aws-sdk-sagemaker 1.255.0 → 1.256.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d3b2d19ed21e288b6e4559c4ea10c415bc068d508bde9cf859023b5c03d3e845
4
- data.tar.gz: 800113500e1627ca9c6df248adaa96dd320ee740f87252070d01e339279f0ebc
3
+ metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
4
+ data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
5
5
  SHA512:
6
- metadata.gz: 9ca40d7eca038f3a56324fca80339ef688b77ee12469d479800506c30cf5c9f8083500c4b6327a973d849cf53f89a02e298f0968eef2c23354c5a02bf855e396
7
- data.tar.gz: f62a93aaf217fc08f98f02f1f03ceb8fbabca4c321fb8f2f40376ca675c3ff0e11441fb929fb2734cdfd02038208aa450cfbcb2ea3f1a044e895ed91389eb3f8
6
+ metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
7
+ data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.256.0 (2024-08-12)
5
+ ------------------
6
+
7
+ * Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
8
+
4
9
  1.255.0 (2024-08-01)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.255.0
1
+ 1.256.0
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
1309
1309
  # Creates an Autopilot job also referred to as Autopilot experiment or
1310
1310
  # AutoML job.
1311
1311
  #
1312
- # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][1] and
1313
- # [DescribeAutoMLJobV2][2], which offer backward compatibility.
1312
+ # An AutoML job in SageMaker is a fully automated process that allows
1313
+ # you to build machine learning models with minimal effort and machine
1314
+ # learning expertise. When initiating an AutoML job, you provide your
1315
+ # data and optionally specify parameters tailored to your use case.
1316
+ # SageMaker then automates the entire model development lifecycle,
1317
+ # including data preprocessing, model training, tuning, and evaluation.
1318
+ # AutoML jobs are designed to simplify and accelerate the model building
1319
+ # process by automating various tasks and exploring different
1320
+ # combinations of machine learning algorithms, data preprocessing
1321
+ # techniques, and hyperparameter values. The output of an AutoML job
1322
+ # comprises one or more trained models ready for deployment and
1323
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1324
+ # model leaderboard, allowing you to select the best-performing model
1325
+ # for deployment.
1326
+ #
1327
+ # For more information about AutoML jobs, see
1328
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1329
+ # in the SageMaker developer guide.
1330
+ #
1331
+ # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
1332
+ # [DescribeAutoMLJobV2][3], which offer backward compatibility.
1314
1333
  #
1315
1334
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1316
1335
  # those of its previous version `CreateAutoMLJob`, as well as
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
1319
1338
  #
1320
1339
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1321
1340
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1322
- # CreateAutoMLJobV2][3].
1341
+ # CreateAutoMLJobV2][4].
1323
1342
  #
1324
1343
  # </note>
1325
1344
  #
1326
1345
  # You can find the best-performing model after you run an AutoML job by
1327
- # calling [DescribeAutoMLJobV2][2] (recommended) or
1328
- # [DescribeAutoMLJob][4].
1346
+ # calling [DescribeAutoMLJobV2][3] (recommended) or
1347
+ # [DescribeAutoMLJob][5].
1329
1348
  #
1330
1349
  #
1331
1350
  #
1332
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1333
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1334
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1335
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1351
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1352
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1353
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1354
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1355
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1336
1356
  #
1337
1357
  # @option params [required, String] :auto_ml_job_name
1338
1358
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
1488
1508
  # Creates an Autopilot job also referred to as Autopilot experiment or
1489
1509
  # AutoML job V2.
1490
1510
  #
1491
- # <note markdown="1"> [CreateAutoMLJobV2][1] and [DescribeAutoMLJobV2][2] are new versions
1492
- # of [CreateAutoMLJob][3] and [DescribeAutoMLJob][4] which offer
1511
+ # An AutoML job in SageMaker is a fully automated process that allows
1512
+ # you to build machine learning models with minimal effort and machine
1513
+ # learning expertise. When initiating an AutoML job, you provide your
1514
+ # data and optionally specify parameters tailored to your use case.
1515
+ # SageMaker then automates the entire model development lifecycle,
1516
+ # including data preprocessing, model training, tuning, and evaluation.
1517
+ # AutoML jobs are designed to simplify and accelerate the model building
1518
+ # process by automating various tasks and exploring different
1519
+ # combinations of machine learning algorithms, data preprocessing
1520
