aws-sdk-sagemaker 1.255.0 → 1.256.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d3b2d19ed21e288b6e4559c4ea10c415bc068d508bde9cf859023b5c03d3e845
4
- data.tar.gz: 800113500e1627ca9c6df248adaa96dd320ee740f87252070d01e339279f0ebc
3
+ metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
4
+ data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
5
5
  SHA512:
6
- metadata.gz: 9ca40d7eca038f3a56324fca80339ef688b77ee12469d479800506c30cf5c9f8083500c4b6327a973d849cf53f89a02e298f0968eef2c23354c5a02bf855e396
7
- data.tar.gz: f62a93aaf217fc08f98f02f1f03ceb8fbabca4c321fb8f2f40376ca675c3ff0e11441fb929fb2734cdfd02038208aa450cfbcb2ea3f1a044e895ed91389eb3f8
6
+ metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
7
+ data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.256.0 (2024-08-12)
5
+ ------------------
6
+
7
+ * Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
8
+
4
9
  1.255.0 (2024-08-01)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.255.0
1
+ 1.256.0
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
1309
1309
  # Creates an Autopilot job also referred to as Autopilot experiment or
1310
1310
  # AutoML job.
1311
1311
  #
1312
- # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][1] and
1313
- # [DescribeAutoMLJobV2][2], which offer backward compatibility.
1312
+ # An AutoML job in SageMaker is a fully automated process that allows
1313
+ # you to build machine learning models with minimal effort and machine
1314
+ # learning expertise. When initiating an AutoML job, you provide your
1315
+ # data and optionally specify parameters tailored to your use case.
1316
+ # SageMaker then automates the entire model development lifecycle,
1317
+ # including data preprocessing, model training, tuning, and evaluation.
1318
+ # AutoML jobs are designed to simplify and accelerate the model building
1319
+ # process by automating various tasks and exploring different
1320
+ # combinations of machine learning algorithms, data preprocessing
1321
+ # techniques, and hyperparameter values. The output of an AutoML job
1322
+ # comprises one or more trained models ready for deployment and
1323
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1324
+ # model leaderboard, allowing you to select the best-performing model
1325
+ # for deployment.
1326
+ #
1327
+ # For more information about AutoML jobs, see
1328
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1329
+ # in the SageMaker developer guide.
1330
+ #
1331
+ # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
1332
+ # [DescribeAutoMLJobV2][3], which offer backward compatibility.
1314
1333
  #
1315
1334
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1316
1335
  # those of its previous version `CreateAutoMLJob`, as well as
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
1319
1338
  #
1320
1339
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1321
1340
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1322
- # CreateAutoMLJobV2][3].
1341
+ # CreateAutoMLJobV2][4].
1323
1342
  #
1324
1343
  # </note>
1325
1344
  #
1326
1345
  # You can find the best-performing model after you run an AutoML job by
1327
- # calling [DescribeAutoMLJobV2][2] (recommended) or
1328
- # [DescribeAutoMLJob][4].
1346
+ # calling [DescribeAutoMLJobV2][3] (recommended) or
1347
+ # [DescribeAutoMLJob][5].
1329
1348
  #
1330
1349
  #
1331
1350
  #
1332
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1333
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1334
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1335
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1351
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1352
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1353
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1354
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1355
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1336
1356
  #
1337
1357
  # @option params [required, String] :auto_ml_job_name
1338
1358
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
1488
1508
  # Creates an Autopilot job also referred to as Autopilot experiment or
1489
1509
  # AutoML job V2.
1490
1510
  #
1491
- # <note markdown="1"> [CreateAutoMLJobV2][1] and [DescribeAutoMLJobV2][2] are new versions
1492
- # of [CreateAutoMLJob][3] and [DescribeAutoMLJob][4] which offer
1511
+ # An AutoML job in SageMaker is a fully automated process that allows
1512
+ # you to build machine learning models with minimal effort and machine
1513
+ # learning expertise. When initiating an AutoML job, you provide your
1514
+ # data and optionally specify parameters tailored to your use case.
1515
+ # SageMaker then automates the entire model development lifecycle,
1516
+ # including data preprocessing, model training, tuning, and evaluation.
1517
+ # AutoML jobs are designed to simplify and accelerate the model building
1518
+ # process by automating various tasks and exploring different
1519
+ # combinations of machine learning algorithms, data preprocessing
1520
