aws-sdk-sagemaker 1.271.0 → 1.273.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -1916,13 +1916,13 @@ module Aws::SageMaker
1916
1916
  # the input data source to run an Autopilot job. You can input
1917
1917
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
1918
1918
  #
1919
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
1919
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
1920
1920
  #
1921
1921
  # You can also specify the data type of the feature (optional) in the
1922
1922
  # format shown below:
1923
1923
  #
1924
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
1925
- # \} \}`
1924
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
1925
+ # }`
1926
1926
  #
1927
1927
  # <note markdown="1"> These column keys may not include the target column.
1928
1928
  #
@@ -2740,8 +2740,8 @@ module Aws::SageMaker
2740
2740
  #
2741
2741
  # A `ManifestFile` should have the format shown below:
2742
2742
  #
2743
- # `[ \{"prefix":
2744
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2743
+ # `[ {"prefix":
2744
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
2745
2745
  # `
2746
2746
  #
2747
2747
  # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
@@ -2759,10 +2759,10 @@ module Aws::SageMaker
2759
2759
  # Here is a minimal, single-record example of an
2760
2760
  # `AugmentedManifestFile`:
2761
2761
  #
2762
- # `\{"source-ref":
2762
+ # `{"source-ref":
2763
2763
  # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2764
2764
  #
2765
- # `"label-metadata": \{"class-name": "cat"` \\}
2765
+ # `"label-metadata": {"class-name": "cat"` }
2766
2766
  #
2767
2767
  # For more information on `AugmentedManifestFile`, see [Provide
2768
2768
  # Dataset Metadata to Training Jobs with an Augmented Manifest
@@ -2935,6 +2935,79 @@ module Aws::SageMaker
2935
2935
  include Aws::Structure
2936
2936
  end
2937
2937
 
2938
+ # Represents an error encountered when deleting a node from a SageMaker
2939
+ # HyperPod cluster.
2940
+ #
2941
+ # @!attribute [rw] code
2942
+ # The error code associated with the error encountered when deleting a
2943
+ # node.
2944
+ #
2945
+ # The code provides information about the specific issue encountered,
2946
+ # such as the node not being found, the node's status being invalid
2947
+ # for deletion, or the node ID being in use by another process.
2948
+ # @return [String]
2949
+ #
2950
+ # @!attribute [rw] message
2951
+ # A message describing the error encountered when deleting a node.
2952
+ # @return [String]
2953
+ #
2954
+ # @!attribute [rw] node_id
2955
+ # The ID of the node that encountered an error during the deletion
2956
+ # process.
2957
+ # @return [String]
2958
+ #
2959
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesError AWS API Documentation
2960
+ #
2961
+ class BatchDeleteClusterNodesError < Struct.new(
2962
+ :code,
2963
+ :message,
2964
+ :node_id)
2965
+ SENSITIVE = []
2966
+ include Aws::Structure
2967
+ end
2968
+
2969
+ # @!attribute [rw] cluster_name
2970
+ # The name of the SageMaker HyperPod cluster from which to delete the
2971
+ # specified nodes.
2972
+ # @return [String]
2973
+ #
2974
+ # @!attribute [rw] node_ids
2975
+ # A list of node IDs to be deleted from the specified cluster.
2976
+ #
2977
+ # <note markdown="1"> For SageMaker HyperPod clusters using the Slurm workload manager,
2978
+ # you cannot remove instances that are configured as Slurm controller
2979
+ # nodes.
2980
+ #
2981
+ # </note>
2982
+ # @return [Array<String>]
2983
+ #
2984
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesRequest AWS API Documentation
2985
+ #
2986
+ class BatchDeleteClusterNodesRequest < Struct.new(
2987
+ :cluster_name,
2988
+ :node_ids)
2989
+ SENSITIVE = []
2990
+ include Aws::Structure
2991
+ end
2992
+
2993
+ # @!attribute [rw] failed
2994
+ # A list of errors encountered when deleting the specified nodes.
2995
+ # @return [Array<Types::BatchDeleteClusterNodesError>]
2996
+ #
2997
+ # @!attribute [rw] successful
2998
+ # A list of node IDs that were successfully deleted from the specified
2999
+ # cluster.