+ # techniques, and hyperparameter values. The output of an AutoML job
1521
+ # comprises one or more trained models ready for deployment and
1522
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1523
+ # model leaderboard, allowing you to select the best-performing model
1524
+ # for deployment.
1525
+ #
1526
+ # For more information about AutoML jobs, see
1527
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1528
+ # in the SageMaker developer guide.
1529
+ #
1530
+ # AutoML jobs V2 support various problem types such as regression,
1531
+ # binary, and multiclass classification with tabular data, text and
1532
+ # image classification, time-series forecasting, and fine-tuning of
1533
+ # large language models (LLMs) for text generation.
1534
+ #
1535
+ # <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
1536
+ # of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
1493
1537
  # backward compatibility.
1494
1538
  #
1495
1539
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
1499
1543
  #
1500
1544
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1501
1545
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1502
- # CreateAutoMLJobV2][5].
1546
+ # CreateAutoMLJobV2][6].
1503
1547
  #
1504
1548
  # </note>
1505
1549
  #
1506
1550
  # For the list of available problem types supported by
1507
- # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][6].
1551
+ # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
1508
1552
  #
1509
1553
  # You can find the best-performing model after you run an AutoML job V2
1510
- # by calling [DescribeAutoMLJobV2][2].
1554
+ # by calling [DescribeAutoMLJobV2][3].
1511
1555
  #
1512
1556
  #
1513
1557
  #
1514
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1515
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1516
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1517
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1518
- # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1519
- # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1558
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1559
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1560
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1561
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1562
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1563
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1564
+ # [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1520
1565
  #
1521
1566
  # @option params [required, String] :auto_ml_job_name
1522
1567
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
1614
1659
  #
1615
1660
  # </note>
1616
1661
  #
1662
+ # @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
1663
+ # Specifies the compute configuration for the AutoML job V2.
1664
+ #
1617
1665
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1618
1666
  #
1619
1667
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
1755
1803
  # data_split_config: {
1756
1804
  # validation_fraction: 1.0,
1757
1805
  # },
1806
+ # auto_ml_compute_config: {
1807
+ # emr_serverless_compute_config: {
1808
+ # execution_role_arn: "RoleArn", # required
1809
+ # },
1810
+ # },
1758
1811
  # })
1759
1812
  #
1760
1813
  # @example Response structure
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
2604
2657
  # generative_ai_settings: {
2605
2658
  # amazon_bedrock_role_arn: "RoleArn",
2606
2659
  # },
2660
+ # emr_serverless_settings: {
2661
+ # execution_role_arn: "RoleArn",
2662
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2663
+ # },
2607
2664
  # },
2608
2665
  # code_editor_app_settings: {
2609
2666
  # default_resource_spec: {
@@ -2669,7 +2726,7 @@ module Aws::SageMaker
2669
2726
  # },
2670
2727
  # ],
2671
2728
  # studio_web_portal_settings: {
2672
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
2729
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
2673
2730
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
2674
2731
  # },
2675
2732
  # },
@@ -7943,7 +8000,7 @@ module Aws::SageMaker
7943
8000
  # output_name: "String", # required
7944
8001
  # s3_output: {
7945
8002
  # s3_uri: "S3Uri", # required
7946
- # local_path: "ProcessingLocalPath", # required
8003
+ # local_path: "ProcessingLocalPath",
7947
8004
  # s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
7948
8005
  # },
7949
8006
  # feature_store_output: {
@@ -9343,6 +9400,10 @@ module Aws::SageMaker
9343
9400
  # generative_ai_settings: {
9344
9401
  # amazon_bedrock_role_arn: "RoleArn",
9345
9402
  # },
9403
+ # emr_serverless_settings: {
9404
+ # execution_role_arn: "RoleArn",
9405
+ # status: "ENABLED", # accepts ENABLED, DISABLED
9406
+ # },
9346
9407
  # },
9347
9408
  # code_editor_app_settings: {
9348
9409
  # default_resource_spec: {
@@ -9408,7 +9469,7 @@ module Aws::SageMaker
9408
9469
  # },
9409
9470
  # ],
9410
9471
  # studio_web_portal_settings: {
9411
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
9472
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
9412
9473
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
