aws-sdk-sagemaker 1.255.0 → 1.256.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +103 -28
- data/lib/aws-sdk-sagemaker/client_api.rb +17 -1
- data/lib/aws-sdk-sagemaker/types.rb +127 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +27 -5
- data/sig/types.rbs +20 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
|
4
|
+
data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
|
7
|
+
data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.256.0 (2024-08-12)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
|
8
|
+
|
4
9
|
1.255.0 (2024-08-01)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.256.0
|
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
|
|
1309
1309
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1310
1310
|
# AutoML job.
|
1311
1311
|
#
|
1312
|
-
#
|
1313
|
-
#
|
1312
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1313
|
+
# you to build machine learning models with minimal effort and machine
|
1314
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1315
|
+
# data and optionally specify parameters tailored to your use case.
|
1316
|
+
# SageMaker then automates the entire model development lifecycle,
|
1317
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1318
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1319
|
+
# process by automating various tasks and exploring different
|
1320
|
+
# combinations of machine learning algorithms, data preprocessing
|
1321
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1322
|
+
# comprises one or more trained models ready for deployment and
|
1323
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1324
|
+
# model leaderboard, allowing you to select the best-performing model
|
1325
|
+
# for deployment.
|
1326
|
+
#
|
1327
|
+
# For more information about AutoML jobs, see
|
1328
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1329
|
+
# in the SageMaker developer guide.
|
1330
|
+
#
|
1331
|
+
# <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
|
1332
|
+
# [DescribeAutoMLJobV2][3], which offer backward compatibility.
|
1314
1333
|
#
|
1315
1334
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1316
1335
|
# those of its previous version `CreateAutoMLJob`, as well as
|
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
|
|
1319
1338
|
#
|
1320
1339
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1321
1340
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1322
|
-
# CreateAutoMLJobV2][
|
1341
|
+
# CreateAutoMLJobV2][4].
|
1323
1342
|
#
|
1324
1343
|
# </note>
|
1325
1344
|
#
|
1326
1345
|
# You can find the best-performing model after you run an AutoML job by
|
1327
|
-
# calling [DescribeAutoMLJobV2][
|
1328
|
-
# [DescribeAutoMLJob][
|
1346
|
+
# calling [DescribeAutoMLJobV2][3] (recommended) or
|
1347
|
+
# [DescribeAutoMLJob][5].
|
1329
1348
|
#
|
1330
1349
|
#
|
1331
1350
|
#
|
1332
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1333
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1334
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/
|
1335
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/
|
1351
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1352
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1353
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1354
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1355
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1336
1356
|
#
|
1337
1357
|
# @option params [required, String] :auto_ml_job_name
|
1338
1358
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
|
|
1488
1508
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1489
1509
|
# AutoML job V2.
|
1490
1510
|
#
|
1491
|
-
#
|
1492
|
-
#
|
1511
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1512
|
+
# you to build machine learning models with minimal effort and machine
|
1513
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1514
|
+
# data and optionally specify parameters tailored to your use case.
|
1515
|
+
# SageMaker then automates the entire model development lifecycle,
|
1516
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1517
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1518
|
+
# process by automating various tasks and exploring different
|
1519
|
+
# combinations of machine learning algorithms, data preprocessing
|
1520
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1521
|
+
# comprises one or more trained models ready for deployment and
|
1522
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1523
|
+
# model leaderboard, allowing you to select the best-performing model
|
1524
|
+
# for deployment.
|
1525
|
+
#
|
1526
|
+
# For more information about AutoML jobs, see
|
1527
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1528
|
+
# in the SageMaker developer guide.
|
1529
|
+
#
|
1530
|
+
# AutoML jobs V2 support various problem types such as regression,
|
1531
|
+
