
-
#
|
7813
|
+
# `}`
|
7814
7814
|
#
|
7815
7815
|
# Note the following about the label category configuration file:
|
7816
7816
|
#
|
@@ -15463,35 +15463,35 @@ module Aws::SageMaker
|
|
15463
15463
|
#
|
15464
15464
|
# The file is a JSON structure in the following format:
|
15465
15465
|
#
|
15466
|
-
#
|
15466
|
+
# `{`
|
15467
15467
|
#
|
15468
15468
|
# ` "document-version": "2018-11-28"`
|
15469
15469
|
#
|
15470
15470
|
# ` "labels": [`
|
15471
15471
|
#
|
15472
|
-
# `
|
15472
|
+
# ` {`
|
15473
15473
|
#
|
15474
15474
|
# ` "label": "label 1"`
|
15475
15475
|
#
|
15476
|
-
# `
|
15476
|
+
# ` },`
|
15477
15477
|
#
|
15478
|
-
# `
|
15478
|
+
# ` {`
|
15479
15479
|
#
|
15480
15480
|
# ` "label": "label 2"`
|
15481
15481
|
#
|
15482
|
-
# `
|
15482
|
+
# ` },`
|
15483
15483
|
#
|
15484
15484
|
# ` ...`
|
15485
15485
|
#
|
15486
|
-
# `
|
15486
|
+
# ` {`
|
15487
15487
|
#
|
15488
15488
|
# ` "label": "label n"`
|
15489
15489
|
#
|
15490
|
-
# `
|
15490
|
+
# ` }`
|
15491
15491
|
#
|
15492
15492
|
# ` ]`
|
15493
15493
|
#
|
15494
|
-
#
|
15494
|
+
# `}`
|
15495
15495
|
# @return [String]
|
15496
15496
|
#
|
15497
15497
|
# @!attribute [rw] stopping_conditions
|
@@ -20755,7 +20755,7 @@ module Aws::SageMaker
|
|
20755
20755
|
# the following filter searches for training jobs with an `"accuracy"`
|
20756
20756
|
# metric greater than `"0.9"`:
|
20757
20757
|
#
|
20758
|
-
#
|
20758
|
+
# `{`
|
20759
20759
|
#
|
20760
20760
|
# `"Name": "Metrics.accuracy",`
|
20761
20761
|
#
|
@@ -20763,7 +20763,7 @@ module Aws::SageMaker
|
|
20763
20763
|
#
|
20764
20764
|
# `"Value": "0.9"`
|
20765
20765
|
#
|
20766
|
-
#
|
20766
|
+
# `}`
|
20767
20767
|
#
|
20768
20768
|
# HyperParameters
|
20769
20769
|
#
|
@@ -20775,7 +20775,7 @@ module Aws::SageMaker
|
|
20775
20775
|
# the following filter is satisfied by training jobs with a
|
20776
20776
|
# `"learning_rate"` hyperparameter that is less than `"0.5"`:
|
20777
20777
|
#
|
20778
|
-
# `
|
20778
|
+
# ` {`
|
20779
20779
|
#
|
20780
20780
|
# ` "Name": "HyperParameters.learning_rate",`
|
20781
20781
|
#
|
@@ -20783,7 +20783,7 @@ module Aws::SageMaker
|
|
20783
20783
|
#
|
20784
20784
|
# ` "Value": "0.5"`
|
20785
20785
|
#
|
20786
|
-
# `
|
20786
|
+
# ` }`
|
20787
20787
|
#
|
20788
20788
|
# Tags
|
20789
20789
|
#
|
@@ -21345,7 +21345,7 @@ module Aws::SageMaker
|
|
21345
21345
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
21346
21346
|
# must be in the following format:
|
21347
21347
|
#
|
21348
|
-
#
|
21348
|
+
# `{"username": UserName, "password": Password}`
|
21349
21349
|
# @return [String]
|
21350
21350
|
#
|
21351
21351
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfig AWS API Documentation
|
@@ -21367,7 +21367,7 @@ module Aws::SageMaker
|
|
21367
21367
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
21368
21368
|
# must be in the following format:
|
21369
21369
|
#
|
21370
|
-
#
|
21370
|
+
# `{"username": UserName, "password": Password}`
|
21371
21371
|
# @return [String]
|
21372
21372
|
#
|
21373
21373
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfigForUpdate AWS API Documentation
