aws-sdk-sagemaker 1.271.0 → 1.273.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +112 -44
- data/lib/aws-sdk-sagemaker/client_api.rb +33 -0
- data/lib/aws-sdk-sagemaker/types.rb +205 -129
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +27 -15
- data/sig/types.rbs +29 -9
- metadata +2 -2
@@ -1916,13 +1916,13 @@ module Aws::SageMaker
|
|
1916
1916
|
# the input data source to run an Autopilot job. You can input
|
1917
1917
|
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
1918
1918
|
#
|
1919
|
-
#
|
1919
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
1920
1920
|
#
|
1921
1921
|
# You can also specify the data type of the feature (optional) in the
|
1922
1922
|
# format shown below:
|
1923
1923
|
#
|
1924
|
-
#
|
1925
|
-
#
|
1924
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
1925
|
+
# }`
|
1926
1926
|
#
|
1927
1927
|
# <note markdown="1"> These column keys may not include the target column.
|
1928
1928
|
#
|
@@ -2740,8 +2740,8 @@ module Aws::SageMaker
|
|
2740
2740
|
#
|
2741
2741
|
# A `ManifestFile` should have the format shown below:
|
2742
2742
|
#
|
2743
|
-
# `[
|
2744
|
-
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"
|
2743
|
+
# `[ {"prefix":
|
2744
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
|
2745
2745
|
# `
|
2746
2746
|
#
|
2747
2747
|
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
|
@@ -2759,10 +2759,10 @@ module Aws::SageMaker
|
|
2759
2759
|
# Here is a minimal, single-record example of an
|
2760
2760
|
# `AugmentedManifestFile`:
|
2761
2761
|
#
|
2762
|
-
#
|
2762
|
+
# `{"source-ref":
|
2763
2763
|
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
|
2764
2764
|
#
|
2765
|
-
# `"label-metadata":
|
2765
|
+
# `"label-metadata": {"class-name": "cat"` }
|
2766
2766
|
#
|
2767
2767
|
# For more information on `AugmentedManifestFile`, see [Provide
|
2768
2768
|
# Dataset Metadata to Training Jobs with an Augmented Manifest
|
@@ -2935,6 +2935,79 @@ module Aws::SageMaker
|
|
2935
2935
|
include Aws::Structure
|
2936
2936
|
end
|
2937
2937
|
|
2938
|
+
# Represents an error encountered when deleting a node from a SageMaker
|
2939
|
+
# HyperPod cluster.
|
2940
|
+
#
|
2941
|
+
# @!attribute [rw] code
|
2942
|
+
# The error code associated with the error encountered when deleting a
|
2943
|
+
# node.
|
2944
|
+
#
|
2945
|
+
# The code provides information about the specific issue encountered,
|
2946
|
+
# such as the node not being found, the node's status being invalid
|
2947
|
+
# for deletion, or the node ID being in use by another process.
|
2948
|
+
# @return [String]
|
2949
|
+
#
|
2950
|
+
# @!attribute [rw] message
|
2951
|
+
# A message describing the error encountered when deleting a node.
|
2952
|
+
# @return [String]
|
2953
|
+
#
|
2954
|
+
# @!attribute [rw] node_id
|
2955
|
+
# The ID of the node that encountered an error during the deletion
|
2956
|
+
# process.
|
2957
|
+
# @return [String]
|
2958
|
+
#
|
2959
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesError AWS API Documentation
|
2960
|
+
#
|
2961
|
+
class BatchDeleteClusterNodesError < Struct.new(
|
2962
|
+
:code,
|
2963
|
+
:message,
|
2964
|
+
:node_id)
|
2965
|
+
SENSITIVE = []
|
2966
|
+
include Aws::Structure
|
2967
|
+
end
|
2968
|
+
|
2969
|
+
# @!attribute [rw] cluster_name
|
2970
|
+
# The name of the SageMaker HyperPod cluster from which to delete the
|
2971
|
+
# specified nodes.
|
2972
|
+
# @return [String]
|
2973
|
+
#
|
2974
|
+
# @!attribute [rw] node_ids
|
2975
|
+
# A list of node IDs to be deleted from the specified cluster.
|
2976
|
+
#
|
2977
|
+
# <note markdown="1"> For SageMaker HyperPod clusters using the Slurm workload manager,
|
2978
|
+
# you cannot remove instances that are configured as Slurm controller
|
2979
|
+
# nodes.
|
2980
|
+
#
|
2981
|
+
# </note>
|
2982
|
+
# @return [Array<String>]
|
2983
|
+
#
|
2984
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesRequest AWS API Documentation
|
2985
|
+
#
|
2986
|
+
class BatchDeleteClusterNodesRequest < Struct.new(
|
2987
|
+
:cluster_name,
|
2988
|
+
:node_ids)
|
2989
|
+
SENSITIVE = []