+ # techniques, and hyperparameter values. The output of an AutoML job
1521
+ # comprises one or more trained models ready for deployment and
1522
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1523
+ # model leaderboard, allowing you to select the best-performing model
1524
+ # for deployment.
1525
+ #
1526
+ # For more information about AutoML jobs, see
1527
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1528
+ # in the SageMaker developer guide.
1529
+ #
1530
+ # AutoML jobs V2 support various problem types such as regression,
1531
+ # binary, and multiclass classification with tabular data, text and
1532
+ # image classification, time-series forecasting, and fine-tuning of
1533
+ # large language models (LLMs) for text generation.
1534
+ #
1535
+ # <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
1536
+ # of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
1493
1537
  # backward compatibility.
1494
1538
  #
1495
1539
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
1499
1543
  #
1500
1544
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1501
1545
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1502
- # CreateAutoMLJobV2][5].
1546
+ # CreateAutoMLJobV2][6].
1503
1547
  #
1504
1548
  # </note>
1505
1549
  #
1506
1550
  # For the list of available problem types supported by
1507
- # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][6].
1551
+ # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
1508
1552
  #
1509
1553
  # You can find the best-performing model after you run an AutoML job V2
1510
- # by calling [DescribeAutoMLJobV2][2].
1554
+ # by calling [DescribeAutoMLJobV2][3].
1511
1555
  #
1512
1556
  #
1513
1557
  #
1514
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1515
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1516
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1517
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1518
- # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1519
- # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1558
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1559
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1560
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1561
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1562
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1563
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1564
+ # [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1520
1565
  #
1521
1566
  # @option params [required, String] :auto_ml_job_name
1522
1567
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
1614
1659
  #
1615
1660
  # </note>
1616
1661
  #
1662
+ # @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
1663
+ # Specifies the compute configuration for the AutoML job V2.
1664
+ #
1617
1665
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1618
1666
  #
1619
1667
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
1755
1803
  # data_split_config: {
1756
1804
  # validation_fraction: 1.0,
1757
1805
  # },
1806
+ # auto_ml_compute_config: {
1807
+ # emr_serverless_compute_config: {
1808
+ # execution_role_arn: "RoleArn", # required
1809
+ # },
1810
+ # },
1758
1811
  # })
1759
1812
  #
1760
1813
  # @example Response structure
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
2604
2657
  # generative_ai_settings: {
2605
2658
  # amazon_bedrock_role_arn: "RoleArn",
2606
2659
  # },
2660
+ # emr_serverless_settings: {
2661
+ # execution_role_arn: "RoleArn",
2662
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2663
+ # },
2607
2664
  # },
2608
2665
  # code_editor_app_settings: {
2609
2666
  # default_resource_spec: {
@@ -2669,7 +2726,7 @@ module Aws::SageMaker
2669
2726
  # },
2670
2727
  # ],
2671
2728
  # studio_web_portal_settings: {
2672
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
2729
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
2673
2730
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
2674
2731
  # },
2675
2732
  # },
@@ -7943,7 +8000,7 @@ module Aws::SageMaker
7943
8000
  # output_name: "String", # required
7944
8001
  # s3_output: {
7945
8002
  # s3_uri: "S3Uri", # required
7946
- # local_path: "ProcessingLocalPath", # required
8003
+ # local_path: "ProcessingLocalPath",
7947
8004
  # s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
7948
8005
  # },
7949
8006
  # feature_store_output: {
@@ -9343,6 +9400,10 @@ module Aws::SageMaker
9343
9400
  # generative_ai_settings: {
9344
9401
  # amazon_bedrock_role_arn: "RoleArn",
9345
9402
  # },
9403
+ # emr_serverless_settings: {
9404
+ # execution_role_arn: "RoleArn",
9405
+ # status: "ENABLED", # accepts ENABLED, DISABLED
9406
+ # },
9346
9407
  # },
9347
9408
  # code_editor_app_settings: {
9348
9409
  # default_resource_spec: {
@@ -9408,7 +9469,7 @@ module Aws::SageMaker
9408
9469
  # },
9409
9470
  # ],
9410
9471
  # studio_web_portal_settings: {
9411
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
9472
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
9412
9473
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