|
@@ -24899,17 +24899,17 @@ module Aws::SageMaker
|
|
24899
24899
|
#
|
24900
24900
|
# * Examples for one input:
|
24901
24901
|
#
|
24902
|
-
# * If using the console,
|
24902
|
+
# * If using the console, `{"input":[1,1024,1024,3]}`
|
24903
24903
|
#
|
24904
|
-
# * If using the CLI,
|
24904
|
+
# * If using the CLI, `{"input":[1,1024,1024,3]}`
|
24905
24905
|
#
|
24906
24906
|
# * Examples for two inputs:
|
24907
24907
|
#
|
24908
|
-
# * If using the console,
|
24909
|
-
# "data2":[1,28,28,1]
|
24908
|
+
# * If using the console, `{"data1": [1,28,28,1],
|
24909
|
+
# "data2":[1,28,28,1]}`
|
24910
24910
|
#
|
24911
|
-
# * If using the CLI,
|
24912
|
-
# "data2":[1,28,28,1]
|
24911
|
+
# * If using the CLI, `{"data1": [1,28,28,1],
|
24912
|
+
# "data2":[1,28,28,1]}`
|
24913
24913
|
#
|
24914
24914
|
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
24915
24915
|
# expected data inputs using a dictionary format for your trained
|
@@ -24920,17 +24920,17 @@ module Aws::SageMaker
|
|
24920
24920
|
#
|
24921
24921
|
# * Examples for one input:
|
24922
24922
|
#
|
24923
|
-
# * If using the console,
|
24923
|
+
# * If using the console, `{"input_1":[1,3,224,224]}`
|
24924
24924
|
#
|
24925
|
-
# * If using the CLI,
|
24925
|
+
# * If using the CLI, `{"input_1":[1,3,224,224]}`
|
24926
24926
|
#
|
24927
24927
|
# * Examples for two inputs:
|
24928
24928
|
#
|
24929
|
-
# * If using the console,
|
24930
|
-
# "input_2":[1,3,224,224]
|
24929
|
+
# * If using the console, `{"input_1": [1,3,224,224],
|
24930
|
+
# "input_2":[1,3,224,224]} `
|
24931
24931
|
#
|
24932
|
-
# * If using the CLI,
|
24933
|
-
# "input_2":[1,3,224,224]
|
24932
|
+
# * If using the CLI, `{"input_1": [1,3,224,224],
|
24933
|
+
# "input_2":[1,3,224,224]}`
|
24934
24934
|
#
|
24935
24935
|
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
24936
24936
|
# format) of the expected data inputs in order using a dictionary
|
@@ -24939,17 +24939,17 @@ module Aws::SageMaker
|
|
24939
24939
|
#
|
24940
24940
|
# * Examples for one input:
|
24941
24941
|
#
|
24942
|
-
# * If using the console,
|
24942
|
+
# * If using the console, `{"data":[1,3,1024,1024]}`
|
24943
24943
|
#
|
24944
|
-
# * If using the CLI,
|
24944
|
+
# * If using the CLI, `{"data":[1,3,1024,1024]}`
|
24945
24945
|
#
|
24946
24946
|
# * Examples for two inputs:
|
24947
24947
|
#
|
24948
|
-
# * If using the console,
|
24949
|
-
# "var2":[1,1,28,28]
|
24948
|
+
# * If using the console, `{"var1": [1,1,28,28],
|
24949
|
+
# "var2":[1,1,28,28]} `
|
24950
24950
|
#
|
24951
|
-
# * If using the CLI,
|
24952
|
-
# "var2":[1,1,28,28]
|
24951
|
+
# * If using the CLI, `{"var1": [1,1,28,28],
|
24952
|
+
# "var2":[1,1,28,28]}`
|
24953
24953
|
#
|
24954
24954
|
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
24955
24955
|
# of expected data inputs in order using a dictionary format for
|
@@ -24960,19 +24960,19 @@ module Aws::SageMaker
|
|
24960
24960
|
#
|
24961
24961
|
# * Examples for one input in dictionary format:
|
24962
24962
|
#
|
24963
|
-
# * If using the console,
|
24963
|
+
# * If using the console, `{"input0":[1,3,224,224]}`
|
24964
24964
|
#
|
24965
|
-
# * If using the CLI,
|
24965
|
+
# * If using the CLI, `{"input0":[1,3,224,224]}`
|
24966
24966
|
#
|
24967
24967
|
# * Example for one input in list format: `[[1,3,224,224]]`
|
24968
24968
|
#
|
24969
24969
|
# * Examples for two inputs in dictionary format:
|
24970
24970
|
#
|
24971
|
-
# * If using the console,
|
24972
|
-
# "input1":[1,3,224,224]
|
24971
|
+
# * If using the console, `{"input0":[1,3,224,224],
|
24972
|
+
# "input1":[1,3,224,224]}`
|
24973
24973
|
#
|
24974
|
-
# * If using the CLI,
|