9413
9474
  # },
9414
9475
  # },
@@ -11777,6 +11838,7 @@ module Aws::SageMaker
11777
11838
  # * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
11778
11839
  # * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
11779
11840
  # * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
11841
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
11780
11842
  #
11781
11843
  # @example Request syntax with placeholder values
11782
11844
  #
@@ -11909,6 +11971,7 @@ module Aws::SageMaker
11909
11971
  # resp.security_config.vpc_config.security_group_ids[0] #=> String
11910
11972
  # resp.security_config.vpc_config.subnets #=> Array
11911
11973
  # resp.security_config.vpc_config.subnets[0] #=> String
11974
+ # resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
11912
11975
  #
11913
11976
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
11914
11977
  #
@@ -12508,6 +12571,8 @@ module Aws::SageMaker
12508
12571
  # resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
12509
12572
  # resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
12510
12573
  # resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
12574
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
12575
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
12511
12576
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
12512
12577
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
12513
12578
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -12546,7 +12611,7 @@ module Aws::SageMaker
12546
12611
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
12547
12612
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
12548
12613
  # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
12549
- # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
12614
+ # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
12550
12615
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
12551
12616
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
12552
12617
  # resp.domain_settings.security_group_ids #=> Array
@@ -16593,6 +16658,8 @@ module Aws::SageMaker
16593
16658
  # resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
16594
16659
  # resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
16595
16660
  # resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
16661
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
16662
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
16596
16663
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
16597
16664
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
16598
16665
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -16631,7 +16698,7 @@ module Aws::SageMaker
16631
16698
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
16632
16699
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
16633
16700
  # resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
16634
- # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
16701
+ # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
16635
16702
  # resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
16636
16703
  # resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
16637
16704
  #
@@ -24952,6 +25019,10 @@ module Aws::SageMaker
24952
25019
  # generative_ai_settings: {
24953
25020
  # amazon_bedrock_role_arn: "RoleArn",
24954
25021
  # },
25022
+ # emr_serverless_settings: {
25023
+ # execution_role_arn: "RoleArn",
25024
+ # status: "ENABLED", # accepts ENABLED, DISABLED
25025
+ # },
24955
25026
  # },
24956
25027
  # code_editor_app_settings: {
24957
25028
  # default_resource_spec: {
@@ -25017,7 +25088,7 @@ module Aws::SageMaker
25017
25088
  # },
25018
25089
  # ],
25019
25090
  # studio_web_portal_settings: {
25020
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
25091
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
25021
25092
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
25022
25093
  # },
25023
25094
  # },
@@ -27167,6 +27238,10 @@ module Aws::SageMaker
27167
27238
  # generative_ai_settings: {
27168
27239
  # amazon_bedrock_role_arn: "RoleArn",
27169
27240
  # },
27241
+ # emr_serverless_settings: {
27242
+ # execution_role_arn: "RoleArn",
27243
+ # status: "ENABLED", # accepts ENABLED, DISABLED
27244
+ # },
27170
27245
  # },
27171
27246
  # code_editor_app_settings: {
27172
27247
  # default_resource_spec: {
@@ -27232,7 +27307,7 @@ module Aws::SageMaker
27232
27307
  # },
27233
27308
  # ],
27234
27309
  # studio_web_portal_settings: {
27235
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
27310
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
27236
27311
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
27237
27312
  # },
27238
27313
  # },
@@ -27514,7 +27589,7 @@ module Aws::SageMaker
27514
27589
  params: params,
27515
27590
  config: config)
27516
27591
  context[:gem_name] = 'aws-sdk-sagemaker'
27517
- context[:gem_version] = '1.255.0'
27592
+ context[:gem_version] = '1.256.0'
27518
27593
  Seahorse::Client::Request.new(handlers, context)
27519
27594
  end
27520
27595
 
