aws-sdk-sagemaker 1.271.0 → 1.273.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1916,13 +1916,13 @@ module Aws::SageMaker
1916
1916
  # the input data source to run an Autopilot job. You can input
1917
1917
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
1918
1918
  #
1919
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
1919
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
1920
1920
  #
1921
1921
  # You can also specify the data type of the feature (optional) in the
1922
1922
  # format shown below:
1923
1923
  #
1924
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
1925
- # \} \}`
1924
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
1925
+ # }`
1926
1926
  #
1927
1927
  # <note markdown="1"> These column keys may not include the target column.
1928
1928
  #
@@ -2740,8 +2740,8 @@ module Aws::SageMaker
2740
2740
  #
2741
2741
  # A `ManifestFile` should have the format shown below:
2742
2742
  #
2743
- # `[ \{"prefix":
2744
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2743
+ # `[ {"prefix":
2744
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
2745
2745
  # `
2746
2746
  #
2747
2747
  # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
@@ -2759,10 +2759,10 @@ module Aws::SageMaker
2759
2759
  # Here is a minimal, single-record example of an
2760
2760
  # `AugmentedManifestFile`:
2761
2761
  #
2762
- # `\{"source-ref":
2762
+ # `{"source-ref":
2763
2763
  # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2764
2764
  #
2765
- # `"label-metadata": \{"class-name": "cat"` \\}
2765
+ # `"label-metadata": {"class-name": "cat"` }
2766
2766
  #
2767
2767
  # For more information on `AugmentedManifestFile`, see [Provide
2768
2768
  # Dataset Metadata to Training Jobs with an Augmented Manifest
@@ -2935,6 +2935,79 @@ module Aws::SageMaker
2935
2935
  include Aws::Structure
2936
2936
  end
2937
2937
 
2938
+ # Represents an error encountered when deleting a node from a SageMaker
2939
+ # HyperPod cluster.
2940
+ #
2941
+ # @!attribute [rw] code
2942
+ # The error code associated with the error encountered when deleting a
2943
+ # node.
2944
+ #
2945
+ # The code provides information about the specific issue encountered,
2946
+ # such as the node not being found, the node's status being invalid
2947
+ # for deletion, or the node ID being in use by another process.
2948
+ # @return [String]
2949
+ #
2950
+ # @!attribute [rw] message
2951
+ # A message describing the error encountered when deleting a node.
2952
+ # @return [String]
2953
+ #
2954
+ # @!attribute [rw] node_id
2955
+ # The ID of the node that encountered an error during the deletion
2956
+ # process.
2957
+ # @return [String]
2958
+ #
2959
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesError AWS API Documentation
2960
+ #
2961
+ class BatchDeleteClusterNodesError < Struct.new(
2962
+ :code,
2963
+ :message,
2964
+ :node_id)
2965
+ SENSITIVE = []
2966
+ include Aws::Structure
2967
+ end
2968
+
2969
+ # @!attribute [rw] cluster_name
2970
+ # The name of the SageMaker HyperPod cluster from which to delete the
2971
+ # specified nodes.
2972
+ # @return [String]
2973
+ #
2974
+ # @!attribute [rw] node_ids
2975
+ # A list of node IDs to be deleted from the specified cluster.
2976
+ #
2977
+ # <note markdown="1"> For SageMaker HyperPod clusters using the Slurm workload manager,
2978
+ # you cannot remove instances that are configured as Slurm controller
2979
+ # nodes.
2980
+ #
2981
+ # </note>
2982
+ # @return [Array<String>]
2983
+ #
2984
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesRequest AWS API Documentation
2985
+ #
2986
+ class BatchDeleteClusterNodesRequest < Struct.new(
2987
+ :cluster_name,
2988
+ :node_ids)
2989
+ SENSITIVE = []
2990
+ include Aws::Structure
2991
+ end
2992
+
2993
+ # @!attribute [rw] failed
2994
+ # A list of errors encountered when deleting the specified nodes.