24975
|
-
# "input1":[1,3,224,224]
|
24974
|
+
# * If using the CLI, `{"input0":[1,3,224,224],
|
24975
|
+
# "input1":[1,3,224,224]} `
|
24976
24976
|
#
|
24977
24977
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
24978
24978
|
# [1,3,224,224]]`
|
@@ -24982,24 +24982,24 @@ module Aws::SageMaker
|
|
24982
24982
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
24983
24983
|
# `TargetDevice` (ML Model format):
|
24984
24984
|
#
|
24985
|
-
# * `shape`: Input shape, for example
|
24986
|
-
# [1,224,224,3]
|
24985
|
+
# * `shape`: Input shape, for example `{"input_1": {"shape":
|
24986
|
+
# [1,224,224,3]}}`. In addition to static input shapes, CoreML
|
24987
24987
|
# converter supports Flexible input shapes:
|
24988
24988
|
#
|
24989
24989
|
# * Range Dimension. You can use the Range Dimension feature if you
|
24990
24990
|
# know the input shape will be within some specific interval in
|
24991
|
-
# that dimension, for example:
|
24992
|
-
# 224, 224, 3]
|
24991
|
+
# that dimension, for example: `{"input_1": {"shape": ["1..10",
|
24992
|
+
# 224, 224, 3]}}`
|
24993
24993
|
#
|
24994
24994
|
# * Enumerated shapes. Sometimes, the models are trained to work
|
24995
24995
|
# only on a select set of inputs. You can enumerate all supported
|
24996
|
-
# input shapes, for example:
|
24997
|
-
#
|
24996
|
+
# input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
|
24997
|
+
# 3], [1, 160, 160, 3]]}}`
|
24998
24998
|
#
|
24999
24999
|
# * `default_shape`: Default input shape. You can set a default shape
|
25000
25000
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
25001
|
-
# For example
|
25002
|
-
# "default_shape": [1, 224, 224, 3]
|
25001
|
+
# For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
|
25002
|
+
# "default_shape": [1, 224, 224, 3]}}`
|
25003
25003
|
#
|
25004
25004
|
# * `type`: Input type. Allowed values: `Image` and `Tensor`. By
|
25005
25005
|
# default, the converter generates an ML Model with inputs of type
|
@@ -25019,35 +25019,35 @@ module Aws::SageMaker
|
|
25019
25019
|
#
|
25020
25020
|
# * Tensor type input:
|
25021
25021
|
#
|
25022
|
-
# * `"DataInputConfig":
|
25023
|
-
# [1,160,160,3]], "default_shape": [1,224,224,3]
|
25022
|
+
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
25023
|
+
# [1,160,160,3]], "default_shape": [1,224,224,3]}}`
|
25024
25024
|
#
|
25025
25025
|
# ^
|
25026
25026
|
#
|
25027
25027
|
# * Tensor type input without input name (PyTorch):
|
25028
25028
|
#
|
25029
|
-
# * `"DataInputConfig": [
|
25030
|
-
# "default_shape": [1,3,224,224]
|
25029
|
+
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25030
|
+
# "default_shape": [1,3,224,224]}]`
|
25031
25031
|
#
|
25032
25032
|
# ^
|
25033
25033
|
#
|
25034
25034
|
# * Image type input:
|
25035
25035
|
#
|
25036
|
-
# * `"DataInputConfig":
|
25036
|
+
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
25037
25037
|
# [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
|
25038
|
-
# "bias": [-1,-1,-1], "scale": 0.007843137255
|
25038
|
+
# "bias": [-1,-1,-1], "scale": 0.007843137255}}`
|
25039
25039
|
#
|
25040
|
-
# * `"CompilerOptions":
|
25041
|
-
# "imagenet_labels_1000.txt"
|
25040
|
+
# * `"CompilerOptions": {"class_labels":
|
25041
|
+
# "imagenet_labels_1000.txt"}`
|
25042
25042
|
#
|
25043
25043
|
# * Image type input without input name (PyTorch):
|
25044
25044
|
#
|
25045
|
-
# * `"DataInputConfig": [
|
25045
|
+
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25046
25046
|
# "default_shape": [1,3,224,224], "type": "Image", "bias":
|
25047
|
-
# [-1,-1,-1], "scale": 0.007843137255
|
25047
|
+
# [-1,-1,-1], "scale": 0.007843137255}]`
|