|
2990
|
+
include Aws::Structure
|
2991
|
+
end
|
2992
|
+
|
2993
|
+
# @!attribute [rw] failed
|
2994
|
+
# A list of errors encountered when deleting the specified nodes.
|
2995
|
+
# @return [Array<Types::BatchDeleteClusterNodesError>]
|
2996
|
+
#
|
2997
|
+
# @!attribute [rw] successful
|
2998
|
+
# A list of node IDs that were successfully deleted from the specified
|
2999
|
+
# cluster.
|
3000
|
+
# @return [Array<String>]
|
3001
|
+
#
|
3002
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesResponse AWS API Documentation
|
3003
|
+
#
|
3004
|
+
class BatchDeleteClusterNodesResponse < Struct.new(
|
3005
|
+
:failed,
|
3006
|
+
:successful)
|
3007
|
+
SENSITIVE = []
|
3008
|
+
include Aws::Structure
|
3009
|
+
end
|
3010
|
+
|
2938
3011
|
# The error code and error description associated with the resource.
|
2939
3012
|
#
|
2940
3013
|
# @!attribute [rw] error_code
|
@@ -3789,14 +3862,14 @@ module Aws::SageMaker
|
|
3789
3862
|
# model container input in JSON Lines format. For example, if
|
3790
3863
|
# `FeaturesAttribute` is the JMESPath expression `'myfeatures'`, it
|
3791
3864
|
# extracts a list of features `[1,2,3]` from request data
|
3792
|
-
# `'
|
3865
|
+
# `'{"myfeatures":[1,2,3]}'`.
|
3793
3866
|
# @return [String]
|
3794
3867
|
#
|
3795
3868
|
# @!attribute [rw] content_template
|
3796
3869
|
# A template string used to format a JSON record into an acceptable
|
3797
3870
|
# model container input. For example, a `ContentTemplate` string
|
3798
|
-
# `'
|
3799
|
-
# `[1,2,3]` into the record string `'
|
3871
|
+
# `'{"myfeatures":$features}'` will format a list of features
|
3872
|
+
# `[1,2,3]` into the record string `'{"myfeatures":[1,2,3]}'`.
|
3800
3873
|
# Required only when the model container input is in JSON Lines
|
3801
3874
|
# format.
|
3802
3875
|
# @return [String]
|
@@ -3857,7 +3930,7 @@ module Aws::SageMaker
|
|
3857
3930
|
# Lines format.
|
3858
3931
|
#
|
3859
3932
|
# **Example**: If the model container output of a single request is
|
3860
|
-
# `'
|
3933
|
+
# `'{"predicted_label":1,"probability":0.6}'`, then set
|
3861
3934
|
# `ProbabilityAttribute` to `'probability'`.
|
3862
3935
|
# @return [String]
|
3863
3936
|
#
|
@@ -3866,7 +3939,7 @@ module Aws::SageMaker
|
|
3866
3939
|
# the model container output.
|
3867
3940
|
#
|
3868
3941
|
# **Example**: If the model container output of a batch request is
|
3869
|
-
# `'
|
3942
|
+
# `'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'`,
|
3870
3943
|
# then set `LabelAttribute` to `'labels'` to extract the list of label
|
3871
3944
|
# headers `["cat","dog","fish"]`
|
3872
3945
|
# @return [String]
|
@@ -6135,7 +6208,7 @@ module Aws::SageMaker
|
|
6135
6208
|
# @!attribute [rw] enable_iot_role_alias
|
6136
6209
|
# Whether to create an Amazon Web Services IoT Role Alias during
|
6137
6210
|
# device fleet creation. The name of the role alias generated will
|
6138
|
-
# match this pattern: "SageMakerEdge
|
6211
|
+
# match this pattern: "SageMakerEdge-\{DeviceFleetName}".
|
6139
6212
|
#
|
6140
6213
|
# For example, if your device fleet is called "demo-fleet", the name
|
6141
6214
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|
@@ -7720,8 +7793,8 @@ module Aws::SageMaker
|
|
7720
7793
|
# For named entity recognition jobs, in addition to `"labels"`, you
|
7721
7794
|
# must provide worker instructions in the label category configuration
|
7722
7795
|
# file using the `"instructions"` parameter: `"instructions":
|
7723
|
-
#
|
7724
|
-
# "fullInstruction":"<p>Add additional instructions.</p>"
|
7796
|
+
# {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
|
7797
|
+
# "fullInstruction":"<p>Add additional instructions.</p>"}`. For
|
7725
7798
|