2995
+ # @return [Array<Types::BatchDeleteClusterNodesError>]
2996
+ #
2997
+ # @!attribute [rw] successful
2998
+ # A list of node IDs that were successfully deleted from the specified
2999
+ # cluster.
3000
+ # @return [Array<String>]
3001
+ #
3002
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesResponse AWS API Documentation
3003
+ #
3004
+ class BatchDeleteClusterNodesResponse < Struct.new(
3005
+ :failed,
3006
+ :successful)
3007
+ SENSITIVE = []
3008
+ include Aws::Structure
3009
+ end
3010
+
2938
3011
  # The error code and error description associated with the resource.
2939
3012
  #
2940
3013
  # @!attribute [rw] error_code
@@ -3789,14 +3862,14 @@ module Aws::SageMaker
3789
3862
  # model container input in JSON Lines format. For example, if
3790
3863
  # `FeaturesAttribute` is the JMESPath expression `'myfeatures'`, it
3791
3864
  # extracts a list of features `[1,2,3]` from request data
3792
- # `'\{"myfeatures":[1,2,3]\}'`.
3865
+ # `'{"myfeatures":[1,2,3]}'`.
3793
3866
  # @return [String]
3794
3867
  #
3795
3868
  # @!attribute [rw] content_template
3796
3869
  # A template string used to format a JSON record into an acceptable
3797
3870
  # model container input. For example, a `ContentTemplate` string
3798
- # `'\{"myfeatures":$features\}'` will format a list of features
3799
- # `[1,2,3]` into the record string `'\{"myfeatures":[1,2,3]\}'`.
3871
+ # `'{"myfeatures":$features}'` will format a list of features
3872
+ # `[1,2,3]` into the record string `'{"myfeatures":[1,2,3]}'`.
3800
3873
  # Required only when the model container input is in JSON Lines
3801
3874
  # format.
3802
3875
  # @return [String]
@@ -3857,7 +3930,7 @@ module Aws::SageMaker
3857
3930
  # Lines format.
3858
3931
  #
3859
3932
  # **Example**: If the model container output of a single request is
3860
- # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3933
+ # `'{"predicted_label":1,"probability":0.6}'`, then set
3861
3934
  # `ProbabilityAttribute` to `'probability'`.
3862
3935
  # @return [String]
3863
3936
  #
@@ -3866,7 +3939,7 @@ module Aws::SageMaker
3866
3939
  # the model container output.
3867
3940
  #
3868
3941
  # **Example**: If the model container output of a batch request is
3869
- # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3942
+ # `'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'`,
3870
3943
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3871
3944
  # headers `["cat","dog","fish"]`
3872
3945
  # @return [String]
@@ -6135,7 +6208,7 @@ module Aws::SageMaker
6135
6208
  # @!attribute [rw] enable_iot_role_alias
6136
6209
  # Whether to create an Amazon Web Services IoT Role Alias during
6137
6210
  # device fleet creation. The name of the role alias generated will
6138
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
6211
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
6139
6212
  #
6140
6213
  # For example, if your device fleet is called "demo-fleet", the name
6141
6214
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -7720,8 +7793,8 @@ module Aws::SageMaker