@@ -122,6 +122,7 @@ module Aws::SageMaker
122
122
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
123
123
  AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
124
124
  AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
125
+ AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
125
126
  AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
126
127
  AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
127
128
  AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
@@ -809,6 +810,8 @@ module Aws::SageMaker
809
810
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
810
811
  Edges = Shapes::ListShape.new(name: 'Edges')
811
812
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
813
+ EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
814
+ EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
812
815
  EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
813
816
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
814
817
  EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
@@ -2624,6 +2627,9 @@ module Aws::SageMaker
2624
2627
  AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
2625
2628
  AutoMLChannel.struct_class = Types::AutoMLChannel
2626
2629
 
2630
+ AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
2631
+ AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
2632
+
2627
2633
  AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
2628
2634
  AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
2629
2635
  AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2827,6 +2833,7 @@ module Aws::SageMaker
2827
2833
  CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
2828
2834
  CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
2829
2835
  CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
2836
+ CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
2830
2837
  CanvasAppSettings.struct_class = Types::CanvasAppSettings
2831
2838
 
2832
2839
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -3221,6 +3228,7 @@ module Aws::SageMaker
3221
3228
  CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
3222
3229
  CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
3223
3230
  CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
3231
+ CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
3224
3232
  CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
3225
3233
 
3226
3234
  CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -4426,6 +4434,7 @@ module Aws::SageMaker
4426
4434
  DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
4427
4435
  DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
4428
4436
  DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
4437
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
4429
4438
  DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
4430
4439
 
4431
4440
  DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
@@ -5651,6 +5660,13 @@ module Aws::SageMaker
5651
5660
 
5652
5661
  Edges.member = Shapes::ShapeRef.new(shape: Edge)
5653
5662
 
5663
+ EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
5664
+ EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
5665
+
5666
+ EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
5667
+ EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
5668
+ EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
5669
+
5654
5670
  EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
5655
5671
  EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
5656
5672
  EmrSettings.struct_class = Types::EmrSettings
@@ -8677,7 +8693,7 @@ module Aws::SageMaker
8677
8693
  ProcessingS3Input.struct_class = Types::ProcessingS3Input
8678
8694
 
8679
8695
  ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
8680
- ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, required: true, location_name: "LocalPath"))
8696
+ ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
8681
8697
  ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
8682
8698
  ProcessingS3Output.struct_class = Types::ProcessingS3Output
8683
8699
 
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
2082
2082
  include Aws::Structure
2083
2083
  end
2084
2084
 