25048
25048
|
#
|
25049
|
-
# * `"CompilerOptions":
|
25050
|
-
# "imagenet_labels_1000.txt"
|
25049
|
+
# * `"CompilerOptions": {"class_labels":
|
25050
|
+
# "imagenet_labels_1000.txt"}`
|
25051
25051
|
#
|
25052
25052
|
# Depending on the model format, `DataInputConfig` requires the
|
25053
25053
|
# following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
|
@@ -25058,18 +25058,18 @@ module Aws::SageMaker
|
|
25058
25058
|
# `OutputConfig:CompilerOptions` ][3] if the model does not use
|
25059
25059
|
# TensorFlow's default signature def key. For example:
|
25060
25060
|
#
|
25061
|
-
# * `"DataInputConfig":
|
25061
|
+
# * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
|
25062
25062
|
#
|
25063
|
-
# * `"CompilerOptions":
|
25063
|
+
# * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
|
25064
25064
|
#
|
25065
25065
|
# * For TensorFlow models saved as a frozen graph, specify the input
|
25066
25066
|
# tensor names and shapes in `DataInputConfig` and the output tensor
|
25067
25067
|
# names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
|
25068
25068
|
# For example:
|
25069
25069
|
#
|
25070
|
-
# * `"DataInputConfig":
|
25070
|
+
# * `"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}`
|
25071
25071
|
#
|
25072
|
-
# * `"CompilerOptions":
|
25072
|
+
# * `"CompilerOptions": {"output_names": ["output_tensor:0"]}`
|
25073
25073
|
#
|
25074
25074
|
#
|
25075
25075
|
#
|
@@ -34800,11 +34800,11 @@ module Aws::SageMaker
|
|
34800
34800
|
# with a specific channel name and `S3Uri` prefix, define the following
|
34801
34801
|
# filters:
|
34802
34802
|
#
|
34803
|
-
# * `'
|
34804
|
-
# "Value":"train"
|
34803
|
+
# * `'{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
|
34804
|
+
# "Value":"train"}',`
|
34805
34805
|
#
|
34806
|
-
# * `'
|
34807
|
-
# "Operator":"Contains", "Value":"mybucket/catdata"
|
34806
|
+
# * `'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
|
34807
|
+
# "Operator":"Contains", "Value":"mybucket/catdata"}'`
|
34808
34808
|
#
|
34809
34809
|
#
|
34810
34810
|
#
|
@@ -35677,42 +35677,41 @@ module Aws::SageMaker
|
|
35677
35677
|
#
|
35678
35678
|
# * Raspberry Pi 3 Model B+
|
35679
35679
|
#
|
35680
|
-
# `"TargetPlatform":
|
35680
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},`
|
35681
35681
|
#
|
35682
|
-
# ` "CompilerOptions":
|
35682
|
+
# ` "CompilerOptions": {'mattr': ['+neon']}`
|
35683
35683
|
#
|
35684
35684
|
# * Jetson TX2
|
35685
35685
|
#
|
35686
|
-
# `"TargetPlatform":
|
35687
|
-
# "
|
35686
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
|
35687
|
+
# "NVIDIA"},`
|
35688
35688
|
#
|
35689
|
-
# ` "CompilerOptions":
|
35690
|
-
# 'cuda-ver': '10.0'
|
35689
|
+
# ` "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
|
35690
|
+
# 'cuda-ver': '10.0'}`
|
35691
35691
|
#
|
35692
35692
|
# * EC2 m5.2xlarge instance OS
|
35693
35693
|
#
|
35694
|
-
# `"TargetPlatform":
|
35695
|
-
# "Accelerator": "NVIDIA"
|
35694
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
|
35695
|
+
# "Accelerator": "NVIDIA"},`
|
35696
35696
|
#
|
35697
|
-
# ` "CompilerOptions":
|
35697
|
+
# ` "CompilerOptions": {'mcpu': 'skylake-avx512'}`
|
35698
35698
|
#
|
35699
35699
|
# * RK3399
|
35700
35700
|
#
|
35701
|
-
# `"TargetPlatform":
|
35702
|
-
# "
|
35701
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
|
35702
|
+
# "MALI"}`
|
35703
35703
|
#
|
35704
35704
|
# * ARMv7 phone (CPU)
|
35705
35705
|
#
|
35706
|
-
# `"TargetPlatform":
|
35706
|
+
# `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},`
|
35707
35707
|
#
|
35708
|
-
# ` "CompilerOptions":
|
35709
|
-
# ['+neon']\}`
|
35708
|
+