3000
+ # @return [Array<String>]
3001
+ #
3002
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDeleteClusterNodesResponse AWS API Documentation
3003
+ #
3004
+ class BatchDeleteClusterNodesResponse < Struct.new(
3005
+ :failed,
3006
+ :successful)
3007
+ SENSITIVE = []
3008
+ include Aws::Structure
3009
+ end
3010
+
2938
3011
  # The error code and error description associated with the resource.
2939
3012
  #
2940
3013
  # @!attribute [rw] error_code
@@ -3789,14 +3862,14 @@ module Aws::SageMaker
3789
3862
  # model container input in JSON Lines format. For example, if
3790
3863
  # `FeaturesAttribute` is the JMESPath expression `'myfeatures'`, it
3791
3864
  # extracts a list of features `[1,2,3]` from request data
3792
- # `'\{"myfeatures":[1,2,3]\}'`.
3865
+ # `'{"myfeatures":[1,2,3]}'`.
3793
3866
  # @return [String]
3794
3867
  #
3795
3868
  # @!attribute [rw] content_template
3796
3869
  # A template string used to format a JSON record into an acceptable
3797
3870
  # model container input. For example, a `ContentTemplate` string
3798
- # `'\{"myfeatures":$features\}'` will format a list of features
3799
- # `[1,2,3]` into the record string `'\{"myfeatures":[1,2,3]\}'`.
3871
+ # `'{"myfeatures":$features}'` will format a list of features
3872
+ # `[1,2,3]` into the record string `'{"myfeatures":[1,2,3]}'`.