2085
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
2086
+ # cannot be used in other contexts at the moment.
2087
+ #
2088
+ # </note>
2089
+ #
2090
+ # Specifies the compute configuration for an AutoML job V2.
2091
+ #
2092
+ # @!attribute [rw] emr_serverless_compute_config
2093
+ # The configuration for using [ EMR Serverless][1] to run the AutoML
2094
+ # job V2.
2095
+ #
2096
+ # To allow your AutoML job V2 to automatically initiate a remote job
2097
+ # on EMR Serverless when additional compute resources are needed to
2098
+ # process large datasets, you need to provide an
2099
+ # `EmrServerlessComputeConfig` object, which includes an
2100
+ # `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
2101
+ # AutoML job V2 input request.
2102
+ #
2103
+ # By seamlessly transitioning to EMR Serverless when required, the
2104
+ # AutoML job can handle datasets that would otherwise exceed the
2105
+ # initially provisioned resources, without any manual intervention
2106
+ # from you.
2107
+ #
2108
+ # EMR Serverless is available for the tabular and time series problem
2109
+ # types. We recommend setting up this option for tabular datasets
2110
+ # larger than 5 GB and time series datasets larger than 30 GB.
2111
+ #
2112
+ #
2113
+ #
2114
+ # [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
2115
+ # @return [Types::EmrServerlessComputeConfig]
2116
+ #
2117
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
2118
+ #
2119
+ class AutoMLComputeConfig < Struct.new(
2120
+ :emr_serverless_compute_config)
2121
+ SENSITIVE = []
2122
+ include Aws::Structure
2123
+ end
2124
+
2085
2125
  # A list of container definitions that describe the different containers
2086
2126
  # that make up an AutoML candidate. For more information, see [
2087
2127
  # ContainerDefinition][1].
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
2520
2560
  # @return [String]
2521
2561
  #
2522
2562
  # @!attribute [rw] s3_output_path
2523
- # The Amazon S3 output path. Must be 128 characters or less.
2563
+ # The Amazon S3 output path. Must be 512 characters or less.
2524
2564
  # @return [String]
2525
2565
  #
2526
2566
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
3331
3371
  # The generative AI settings for the SageMaker Canvas application.
3332
3372
  # @return [Types::GenerativeAiSettings]
3333
3373
  #
3374
+ # @!attribute [rw] emr_serverless_settings
3375
+ # The settings for running Amazon EMR Serverless data processing jobs
3376
+ # in SageMaker Canvas.
3377
+ # @return [Types::EmrServerlessSettings]
3378
+ #
3334
3379
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
3335
3380
  #
3336
3381
  class CanvasAppSettings < Struct.new(
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
3340
3385
  :identity_provider_o_auth_settings,
3341
3386
  :direct_deploy_settings,
3342
3387
  :kendra_settings,
3343
- :generative_ai_settings)
3388
+ :generative_ai_settings,
3389
+ :emr_serverless_settings)
3344
3390
  SENSITIVE = []
3345
3391
  include Aws::Structure
3346
3392
  end
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
5603
5649
  # </note>
5604
5650
  # @return [Types::AutoMLDataSplitConfig]
5605
5651
  #
5652
+ # @!attribute [rw] auto_ml_compute_config
5653
+ # Specifies the compute configuration for the AutoML job V2.
5654
+ # @return [Types::AutoMLComputeConfig]
5655
+ #
5606
5656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
5607
5657
  #
5608
5658
  class CreateAutoMLJobV2Request < Struct.new(
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
5615
5665
  :security_config,
5616
5666
  :auto_ml_job_objective,
5617
5667
  :model_deploy_config,
5618
- :data_split_config)
5668
+ :data_split_config,
5669
+ :auto_ml_compute_config)
5619
5670
  SENSITIVE = []
5620
5671
  include Aws::Structure
5621
5672
  end
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
12620
12671
  # VPC settings.
12621
12672
  # @return [Types::AutoMLSecurityConfig]
12622
12673
  #
12674
+ # @!attribute [rw] auto_ml_compute_config
12675
+ # The compute configuration used for the AutoML job V2.
12676
+ # @return [Types::AutoMLComputeConfig]
12677
+ #
12623
12678
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
12624
12679
  #
12625
12680
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
12644
12699
  :model_deploy_config,
12645
12700
  :model_deploy_result,
12646
12701
  :data_split_config,
12647
- :security_config)
12702
+ :security_config,
12703
+ :auto_ml_compute_config)
12648
12704
  SENSITIVE = []
12649
12705
  include Aws::Structure
12650
12706
  end
@@ -19302,6 +19358,61 @@ module Aws::SageMaker
19302
19358
  include Aws::Structure
19303
19359
  end
19304
19360
 