7720
7793
  # For named entity recognition jobs, in addition to `"labels"`, you
7721
7794
  # must provide worker instructions in the label category configuration
7722
7795
  # file using the `"instructions"` parameter: `"instructions":
7723
- # \{"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7724
- # "fullInstruction":"<p>Add additional instructions.</p>"\}`. For
7796
+ # {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7797
+ # "fullInstruction":"<p>Add additional instructions.</p>"}`. For
7725
7798
  # details and an example, see [Create a Named Entity Recognition
7726
7799
  # Labeling Job (API) ][2].
7727
7800
  #
@@ -7730,14 +7803,14 @@ module Aws::SageMaker
7730
7803
  # following format. Identify the labels you want to use by replacing
7731
7804
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
7732
7805
  #
7733
- # `\{ `
7806
+ # `{ `
7734
7807
  #
7735
7808
  # `"document-version": "2018-11-28",`
7736
7809
  #
7737
- # `"labels": [\{"label": "label_1"\},\{"label":
7738
- # "label_2"\},...\{"label": "label_n"\}]`
7810
+ # `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
7811
+ # "label_n"}]`
7739
7812
  #
7740
- # `\}`
7813
+ # `}`
7741
7814
  #
7742
7815
  # Note the following about the label category configuration file:
7743
7816
  #
@@ -15390,35 +15463,35 @@ module Aws::SageMaker
15390
15463
  #
15391
15464
  # The file is a JSON structure in the following format:
15392
15465
  #
15393
- # `\{`
15466
+ # `{`
15394
15467
  #
15395
15468
  # ` "document-version": "2018-11-28"`
15396
15469
  #
15397
15470
  # ` "labels": [`
15398
15471
  #
15399
- # ` \{`
15472
+ # ` {`
15400
15473
  #
15401
15474
  # ` "label": "label 1"`
15402
15475
  #
15403
- # ` \},`
15476
+ # ` },`
15404
15477
  #
15405
- # ` \{`
15478
+ # ` {`
15406
15479
  #
15407
15480
  # ` "label": "label 2"`
15408
15481
  #
15409
- # ` \},`
15482
+ # ` },`
15410
15483
  #
15411
15484
  # ` ...`
15412
15485
  #
15413
- # ` \{`
15486
+ # ` {`
15414
15487
  #
15415
15488
  # ` "label": "label n"`
15416
15489
  #
15417
- # ` \}`
15490
+ # ` }`
15418
15491
  #
15419
15492
  # ` ]`
15420
15493
  #
15421
- # `\}`
15494
+ # `}`
15422
15495
  # @return [String]
15423
15496
  #
15424
15497
  # @!attribute [rw] stopping_conditions
@@ -20682,7 +20755,7 @@ module Aws::SageMaker
20682
20755
  # the following filter searches for training jobs with an `"accuracy"`
20683
20756
  # metric greater than `"0.9"`:
20684
20757
  #
20685
- # `\{`
20758
+ # `{`
20686
20759
  #
20687
20760
  # `"Name": "Metrics.accuracy",`
20688
20761
  #
@@ -20690,7 +20763,7 @@ module Aws::SageMaker
20690
20763
  #
20691
20764
  # `"Value": "0.9"`
20692
20765
  #
20693
- # `\}`
20766
+ # `}`
20694
20767
  #
20695
20768
  # HyperParameters
20696
20769
  #
@@ -20702,7 +20775,7 @@ module Aws::SageMaker
20702
20775
  # the following filter is satisfied by training jobs with a
20703
20776