# binary, and multiclass classification with tabular data, text and
|
1532
|
+
# image classification, time-series forecasting, and fine-tuning of
|
1533
|
+
# large language models (LLMs) for text generation.
|
1534
|
+
#
|
1535
|
+
# <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
|
1536
|
+
# of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
|
1493
1537
|
# backward compatibility.
|
1494
1538
|
#
|
1495
1539
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
|
|
1499
1543
|
#
|
1500
1544
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1501
1545
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1502
|
-
# CreateAutoMLJobV2][
|
1546
|
+
# CreateAutoMLJobV2][6].
|
1503
1547
|
#
|
1504
1548
|
# </note>
|
1505
1549
|
#
|
1506
1550
|
# For the list of available problem types supported by
|
1507
|
-
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][
|
1551
|
+
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
|
1508
1552
|
#
|
1509
1553
|
# You can find the best-performing model after you run an AutoML job V2
|
1510
|
-
# by calling [DescribeAutoMLJobV2][
|
1554
|
+
# by calling [DescribeAutoMLJobV2][3].
|
1511
1555
|
#
|
1512
1556
|
#
|
1513
1557
|
#
|
1514
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1515
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1516
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1517
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1518
|
-
# [5]: https://docs.aws.amazon.com/sagemaker/latest/
|
1519
|
-
# [6]: https://docs.aws.amazon.com/sagemaker/latest/
|
1558
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1559
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1560
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1561
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
1562
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1563
|
+
# [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1564
|
+
# [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
|
1520
1565
|
#
|
1521
1566
|
# @option params [required, String] :auto_ml_job_name
|
1522
1567
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
|
|
1614
1659
|
#
|
1615
1660
|
# </note>
|
1616
1661
|
#
|
1662
|
+
# @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
|
1663
|
+
# Specifies the compute configuration for the AutoML job V2.
|
1664
|
+
#
|
1617
1665
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1618
1666
|
#
|
1619
1667
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
|
|
1755
1803
|
# data_split_config: {
|
1756
1804
|
# validation_fraction: 1.0,
|
1757
1805
|
# },
|
1806
|
+
# auto_ml_compute_config: {
|
1807
|
+
# emr_serverless_compute_config: {
|
1808
|
+
# execution_role_arn: "RoleArn", # required
|
1809
|
+
# },
|
1810
|
+
# },
|
1758
1811
|
# })
|
1759
1812
|
#
|
1760
1813
|
# @example Response structure
|
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
|
|
2604
2657
|
# generative_ai_settings: {
|
2605
2658
|
# amazon_bedrock_role_arn: "RoleArn",
|
2606
2659
|
# },
|
2660
|
+
# emr_serverless_settings: {
|
2661
|
+
# execution_role_arn: "RoleArn",
|
2662
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
2663
|
+
# },
|
2607
2664
|
# },
|
2608
2665
|
# code_editor_app_settings: {
|
2609
2666
|
# default_resource_spec: {
|
@@ -2669,7 +2726,7 @@ module Aws::SageMaker
|
|
2669
2726
|
# },
|
2670
2727
|
# ],
|
2671
2728
|
# studio_web_portal_settings: {
|
2672
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
2729
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
2673
2730
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
2674
2731
|
# },
|
2675
2732
|
# },
|
@@ -7943,7 +8000,7 @@ module Aws::SageMaker
|
|
7943
8000
|
# output_name: "String", # required
|
7944
8001
|
# s3_output: {
|
7945
8002
|
# s3_uri: "S3Uri", # required
|
7946
|
-
# local_path: "ProcessingLocalPath",
|
8003
|
+
# local_path: "ProcessingLocalPath",
|
7947
8004
|
# s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
|
7948
8005
|
# },
|
7949
8006
|
# feature_store_output: {
|
@@ -9343,6 +9400,10 @@ module Aws::SageMaker
|
|
9343
9400
|
# generative_ai_settings: {
|
9344
9401
|
# amazon_bedrock_role_arn: "RoleArn",
|
9345
9402
|
# },
|
9403
|
+
# emr_serverless_settings: {
|
9404
|
+
# execution_role_arn: "RoleArn",
|
9405
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
9406
|
+
# },
|
9346
9407
|
# },
|
9347
9408
|
# code_editor_app_settings: {
|
9348
9409
|
# default_resource_spec: {
|
@@ -9408,7 +9469,7 @@ module Aws::SageMaker
|
|
9408
9469
|
# },
|
9409
9470
|
# ],
|
9410
9471
|
# studio_web_portal_settings: {
|
9411
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
9472
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
9412
9473
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
9413
9474
|
# },
|
9414
9475
|
# },
|
@@ -11777,6 +11838,7 @@ module Aws::SageMaker
|
|
11777
11838
|
# * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
11778
11839
|
# * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
|
11779
11840
|
# * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
|
11841
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
|
11780
11842
|
#
|
11781
11843
|
# @example Request syntax with placeholder values
|
11782
11844
|
#
|
@@ -11909,6 +11971,7 @@ module Aws::SageMaker
|
|
11909
11971
|
# resp.security_config.vpc_config.security_group_ids[0] #=> String
|
11910
11972
|
# resp.security_config.vpc_config.subnets #=> Array
|
11911
11973
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
11974
|
+
# resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
|
11912
11975
|
#
|
11913
11976
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
11914
11977
|
#
|
@@ -12508,6 +12571,8 @@ module Aws::SageMaker
|
|
12508
12571
|
# resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12509
12572
|
# resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12510
12573
|
# resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
12574
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
12575
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12511
12576
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
12512
12577
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
12513
12578
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -12546,7 +12611,7 @@ module Aws::SageMaker
|
|
12546
12611
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
12547
12612
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
12548
12613
|
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
12549
|
-
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
12614
|
+
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
12550
12615
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
12551
12616
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
12552
12617
|
# resp.domain_settings.security_group_ids #=> Array
|
@@ -16593,6 +16658,8 @@ module Aws::SageMaker
|
|
16593
16658
|
# resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16594
16659
|
# resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16595
16660
|
# resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
16661
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
16662
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16596
16663
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
16597
16664
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
16598
16665
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -16631,7 +16698,7 @@ module Aws::SageMaker
|
|
16631
16698
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
16632
16699
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
16633
16700
|
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
16634
|
-
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
16701
|
+
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
16635
16702
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
16636
16703
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
16637
16704
|
#
|
@@ -24952,6 +25019,10 @@ module Aws::SageMaker
|
|
24952
25019
|
# generative_ai_settings: {
|
24953
25020
|
# amazon_bedrock_role_arn: "RoleArn",
|
24954
25021
|
# },
|
25022
|
+
# emr_serverless_settings: {
|
25023
|
+
# execution_role_arn: "RoleArn",
|
25024
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
25025
|
+
# },
|
24955
25026
|
# },
|
24956
25027
|
# code_editor_app_settings: {
|
24957
25028
|
# default_resource_spec: {
|
@@ -25017,7 +25088,7 @@ module Aws::SageMaker
|
|
25017
25088
|
# },
|
25018
25089
|
# ],
|
25019
25090
|
# studio_web_portal_settings: {
|
25020
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
25091
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
25021
25092
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
25022
25093
|
# },
|
25023
25094
|
# },
|
@@ -27167,6 +27238,10 @@ module Aws::SageMaker
|
|
27167
27238
|
# generative_ai_settings: {
|
27168
27239
|
# amazon_bedrock_role_arn: "RoleArn",
|
27169
27240
|
# },
|
27241
|
+
# emr_serverless_settings: {
|
27242
|
+
# execution_role_arn: "RoleArn",
|
27243
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
27244
|
+
# },
|
27170
27245
|
# },
|
27171
27246
|
# code_editor_app_settings: {
|
27172
27247
|
# default_resource_spec: {
|
@@ -27232,7 +27307,7 @@ module Aws::SageMaker
|
|
27232
27307
|
# },
|
27233
27308
|
# ],
|
27234
27309
|
# studio_web_portal_settings: {
|
27235
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
27310
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
27236
27311
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
27237
27312
|
# },
|
27238
27313
|
# },
|
@@ -27514,7 +27589,7 @@ module Aws::SageMaker
|
|
27514
27589
|
params: params,
|
27515
27590
|
config: config)
|
27516
27591
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
27517
|
-
context[:gem_version] = '1.