3800
3873
  # Required only when the model container input is in JSON Lines
3801
3874
  # format.
3802
3875
  # @return [String]
@@ -3857,7 +3930,7 @@ module Aws::SageMaker
3857
3930
  # Lines format.
3858
3931
  #
3859
3932
  # **Example**: If the model container output of a single request is
3860
- # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3933
+ # `'{"predicted_label":1,"probability":0.6}'`, then set
3861
3934
  # `ProbabilityAttribute` to `'probability'`.
3862
3935
  # @return [String]
3863
3936
  #
@@ -3866,7 +3939,7 @@ module Aws::SageMaker
3866
3939
  # the model container output.
3867
3940
  #
3868
3941
  # **Example**: If the model container output of a batch request is
3869
- # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3942
+ # `'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'`,
3870
3943
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3871
3944
  # headers `["cat","dog","fish"]`
3872
3945
  # @return [String]
@@ -6135,7 +6208,7 @@ module Aws::SageMaker
6135
6208
  # @!attribute [rw] enable_iot_role_alias
6136
6209
  # Whether to create an Amazon Web Services IoT Role Alias during
6137
6210
  # device fleet creation. The name of the role alias generated will
6138
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
6211
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
6139
6212
  #
6140
6213
  # For example, if your device fleet is called "demo-fleet", the name
6141
6214
  # of the role alias will be "SageMakerEdge-demo-fleet".
@@ -7720,8 +7793,8 @@ module Aws::SageMaker
7720
7793
  # For named entity recognition jobs, in addition to `"labels"`, you
7721
7794
  # must provide worker instructions in the label category configuration
7722
7795
  # file using the `"instructions"` parameter: `"instructions":
7723
- # \{"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7724
- # "fullInstruction":"<p>Add additional instructions.</p>"\}`. For
7796
+ # {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
7797
+ # "fullInstruction":"<p>Add additional instructions.</p>"}`. For
7725
7798
  # details and an example, see [Create a Named Entity Recognition
7726
7799
  # Labeling Job (API) ][2].
7727
7800
  #
@@ -7730,14 +7803,14 @@ module Aws::SageMaker
7730
7803
  # following format. Identify the labels you want to use by replacing
7731
7804
  # `label_1`, `label_2`,`...`,`label_n` with your label categories.
7732
7805
  #
7733
- # `\{ `
7806
+ # `{ `
7734
7807
  #
7735
7808
  # `"document-version": "2018-11-28",`
7736
7809
  #
7737
- # `"labels": [\{"label": "label_1"\},\{"label":
7738
- # "label_2"\},...\{"label": "label_n"\}]`
7810
+ # `"labels": [{"label": "label_1"},{"label": "label_2"},...{"label":
7811
+ # "label_n"}]`
7739
7812
  #
7740
- # `\}`
7813
+ # `}`
7741
7814
  #
7742
7815
  # Note the following about the label category configuration file:
7743
7816
  #
@@ -15390,35 +15463,35 @@ module Aws::SageMaker
15390
15463
  #
15391
15464
  # The file is a JSON structure in the following format:
15392
15465
  #
15393
- # `\{`
15466
+ # `{`
15394
15467
  #
15395
15468
  # ` "document-version": "2018-11-28"`
15396
15469
  #
15397
15470
  # ` "labels": [`
15398
15471
  #
15399
- # ` \{`
15472
+ # ` {`
15400
15473
  #
15401
15474
  # ` "label": "label 1"`
15402
15475
  #
15403
- # ` \},`
15476
+ # ` },`
15404
15477
  #
15405
- # ` \{`
15478
+ # ` {`
15406
15479
  #
15407
15480
  # ` "label": "label 2"`
15408
15481
  #
15409
- # ` \},`
15482
+ # ` },`
15410
15483
  #
15411
15484
  # ` ...`
15412
15485
  #
15413
- # ` \{`
15486
+ # ` {`
15414
15487
  #
15415
15488
  # ` "label": "label n"`
15416
15489
  #
15417
- # ` \}`
15490
+ # ` }`
15418
15491
  #
15419
15492
  # ` ]`
15420
15493
  #
15421
- # `\}`
15494
+ # `}`
15422
15495
  # @return [String]
15423
15496
  #
15424
15497
  # @!attribute [rw] stopping_conditions
@@ -20682,7 +20755,7 @@ module Aws::SageMaker
20682
20755
  # the following filter searches for training jobs with an `"accuracy"`
20683
20756
  # metric greater than `"0.9"`:
20684
20757
  #
20685
- # `\{`
20758
+ # `{`
20686
20759
  #
20687
20760
  # `"Name": "Metrics.accuracy",`
20688
20761
  #
@@ -20690,7 +20763,7 @@ module Aws::SageMaker
20690
20763
  #
20691
20764
  # `"Value": "0.9"`
20692
20765
  #
20693
- # `\}`
20766
+ # `}`
20694
20767
  #
20695
20768
  # HyperParameters
20696
20769
  #
@@ -20702,7 +20775,7 @@ module Aws::SageMaker
20702
20775
  # the following filter is satisfied by training jobs with a
20703
20776
  # `"learning_rate"` hyperparameter that is less than `"0.5"`:
20704
20777