19361
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
19362
+ # cannot be used in other contexts at the moment.
19363
+ #
19364
+ # </note>
19365
+ #
19366
+ # Specifies the compute configuration for the EMR Serverless job.
19367
+ #
19368
+ # @!attribute [rw] execution_role_arn
19369
+ # The ARN of the IAM role granting the AutoML job V2 the necessary
19370
+ # permissions access policies to list, connect to, or manage EMR
19371
+ # Serverless jobs. For detailed information about the required
19372
+ # permissions of this role, see "How to configure AutoML to initiate
19373
+ # a remote job on EMR Serverless for large datasets" in [Create a
19374
+ # regression or classification job for tabular data using the AutoML
19375
+ # API][1] or [Create an AutoML job for time-series forecasting using
19376
+ # the API][2].
19377
+ #
19378
+ #
19379
+ #
19380
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
19381
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
19382
+ # @return [String]
19383
+ #
19384
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
19385
+ #
19386
+ class EmrServerlessComputeConfig < Struct.new(
19387
+ :execution_role_arn)
19388
+ SENSITIVE = []
19389
+ include Aws::Structure
19390
+ end
19391
+
19392
+ # The settings for running Amazon EMR Serverless jobs in SageMaker
19393
+ # Canvas.
19394
+ #
19395
+ # @!attribute [rw] execution_role_arn
19396
+ # The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
19397
+ # that is assumed for running Amazon EMR Serverless jobs in SageMaker
19398
+ # Canvas. This role should have the necessary permissions to read and
19399
+ # write data attached and a trust relationship with EMR Serverless.
19400
+ # @return [String]
19401
+ #
19402
+ # @!attribute [rw] status
19403
+ # Describes whether Amazon EMR Serverless job capabilities are enabled
19404
+ # or disabled in the SageMaker Canvas application.
19405
+ # @return [String]
19406
+ #
19407
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
19408
+ #
19409
+ class EmrServerlessSettings < Struct.new(
19410
+ :execution_role_arn,
19411
+ :status)
19412
+ SENSITIVE = []
19413
+ include Aws::Structure
19414
+ end
19415
+
19305
19416
  # The configuration parameters that specify the IAM roles assumed by the
19306
19417
  # execution role of SageMaker (assumable roles) and the cluster
19307
19418
  # instances or job execution environments (execution roles or runtime
@@ -37013,6 +37124,18 @@ module Aws::SageMaker
37013
37124
  # environment is compatible with specific software requirements, such
37014
37125
  # as CUDA driver versions, Linux kernel versions, or Amazon Web
37015
37126
  # Services Neuron driver versions.
37127
+ #
37128
+ # The AMI version names, and their configurations, are the following:
37129
+ #
37130
+ # al2-ami-sagemaker-inference-gpu-2
37131
+ # : * Accelerator: GPU
37132
+ #
37133
+ # * NVIDIA driver version: 535.54.03
37134
+ #
37135
+ # * CUDA driver version: 12.2
37136
+ #
37137
+ # * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
37138
+ # ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
37016
37139
  # @return [String]
37017
37140
  #
37018
37141
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.255.0'
56
+ GEM_VERSION = '1.256.0'
57
57
 
58
58
  end
data/sig/client.rbs CHANGED
@@ -678,6 +678,11 @@ module Aws
678
678
  },
679
679
  ?data_split_config: {
680
680
  validation_fraction: ::Float?
681
+ },
682
+ ?auto_ml_compute_config: {
683
+ emr_serverless_compute_config: {
684
+ execution_role_arn: ::String
685
+ }?
681
686
  }
682
687
  ) -> _CreateAutoMLJobV2ResponseSuccess
683
688
  | (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
@@ -1041,6 +1046,10 @@ module Aws
1041
1046
  }?,
1042
1047
  generative_ai_settings: {
1043
1048
  amazon_bedrock_role_arn: ::String?
1049
+ }?,
1050
+ emr_serverless_settings: {
1051
+ execution_role_arn: ::String?,
1052
+ status: ("ENABLED" | "DISABLED")?
1044
1053
  }?
1045
1054
  }?,
1046
1055
  code_editor_app_settings: {
@@ -1107,7 +1116,7 @@ module Aws
1107
1116
  },
1108
1117
  ]?,
1109
1118
  studio_web_portal_settings: {
1110
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
1119
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
1111
1120
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
1112
1121
  }?
1113
1122
  },
@@ -3483,7 +3492,7 @@ module Aws
3483
3492
  output_name: ::String,
3484
3493
  s3_output: {
3485
3494
  s3_uri: ::String,
3486
- local_path: ::String,
3495
+ local_path: ::String?,
3487
3496
  s3_upload_mode: ("Continuous" | "EndOfJob")
3488
3497
  }?,
3489
3498
  feature_store_output: {
@@ -4080,6 +4089,10 @@ module Aws
4080
4089
  }?,
4081
4090
  generative_ai_settings: {
4082
4091
  amazon_bedrock_role_arn: ::String?
4092
+ }?,
4093
+ emr_serverless_settings: {
4094
+ execution_role_arn: ::String?,
4095
+ status: ("ENABLED" | "DISABLED")?
4083
4096
  }?
4084
4097
  }?,
4085
4098
  code_editor_app_settings: {
@@ -4146,7 +4159,7 @@ module Aws
4146
4159
  },
4147
4160
  ]?,
4148
4161
  studio_web_portal_settings: {
4149
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
4162
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
4150
4163
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
4151
4164
  }?
4152
4165
  }
@@ -4806,6 +4819,7 @@ module Aws
4806
4819
  def model_deploy_result: () -> Types::ModelDeployResult
4807
4820
  def data_split_config: () -> Types::AutoMLDataSplitConfig
4808
4821
  def security_config: () -> Types::AutoMLSecurityConfig
4822
+ def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
4809
4823
  end
4810
4824
  # https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
4811
4825
  def describe_auto_ml_job_v2: (
@@ -8182,6 +8196,10 @@ module Aws
8182
8196
  }?,
8183
8197
  generative_ai_settings: {
8184
8198
  amazon_bedrock_role_arn: ::String?
8199
+ }?,
8200
+ emr_serverless_settings: {
8201
+ execution_role_arn: ::String?,
8202
+ status: ("ENABLED" | "DISABLED")?
8185
8203
  }?
8186
8204
  }?,
8187
8205
  code_editor_app_settings: {
@@ -8248,7 +8266,7 @@ module Aws
8248
8266
  },
8249
8267
  ]?,
8250
8268
  studio_web_portal_settings: {
8251
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
8269
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
8252
8270
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
8253
8271
  }?
8254
8272
  },
@@ -9257,6 +9275,10 @@ module Aws
9257
9275
  }?,
9258
9276
  generative_ai_settings: {
9259
9277
  amazon_bedrock_role_arn: ::String?
9278
+ }?,
9279
+ emr_serverless_settings: {
9280
+ execution_role_arn: ::String?,
9281
+ status: ("ENABLED" | "DISABLED")?
9260
9282
  }?
9261
9283
  }?,
9262
9284
  code_editor_app_settings: {
@@ -9323,7 +9345,7 @@ module Aws
9323
9345
  },
9324
9346
  ]?,
9325
9347
  studio_web_portal_settings: {
9326
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
9348
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
9327
9349
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
9328
9350
  }?
9329
9351
  }
data/sig/types.rbs CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
302
302
  SENSITIVE: []
303
303
  end
304
304
 