# details and an example, see [Create a Named Entity Recognition
|
7726
7799
|
# Labeling Job (API) ][2].
|
7727
7800
|
#
|
@@ -7730,14 +7803,14 @@ module Aws::SageMaker
|
|
7730
7803
|
# following format. Identify the labels you want to use by replacing
|
7731
7804
|
# `label_1`, `label_2`,`...`,`label_n` with your label categories.
|
7732
7805
|
#
|
7733
|
-
#
|
7806
|
+
# `{ `
|
7734
7807
|
#
|
7735
7808
|
# `"document-version": "2018-11-28",`
|
7736
7809
|
#
|
7737
|
-
# `"labels": [
|
7738
|
-
# "
|
7810
|
+
# `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
|
7811
|
+
# "label_n"}]`
|
7739
7812
|
#
|
7740
|
-
#
|
7813
|
+
# `}`
|
7741
7814
|
#
|
7742
7815
|
# Note the following about the label category configuration file:
|
7743
7816
|
#
|
@@ -15390,35 +15463,35 @@ module Aws::SageMaker
|
|
15390
15463
|
#
|
15391
15464
|
# The file is a JSON structure in the following format:
|
15392
15465
|
#
|
15393
|
-
#
|
15466
|
+
# `{`
|
15394
15467
|
#
|
15395
15468
|
# ` "document-version": "2018-11-28"`
|
15396
15469
|
#
|
15397
15470
|
# ` "labels": [`
|
15398
15471
|
#
|
15399
|
-
# `
|
15472
|
+
# ` {`
|
15400
15473
|
#
|
15401
15474
|
# ` "label": "label 1"`
|
15402
15475
|
#
|
15403
|
-
# `
|
15476
|
+
# ` },`
|
15404
15477
|
#
|
15405
|
-
# `
|
15478
|
+
# ` {`
|
15406
15479
|
#
|
15407
15480
|
# ` "label": "label 2"`
|
15408
15481
|
#
|
15409
|
-
# `
|
15482
|
+
# ` },`
|
15410
15483
|
#
|
15411
15484
|
# ` ...`
|
15412
15485
|
#
|
15413
|
-
# `
|
15486
|
+
# ` {`
|
15414
15487
|
#
|
15415
15488
|
# ` "label": "label n"`
|
15416
15489
|
#
|
15417
|
-
# `
|
15490
|
+
# ` }`
|
15418
15491
|
#
|
15419
15492
|
# ` ]`
|
15420
15493
|
#
|
15421
|
-
#
|
15494
|
+
# `}`
|
15422
15495
|
# @return [String]
|
15423
15496
|
#
|
15424
15497
|
# @!attribute [rw] stopping_conditions
|
@@ -20682,7 +20755,7 @@ module Aws::SageMaker
|
|
20682
20755
|
# the following filter searches for training jobs with an `"accuracy"`
|
20683
20756
|
# metric greater than `"0.9"`:
|
20684
20757
|
#
|
20685
|
-
#
|
20758
|
+
# `{`
|
20686
20759
|
#
|
20687
20760
|
# `"Name": "Metrics.accuracy",`
|
20688
20761
|
#
|
@@ -20690,7 +20763,7 @@ module Aws::SageMaker
|
|
20690
20763
|
#
|
20691
20764
|
# `"Value": "0.9"`
|
20692
20765
|
#
|
20693
|
-
#
|
20766
|
+
# `}`
|
20694
20767
|
#
|
20695
20768
|
# HyperParameters
|
20696
20769
|
#
|
@@ -20702,7 +20775,7 @@ module Aws::SageMaker
|
|
20702
20775
|
# the following filter is satisfied by training jobs with a
|
20703
20776
|
# `"learning_rate"` hyperparameter that is less than `"0.5"`:
|
20704
20777
|
#
|
20705
|
-
# `
|
20778
|
+
# ` {`
|
20706
20779
|
#
|
20707
20780
|
# ` "Name": "HyperParameters.learning_rate",`
|
20708
20781
|
#
|
@@ -20710,7 +20783,7 @@ module Aws::SageMaker
|
|
20710
20783
|
#
|
20711
20784
|
# ` "Value": "0.5"`
|
20712
20785
|
#
|
20713
|
-
# `
|
20786
|
+
# ` }`
|
20714
20787
|
#
|
20715
20788
|
# Tags
|
20716
20789
|
#
|
@@ -21272,7 +21345,7 @@ module Aws::SageMaker
|
|
21272
21345
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
21273
21346
|
# must be in the following format:
|
21274
21347
|
#
|
21275
|
-
#
|
21348
|
+
# `{"username": UserName, "password": Password}`
|
21276
21349
|
# @return [String]
|
21277
21350
|
#
|
21278
21351
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfig AWS API Documentation
|
@@ -21294,7 +21367,7 @@ module Aws::SageMaker
|
|
21294
21367
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
21295
21368
|
# must be in the following format:
|
21296
21369
|
#
|
21297
|
-
#
|
21370
|
+
# `{"username": UserName, "password": Password}`
|
21298
21371
|
# @return [String]
|
21299
21372
|
#
|
21300
21373
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfigForUpdate AWS API Documentation