  #
20705
- # ` \{`
20778
+ # ` {`
20706
20779
  #
20707
20780
  # ` "Name": "HyperParameters.learning_rate",`
20708
20781
  #
@@ -20710,7 +20783,7 @@ module Aws::SageMaker
20710
20783
  #
20711
20784
  # ` "Value": "0.5"`
20712
20785
  #
20713
- # ` \}`
20786
+ # ` }`
20714
20787
  #
20715
20788
  # Tags
20716
20789
  #
@@ -21272,7 +21345,7 @@ module Aws::SageMaker
21272
21345
  # repository. The secret must have a staging label of `AWSCURRENT` and
21273
21346
  # must be in the following format:
21274
21347
  #
21275
- # `\{"username": UserName, "password": Password\}`
21348
+ # `{"username": UserName, "password": Password}`
21276
21349
  # @return [String]
21277
21350
  #
21278
21351
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfig AWS API Documentation
@@ -21294,7 +21367,7 @@ module Aws::SageMaker
21294
21367
  # repository. The secret must have a staging label of `AWSCURRENT` and
21295
21368
  # must be in the following format:
21296
21369
  #
21297
- # `\{"username": UserName, "password": Password\}`
21370
+ # `{"username": UserName, "password": Password}`
21298
21371
  # @return [String]
21299
21372
  #
21300
21373
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GitConfigForUpdate AWS API Documentation
@@ -24826,17 +24899,17 @@ module Aws::SageMaker
24826
24899
  #
24827
24900
  # * Examples for one input:
24828
24901
  #
24829
- # * If using the console, `\{"input":[1,1024,1024,3]\}`
24902
+ # * If using the console, `{"input":[1,1024,1024,3]}`
24830
24903
  #
24831
- # * If using the CLI, `\{"input":[1,1024,1024,3]\}`
24904
+ # * If using the CLI, `{"input":[1,1024,1024,3]}`
24832
24905
  #
24833
24906
  # * Examples for two inputs:
24834
24907
  #
24835
- # * If using the console, `\{"data1": [1,28,28,1],
24836
- # "data2":[1,28,28,1]\}`
24908
+ # * If using the console, `{"data1": [1,28,28,1],
24909
+ # "data2":[1,28,28,1]}`
24837
24910
  #
24838
- # * If using the CLI, `\{"data1": [1,28,28,1],
24839
- # "data2":[1,28,28,1]\}`
24911
+ # * If using the CLI, `{"data1": [1,28,28,1],
24912
+ # "data2":[1,28,28,1]}`
24840
24913
  #
24841
24914
  # * `KERAS`: You must specify the name and shape (NCHW format) of
24842
24915
  # expected data inputs using a dictionary format for your trained
@@ -24847,17 +24920,17 @@ module Aws::SageMaker
24847
24920
  #
24848
24921
  # * Examples for one input:
24849
24922
  #
24850
- # * If using the console, `\{"input_1":[1,3,224,224]\}`
24923
+ # * If using the console, `{"input_1":[1,3,224,224]}`
24851
24924
  #
24852
- # * If using the CLI, `\{"input_1":[1,3,224,224]\}`
24925
+ # * If using the CLI, `{"input_1":[1,3,224,224]}`
24853
24926
  #
24854
24927
  # * Examples for two inputs:
24855
24928
  #
24856
- # * If using the console, `\{"input_1": [1,3,224,224],
24857
- # "input_2":[1,3,224,224]\} `
24929
+ # * If using the console, `{"input_1": [1,3,224,224],
24930
+ # "input_2":[1,3,224,224]} `
24858
24931
  #
24859
- # * If using the CLI, `\{"input_1": [1,3,224,224],
24860
- # "input_2":[1,3,224,224]\}`
24932
+ # * If using the CLI, `{"input_1": [1,3,224,224],
24933
+ # "input_2":[1,3,224,224]}`
24861
24934
  #
24862
24935
  # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
24863
24936
  # format) of the expected data inputs in order using a dictionary
@@ -24866,17 +24939,17 @@ module Aws::SageMaker
24866
24939
  #
24867
24940
  # * Examples for one input:
24868
24941
  #
24869
- # * If using the console, `\{"data":[1,3,1024,1024]\}`
24942
+ # * If using the console, `{"data":[1,3,1024,1024]}`
24870
24943
  #
24871
- # * If using the CLI, `\{"data":[1,3,1024,1024]\}`
24944
+ # * If using the CLI, `{"data":[1,3,1024,1024]}`
24872
24945
  #
24873
24946
  # * Examples for two inputs:
24874
24947
  #
24875
- # * If using the console, `\{"var1": [1,1,28,28],
24876
- # "var2":[1,1,28,28]\} `
24948
+ # * If using the console, `{"var1": [1,1,28,28],
24949
+ # "var2":[1,1,28,28]} `
24877
24950
  #
24878
- # * If using the CLI, `\{"var1": [1,1,28,28],
24879
- # "var2":[1,1,28,28]\}`
24951
+ # * If using the CLI, `{"var1": [1,1,28,28],
24952
+ # "var2":[1,1,28,28]}`
24880
24953
  #
24881
24954
  # * `PyTorch`: You can either specify the name and shape (NCHW format)
24882
24955
  # of expected data inputs in order using a dictionary format for
@@ -24887,19 +24960,19 @@ module Aws::SageMaker
24887
24960
  #
24888
24961
  # * Examples for one input in dictionary format:
24889
24962
  #
24890
- # * If using the console, `\{"input0":[1,3,224,224]\}`
24963
+ # * If using the console, `{"input0":[1,3,224,224]}`