305
+ class AutoMLComputeConfig
306
+ attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
307
+ SENSITIVE: []
308
+ end
309
+
305
310
  class AutoMLContainerDefinition
306
311
  attr_accessor image: ::String
307
312
  attr_accessor model_data_url: ::String
@@ -565,6 +570,7 @@ module Aws::SageMaker
565
570
  attr_accessor direct_deploy_settings: Types::DirectDeploySettings
566
571
  attr_accessor kendra_settings: Types::KendraSettings
567
572
  attr_accessor generative_ai_settings: Types::GenerativeAiSettings
573
+ attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
568
574
  SENSITIVE: []
569
575
  end
570
576
 
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
1022
1028
  attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
1023
1029
  attr_accessor model_deploy_config: Types::ModelDeployConfig
1024
1030
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
1031
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
1025
1032
  SENSITIVE: []
1026
1033
  end
1027
1034
 
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
2627
2634
  attr_accessor model_deploy_result: Types::ModelDeployResult
2628
2635
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
2629
2636
  attr_accessor security_config: Types::AutoMLSecurityConfig
2637
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
2630
2638
  SENSITIVE: []
2631
2639
  end
2632
2640
 
@@ -4119,6 +4127,17 @@ module Aws::SageMaker
4119
4127
  SENSITIVE: []
4120
4128
  end
4121
4129
 
4130
+ class EmrServerlessComputeConfig
4131
+ attr_accessor execution_role_arn: ::String
4132
+ SENSITIVE: []
4133
+ end
4134
+
4135
+ class EmrServerlessSettings
4136
+ attr_accessor execution_role_arn: ::String
4137
+ attr_accessor status: ("ENABLED" | "DISABLED")
4138
+ SENSITIVE: []
4139
+ end
4140
+
4122
4141
  class EmrSettings
4123
4142
  attr_accessor assumable_role_arns: ::Array[::String]
4124
4143
  attr_accessor execution_role_arns: ::Array[::String]
@@ -8714,7 +8733,7 @@ module Aws::SageMaker
8714
8733
  end
8715
8734
 
8716
8735
  class StudioWebPortalSettings
8717
- attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
8736
+ attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
8718
8737
  attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
8719
8738
  SENSITIVE: []
8720
8739
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.255.0
4
+ version: 1.256.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-08-01 00:00:00.000000000 Z
11
+ date: 2024-08-12 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core