|
@@ -24826,17 +24899,17 @@ module Aws::SageMaker
|
|
24826
24899
|
#
|
24827
24900
|
# * Examples for one input:
|
24828
24901
|
#
|
24829
|
-
# * If using the console,
|
24902
|
+
# * If using the console, `{"input":[1,1024,1024,3]}`
|
24830
24903
|
#
|
24831
|
-
# * If using the CLI,
|
24904
|
+
# * If using the CLI, `{"input":[1,1024,1024,3]}`
|
24832
24905
|
#
|
24833
24906
|
# * Examples for two inputs:
|
24834
24907
|
#
|
24835
|
-
# * If using the console,
|
24836
|
-
# "data2":[1,28,28,1]
|
24908
|
+
# * If using the console, `{"data1": [1,28,28,1],
|
24909
|
+
# "data2":[1,28,28,1]}`
|
24837
24910
|
#
|
24838
|
-
# * If using the CLI,
|
24839
|
-
# "data2":[1,28,28,1]
|
24911
|
+
# * If using the CLI, `{"data1": [1,28,28,1],
|
24912
|
+
# "data2":[1,28,28,1]}`
|
24840
24913
|
#
|
24841
24914
|
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
24842
24915
|
# expected data inputs using a dictionary format for your trained
|
@@ -24847,17 +24920,17 @@ module Aws::SageMaker
|
|
24847
24920
|
#
|
24848
24921
|
# * Examples for one input:
|
24849
24922
|
#
|
24850
|
-
# * If using the console,
|
24923
|
+
# * If using the console, `{"input_1":[1,3,224,224]}`
|
24851
24924
|
#
|
24852
|
-
# * If using the CLI,
|
24925
|
+
# * If using the CLI, `{"input_1":[1,3,224,224]}`
|
24853
24926
|
#
|
24854
24927
|
# * Examples for two inputs:
|
24855
24928
|
#
|
24856
|
-
# * If using the console,
|
24857
|
-
# "input_2":[1,3,224,224]
|
24929
|
+
# * If using the console, `{"input_1": [1,3,224,224],
|
24930
|
+
# "input_2":[1,3,224,224]} `
|
24858
24931
|
#
|
24859
|
-
# * If using the CLI,
|
24860
|
-
# "input_2":[1,3,224,224]
|
24932
|
+
# * If using the CLI, `{"input_1": [1,3,224,224],
|
24933
|
+
# "input_2":[1,3,224,224]}`
|
24861
24934
|
#
|
24862
24935
|
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
24863
24936
|
# format) of the expected data inputs in order using a dictionary
|
@@ -24866,17 +24939,17 @@ module Aws::SageMaker
|
|
24866
24939
|
#
|
24867
24940
|
# * Examples for one input:
|
24868
24941
|
#
|
24869
|
-
# * If using the console,
|
24942
|
+
# * If using the console, `{"data":[1,3,1024,1024]}`
|
24870
24943
|
#
|
24871
|
-
# * If using the CLI,
|
24944
|
+
# * If using the CLI, `{"data":[1,3,1024,1024]}`
|
24872
24945
|
#
|
24873
24946
|
# * Examples for two inputs:
|
24874
24947
|
#
|
24875
|
-
# * If using the console,
|
24876
|
-
# "var2":[1,1,28,28]
|
24948
|
+
# * If using the console, `{"var1": [1,1,28,28],
|
24949
|
+
# "var2":[1,1,28,28]} `
|
24877
24950
|
#
|
24878
|
-
# * If using the CLI,
|
24879
|
-
# "var2":[1,1,28,28]
|
24951
|
+
# * If using the CLI, `{"var1": [1,1,28,28],
|
24952
|
+
# "var2":[1,1,28,28]}`
|
24880
24953
|
#
|
24881
24954
|
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
24882
24955
|
# of expected data inputs in order using a dictionary format for
|
@@ -24887,19 +24960,19 @@ module Aws::SageMaker
|
|
24887
24960
|
#
|
24888
24961
|
# * Examples for one input in dictionary format:
|
24889
24962
|
#
|
24890
|
-
# * If using the console,
|
24963
|
+
# * If using the console, `{"input0":[1,3,224,224]}`
|
24891
24964
|
#
|
24892
|
-
# * If using the CLI,
|
24965
|
+
# * If using the CLI, `{"input0":[1,3,224,224]}`
|
24893
24966
|
#
|
24894
24967
|
# * Example for one input in list format: `[[1,3,224,224]]`
|
24895
24968
|
#
|
24896
24969
|
# * Examples for two inputs in dictionary format:
|
24897
24970
|
#
|
24898
|
-
# * If using the console,
|
24899
|
-
# "input1":[1,3,224,224]
|
24971
|
+
# * If using the console, `{"input0":[1,3,224,224],
|
24972
|
+
# "input1":[1,3,224,224]}`
|
24900
24973
|
#
|
24901
|
-
# * If using the CLI,
|
24902
|
-
# "input1":[1,3,224,224]
|
24974
|
+
# * If using the CLI, `{"input0":[1,3,224,224],
|
24975
|
+
# "input1":[1,3,224,224]} `
|