24891
24964
  #
24892
- # * If using the CLI, `\{"input0":[1,3,224,224]\}`
24965
+ # * If using the CLI, `{"input0":[1,3,224,224]}`
24893
24966
  #
24894
24967
  # * Example for one input in list format: `[[1,3,224,224]]`
24895
24968
  #
24896
24969
  # * Examples for two inputs in dictionary format:
24897
24970
  #
24898
- # * If using the console, `\{"input0":[1,3,224,224],
24899
- # "input1":[1,3,224,224]\}`
24971
+ # * If using the console, `{"input0":[1,3,224,224],
24972
+ # "input1":[1,3,224,224]}`
24900
24973
  #
24901
- # * If using the CLI, `\{"input0":[1,3,224,224],
24902
- # "input1":[1,3,224,224]\} `
24974
+ # * If using the CLI, `{"input0":[1,3,224,224],
24975
+ # "input1":[1,3,224,224]} `
24903
24976
  #
24904
24977
  # * Example for two inputs in list format: `[[1,3,224,224],
24905
24978
  # [1,3,224,224]]`
@@ -24909,24 +24982,24 @@ module Aws::SageMaker
24909
24982
  # `DataInputConfig` supports the following parameters for `CoreML`
24910
24983
  # `TargetDevice` (ML Model format):
24911
24984
  #
24912
- # * `shape`: Input shape, for example `\{"input_1": \{"shape":
24913
- # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
24985
+ # * `shape`: Input shape, for example `{"input_1": {"shape":
24986
+ # [1,224,224,3]}}`. In addition to static input shapes, CoreML
24914
24987
  # converter supports Flexible input shapes:
24915
24988
  #
24916
24989
  # * Range Dimension. You can use the Range Dimension feature if you
24917
24990
  # know the input shape will be within some specific interval in
24918
- # that dimension, for example: `\{"input_1": \{"shape": ["1..10",
24919
- # 224, 224, 3]\}\}`
24991
+ # that dimension, for example: `{"input_1": {"shape": ["1..10",
24992
+ # 224, 224, 3]}}`
24920
24993
  #
24921
24994
  # * Enumerated shapes. Sometimes, the models are trained to work
24922
24995
  # only on a select set of inputs. You can enumerate all supported
24923
- # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
24924
- # 224, 3], [1, 160, 160, 3]]\}\}`
24996
+ # input shapes, for example: `{"input_1": {"shape": [[1, 224, 224,
24997
+ # 3], [1, 160, 160, 3]]}}`
24925
24998
  #
24926
24999
  # * `default_shape`: Default input shape. You can set a default shape
24927
25000
  # during conversion for both Range Dimension and Enumerated Shapes.
24928
- # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
24929
- # "default_shape": [1, 224, 224, 3]\}\}`
25001
+ # For example `{"input_1": {"shape": ["1..10", 224, 224, 3],
25002
+ # "default_shape": [1, 224, 224, 3]}}`
24930
25003
  #
24931
25004
  # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
24932
25005
  # default, the converter generates an ML Model with inputs of type
@@ -24946,35 +25019,35 @@ module Aws::SageMaker
24946
25019
  #
24947
25020
  # * Tensor type input:
24948
25021
  #
24949
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
24950
- # [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
25022
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
25023
+ # [1,160,160,3]], "default_shape": [1,224,224,3]}}`
24951
25024
  #
24952
25025
  # ^
24953
25026
  #
24954
25027
  # * Tensor type input without input name (PyTorch):
24955
25028
  #
24956
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
24957
- # "default_shape": [1,3,224,224]\}]`
25029
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
25030
+ # "default_shape": [1,3,224,224]}]`
24958
25031
  #
24959
25032
  # ^
24960
25033
  #
24961
25034
  # * Image type input:
24962
25035
  #
24963
- # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
25036
+ # * `"DataInputConfig": {"input_1": {"shape": [[1,224,224,3],
24964
25037
  # [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
24965
- # "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
25038
+ # "bias": [-1,-1,-1], "scale": 0.007843137255}}`
24966
25039
  #
24967
- # * `"CompilerOptions": \{"class_labels":
24968
- # "imagenet_labels_1000.txt"\}`
25040
+ # * `"CompilerOptions": {"class_labels":
25041
+ # "imagenet_labels_1000.txt"}`
24969
25042
  #
24970
25043
  # * Image type input without input name (PyTorch):
24971
25044
  #
24972
- # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
25045
+ # * `"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
24973
25046
  # "default_shape": [1,3,224,224], "type": "Image", "bias":
24974
- # [-1,-1,-1], "scale": 0.007843137255\}]`
25047
+ # [-1,-1,-1], "scale": 0.007843137255}]`
24975
25048
  #
24976
- # * `"CompilerOptions": \{"class_labels":
24977
- # "imagenet_labels_1000.txt"\}`