9413
9474
  # },
9414
9475
  # },
@@ -11777,6 +11838,7 @@ module Aws::SageMaker
11777
11838
  # * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
11778
11839
  # * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
11779
11840
  # * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
11841
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
11780
11842
  #
11781
11843
  # @example Request syntax with placeholder values
11782
11844
  #
@@ -11909,6 +11971,7 @@ module Aws::SageMaker
11909
11971
  # resp.security_config.vpc_config.security_group_ids[0] #=> String
11910
11972
  # resp.security_config.vpc_config.subnets #=> Array
11911
11973
  # resp.security_config.vpc_config.subnets[0] #=> String
11974
+ # resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
11912
11975
  #
11913
11976
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
11914
11977
  #
@@ -12508,6 +12571,8 @@ module Aws::SageMaker
12508
12571
  # resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
12509
12572
  # resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
12510
12573
  # resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
12574
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
12575
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
12511
12576
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
12512
12577
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
12513
12578
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -12546,7 +12611,7 @@ module Aws::SageMaker
12546
12611
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
12547
12612
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
12548
12613
  # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
12549
- # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
12614
+ # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
12550
12615
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
12551
12616
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
12552
12617
  # resp.domain_settings.security_group_ids #=> Array
@@ -16593,6 +16658,8 @@ module Aws::SageMaker
16593
16658
  # resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
16594
16659
  # resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
16595
16660
  # resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
16661
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
16662
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
16596
16663
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
16597
16664
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
16598
16665
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -16631,7 +16698,7 @@ module Aws::SageMaker
16631
16698
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
16632
16699
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
16633
16700
  # resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
16634
- # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
16701
+ # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
16635
16702
  # resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
16636
16703
  # resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
16637
16704
  #
@@ -24952,6 +25019,10 @@ module Aws::SageMaker
24952
25019
  # generative_ai_settings: {
24953
25020
  # amazon_bedrock_role_arn: "RoleArn",
24954
25021
  # },
25022
+ # emr_serverless_settings: {
25023
+ # execution_role_arn: "RoleArn",
25024
+ # status: "ENABLED", # accepts ENABLED, DISABLED
25025
+ # },
24955
25026
  # },
24956
25027
  # code_editor_app_settings: {
24957
25028
  # default_resource_spec: {
@@ -25017,7 +25088,7 @@ module Aws::SageMaker
25017
25088
  # },
25018
25089
  # ],
25019
25090
  # studio_web_portal_settings: {
25020
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
25091
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
25021
25092
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
25022
25093
  # },
25023
25094
  # },
@@ -27167,6 +27238,10 @@ module Aws::SageMaker
27167
27238
  # generative_ai_settings: {
27168
27239
  # amazon_bedrock_role_arn: "RoleArn",
27169
27240
  # },
27241
+ # emr_serverless_settings: {
27242
+ # execution_role_arn: "RoleArn",
27243
+ # status: "ENABLED", # accepts ENABLED, DISABLED
27244
+ # },
27170
27245
  # },
27171
27246
  # code_editor_app_settings: {
27172
27247
  # default_resource_spec: {
@@ -27232,7 +27307,7 @@ module Aws::SageMaker
27232
27307
  # },
27233
27308
  # ],
27234
27309
  # studio_web_portal_settings: {
27235
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
27310
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
27236
27311
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
27237
27312
  # },
27238
27313
  # },
@@ -27514,7 +27589,7 @@ module Aws::SageMaker
27514
27589
  params: params,
27515
27590
  config: config)
27516
27591
  context[:gem_name] = 'aws-sdk-sagemaker'
27517
- context[:gem_version] = '1.255.0'
27592
+ context[:gem_version] = '1.256.0'
27518
27593
  Seahorse::Client::Request.new(handlers, context)
27519
27594
  end
27520
27595
 