24903
24976
|
#
|
24904
24977
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
24905
24978
|
# [1,3,224,224]]`
|
@@ -24909,24 +24982,24 @@ module Aws::SageMaker
|
|
24909
24982
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
24910
24983
|
# `TargetDevice` (ML Model format):
|
24911
24984
|
#
|
24912
|
-
# * `shape`: Input shape, for example
|
24913
|
-
# [1,224,224,3]
|
24985
|
+
# * `shape`: Input shape, for example `{"input_1": {"shape":
|
24986
|
+
# [1,224,224,3]}}`. In addition to static input shapes, CoreML
|
24914
24987
|
# converter supports Flexible input shapes:
|
24915
24988
|
#
|
24916
24989
|
# * Range Dimension. You can use the Range Dimension feature if you
|
24917
24990
|
# know the input shape will be within some specific interval in
|
24918
|
-
# that dimension, for example:
|
24919
|
-
# 224, 224, 3]
|
24991
|
+
# that dimension, for example: `{"input_1": {"shape": ["1..10",
|
24992
|
+
# 224, 224, 3]}}`
|
24920
24993
|
#
|
24921
24994
|
# * Enumerated shapes. Sometimes, the models are trained to work
|
24922
24995
|
# only on a select set of inputs. You can enumerate all supported
|
24923
|
-
# input shapes, for example:
|
24924
|
-
#
|
24996
|
+
# input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
|
24997
|
+
# 3], [1, 160, 160, 3]]}}`
|
24925
24998
|
#
|
24926
24999
|
# * `default_shape`: Default input shape. You can set a default shape
|
24927
25000
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
24928
|
-
# For example
|
24929
|
-
# "default_shape": [1, 224, 224, 3]
|
25001
|
+
# For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
|
25002
|
+
# "default_shape": [1, 224, 224, 3]}}`
|
24930
25003
|
#
|
24931
25004
|
# * `type`: Input type. Allowed values: `Image` and `Tensor`. By
|
24932
25005
|
# default, the converter generates an ML Model with inputs of type
|
@@ -24946,35 +25019,35 @@ module Aws::SageMaker
|
|
24946
25019
|
#
|
24947
25020
|
# * Tensor type input:
|
24948
25021
|
#
|
24949
|
-
# * `"DataInputConfig":
|
24950
|
-
# [1,160,160,3]], "default_shape": [1,224,224,3]
|
25022
|
+
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
25023
|
+
# [1,160,160,3]], "default_shape": [1,224,224,3]}}`
|
24951
25024
|
#
|
24952
25025
|
# ^
|
24953
25026
|
#
|
24954
25027
|
# * Tensor type input without input name (PyTorch):
|
24955
25028
|
#
|
24956
|
-
# * `"DataInputConfig": [
|
24957
|
-
# "default_shape": [1,3,224,224]
|
25029
|
+
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
25030
|
+
# "default_shape": [1,3,224,224]}]`
|
24958
25031
|
#
|
24959
25032
|
# ^
|
24960
25033
|
#
|
24961
25034
|
# * Image type input:
|
24962
25035
|
#
|
24963
|
-
# * `"DataInputConfig":
|
25036
|
+
# * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
|
24964
25037
|
# [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
|
24965
|
-
# "bias": [-1,-1,-1], "scale": 0.007843137255
|
25038
|
+
# "bias": [-1,-1,-1], "scale": 0.007843137255}}`
|
24966
25039
|
#
|
24967
|
-
# * `"CompilerOptions":
|
24968
|
-
# "imagenet_labels_1000.txt"
|
25040
|
+
# * `"CompilerOptions": {"class_labels":
|
25041
|
+
# "imagenet_labels_1000.txt"}`
|
24969
25042
|
#
|
24970
25043
|
# * Image type input without input name (PyTorch):
|
24971
25044
|
#
|
24972
|
-
# * `"DataInputConfig": [
|
25045
|
+
# * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
|
24973
25046
|
# "default_shape": [1,3,224,224], "type": "Image", "bias":
|
24974
|
-
# [-1,-1,-1], "scale": 0.007843137255
|
25047
|
+
# [-1,-1,-1], "scale": 0.007843137255}]`
|
24975
25048
|
#
|
24976
|
-
# * `"CompilerOptions":
|
24977
|
-
# "imagenet_labels_1000.txt"
|
25049
|
+
# * `"CompilerOptions": {"class_labels":
|
25050
|
+
# "imagenet_labels_1000.txt"}`
|
24978
25051
|
#
|
24979
25052
|
# Depending on the model format, `DataInputConfig` requires the
|