|
27592
|
+
context[:gem_version] = '1.256.0'
|
27518
27593
|
Seahorse::Client::Request.new(handlers, context)
|
27519
27594
|
end
|
27520
27595
|
|
@@ -122,6 +122,7 @@ module Aws::SageMaker
|
|
122
122
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
123
123
|
AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
|
124
124
|
AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
|
125
|
+
AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
|
125
126
|
AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
|
126
127
|
AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
|
127
128
|
AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
|
@@ -809,6 +810,8 @@ module Aws::SageMaker
|
|
809
810
|
EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
|
810
811
|
Edges = Shapes::ListShape.new(name: 'Edges')
|
811
812
|
EfsUid = Shapes::StringShape.new(name: 'EfsUid')
|
813
|
+
EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
|
814
|
+
EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
|
812
815
|
EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
|
813
816
|
EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
|
814
817
|
EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
|
@@ -2624,6 +2627,9 @@ module Aws::SageMaker
|
|
2624
2627
|
AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
2625
2628
|
AutoMLChannel.struct_class = Types::AutoMLChannel
|
2626
2629
|
|
2630
|
+
AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
|
2631
|
+
AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
|
2632
|
+
|
2627
2633
|
AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
|
2628
2634
|
AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
|
2629
2635
|
AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -2827,6 +2833,7 @@ module Aws::SageMaker
|
|
2827
2833
|
CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
|
2828
2834
|
CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
|
2829
2835
|
CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
|
2836
|
+
CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
|
2830
2837
|
CanvasAppSettings.struct_class = Types::CanvasAppSettings
|
2831
2838
|
|
2832
2839
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -3221,6 +3228,7 @@ module Aws::SageMaker
|
|
3221
3228
|
CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
3222
3229
|
CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
3223
3230
|
CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
3231
|
+
CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
3224
3232
|
CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
|
3225
3233
|
|
3226
3234
|
CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -4426,6 +4434,7 @@ module Aws::SageMaker
|
|
4426
4434
|
DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
4427
4435
|
DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
4428
4436
|
DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
4437
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
4429
4438
|
DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
|
4430
4439
|
|
4431
4440
|
DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
|
@@ -5651,6 +5660,13 @@ module Aws::SageMaker
|
|
5651
5660
|
|
5652
5661
|
Edges.member = Shapes::ShapeRef.new(shape: Edge)