@@ -122,6 +122,7 @@ module Aws::SageMaker
122
122
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
123
123
  AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
124
124
  AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
125
+ AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
125
126
  AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
126
127
  AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
127
128
  AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
@@ -809,6 +810,8 @@ module Aws::SageMaker
809
810
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
810
811
  Edges = Shapes::ListShape.new(name: 'Edges')
811
812
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
813
+ EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
814
+ EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
812
815
  EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
813
816
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
814
817
  EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
@@ -2624,6 +2627,9 @@ module Aws::SageMaker
2624
2627
  AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
2625
2628
  AutoMLChannel.struct_class = Types::AutoMLChannel
2626
2629
 
2630
+ AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
2631
+ AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
2632
+
2627
2633
  AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
2628
2634
  AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
2629
2635
  AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2827,6 +2833,7 @@ module Aws::SageMaker
2827
2833
  CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
2828
2834
  CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
2829
2835
  CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
2836
+ CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
2830
2837
  CanvasAppSettings.struct_class = Types::CanvasAppSettings
2831
2838
 
2832
2839
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -3221,6 +3228,7 @@ module Aws::SageMaker
3221
3228
  CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
3222
3229
  CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
3223
3230
  CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
3231
+ CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
3224
3232
  CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
3225
3233
 
3226
3234
  CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -4426,6 +4434,7 @@ module Aws::SageMaker
4426
4434
  DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
4427
4435
  DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
4428
4436
  DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
4437
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
4429
4438
  DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
4430
4439
 
4431
4440
  DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
@@ -5651,6 +5660,13 @@ module Aws::SageMaker
5651
5660
 
5652
5661
  Edges.member = Shapes::ShapeRef.new(shape: Edge)
5653
5662
 
5663
+ EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
5664
+ EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
5665
+
5666
+ EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
5667
+ EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
5668
+ EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
5669
+
5654
5670
  EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
5655
5671
  EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
5656
5672
  EmrSettings.struct_class = Types::EmrSettings
@@ -8677,7 +8693,7 @@ module Aws::SageMaker
8677
8693
  ProcessingS3Input.struct_class = Types::ProcessingS3Input
8678
8694
 
8679
8695
  ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
8680
- ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, required: true, location_name: "LocalPath"))
8696
+ ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
8681
8697
  ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
8682
8698
  ProcessingS3Output.struct_class = Types::ProcessingS3Output
8683
8699
 
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
2082
2082
  include Aws::Structure
2083
2083
  end
2084
2084
 