25049
+ # * `"CompilerOptions": {"class_labels":
25050
+ # "imagenet_labels_1000.txt"}`
24978
25051
  #
24979
25052
  # Depending on the model format, `DataInputConfig` requires the
24980
25053
  # following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
@@ -24985,18 +25058,18 @@ module Aws::SageMaker
24985
25058
  # `OutputConfig:CompilerOptions` ][3] if the model does not use
24986
25059
  # TensorFlow's default signature def key. For example:
24987
25060
  #
24988
- # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
25061
+ # * `"DataInputConfig": {"inputs": [1, 224, 224, 3]}`
24989
25062
  #
24990
- # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
25063
+ # * `"CompilerOptions": {"signature_def_key": "serving_custom"}`
24991
25064
  #
24992
25065
  # * For TensorFlow models saved as a frozen graph, specify the input
24993
25066
  # tensor names and shapes in `DataInputConfig` and the output tensor
24994
25067
  # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
24995
25068
  # For example:
24996
25069
  #
24997
- # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
25070
+ # * `"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}`
24998
25071
  #
24999
- # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
25072
+ # * `"CompilerOptions": {"output_names": ["output_tensor:0"]}`
25000
25073
  #
25001
25074
  #
25002
25075
  #
@@ -34727,11 +34800,11 @@ module Aws::SageMaker
34727
34800
  # with a specific channel name and `S3Uri` prefix, define the following
34728
34801
  # filters:
34729
34802
  #
34730
- # * `'\{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34731
- # "Value":"train"\}',`
34803
+ # * `'{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
34804
+ # "Value":"train"}',`
34732
34805
  #
34733
- # * `'\{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34734
- # "Operator":"Contains", "Value":"mybucket/catdata"\}'`
34806
+ # * `'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
34807
+ # "Operator":"Contains", "Value":"mybucket/catdata"}'`
34735
34808
  #
34736
34809
  #
34737
34810
  #
@@ -35604,42 +35677,41 @@ module Aws::SageMaker
35604
35677
  #
35605
35678
  # * Raspberry Pi 3 Model B+
35606
35679
  #
35607
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
35680
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},`
35608
35681
  #
35609
- # ` "CompilerOptions": \{'mattr': ['+neon']\}`
35682
+ # ` "CompilerOptions": {'mattr': ['+neon']}`
35610
35683
  #
35611
35684
  # * Jetson TX2
35612
35685
  #
35613
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35614
- # "Accelerator": "NVIDIA"\},`
35686
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35687
+ # "NVIDIA"},`
35615
35688
  #
35616
- # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35617
- # 'cuda-ver': '10.0'\}`
35689
+ # ` "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
35690
+ # 'cuda-ver': '10.0'}`
35618
35691
  #
35619
35692
  # * EC2 m5.2xlarge instance OS
35620
35693
  #
35621
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
35622
- # "Accelerator": "NVIDIA"\},`
35694
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
35695
+ # "Accelerator": "NVIDIA"},`
35623
35696
  #
35624
- # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
35697
+ # ` "CompilerOptions": {'mcpu': 'skylake-avx512'}`
35625
35698
  #
35626
35699
  # * RK3399
35627
35700
  #
35628
- # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
35629
- # "Accelerator": "MALI"\}`
35701
+ # `"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
35702
+ # "MALI"}`
35630
35703
  #
35631
35704
  # * ARMv7 phone (CPU)
35632
35705
  #
35633
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
35706
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},`
35634
35707
  #
35635
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
35636
- # ['+neon']\}`
35708
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}`
35637
35709
  #
35638
35710
  # * ARMv8 phone (CPU)
35639
35711
  #
35640
- # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
35712
+ # `"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},`
35641
35713
  #
35642
- # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
35714
+ # ` "CompilerOptions": {'ANDROID_PLATFORM': 29}`
35643
35715
  # @return [Types::TargetPlatform]
35644
35716
  #
35645
35717
  # @!attribute [rw] compiler_options
@@ -35657,25 +35729,24 @@ module Aws::SageMaker
35657
35729
  #
35658
35730
  # * int64: Use either `"int64"` or `"long"`.
35659
35731
  #
35660
- # For example, `\{"dtype" : "float32"\}`.