|
5653
5662
|
|
5663
|
+
EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
|
5664
|
+
EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
|
5665
|
+
|
5666
|
+
EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
|
5667
|
+
EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
5668
|
+
EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
|
5669
|
+
|
5654
5670
|
EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
|
5655
5671
|
EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
|
5656
5672
|
EmrSettings.struct_class = Types::EmrSettings
|
@@ -8677,7 +8693,7 @@ module Aws::SageMaker
|
|
8677
8693
|
ProcessingS3Input.struct_class = Types::ProcessingS3Input
|
8678
8694
|
|
8679
8695
|
ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
8680
|
-
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath,
|
8696
|
+
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
|
8681
8697
|
ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
|
8682
8698
|
ProcessingS3Output.struct_class = Types::ProcessingS3Output
|
8683
8699
|
|
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
|
|
2082
2082
|
include Aws::Structure
|
2083
2083
|
end
|
2084
2084
|
|
2085
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
2086
|
+
# cannot be used in other contexts at the moment.
|
2087
|
+
#
|
2088
|
+
# </note>
|
2089
|
+
#
|
2090
|
+
# Specifies the compute configuration for an AutoML job V2.
|
2091
|
+
#
|
2092
|
+
# @!attribute [rw] emr_serverless_compute_config
|
2093
|
+
# The configuration for using [ EMR Serverless][1] to run the AutoML
|
2094
|
+
# job V2.
|
2095
|
+
#
|
2096
|
+
# To allow your AutoML job V2 to automatically initiate a remote job
|
2097
|
+
# on EMR Serverless when additional compute resources are needed to
|
2098
|
+
# process large datasets, you need to provide an
|
2099
|
+
# `EmrServerlessComputeConfig` object, which includes an
|
2100
|
+
# `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
|
2101
|
+
# AutoML job V2 input request.
|
2102
|
+
#
|
2103
|
+
# By seamlessly transitioning to EMR Serverless when required, the
|
2104
|
+
# AutoML job can handle datasets that would otherwise exceed the
|
2105
|
+
# initially provisioned resources, without any manual intervention
|
2106
|
+
# from you.
|
2107
|
+
#
|
2108
|
+
# EMR Serverless is available for the tabular and time series problem
|
2109
|
+
# types. We recommend setting up this option for tabular datasets
|
2110
|
+
# larger than 5 GB and time series datasets larger than 30 GB.
|
2111
|
+
#
|
2112
|
+
#
|
2113
|
+
#
|
2114
|
+
# [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
|
2115
|
+
# @return [Types::EmrServerlessComputeConfig]
|
2116
|
+
#
|
2117
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
|
2118
|
+
#
|
2119
|
+
class AutoMLComputeConfig < Struct.new(
|
2120
|
+
:emr_serverless_compute_config)
|
2121
|
+
SENSITIVE = []
|
2122
|
+
include Aws::Structure
|
2123
|
+
end
|
2124
|
+
|
2085
2125
|
# A list of container definitions that describe the different containers
|
2086
2126
|
# that make up an AutoML candidate. For more information, see [
|
2087
2127
|
# ContainerDefinition][1].
|
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
|
|
2520
2560
|
# @return [String]
|
2521
2561
|
#
|
2522
2562
|
# @!attribute [rw] s3_output_path
|
2523
|
-
# The Amazon S3 output path. Must be
|
2563
|
+
# The Amazon S3 output path. Must be 512 characters or less.
|
2524
2564
|
# @return [String]
|
2525
2565
|
#
|
2526
2566
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
|
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
|
|
3331
3371
|
# The generative AI settings for the SageMaker Canvas application.
|
3332
3372
|
# @return [Types::GenerativeAiSettings]
|
3333
3373
|
#
|
3374
|
+
# @!attribute [rw] emr_serverless_settings
|
3375
|
+
# The settings for running Amazon EMR Serverless data processing jobs
|
3376
|
+
# in SageMaker Canvas.
|
3377
|
+
# @return [Types::EmrServerlessSettings]
|
3378
|
+
#
|
3334
3379
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
|
3335
3380
|
#
|
3336
3381
|
class CanvasAppSettings < Struct.new(
|
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
|
|
3340
3385
|
:identity_provider_o_auth_settings,
|
3341
3386
|
:direct_deploy_settings,
|
3342
3387
|
:kendra_settings,
|
3343
|
-
:generative_ai_settings
|
3388
|
+
:generative_ai_settings,
|
3389
|
+
:emr_serverless_settings)
|
3344
3390
|
SENSITIVE = []
|
3345
3391
|
include Aws::Structure
|
3346
3392
|
end
|
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
|
|
5603
5649
|
# </note>
|
5604
5650
|
# @return [Types::AutoMLDataSplitConfig]
|
5605
5651
|
#
|
5652
|
+
# @!attribute [rw] auto_ml_compute_config
|
5653
|
+
# Specifies the compute configuration for the AutoML job V2.
|
5654
|
+
# @return [Types::AutoMLComputeConfig]
|
5655
|
+
#
|
5606
5656
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
5607
5657
|
#
|
5608
5658
|
class CreateAutoMLJobV2Request < Struct.new(
|
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
|
|
5615
5665
|
:security_config,
|
5616
5666
|
:auto_ml_job_objective,
|
5617
5667
|
:model_deploy_config,
|
5618
|
-
:data_split_config
|
5668
|
+
:data_split_config,
|
5669
|
+
:auto_ml_compute_config)
|
5619
5670
|
SENSITIVE = []