2085
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
2086
+ # cannot be used in other contexts at the moment.
2087
+ #
2088
+ # </note>
2089
+ #
2090
+ # Specifies the compute configuration for an AutoML job V2.
2091
+ #
2092
+ # @!attribute [rw] emr_serverless_compute_config
2093
+ # The configuration for using [ EMR Serverless][1] to run the AutoML
2094
+ # job V2.
2095
+ #
2096
+ # To allow your AutoML job V2 to automatically initiate a remote job
2097
+ # on EMR Serverless when additional compute resources are needed to
2098
+ # process large datasets, you need to provide an
2099
+ # `EmrServerlessComputeConfig` object, which includes an
2100
+ # `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
2101
+ # AutoML job V2 input request.
2102
+ #
2103
+ # By seamlessly transitioning to EMR Serverless when required, the
2104
+ # AutoML job can handle datasets that would otherwise exceed the
2105
+ # initially provisioned resources, without any manual intervention
2106
+ # from you.
2107
+ #
2108
+ # EMR Serverless is available for the tabular and time series problem
2109
+ # types. We recommend setting up this option for tabular datasets
2110
+ # larger than 5 GB and time series datasets larger than 30 GB.
2111
+ #
2112
+ #
2113
+ #
2114
+ # [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
2115
+ # @return [Types::EmrServerlessComputeConfig]
2116
+ #
2117
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
2118
+ #
2119
+ class AutoMLComputeConfig < Struct.new(
2120
+ :emr_serverless_compute_config)
2121
+ SENSITIVE = []
2122
+ include Aws::Structure
2123
+ end
2124
+
2085
2125
  # A list of container definitions that describe the different containers
2086
2126
  # that make up an AutoML candidate. For more information, see [
2087
2127
  # ContainerDefinition][1].
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
2520
2560
  # @return [String]
2521
2561
  #
2522
2562
  # @!attribute [rw] s3_output_path
2523
- # The Amazon S3 output path. Must be 128 characters or less.
2563
+ # The Amazon S3 output path. Must be 512 characters or less.
2524
2564
  # @return [String]
2525
2565
  #
2526
2566
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
3331
3371
  # The generative AI settings for the SageMaker Canvas application.
3332
3372
  # @return [Types::GenerativeAiSettings]
3333
3373
  #
3374
+ # @!attribute [rw] emr_serverless_settings
3375
+ # The settings for running Amazon EMR Serverless data processing jobs
3376
+ # in SageMaker Canvas.
3377
+ # @return [Types::EmrServerlessSettings]
3378
+ #
3334
3379
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
3335
3380
  #
3336
3381
  class CanvasAppSettings < Struct.new(
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
3340
3385
  :identity_provider_o_auth_settings,
3341
3386
  :direct_deploy_settings,
3342
3387
  :kendra_settings,
3343
- :generative_ai_settings)
3388
+ :generative_ai_settings,
3389
+ :emr_serverless_settings)
3344
3390
  SENSITIVE = []
3345
3391
  include Aws::Structure
3346
3392
  end
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
5603
5649
  # </note>
5604
5650
  # @return [Types::AutoMLDataSplitConfig]
5605
5651
  #
5652
+ # @!attribute [rw] auto_ml_compute_config
5653
+ # Specifies the compute configuration for the AutoML job V2.
5654
+ # @return [Types::AutoMLComputeConfig]
5655
+ #
5606
5656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
5607
5657
  #
5608
5658
  class CreateAutoMLJobV2Request < Struct.new(
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
5615
5665
  :security_config,
5616
5666
  :auto_ml_job_objective,
5617
5667
  :model_deploy_config,
5618
- :data_split_config)
5668
+ :data_split_config,
5669
+ :auto_ml_compute_config)
5619
5670
  SENSITIVE = []
5620
5671
  include Aws::Structure
5621
5672
  end
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
12620
12671
  # VPC settings.
12621
12672
  # @return [Types::AutoMLSecurityConfig]
12622
12673
  #
12674
+ # @!attribute [rw] auto_ml_compute_config
12675
+ # The compute configuration used for the AutoML job V2.
12676
+ # @return [Types::AutoMLComputeConfig]
12677
+ #
12623
12678
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
12624
12679
  #
12625
12680
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
12644
12699
  :model_deploy_config,
12645
12700
  :model_deploy_result,
12646
12701
  :data_split_config,
12647
- :security_config)
12702
+ :security_config,
12703
+ :auto_ml_compute_config)
12648
12704
  SENSITIVE = []
12649
12705
  include Aws::Structure
12650
12706
  end
@@ -19302,6 +19358,61 @@ module Aws::SageMaker
19302
19358
  include Aws::Structure
19303
19359
  end
19304
19360
 