# ` "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}`
|
35710
35709
|
#
|
35711
35710
|
# * ARMv8 phone (CPU)
|
35712
35711
|
#
|
35713
|
-
# `"TargetPlatform":
|
35712
|
+
# `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},`
|
35714
35713
|
#
|
35715
|
-
# ` "CompilerOptions":
|
35714
|
+
# ` "CompilerOptions": {'ANDROID_PLATFORM': 29}`
|
35716
35715
|
# @return [Types::TargetPlatform]
|
35717
35716
|
#
|
35718
35717
|
# @!attribute [rw] compiler_options
|
@@ -35730,25 +35729,24 @@ module Aws::SageMaker
|
|
35730
35729
|
#
|
35731
35730
|
# * int64: Use either `"int64"` or `"long"`.
|
35732
35731
|
#
|
35733
|
-
# For example,
|
35732
|
+
# For example, `{"dtype" : "float32"}`.
|
35734
35733
|
#
|
35735
35734
|
# * `CPU`: Compilation for CPU supports the following compiler
|
35736
35735
|
# options.
|
35737
35736
|
#
|
35738
|
-
# * `mcpu`: CPU micro-architecture. For example,
|
35739
|
-
# 'skylake-avx512'
|
35737
|
+
# * `mcpu`: CPU micro-architecture. For example, `{'mcpu':
|
35738
|
+
# 'skylake-avx512'}`
|
35740
35739
|
#
|
35741
|
-
# * `mattr`: CPU flags. For example,
|
35742
|
-
# '+vfpv4']
|
35740
|
+
# * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
|
35741
|
+
# '+vfpv4']}`
|
35743
35742
|
#
|
35744
35743
|
# * `ARM`: Details of ARM CPU compilations.
|
35745
35744
|
#
|
35746
35745
|
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
35747
35746
|
# used in ARMv7 processors.
|
35748
35747
|
#
|
35749
|
-
# For example, add
|
35750
|
-
#
|
35751
|
-
# support.
|
35748
|
+
# For example, add `{'mattr': ['+neon']}` to the compiler options
|
35749
|
+
# if compiling for ARM 32-bit platform with the NEON support.
|
35752
35750
|
#
|
35753
35751
|
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
35754
35752
|
# compiler options.
|
@@ -35759,17 +35757,17 @@ module Aws::SageMaker
|
|
35759
35757
|
#
|
35760
35758
|
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
35761
35759
|
#
|
35762
|
-
# For example,
|
35763
|
-
# 'cuda-ver': '10.1'
|
35760
|
+
# For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
35761
|
+
# 'cuda-ver': '10.1'}`
|
35764
35762
|
#
|
35765
35763
|
# * `ANDROID`: Compilation for the Android OS supports the following
|
35766
35764
|
# compiler options:
|
35767
35765
|
#
|
35768
35766
|
# * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
|
35769
|
-
# levels range from 21 to 29. For example,
|
35770
|
-
# 28
|
35767
|
+
# levels range from 21 to 29. For example, `{'ANDROID_PLATFORM':
|
35768
|
+
# 28}`.
|
35771
35769
|
#
|
35772
|
-
# * `mattr`: Add
|
35770
|
+
# * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
|
35773
35771
|
# compiling for ARM 32-bit platform with NEON support.
|
35774
35772
|
#
|
35775
35773
|
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
@@ -35783,8 +35781,8 @@ module Aws::SageMaker
|
|
35783
35781
|
# `TargetDevice` supports the following compiler options:
|
35784
35782
|
#
|
35785
35783
|
# * `class_labels`: Specifies the classification labels file name
|
35786
|
-
# inside input tar.gz file. For example,
|
35787
|
-
# "imagenet_labels_1000.txt"
|
35784
|
+
# inside input tar.gz file. For example, `{"class_labels":
|
35785
|
+
# "imagenet_labels_1000.txt"}`. Labels inside the txt file should
|
35788
35786
|
# be separated by newlines.
|
35789
35787
|
#
|
35790
35788
|
# ^
|
@@ -39950,7 +39948,7 @@ module Aws::SageMaker
|
|
39950
39948
|
#
|
39951
39949
|
# The following code example shows a valid manifest format:
|
39952
39950
|
#
|
39953
|
-
# `[
|
39951
|
+
# `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
|
39954
39952
|
#
|
39955
39953
|
# ` "relative/path/to/custdata-1",`
|
39956
39954
|
#
|