  # `"learning_rate"` hyperparameter that is less than `"0.5"`:
20704
20777
  #
20705
- # ` \{`
20778
+ # ` {`
20706
20779
  #
20707
20780
  # ` "Name": "HyperParameters.learning_rate",`
20708
20781
  #
@@ -20710,7 +20783,7 @@ module Aws::SageMaker
20710
20783
  #
20711
20784
  # ` "Value": "0.5"`
20712
20785
  #
20713
- # ` \}`
20786
+ # ` }`
20714
20787
  #
20715
20788
  # Tags
20716
20789
  #
@@ -21272,7 +21345,7 @@ module Aws::SageMaker
21272
21345
  # repository. The secret must have a staging label of `AWSCURRENT` and
21273
21346
  # must be in the following format:
21274
21347
  #
21275
- # `\{"username": UserName, "password": Password\}`
21348
+ # `{"username": UserName, "password": Password}`
21276
21349
  # @return [String]
21277
21350
  #
21278
21351
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfig AWS API Documentation
@@ -21294,7 +21367,7 @@ module Aws::SageMaker
21294
21367
  # repository. The secret must have a staging label of `AWSCURRENT` and
21295
21368
  # must be in the following format:
21296
21369
  #
21297
- # `\{"username": UserName, "password": Password\}`
21370
+ # `{"username": UserName, "password": Password}`
21298
21371
  # @return [String]
21299
21372
  #
21300
21373
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfigForUpdate AWS API Documentation
@@ -24826,17 +24899,17 @@ module Aws::SageMaker
24826
24899
  #
24827
24900
  # * Examples for one input:
24828
24901
  #
24829
- # * If using the console, `\{"input":[1,1024,1024,3]\}`
24902
+ # * If using the console, `{"input":[1,1024,1024,3]}`
24830
24903
  #
24831
- # * If using the CLI, `\{"input":[1,1024,1024,3]\}`
24904
+ # * If using the CLI, `{"input":[1,1024,1024,3]}`
24832
24905
  #
24833
24906
  # * Examples for two inputs:
24834
24907
  #
24835
- # * If using the console, `\{"data1": [1,28,28,1],
24836
- # "data2":[1,28,28,1]\}`
24908
+ # * If using the console, `{"data1": [1,28,28,1],
24909
+ # "data2":[1,28,28,1]}`
24837
24910
  #
24838
- # * If using the CLI, `\{"data1": [1,28,28,1],
24839
- # "data2":[1,28,28,1]\}`
24911
+ # * If using the CLI, `{"data1": [1,28,28,1],
24912
+ # "data2":[1,28,28,1]}`
24840
24913
  #
24841
24914
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24842
24915
  # expected data inputs using a dictionary format for your trained
@@ -24847,17 +24920,17 @@ module Aws::SageMaker
24847
24920
  #
24848
24921
  # * Examples for one input:
24849
24922
  #
24850
- # * If using the console, `\{"input_1":[1,3,224,224]\}`
24923
+ # * If using the console, `{"input_1":[1,3,224,224]}`
24851
24924
  #
24852
- # * If using the CLI, `\{"input_1":[1,3,224,224]\}`
24925
+ # * If using the CLI, `{"input_1":[1,3,224,224]}`
24853
24926
  #
24854
24927
  # * Examples for two inputs:
24855
24928
  #
24856
- # * If using the console, `\{"input_1": [1,3,224,224],
24857
- # "input_2":[1,3,224,224]\} `
24929
+ # * If using the console, `{"input_1": [1,3,224,224],