24980
25053
|
# following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
|
@@ -24985,18 +25058,18 @@ module Aws::SageMaker
|
|
24985
25058
|
# `OutputConfig:CompilerOptions` ][3] if the model does not use
|
24986
25059
|
# TensorFlow's default signature def key. For example:
|
24987
25060
|
#
|
24988
|
-
# * `"DataInputConfig":
|
25061
|
+
# * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
|
24989
25062
|
#
|
24990
|
-
# * `"CompilerOptions":
|
25063
|
+
# * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
|
24991
25064
|
#
|
24992
25065
|
# * For TensorFlow models saved as a frozen graph, specify the input
|
24993
25066
|
# tensor names and shapes in `DataInputConfig` and the output tensor
|
24994
25067
|
# names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
|
24995
25068
|
# For example:
|
24996
25069
|
#
|
24997
|
-
# * `"DataInputConfig":
|
25070
|
+
# * `"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}`
|
24998
25071
|
#
|
24999
|
-
# * `"CompilerOptions":
|
25072
|
+
# * `"CompilerOptions": {"output_names": ["output_tensor:0"]}`
|
25000
25073
|
#
|
25001
25074
|
#
|
25002
25075
|
#
|
@@ -34727,11 +34800,11 @@ module Aws::SageMaker
|
|
34727
34800
|
# with a specific channel name and `S3Uri` prefix, define the following
|
34728
34801
|
# filters:
|
34729
34802
|
#
|
34730
|
-
# * `'
|
34731
|
-
# "Value":"train"
|
34803
|
+
# * `'{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
|
34804
|
+
# "Value":"train"}',`
|
34732
34805
|
#
|
34733
|
-
# * `'
|
34734
|
-
# "Operator":"Contains", "Value":"mybucket/catdata"
|
34806
|
+
# * `'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
|
34807
|
+
# "Operator":"Contains", "Value":"mybucket/catdata"}'`
|
34735
34808
|
#
|
34736
34809
|
#
|
34737
34810
|
#
|
@@ -35604,42 +35677,41 @@ module Aws::SageMaker
|
|
35604
35677
|
#
|
35605
35678
|
# * Raspberry Pi 3 Model B+
|
35606
35679
|
#
|
35607
|
-
# `"TargetPlatform":
|
35680
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},`
|
35608
35681
|
#
|
35609
|
-
# ` "CompilerOptions":
|
35682
|
+
# ` "CompilerOptions": {'mattr': ['+neon']}`
|
35610
35683
|
#
|
35611
35684
|
# * Jetson TX2
|
35612
35685
|
#
|
35613
|
-
# `"TargetPlatform":
|
35614
|
-
# "
|
35686
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
|
35687
|
+
# "NVIDIA"},`
|
35615
35688
|
#
|
35616
|
-
# ` "CompilerOptions":
|
35617
|
-
# 'cuda-ver': '10.0'
|
35689
|
+
# ` "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
|
35690
|
+
# 'cuda-ver': '10.0'}`
|
35618
35691
|
#
|
35619
35692
|
# * EC2 m5.2xlarge instance OS
|
35620
35693
|
#
|
35621
|
-
# `"TargetPlatform":
|
35622
|
-
# "Accelerator": "NVIDIA"
|
35694
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
|
35695
|
+
# "Accelerator": "NVIDIA"},`
|
35623
35696
|
#
|
35624
|
-
# ` "CompilerOptions":
|
35697
|
+
# ` "CompilerOptions": {'mcpu': 'skylake-avx512'}`
|
35625
35698
|
#
|
35626
35699
|
# * RK3399
|
35627
35700
|
#
|
35628
|
-
# `"TargetPlatform":
|
35629
|
-
# "
|
35701
|
+
# `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
|
35702
|
+
# "MALI"}`
|
35630
35703
|
#
|
35631
35704
|
# * ARMv7 phone (CPU)
|
35632
35705
|
#
|
35633
|
-
# `"TargetPlatform":
|
35706
|
+
# `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},`
|
35634
35707
|
#
|
35635
|
-
# ` "CompilerOptions":
|
35636
|
-
# ['+neon']\}`
|
35708
|
+
# ` "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}`
|
35637
35709
|
#
|
35638
35710
|
# * ARMv8 phone (CPU)
|
35639
35711
|
#
|
35640
|
-
# `"TargetPlatform":
|
35712
|
+
# `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},`
|
35641
35713
|
#
|
35642
|
-
# ` "CompilerOptions":
|
35714
|
+
# ` "CompilerOptions": {'ANDROID_PLATFORM': 29}`
|
35643
35715
|
# @return [Types::TargetPlatform]
|
35644
35716
|
#
|
35645
35717