|
5620
5671
|
include Aws::Structure
|
5621
5672
|
end
|
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
|
|
12620
12671
|
# VPC settings.
|
12621
12672
|
# @return [Types::AutoMLSecurityConfig]
|
12622
12673
|
#
|
12674
|
+
# @!attribute [rw] auto_ml_compute_config
|
12675
|
+
# The compute configuration used for the AutoML job V2.
|
12676
|
+
# @return [Types::AutoMLComputeConfig]
|
12677
|
+
#
|
12623
12678
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
12624
12679
|
#
|
12625
12680
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
|
|
12644
12699
|
:model_deploy_config,
|
12645
12700
|
:model_deploy_result,
|
12646
12701
|
:data_split_config,
|
12647
|
-
:security_config
|
12702
|
+
:security_config,
|
12703
|
+
:auto_ml_compute_config)
|
12648
12704
|
SENSITIVE = []
|
12649
12705
|
include Aws::Structure
|
12650
12706
|
end
|
@@ -19302,6 +19358,61 @@ module Aws::SageMaker
|
|
19302
19358
|
include Aws::Structure
|
19303
19359
|
end
|
19304
19360
|
|
19361
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
19362
|
+
# cannot be used in other contexts at the moment.
|
19363
|
+
#
|
19364
|
+
# </note>
|
19365
|
+
#
|
19366
|
+
# Specifies the compute configuration for the EMR Serverless job.
|
19367
|
+
#
|
19368
|
+
# @!attribute [rw] execution_role_arn
|
19369
|
+
# The ARN of the IAM role granting the AutoML job V2 the necessary
|
19370
|
+
# permissions access policies to list, connect to, or manage EMR
|
19371
|
+
# Serverless jobs. For detailed information about the required
|
19372
|
+
# permissions of this role, see "How to configure AutoML to initiate
|
19373
|
+
# a remote job on EMR Serverless for large datasets" in [Create a
|
19374
|
+
# regression or classification job for tabular data using the AutoML
|
19375
|
+
# API][1] or [Create an AutoML job for time-series forecasting using
|
19376
|
+
# the API][2].
|
19377
|
+
#
|
19378
|
+
#
|
19379
|
+
#
|
19380
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
|
19381
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
|
19382
|
+
# @return [String]
|
19383
|
+
#
|
19384
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
|
19385
|
+
#
|
19386
|
+
class EmrServerlessComputeConfig < Struct.new(
|
19387
|
+
:execution_role_arn)
|
19388
|
+
SENSITIVE = []
|
19389
|
+
include Aws::Structure
|
19390
|
+
end
|
19391
|
+
|
19392
|
+
# The settings for running Amazon EMR Serverless jobs in SageMaker
|
19393
|
+
# Canvas.
|
19394
|
+
#
|
19395
|
+
# @!attribute [rw] execution_role_arn
|
19396
|
+
# The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
|
19397
|
+
# that is assumed for running Amazon EMR Serverless jobs in SageMaker
|
19398
|
+
# Canvas. This role should have the necessary permissions to read and
|
19399
|
+
# write data attached and a trust relationship with EMR Serverless.
|
19400
|
+
# @return [String]
|
19401
|
+
#
|
19402
|
+
# @!attribute [rw] status
|
19403
|
+
# Describes whether Amazon EMR Serverless job capabilities are enabled
|
19404
|
+
# or disabled in the SageMaker Canvas application.
|
19405
|
+
# @return [String]
|
19406
|
+
#
|
19407
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
|
19408
|
+
#
|
19409
|
+
class EmrServerlessSettings < Struct.new(
|
19410
|
+
:execution_role_arn,
|
19411
|
+
:status)
|
19412
|
+
SENSITIVE = []
|
19413
|
+
include Aws::Structure
|
19414
|
+
end
|
19415
|
+
|
19305
19416
|
# The configuration parameters that specify the IAM roles assumed by the
|
19306
19417
|
# execution role of SageMaker (assumable roles) and the cluster
|
19307
19418
|
# instances or job execution environments (execution roles or runtime
|
@@ -37013,6 +37124,18 @@ module Aws::SageMaker
|
|
37013
37124
|
# environment is compatible with specific software requirements, such
|
37014
37125
|
# as CUDA driver versions, Linux kernel versions, or Amazon Web
|
37015
37126
|
# Services Neuron driver versions.
|
37127
|
+
#
|
37128
|
+
# The AMI version names, and their configurations, are the following:
|
37129
|
+
#
|
37130
|
+
# al2-ami-sagemaker-inference-gpu-2
|
37131
|
+
# : * Accelerator: GPU
|
37132
|
+
#
|
37133
|
+
# * NVIDIA driver version: 535.54.03
|
37134
|
+
#
|
37135
|
+
# * CUDA driver version: 12.2
|
37136
|
+
#
|
37137
|
+
# * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
|
37138
|
+
# ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
|
37016
37139
|
# @return [String]
|
37017
37140
|
#
|
37018
37141
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
data/sig/client.rbs
CHANGED
@@ -678,6 +678,11 @@ module Aws
|
|
678
678
|
},
|
679
679
|
?data_split_config: {
|
680
680
|
validation_fraction: ::Float?