24930
+ # "input_2":[1,3,224,224]} `
24858
24931
  #
24859
- # * If using the CLI, `\{"input_1": [1,3,224,224],
24860
- # "input_2":[1,3,224,224]\}`
24932
+ # * If using the CLI, `{"input_1": [1,3,224,224],
24933
+ # "input_2":[1,3,224,224]}`
24861
24934
  #
24862
24935
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24863
24936
  # format) of the expected data inputs in order using a dictionary
@@ -24866,17 +24939,17 @@ module Aws::SageMaker
24866
24939
  #
24867
24940
  # * Examples for one input:
24868
24941
  #
24869
- # * If using the console, `\{"data":[1,3,1024,1024]\}`
24942
+ # * If using the console, `{"data":[1,3,1024,1024]}`
24870
24943
  #
24871
- # * If using the CLI, `\{"data":[1,3,1024,1024]\}`
24944
+ # * If using the CLI, `{"data":[1,3,1024,1024]}`
24872
24945
  #
24873
24946
  # * Examples for two inputs:
24874
24947
  #
24875
- # * If using the console, `\{"var1": [1,1,28,28],
24876
- # "var2":[1,1,28,28]\} `
24948
+ # * If using the console, `{"var1": [1,1,28,28],
24949
+ # "var2":[1,1,28,28]} `
24877
24950
  #
24878
- # * If using the CLI, `\{"var1": [1,1,28,28],
24879
- # "var2":[1,1,28,28]\}`
24951
+ # * If using the CLI, `{"var1": [1,1,28,28],
24952
+ # "var2":[1,1,28,28]}`
24880
24953
  #
24881
24954
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24882
24955
  # of expected data inputs in order using a dictionary format for
@@ -24887,19 +24960,19 @@ module Aws::SageMaker
24887
24960
  #
24888
24961
  # * Examples for one input in dictionary format:
24889
24962
  #
24890
- # * If using the console, `\{"input0":[1,3,224,224]\}`
24963
+ # * If using the console, `{"input0":[1,3,224,224]}`
24891
24964
  #
24892
- # * If using the CLI, `\{"input0":[1,3,224,224]\}`
24965
+ # * If using the CLI, `{"input0":[1,3,224,224]}`
24893
24966
  #
24894
24967
  # * Example for one input in list format: `[[1,3,224,224]]`
24895
24968
  #
24896
24969
  # * Examples for two inputs in dictionary format:
24897
24970
  #
24898
- # * If using the console, `\{"input0":[1,3,224,224],
24899
- # "input1":[1,3,224,224]\}`
24971
+ # * If using the console, `{"input0":[1,3,224,224],
24972
+ # "input1":[1,3,224,224]}`
24900
24973
  #
24901
- # * If using the CLI, `\{"input0":[1,3,224,224],
24902
- # "input1":[1,3,224,224]\} `
24974
+ # * If using the CLI, `{"input0":[1,3,224,224],
24975
+ # "input1":[1,3,224,224]} `
24903
24976
  #
24904
24977
  # * Example for two inputs in list format: `[[1,3,224,224],
24905
24978
  # [1,3,224,224]]`
@@ -24909,24 +24982,24 @@ module Aws::SageMaker
24909
24982
  # `DataInputConfig` supports the following parameters for `CoreML`
24910
24983
  # `TargetDevice` (ML Model format):
24911
24984
  #
24912
- # * `shape`: Input shape, for example `\{"input_1": \{"shape":
24913
- # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
24985
+ # * `shape`: Input shape, for example `{"input_1": {"shape":