|
# @!attribute [rw] compiler_options
|
@@ -35657,25 +35729,24 @@ module Aws::SageMaker
|
|
35657
35729
|
#
|
35658
35730
|
# * int64: Use either `"int64"` or `"long"`.
|
35659
35731
|
#
|
35660
|
-
# For example,
|
35732
|
+
# For example, `{"dtype" : "float32"}`.
|
35661
35733
|
#
|
35662
35734
|
# * `CPU`: Compilation for CPU supports the following compiler
|
35663
35735
|
# options.
|
35664
35736
|
#
|
35665
|
-
# * `mcpu`: CPU micro-architecture. For example,
|
35666
|
-
# 'skylake-avx512'
|
35737
|
+
# * `mcpu`: CPU micro-architecture. For example, `{'mcpu':
|
35738
|
+
# 'skylake-avx512'}`
|
35667
35739
|
#
|
35668
|
-
# * `mattr`: CPU flags. For example,
|
35669
|
-
# '+vfpv4']
|
35740
|
+
# * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
|
35741
|
+
# '+vfpv4']}`
|
35670
35742
|
#
|
35671
35743
|
# * `ARM`: Details of ARM CPU compilations.
|
35672
35744
|
#
|
35673
35745
|
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
35674
35746
|
# used in ARMv7 processors.
|
35675
35747
|
#
|
35676
|
-
# For example, add
|
35677
|
-
#
|
35678
|
-
# support.
|
35748
|
+
# For example, add `{'mattr': ['+neon']}` to the compiler options
|
35749
|
+
# if compiling for ARM 32-bit platform with the NEON support.
|
35679
35750
|
#
|
35680
35751
|
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
35681
35752
|
# compiler options.
|
@@ -35686,17 +35757,17 @@ module Aws::SageMaker
|
|
35686
35757
|
#
|
35687
35758
|
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
35688
35759
|
#
|
35689
|
-
# For example,
|
35690
|
-
# 'cuda-ver': '10.1'
|
35760
|
+
# For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
35761
|
+
# 'cuda-ver': '10.1'}`
|
35691
35762
|
#
|
35692
35763
|
# * `ANDROID`: Compilation for the Android OS supports the following
|
35693
35764
|
# compiler options:
|
35694
35765
|
#
|
35695
35766
|
# * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
|
35696
|
-
# levels range from 21 to 29. For example,
|
35697
|
-
# 28
|
35767
|
+
# levels range from 21 to 29. For example, `{'ANDROID_PLATFORM':
|
35768
|
+
# 28}`.
|
35698
35769
|
#
|
35699
|
-
# * `mattr`: Add
|
35770
|
+
# * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
|
35700
35771
|
# compiling for ARM 32-bit platform with NEON support.
|
35701
35772
|
#
|
35702
35773
|
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
@@ -35710,8 +35781,8 @@ module Aws::SageMaker
|
|
35710
35781
|
# `TargetDevice` supports the following compiler options:
|
35711
35782
|
#
|
35712
35783
|
# * `class_labels`: Specifies the classification labels file name
|
35713
|
-
# inside input tar.gz file. For example,
|
35714
|
-
# "imagenet_labels_1000.txt"
|
35784
|
+
# inside input tar.gz file. For example, `{"class_labels":
|
35785
|
+
# "imagenet_labels_1000.txt"}`. Labels inside the txt file should
|
35715
35786
|
# be separated by newlines.
|
35716
35787
|
#
|
35717
35788
|
# ^
|
@@ -39877,7 +39948,7 @@ module Aws::SageMaker
|
|
39877
39948
|
#
|
39878
39949
|
# The following code example shows a valid manifest format:
|
39879
39950
|
#
|
39880
|
-
# `[
|
39951
|
+
# `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
|
39881
39952
|
#
|
39882
39953
|
# ` "relative/path/to/custdata-1",`
|
39883
39954
|
#
|
@@ -42029,13 +42100,13 @@ module Aws::SageMaker
|
|
42029
42100
|
# the input data source to run an Autopilot job V2. You can input
|
42030
42101
|
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
42031
42102
|
#
|
42032
|
-
#
|
42103
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
42033
42104
|
#
|
42034
42105
|
# You can also specify the data type of the feature (optional) in the
|
42035
42106
|
# format shown below:
|
42036
42107
|
#
|
42037
|
-
#
|
42038
|
-
#
|
42108
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
42109
|
+
# }`
|
42039