|
681
|
+
},
|
682
|
+
?auto_ml_compute_config: {
|
683
|
+
emr_serverless_compute_config: {
|
684
|
+
execution_role_arn: ::String
|
685
|
+
}?
|
681
686
|
}
|
682
687
|
) -> _CreateAutoMLJobV2ResponseSuccess
|
683
688
|
| (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
|
@@ -1041,6 +1046,10 @@ module Aws
|
|
1041
1046
|
}?,
|
1042
1047
|
generative_ai_settings: {
|
1043
1048
|
amazon_bedrock_role_arn: ::String?
|
1049
|
+
}?,
|
1050
|
+
emr_serverless_settings: {
|
1051
|
+
execution_role_arn: ::String?,
|
1052
|
+
status: ("ENABLED" | "DISABLED")?
|
1044
1053
|
}?
|
1045
1054
|
}?,
|
1046
1055
|
code_editor_app_settings: {
|
@@ -1107,7 +1116,7 @@ module Aws
|
|
1107
1116
|
},
|
1108
1117
|
]?,
|
1109
1118
|
studio_web_portal_settings: {
|
1110
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
1119
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
1111
1120
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
1112
1121
|
}?
|
1113
1122
|
},
|
@@ -3483,7 +3492,7 @@ module Aws
|
|
3483
3492
|
output_name: ::String,
|
3484
3493
|
s3_output: {
|
3485
3494
|
s3_uri: ::String,
|
3486
|
-
local_path: ::String
|
3495
|
+
local_path: ::String?,
|
3487
3496
|
s3_upload_mode: ("Continuous" | "EndOfJob")
|
3488
3497
|
}?,
|
3489
3498
|
feature_store_output: {
|
@@ -4080,6 +4089,10 @@ module Aws
|
|
4080
4089
|
}?,
|
4081
4090
|
generative_ai_settings: {
|
4082
4091
|
amazon_bedrock_role_arn: ::String?
|
4092
|
+
}?,
|
4093
|
+
emr_serverless_settings: {
|
4094
|
+
execution_role_arn: ::String?,
|
4095
|
+
status: ("ENABLED" | "DISABLED")?
|
4083
4096
|
}?
|
4084
4097
|
}?,
|
4085
4098
|
code_editor_app_settings: {
|
@@ -4146,7 +4159,7 @@ module Aws
|
|
4146
4159
|
},
|
4147
4160
|
]?,
|
4148
4161
|
studio_web_portal_settings: {
|
4149
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
4162
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
4150
4163
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
4151
4164
|
}?
|
4152
4165
|
}
|
@@ -4806,6 +4819,7 @@ module Aws
|
|
4806
4819
|
def model_deploy_result: () -> Types::ModelDeployResult
|
4807
4820
|
def data_split_config: () -> Types::AutoMLDataSplitConfig
|
4808
4821
|
def security_config: () -> Types::AutoMLSecurityConfig
|
4822
|
+
def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
|
4809
4823
|
end
|
4810
4824
|
# https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
|
4811
4825
|
def describe_auto_ml_job_v2: (
|
@@ -8182,6 +8196,10 @@ module Aws
|
|
8182
8196
|
}?,
|
8183
8197
|
generative_ai_settings: {
|
8184
8198
|
amazon_bedrock_role_arn: ::String?
|
8199
|
+
}?,
|
8200
|
+
emr_serverless_settings: {
|
8201
|
+
execution_role_arn: ::String?,
|
8202
|
+
status: ("ENABLED" | "DISABLED")?
|
8185
8203
|
}?