24986
+ # [1,224,224,3]}}`. In addition to static input shapes, CoreML
24914
24987
  # converter supports Flexible input shapes:
24915
24988
  #
24916
24989
  # * Range Dimension. You can use the Range Dimension feature if you
24917
24990
  # know the input shape will be within some specific interval in
24918
- # that dimension, for example: `\{"input_1": \{"shape": ["1..10",
24919
- # 224, 224, 3]\}\}`
24991
+ # that dimension, for example: `{"input_1": {"shape": ["1..10",
24992
+ # 224, 224, 3]}}`
24920
24993
  #
24921
24994
  # * Enumerated shapes. Sometimes, the models are trained to work
24922
24995
  # only on a select set of inputs. You can enumerate all supported
24923
- # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
24924
- # 224, 3], [1, 160, 160, 3]]\}\}`
24996
+ # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
+ # 3], [1, 160, 160, 3]]}}`
24925
24998
  #
24926
24999
  # * `default_shape`: Default input shape. You can set a default shape
24927
25000
  # during conversion for both Range Dimension and Enumerated Shapes.
24928
- # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
24929
- # "default_shape": [1, 224, 224, 3]\}\}`
25001
+ # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
25002
+ # "default_shape": [1, 224, 224, 3]}}`
24930
25003
  #
24931
25004
  # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
24932
25005
  # default, the converter generates an ML Model with inputs of type
@@ -24946,35 +25019,35 @@ module Aws::SageMaker
24946
25019
  #
24947
25020
  # * Tensor type input:
24948
25021
  #
24949
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
24950
- # [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
25022
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
25023
+ # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
24951
25024
  #
24952
25025
  # ^
24953
25026
  #
24954
25027
  # * Tensor type input without input name (PyTorch):
24955
25028
  #
24956
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
24957
- # "default_shape": [1,3,224,224]\}]`
25029
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
+ # "default_shape": [1,3,224,224]}]`
24958
25031
  #
24959
25032
  # ^
24960
25033
  #
24961
25034
  # * Image type input:
24962
25035
  #
24963
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
25036
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
24964
25037
  # [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
24965
- # "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
25038
+ # "bias": [-1,-1,-1], "scale": 0.007843137255}}`
24966
25039
  #
24967
- # * `"CompilerOptions": \{"class_labels":
24968
- # "imagenet_labels_1000.txt"\}`
25040
+ # * `"CompilerOptions": {"class_labels":
25041
+ # "imagenet_labels_1000.txt"}`
24969
25042
  #
24970
25043
  # * Image type input without input name (PyTorch):
24971
25044
  #
24972
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
25045
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
24973
25046
  # "default_shape": [1,3,224,224], "type": "Image", "bias":
24974
- # [-1,-1,-1], "scale": 0.007843137255\}]`
25047
+ # [-1,-1,-1], "scale": 0.007843137255}]`
24975
25048
  #
24976
- # * `"CompilerOptions": \{"class_labels":
24977
- # "imagenet_labels_1000.txt"\}`
25049
+ # * `"CompilerOptions": {"class_labels":