42110
|
#
|
42040
42111
|
# <note markdown="1"> These column keys may not include the target column.
|
42041
42112
|
#
|
@@ -42223,7 +42294,7 @@ module Aws::SageMaker
|
|
42223
42294
|
#
|
42224
42295
|
# * `ANDROID`: Android operating systems. Android API level can be
|
42225
42296
|
# specified using the `ANDROID_PLATFORM` compiler option. For
|
42226
|
-
# example, `"CompilerOptions":
|
42297
|
+
# example, `"CompilerOptions": {'ANDROID_PLATFORM': 28}`
|
42227
42298
|
# @return [String]
|
42228
42299
|
#
|
42229
42300
|
# @!attribute [rw] arch
|
@@ -42414,8 +42485,8 @@ module Aws::SageMaker
|
|
42414
42485
|
#
|
42415
42486
|
# Here is an example where all four hyperparameters are configured.
|
42416
42487
|
#
|
42417
|
-
#
|
42418
|
-
# "learningRateWarmupSteps": "10"
|
42488
|
+
# `{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
|
42489
|
+
# "learningRateWarmupSteps": "10" }`
|
42419
42490
|
#
|
42420
42491
|
#
|
42421
42492
|
#
|
@@ -42650,13 +42721,13 @@ module Aws::SageMaker
|
|
42650
42721
|
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
42651
42722
|
# shown below:
|
42652
42723
|
#
|
42653
|
-
#
|
42724
|
+
# `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
|
42654
42725
|
#
|
42655
42726
|
# You can also specify the data type of the feature (optional) in the
|
42656
42727
|
# format shown below:
|
42657
42728
|
#
|
42658
|
-
#
|
42659
|
-
#
|
42729
|
+
# `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
|
42730
|
+
# }`
|
42660
42731
|
#
|
42661
42732
|
# Autopilot supports the following data types: `numeric`,
|
42662
42733
|
# `categorical`, `text`, and `datetime`.
|
@@ -43498,6 +43569,10 @@ module Aws::SageMaker
|
|
43498
43569
|
# The status of the training job.
|
43499
43570
|
# @return [String]
|
43500
43571
|
#
|
43572
|
+
# @!attribute [rw] secondary_status
|
43573
|
+
# The secondary status of the training job.
|
43574
|
+
# @return [String]
|
43575
|
+
#
|
43501
43576
|
# @!attribute [rw] warm_pool_status
|
43502
43577
|
# The status of the warm pool associated with the training job.
|
43503
43578
|
# @return [Types::WarmPoolStatus]
|
@@ -43511,6 +43586,7 @@ module Aws::SageMaker
|
|
43511
43586
|
:training_end_time,
|
43512
43587
|
:last_modified_time,
|
43513
43588
|
:training_job_status,
|
43589
|
+
:secondary_status,
|
43514
43590
|
:warm_pool_status)
|
43515
43591
|
SENSITIVE = []
|
43516
43592
|
include Aws::Structure
|
@@ -44174,7 +44250,7 @@ module Aws::SageMaker
|
|
44174
44250
|
# The manifest is an S3 object which is a JSON file with the
|
44175
44251
|
# following format:
|
44176
44252
|
#
|
44177
|
-
# `[
|
44253
|
+
# `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
|
44178
44254
|
#
|
44179
44255
|
# `"relative/path/to/custdata-1",`
|
44180
44256
|
#
|
@@ -45203,7 +45279,7 @@ module Aws::SageMaker
|
|
45203
45279
|
# repository. The secret must have a staging label of `AWSCURRENT` and
|
45204
45280
|
# must be in the following format:
|
45205
45281
|
#
|
45206
|
-
#
|
45282
|
+
# `{"username": UserName, "password": Password}`
|
45207
45283
|
# @return [Types::GitConfigForUpdate]
|
45208
45284
|
#
|
45209
45285
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateCodeRepositoryInput AWS API Documentation
|
@@ -45285,7 +45361,7 @@ module Aws::SageMaker
|
|
45285
45361
|
# @!attribute [rw] enable_iot_role_alias
|
45286
45362
|
# Whether to create an Amazon Web Services IoT Role Alias during
|
45287
45363
|
# device fleet creation. The name of the role alias generated will
|
45288
|
-
# match this pattern: "SageMakerEdge
|
45364
|
+
# match this pattern: "SageMakerEdge-\{DeviceFleetName}".
|
45289
45365
|
#
|
45290
45366
|
# For example, if your device fleet is called "demo-fleet", the name
|
45291
45367
|
# of the role alias will be "SageMakerEdge-demo-fleet".
|