|
8186
8204
|
}?,
|
8187
8205
|
code_editor_app_settings: {
|
@@ -8248,7 +8266,7 @@ module Aws
|
|
8248
8266
|
},
|
8249
8267
|
]?,
|
8250
8268
|
studio_web_portal_settings: {
|
8251
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
8269
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
8252
8270
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
8253
8271
|
}?
|
8254
8272
|
},
|
@@ -9257,6 +9275,10 @@ module Aws
|
|
9257
9275
|
}?,
|
9258
9276
|
generative_ai_settings: {
|
9259
9277
|
amazon_bedrock_role_arn: ::String?
|
9278
|
+
}?,
|
9279
|
+
emr_serverless_settings: {
|
9280
|
+
execution_role_arn: ::String?,
|
9281
|
+
status: ("ENABLED" | "DISABLED")?
|
9260
9282
|
}?
|
9261
9283
|
}?,
|
9262
9284
|
code_editor_app_settings: {
|
@@ -9323,7 +9345,7 @@ module Aws
|
|
9323
9345
|
},
|
9324
9346
|
]?,
|
9325
9347
|
studio_web_portal_settings: {
|
9326
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
9348
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
9327
9349
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
9328
9350
|
}?
|
9329
9351
|
}
|
data/sig/types.rbs
CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
|
|
302
302
|
SENSITIVE: []
|
303
303
|
end
|
304
304
|
|
305
|
+
class AutoMLComputeConfig
|
306
|
+
attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
|
307
|
+
SENSITIVE: []
|
308
|
+
end
|
309
|
+
|
305
310
|
class AutoMLContainerDefinition
|
306
311
|
attr_accessor image: ::String
|
307
312
|
attr_accessor model_data_url: ::String
|
@@ -565,6 +570,7 @@ module Aws::SageMaker
|
|
565
570
|
attr_accessor direct_deploy_settings: Types::DirectDeploySettings
|
566
571
|
attr_accessor kendra_settings: Types::KendraSettings
|
567
572
|
attr_accessor generative_ai_settings: Types::GenerativeAiSettings
|
573
|
+
attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
|
568
574
|
SENSITIVE: []
|
569
575
|
end
|
570
576
|
|
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
|
|
1022
1028
|
attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
|
1023
1029
|
attr_accessor model_deploy_config: Types::ModelDeployConfig
|
1024
1030
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
1031
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
1025
1032
|
SENSITIVE: []
|
1026
1033
|
end
|
1027
1034
|
|
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
|
|
2627
2634
|
attr_accessor model_deploy_result: Types::ModelDeployResult
|
2628
2635
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
2629
2636
|
attr_accessor security_config: Types::AutoMLSecurityConfig
|
2637
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
2630
2638
|
SENSITIVE: []
|
2631
2639
|
end
|
2632
2640
|
|
@@ -4119,6 +4127,17 @@ module Aws::SageMaker
|
|
4119
4127
|
SENSITIVE: []
|
4120
4128
|
end
|
4121
4129
|
|
4130
|
+
class EmrServerlessComputeConfig
|
4131
|
+
attr_accessor execution_role_arn: ::String
|
4132
|
+
SENSITIVE: []
|
4133
|
+
end
|
4134
|
+
|
4135
|
+
class EmrServerlessSettings
|
4136
|
+
attr_accessor execution_role_arn: ::String
|
4137
|
+
attr_accessor status: ("ENABLED" | "DISABLED")
|
4138
|
+
SENSITIVE: []
|
4139
|
+
end
|
4140
|
+
|
4122
4141
|
class EmrSettings
|
4123
4142
|
attr_accessor assumable_role_arns: ::Array[::String]
|
4124
4143
|
attr_accessor execution_role_arns: ::Array[::String]
|
@@ -8714,7 +8733,7 @@ module Aws::SageMaker
|
|
8714
8733
|
end
|
8715
8734
|
|
8716
8735
|
class StudioWebPortalSettings
|
8717
|
-
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
|
8736
|
+
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
|
8718
8737
|
attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
|
8719
8738
|
SENSITIVE: []
|
8720
8739
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.256.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-08-
|
11
|
+
date: 2024-08-12 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|