25050
+ # "imagenet_labels_1000.txt"}`
24978
25051
  #
24979
25052
  # Depending on the model format, `DataInputConfig` requires the
24980
25053
  # following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
@@ -24985,18 +25058,18 @@ module Aws::SageMaker
24985
25058
  # `OutputConfig:CompilerOptions` ][3] if the model does not use
24986
25059
  # TensorFlow's default signature def key. For example:
24987
25060
  #
24988
- # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
25061
+ # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
24989
25062
  #
24990
- # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
25063
+ # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
24991
25064
  #
24992
25065
  # * For TensorFlow models saved as a frozen graph, specify the input
24993
25066
  # tensor names and shapes in `DataInputConfig` and the output tensor
24994
25067
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
24995
25068
  # For example:
24996
25069
  #
24997
- # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
25070
+ # * `"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}`
24998
25071
  #
24999
- # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
25072
+ # * `"CompilerOptions": {"output_names": ["output_tensor:0"]}`
25000
25073
  #
25001
25074
  #
25002
25075
  #
@@ -34727,11 +34800,11 @@ module Aws::SageMaker
34727
34800
  # with a specific channel name and `S3Uri` prefix, define the following
34728
34801
  # filters:
34729
34802
  #
34730
- # * `'\{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34731
- # "Value":"train"\}',`
34803
+ # * `'{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34804
+ # "Value":"train"}',`
34732
34805
  #
34733
- # * `'\{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34734
- # "Operator":"Contains", "Value":"mybucket/catdata"\}'`
34806
+ # * `'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34807
+ # "Operator":"Contains", "Value":"mybucket/catdata"}'`
34735
34808
  #
34736
34809
  #
34737
34810
  #
@@ -35604,42 +35677,41 @@ module Aws::SageMaker
35604
35677
  #
35605
35678
  # * Raspberry Pi 3 Model B+
35606
35679
  #
35607
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
35680
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},`
35608
35681
  #
35609
- # ` "CompilerOptions": \{'mattr': ['+neon']\}`
35682
+ # ` "CompilerOptions": {'mattr': ['+neon']}`
35610
35683
  #
35611
35684
  # * Jetson TX2
35612
35685
  #
35613
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35614
- # "Accelerator": "NVIDIA"\},`
35686
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35687
+ # "NVIDIA"},`
35615
35688
  #
35616
- # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35617
- # 'cuda-ver': '10.0'\}`
35689
+ # ` "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35690
+ # 'cuda-ver': '10.0'}`
35618
35691
  #
35619
35692
  # * EC2 m5.2xlarge instance OS
35620
35693
  #
35621
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
35622
- # "Accelerator": "NVIDIA"\},`
35694
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
35695
+ # "Accelerator": "NVIDIA"},`
35623
35696
  #
35624
- # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
35697
+ # ` "CompilerOptions": {'mcpu': 'skylake-avx512'}`
35625
35698
  #
35626
35699
  # * RK3399
35627
35700
  #
35628
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35629
- # "Accelerator": "MALI"\}`
35701
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35702
+ # "MALI"}`
35630
35703
  #
35631
35704
  # * ARMv7 phone (CPU)
35632
35705
  #
35633
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
35706
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},`
35634
35707
  #
35635
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
35636
- # ['+neon']\}`
35708
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}`
35637
35709
  #
35638
35710
  # * ARMv8 phone (CPU)
35639
35711
  #
35640
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
35712
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},`
35641
35713
  #
35642
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
35714
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 29}`
35643
35715
  # @return [Types::TargetPlatform]
35644
35716
  #
35645
35717
  # @!attribute [rw] compiler_options
@@ -35657,25 +35729,24 @@ module Aws::SageMaker
35657
35729
  #
35658
35730
  # * int64: Use either `"int64"` or `"long"`.
35659
35731
  #
35660
- # For example, `\{"dtype" : "float32"\}`.
35732
+ # For example, `{"dtype" : "float32"}`.
35661
35733
  #
35662
35734
  # * `CPU`: Compilation for CPU supports the following compiler
35663
35735
  # options.
35664
35736
  #
35665
- # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
35666
- # 'skylake-avx512'\}`
35737
+ # * `mcpu`: CPU micro-architecture. For example, `{'mcpu':
35738
+ # 'skylake-avx512'}`
35667
35739
  #
35668
- # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
35669
- # '+vfpv4']\}`
35740
+ # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
+ # '+vfpv4']}`
35670
35742
  #
35671
35743
  # * `ARM`: Details of ARM CPU compilations.
35672
35744
  #
35673
35745
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
35674
35746
  # used in ARMv7 processors.
35675
35747
  #
35676
- # For example, add `\{'mattr': ['+neon']\}` to the compiler
35677
- # options if compiling for ARM 32-bit platform with the NEON
35678
- # support.
35748
+ # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
+ # if compiling for ARM 32-bit platform with the NEON support.
35679
35750
  #
35680
35751
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35681
35752
  # compiler options.
@@ -35686,17 +35757,17 @@ module Aws::SageMaker
35686
35757
  #
35687
35758
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35688
35759
  #
35689
- # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35690
- # 'cuda-ver': '10.1'\}`
35760
+ # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
+ # 'cuda-ver': '10.1'}`
35691
35762
  #
35692
35763
  # * `ANDROID`: Compilation for the Android OS supports the following
35693
35764
  # compiler options:
35694
35765
  #
35695
35766
  # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
35696
- # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
35697
- # 28\}`.
35767
+ # levels range from 21 to 29. For example, `{'ANDROID_PLATFORM':
35768
+ # 28}`.
35698
35769
  #
35699
- # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
35770
+ # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35700
35771
  # compiling for ARM 32-bit platform with NEON support.
35701
35772
  #
35702
35773
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
@@ -35710,8 +35781,8 @@ module Aws::SageMaker
35710
35781
  # `TargetDevice` supports the following compiler options:
35711
35782
  #
35712
35783
  # * `class_labels`: Specifies the classification labels file name
35713
- # inside input tar.gz file. For example, `\{"class_labels":
35714
- # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
35784
+ # inside input tar.gz file. For example, `{"class_labels":