35732
+ # For example, `{"dtype" : "float32"}`.
35661
35733
  #
35662
35734
  # * `CPU`: Compilation for CPU supports the following compiler
35663
35735
  # options.
35664
35736
  #
35665
- # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
35666
- # 'skylake-avx512'\}`
35737
+ # * `mcpu`: CPU micro-architecture. For example, `{'mcpu':
35738
+ # 'skylake-avx512'}`
35667
35739
  #
35668
- # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
35669
- # '+vfpv4']\}`
35740
+ # * `mattr`: CPU flags. For example, `{'mattr': ['+neon',
35741
+ # '+vfpv4']}`
35670
35742
  #
35671
35743
  # * `ARM`: Details of ARM CPU compilations.
35672
35744
  #
35673
35745
  # * `NEON`: NEON is an implementation of the Advanced SIMD extension
35674
35746
  # used in ARMv7 processors.
35675
35747
  #
35676
- # For example, add `\{'mattr': ['+neon']\}` to the compiler
35677
- # options if compiling for ARM 32-bit platform with the NEON
35678
- # support.
35748
+ # For example, add `{'mattr': ['+neon']}` to the compiler options
35749
+ # if compiling for ARM 32-bit platform with the NEON support.
35679
35750
  #
35680
35751
  # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
35681
35752
  # compiler options.
@@ -35686,17 +35757,17 @@ module Aws::SageMaker
35686
35757
  #
35687
35758
  # * `cuda-ver`: Specifies the CUDA version in x.y format.
35688
35759
  #
35689
- # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35690
- # 'cuda-ver': '10.1'\}`
35760
+ # For example, `{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
35761
+ # 'cuda-ver': '10.1'}`
35691
35762
  #
35692
35763
  # * `ANDROID`: Compilation for the Android OS supports the following
35693
35764
  # compiler options:
35694
35765
  #
35695
35766
  # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
35696
- # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
35697
- # 28\}`.
35767
+ # levels range from 21 to 29. For example, `{'ANDROID_PLATFORM':
35768
+ # 28}`.
35698
35769
  #
35699
- # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
35770
+ # * `mattr`: Add `{'mattr': ['+neon']}` to compiler options if
35700
35771
  # compiling for ARM 32-bit platform with NEON support.
35701
35772
  #
35702
35773
  # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
@@ -35710,8 +35781,8 @@ module Aws::SageMaker
35710
35781
  # `TargetDevice` supports the following compiler options:
35711
35782
  #
35712
35783
  # * `class_labels`: Specifies the classification labels file name
35713
- # inside input tar.gz file. For example, `\{"class_labels":
35714
- # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
35784
+ # inside input tar.gz file. For example, `{"class_labels":