19361
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
19362
+ # cannot be used in other contexts at the moment.
19363
+ #
19364
+ # </note>
19365
+ #
19366
+ # Specifies the compute configuration for the EMR Serverless job.
19367
+ #
19368
+ # @!attribute [rw] execution_role_arn
19369
+ # The ARN of the IAM role granting the AutoML job V2 the necessary
19370
+ # permissions access policies to list, connect to, or manage EMR
19371
+ # Serverless jobs. For detailed information about the required
19372
+ # permissions of this role, see "How to configure AutoML to initiate
19373
+ # a remote job on EMR Serverless for large datasets" in [Create a
19374
+ # regression or classification job for tabular data using the AutoML
19375
+ # API][1] or [Create an AutoML job for time-series forecasting using
19376
+ # the API][2].
19377
+ #
19378
+ #
19379
+ #
19380
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
19381
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
19382
+ # @return [String]
19383
+ #
19384
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
19385
+ #
19386
+ class EmrServerlessComputeConfig < Struct.new(
19387
+ :execution_role_arn)
19388
+ SENSITIVE = []
19389
+ include Aws::Structure
19390
+ end
19391
+
19392
+ # The settings for running Amazon EMR Serverless jobs in SageMaker
19393
+ # Canvas.
19394
+ #
19395
+ # @!attribute [rw] execution_role_arn
19396
+ # The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
19397
+ # that is assumed for running Amazon EMR Serverless jobs in SageMaker
19398
+ # Canvas. This role should have the necessary permissions to read and
19399
+ # write data attached and a trust relationship with EMR Serverless.
19400
+ # @return [String]
19401
+ #
19402
+ # @!attribute [rw] status
19403
+ # Describes whether Amazon EMR Serverless job capabilities are enabled
19404
+ # or disabled in the SageMaker Canvas application.
19405
+ # @return [String]
19406
+ #
19407
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
19408
+ #
19409
+ class EmrServerlessSettings < Struct.new(
19410
+ :execution_role_arn,
19411
+ :status)
19412
+ SENSITIVE = []
19413
+ include Aws::Structure
19414
+ end
19415
+
19305
19416
  # The configuration parameters that specify the IAM roles assumed by the
19306
19417
  # execution role of SageMaker (assumable roles) and the cluster
19307
19418
  # instances or job execution environments (execution roles or runtime
@@ -37013,6 +37124,18 @@ module Aws::SageMaker
37013
37124
  # environment is compatible with specific software requirements, such
37014
37125
  # as CUDA driver versions, Linux kernel versions, or Amazon Web
37015
37126
  # Services Neuron driver versions.
37127
+ #
37128
+ # The AMI version names, and their configurations, are the following:
37129
+ #
37130
+ # al2-ami-sagemaker-inference-gpu-2
37131
+ # : * Accelerator: GPU
37132
+ #
37133
+ # * NVIDIA driver version: 535.54.03
37134
+ #
37135
+ # * CUDA driver version: 12.2
37136
+ #
37137
+ # * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
37138
+ # ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
37016
37139
  # @return [String]
37017
37140
  #
37018
37141
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.255.0'
56
+ GEM_VERSION = '1.256.0'
57
57
 
58
58
  end
data/sig/client.rbs CHANGED
@@ -678,6 +678,11 @@ module Aws
678
678
  },
679
679
  ?data_split_config: {
680
680
  validation_fraction: ::Float?
681
+ },
682
+ ?auto_ml_compute_config: {
683
+ emr_serverless_compute_config: {
684
+ execution_role_arn: ::String
685
+ }?
681
686
  }
682
687
  ) -> _CreateAutoMLJobV2ResponseSuccess
683
688
  | (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
@@ -1041,6 +1046,10 @@ module Aws
1041
1046
  }?,
1042
1047
  generative_ai_settings: {
1043
1048
  amazon_bedrock_role_arn: ::String?
1049
+ }?,
1050
+ emr_serverless_settings: {
1051
+ execution_role_arn: ::String?,
1052
+ status: ("ENABLED" | "DISABLED")?
1044
1053
  }?
1045
1054
  }?,
1046
1055
  code_editor_app_settings: {
@@ -1107,7 +1116,7 @@ module Aws
1107
1116
  },
1108
1117
  ]?,
1109
1118
  studio_web_portal_settings: {
1110
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
1119
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
1111
1120
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
1112
1121
  }?
1113
1122
  },
@@ -3483,7 +3492,7 @@ module Aws
3483
3492
  output_name: ::String,
3484
3493
  s3_output: {
3485
3494
  s3_uri: ::String,
3486
- local_path: ::String,
3495
+ local_path: ::String?,
3487
3496
  s3_upload_mode: ("Continuous" | "EndOfJob")
3488
3497
  }?,
3489
3498
  feature_store_output: {
@@ -4080,6 +4089,10 @@ module Aws
4080
4089
  }?,
4081
4090
  generative_ai_settings: {
4082
4091
  amazon_bedrock_role_arn: ::String?
4092
+ }?,
4093
+ emr_serverless_settings: {
4094
+ execution_role_arn: ::String?,
4095
+ status: ("ENABLED" | "DISABLED")?
4083
4096
  }?
4084
4097
  }?,
4085
4098
  code_editor_app_settings: {
@@ -4146,7 +4159,7 @@ module Aws
4146
4159
  },
4147
4160
  ]?,
4148
4161
  studio_web_portal_settings: {
4149
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
4162
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
4150
4163
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
4151
4164
  }?
4152
4165
  }
@@ -4806,6 +4819,7 @@ module Aws
4806
4819
  def model_deploy_result: () -> Types::ModelDeployResult
4807
4820
  def data_split_config: () -> Types::AutoMLDataSplitConfig
4808
4821
  def security_config: () -> Types::AutoMLSecurityConfig
4822
+ def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
4809
4823
  end
4810
4824
  # https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
4811
4825
  def describe_auto_ml_job_v2: (
@@ -8182,6 +8196,10 @@ module Aws
8182
8196
  }?,
8183
8197
  generative_ai_settings: {
8184
8198
  amazon_bedrock_role_arn: ::String?
8199
+ }?,
8200
+ emr_serverless_settings: {
8201
+ execution_role_arn: ::String?,
8202
+ status: ("ENABLED" | "DISABLED")?
8185
8203
  }?
8186
8204
  }?,
8187
8205
  code_editor_app_settings: {
@@ -8248,7 +8266,7 @@ module Aws
8248
8266
  },
8249
8267
  ]?,
8250
8268
  studio_web_portal_settings: {
8251
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
8269
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
8252
8270
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
8253
8271
  }?
8254
8272
  },
@@ -9257,6 +9275,10 @@ module Aws
9257
9275
  }?,
9258
9276
  generative_ai_settings: {
9259
9277
  amazon_bedrock_role_arn: ::String?
9278
+ }?,
9279
+ emr_serverless_settings: {
9280
+ execution_role_arn: ::String?,
9281
+ status: ("ENABLED" | "DISABLED")?
9260
9282
  }?
9261
9283
  }?,
9262
9284
  code_editor_app_settings: {
@@ -9323,7 +9345,7 @@ module Aws
9323
9345
  },
9324
9346
  ]?,
9325
9347
  studio_web_portal_settings: {
9326
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
9348
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
9327
9349
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
9328
9350
  }?
9329
9351
  }
data/sig/types.rbs CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
302
302
  SENSITIVE: []
303
303
  end
304
304
 