35785
+ # "imagenet_labels_1000.txt"}`. Labels inside the txt file should
35715
35786
  # be separated by newlines.
35716
35787
  #
35717
35788
  # ^
@@ -39877,7 +39948,7 @@ module Aws::SageMaker
39877
39948
  #
39878
39949
  # The following code example shows a valid manifest format:
39879
39950
  #
39880
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
39951
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
39881
39952
  #
39882
39953
  # ` "relative/path/to/custdata-1",`
39883
39954
  #
@@ -42029,13 +42100,13 @@ module Aws::SageMaker
42029
42100
  # the input data source to run an Autopilot job V2. You can input
42030
42101
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
42031
42102
  #
42032
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42103
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42033
42104
  #
42034
42105
  # You can also specify the data type of the feature (optional) in the
42035
42106
  # format shown below:
42036
42107
  #
42037
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42038
- # \} \}`
42108
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42109
+ # }`
42039
42110
  #
42040
42111
  # <note markdown="1"> These column keys may not include the target column.
42041
42112
  #
@@ -42223,7 +42294,7 @@ module Aws::SageMaker
42223
42294
  #
42224
42295
  # * `ANDROID`: Android operating systems. Android API level can be
42225
42296
  # specified using the `ANDROID_PLATFORM` compiler option. For
42226
- # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
42297
+ # example, `"CompilerOptions": {'ANDROID_PLATFORM': 28}`
42227
42298
  # @return [String]
42228
42299
  #
42229
42300
  # @!attribute [rw] arch
@@ -42414,8 +42485,8 @@ module Aws::SageMaker
42414
42485
  #
42415
42486
  # Here is an example where all four hyperparameters are configured.
42416
42487
  #
42417
- # `\{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42418
- # "learningRateWarmupSteps": "10" \}`
42488
+ # `{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42489
+ # "learningRateWarmupSteps": "10" }`
42419
42490
  #
42420
42491
  #
42421
42492
  #
@@ -42650,13 +42721,13 @@ module Aws::SageMaker
42650
42721
  # You can input `FeatureAttributeNames` (optional) in JSON format as
42651
42722
  # shown below:
42652
42723
  #
42653
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42724
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42654
42725
  #
42655
42726
  # You can also specify the data type of the feature (optional) in the
42656
42727
  # format shown below:
42657
42728
  #
42658
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42659
- # \} \}`
42729
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42730
+ # }`
42660
42731
  #
42661
42732
  # Autopilot supports the following data types: `numeric`,
42662
42733
  # `categorical`, `text`, and `datetime`.
@@ -43498,6 +43569,10 @@ module Aws::SageMaker
43498
43569
  # The status of the training job.
43499
43570
  # @return [String]
43500
43571
  #
43572
+ # @!attribute [rw] secondary_status
43573
+ # The secondary status of the training job.
43574
+ # @return [String]
43575
+ #
43501
43576
  # @!attribute [rw] warm_pool_status
43502
43577
  # The status of the warm pool associated with the training job.
43503
43578
  # @return [Types::WarmPoolStatus]
@@ -43511,6 +43586,7 @@ module Aws::SageMaker
43511
43586
  :training_end_time,
43512
43587
  :last_modified_time,
43513
43588
  :training_job_status,
43589
+ :secondary_status,
43514
43590
  :warm_pool_status)
43515
43591
  SENSITIVE = []
43516
43592
  include Aws::Structure
@@ -44174,7 +44250,7 @@ module Aws::SageMaker
44174
44250
  # The manifest is an S3 object which is a JSON file with the
44175
44251
  # following format:
44176
44252
  #
44177
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
44253
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
44178
44254
  #
44179
44255
  # `"relative/path/to/custdata-1",`
44180
44256
  #
@@ -45203,7 +45279,7 @@ module Aws::SageMaker
45203
45279
  # repository. The secret must have a staging label of `AWSCURRENT` and
45204
45280
  # must be in the following format:
45205
45281
  #
45206
- # `\{"username": UserName, "password": Password\}`
45282
+ # `{"username": UserName, "password": Password}`
45207
45283
  # @return [Types::GitConfigForUpdate]
45208
45284
  #
45209
45285
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateCodeRepositoryInput AWS API Documentation
@@ -45285,7 +45361,7 @@ module Aws::SageMaker
45285
45361
  # @!attribute [rw] enable_iot_role_alias
45286
45362
  # Whether to create an Amazon Web Services IoT Role Alias during
45287
45363
  # device fleet creation. The name of the role alias generated will
45288
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
45364
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
45289
45365
  #
45290
45366
  # For example, if your device fleet is called "demo-fleet", the name
45291
45367
  # of the role alias will be "SageMakerEdge-demo-fleet".