@@ -42102,13 +42100,13 @@ module Aws::SageMaker
|
|
42102
42100
|
# the input data source to run an Autopilot job V2. You can input
|
42103
42101
|
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
42104
42102
|
#
|
42105
|
-
#
|
42103
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
42106
42104
|
#
|
42107
42105
|
# You can also specify the data type of the feature (optional) in the
|
42108
42106
|
# format shown below:
|
42109
42107
|
#
|
42110
|
-
#
|
42111
|
-
#
|
42108
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
42109
|
+
# }`
|
42112
42110
|
#
|
42113
42111
|
# <note markdown="1"> These column keys may not include the target column.
|
42114
42112
|
#
|
@@ -42296,7 +42294,7 @@ module Aws::SageMaker
|
|
42296
42294
|
#
|
42297
42295
|
# * `ANDROID`: Android operating systems. Android API level can be
|
42298
42296
|
# specified using the `ANDROID_PLATFORM` compiler option. For
|
42299
|
-
# example, `"CompilerOptions":
|
42297
|
+
# example, `"CompilerOptions": {'ANDROID_PLATFORM': 28}`
|
42300
42298
|
# @return [String]
|
42301
42299
|
#
|
42302
42300
|
# @!attribute [rw] arch
|
@@ -42487,8 +42485,8 @@ module Aws::SageMaker
|
|
42487
42485
|
#
|
42488
42486
|
# Here is an example where all four hyperparameters are configured.
|
42489
42487
|
#
|
42490
|
-
#
|
42491
|
-
# "learningRateWarmupSteps": "10"
|
42488
|
+
# `{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
|
42489
|
+
# "learningRateWarmupSteps": "10" }`
|
42492
42490
|
#
|
42493
42491
|
#
|
42494
42492
|
#
|
@@ -42723,13 +42721,13 @@ module Aws::SageMaker
|
|
42723
42721
|
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
42724
42722
|
# shown below:
|
42725
42723
|
#
|
42726
|
-
#
|
42724
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
42727
42725
|
#
|
42728
42726
|
# You can also specify the data type of the feature (optional) in the
|
42729
42727
|
# format shown below:
|
42730
42728
|
#
|
42731
|
-
#
|
42732
|
-
#
|
42729
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
42730
|
+
# }`
|
42733
42731
|
#
|
42734
42732
|
# Autopilot supports the following data types: `numeric`,
|
42735
42733
|
# `categorical`, `text`, and `datetime`.
|
@@ -44252,7 +44250,7 @@ module Aws::SageMaker
|
|
44252
44250
|
# The manifest is an S3 object which is a JSON file with the
|
44253
44251
|
# following format:
|
44254
44252
|
#
|
44255
|
-
# `[
|
44253
|
+
# `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
|
44256
44254
|
#
|
44257
44255
|
# `"relative/path/to/custdata-1",`
|
44258
44256
|
#
|
@@ -45281,7 +45279,7 @@ module Aws::SageMaker
|
|
45281
45279
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
45282
45280
|
# must be in the following format:
|
45283
45281
|
#
|
45284
|
-
#
|
45282
|
+
# `{"username": UserName, "password": Password}`
|
45285
45283
|
# @return [Types::GitConfigForUpdate]
|
45286
45284
|
#
|
45287
45285
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateCodeRepositoryInput AWS API Documentation
|
@@ -45363,7 +45361,7 @@ module Aws::SageMaker
|
|
45363
45361
|
# @!attribute [rw] enable_iot_role_alias
|
45364
45362
|
# Whether to create an Amazon Web Services IoT Role Alias during
|
45365
45363
|
# device fleet creation. The name of the role alias generated will
|
45366
|
-
# match this pattern: "SageMakerEdge
|
45364
|
+
# match this pattern: "SageMakerEdge-\{DeviceFleetName}".
|
45367
45365
|
#
|
45368
45366
|
# For example, if your device fleet is called "demo-fleet", the name
|
45369
45367
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.273.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-11-06 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|