305
+ class AutoMLComputeConfig
306
+ attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
307
+ SENSITIVE: []
308
+ end
309
+
305
310
  class AutoMLContainerDefinition
306
311
  attr_accessor image: ::String
307
312
  attr_accessor model_data_url: ::String
@@ -565,6 +570,7 @@ module Aws::SageMaker
565
570
  attr_accessor direct_deploy_settings: Types::DirectDeploySettings
566
571
  attr_accessor kendra_settings: Types::KendraSettings
567
572
  attr_accessor generative_ai_settings: Types::GenerativeAiSettings
573
+ attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
568
574
  SENSITIVE: []
569
575
  end
570
576
 
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
1022
1028
  attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
1023
1029
  attr_accessor model_deploy_config: Types::ModelDeployConfig
1024
1030
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
1031
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
1025
1032
  SENSITIVE: []
1026
1033
  end
1027
1034
 
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
2627
2634
  attr_accessor model_deploy_result: Types::ModelDeployResult
2628
2635
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
2629
2636
  attr_accessor security_config: Types::AutoMLSecurityConfig
2637
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
2630
2638
  SENSITIVE: []
2631
2639
  end
2632
2640
 
@@ -4119,6 +4127,17 @@ module Aws::SageMaker
4119
4127
  SENSITIVE: []
4120
4128
  end
4121
4129
 
4130
+ class EmrServerlessComputeConfig
4131
+ attr_accessor execution_role_arn: ::String
4132
+ SENSITIVE: []
4133
+ end
4134
+
4135
+ class EmrServerlessSettings
4136
+ attr_accessor execution_role_arn: ::String
4137
+ attr_accessor status: ("ENABLED" | "DISABLED")
4138
+ SENSITIVE: []
4139
+ end
4140
+
4122
4141
  class EmrSettings
4123
4142
  attr_accessor assumable_role_arns: ::Array[::String]
4124
4143
  attr_accessor execution_role_arns: ::Array[::String]
@@ -8714,7 +8733,7 @@ module Aws::SageMaker
8714
8733
  end
8715
8734
 
8716
8735
  class StudioWebPortalSettings
8717
- attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
8736
+ attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
8718
8737
  attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
8719
8738
  SENSITIVE: []
8720
8739
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.255.0
4
+ version: 1.256.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-08-01 00:00:00.000000000 Z
11
+ date: 2024-08-12 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core