35785
+ # "imagenet_labels_1000.txt"}`. Labels inside the txt file should
35715
35786
  # be separated by newlines.
35716
35787
  #
35717
35788
  # ^
@@ -39877,7 +39948,7 @@ module Aws::SageMaker
39877
39948
  #
39878
39949
  # The following code example shows a valid manifest format:
39879
39950
  #
39880
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
39951
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
39881
39952
  #
39882
39953
  # ` "relative/path/to/custdata-1",`
39883
39954
  #
@@ -42029,13 +42100,13 @@ module Aws::SageMaker
42029
42100
  # the input data source to run an Autopilot job V2. You can input
42030
42101
  # `FeatureAttributeNames` (optional) in JSON format as shown below:
42031
42102
  #
42032
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42103
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42033
42104
  #
42034
42105
  # You can also specify the data type of the feature (optional) in the
42035
42106
  # format shown below:
42036
42107
  #
42037
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42038
- # \} \}`
42108
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42109
+ # }`
42039
42110
  #
42040
42111
  # <note markdown="1"> These column keys may not include the target column.
42041
42112
  #
@@ -42223,7 +42294,7 @@ module Aws::SageMaker
42223
42294
  #
42224
42295
  # * `ANDROID`: Android operating systems. Android API level can be
42225
42296
  # specified using the `ANDROID_PLATFORM` compiler option. For
42226
- # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
42297
+ # example, `"CompilerOptions": {'ANDROID_PLATFORM': 28}`
42227
42298
  # @return [String]
42228
42299
  #
42229
42300
  # @!attribute [rw] arch
@@ -42414,8 +42485,8 @@ module Aws::SageMaker
42414
42485
  #
42415
42486
  # Here is an example where all four hyperparameters are configured.
42416
42487
  #
42417
- # `\{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42418
- # "learningRateWarmupSteps": "10" \}`
42488
+ # `{ "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
42489
+ # "learningRateWarmupSteps": "10" }`
42419
42490
  #
42420
42491
  #
42421
42492
  #
@@ -42650,13 +42721,13 @@ module Aws::SageMaker
42650
42721
  # You can input `FeatureAttributeNames` (optional) in JSON format as
42651
42722
  # shown below:
42652
42723
  #
42653
- # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
42724
+ # `{ "FeatureAttributeNames":["col1", "col2", ...] }`.
42654
42725
  #
42655
42726
  # You can also specify the data type of the feature (optional) in the
42656
42727
  # format shown below:
42657
42728
  #
42658
- # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
42659
- # \} \}`
42729
+ # `{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
42730
+ # }`
42660
42731
  #
42661
42732
  # Autopilot supports the following data types: `numeric`,
42662
42733
  # `categorical`, `text`, and `datetime`.
@@ -43498,6 +43569,10 @@ module Aws::SageMaker
43498
43569
  # The status of the training job.
43499
43570
  # @return [String]
43500
43571
  #
43572
+ # @!attribute [rw] secondary_status
43573
+ # The secondary status of the training job.
43574
+ # @return [String]
43575
+ #
43501
43576
  # @!attribute [rw] warm_pool_status
43502
43577
  # The status of the warm pool associated with the training job.
43503
43578
  # @return [Types::WarmPoolStatus]
@@ -43511,6 +43586,7 @@ module Aws::SageMaker
43511
43586
  :training_end_time,
43512
43587
  :last_modified_time,
43513
43588
  :training_job_status,
43589
+ :secondary_status,
43514
43590
  :warm_pool_status)
43515
43591
  SENSITIVE = []
43516
43592
  include Aws::Structure
@@ -44174,7 +44250,7 @@ module Aws::SageMaker
44174
44250
  # The manifest is an S3 object which is a JSON file with the
44175
44251
  # following format:
44176
44252
  #
44177
- # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
44253
+ # `[ {"prefix": "s3://customer_bucket/some/prefix/"},`
44178
44254
  #
44179
44255
  # `"relative/path/to/custdata-1",`
44180
44256
  #
@@ -45203,7 +45279,7 @@ module Aws::SageMaker
45203
45279
  # repository. The secret must have a staging label of `AWSCURRENT` and
45204
45280
  # must be in the following format:
45205
45281
  #
45206
- # `\{"username": UserName, "password": Password\}`
45282
+ # `{"username": UserName, "password": Password}`
45207
45283
  # @return [Types::GitConfigForUpdate]
45208
45284
  #
45209
45285
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateCodeRepositoryInput AWS API Documentation
@@ -45285,7 +45361,7 @@ module Aws::SageMaker
45285
45361
  # @!attribute [rw] enable_iot_role_alias
45286
45362
  # Whether to create an Amazon Web Services IoT Role Alias during
45287
45363
  # device fleet creation. The name of the role alias generated will
45288
- # match this pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
45364
+ # match this pattern: "SageMakerEdge-\{DeviceFleetName}".
45289
45365
  #
45290
45366
  # For example, if your device fleet is called "demo-fleet", the name
45291
45367
  # of the role alias will be "SageMakerEdge-demo-fleet".