aws-sdk-sagemaker 1.255.0 → 1.256.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +103 -28
- data/lib/aws-sdk-sagemaker/client_api.rb +17 -1
- data/lib/aws-sdk-sagemaker/types.rb +127 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +27 -5
- data/sig/types.rbs +20 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
|
4
|
+
data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
|
7
|
+
data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.256.0 (2024-08-12)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
|
8
|
+
|
4
9
|
1.255.0 (2024-08-01)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.256.0
|
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
|
|
1309
1309
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1310
1310
|
# AutoML job.
|
1311
1311
|
#
|
1312
|
-
#
|
1313
|
-
#
|
1312
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1313
|
+
# you to build machine learning models with minimal effort and machine
|
1314
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1315
|
+
# data and optionally specify parameters tailored to your use case.
|
1316
|
+
# SageMaker then automates the entire model development lifecycle,
|
1317
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1318
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1319
|
+
# process by automating various tasks and exploring different
|
1320
|
+
# combinations of machine learning algorithms, data preprocessing
|
1321
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1322
|
+
# comprises one or more trained models ready for deployment and
|
1323
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1324
|
+
# model leaderboard, allowing you to select the best-performing model
|
1325
|
+
# for deployment.
|
1326
|
+
#
|
1327
|
+
# For more information about AutoML jobs, see
|
1328
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1329
|
+
# in the SageMaker developer guide.
|
1330
|
+
#
|
1331
|
+
# <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
|
1332
|
+
# [DescribeAutoMLJobV2][3], which offer backward compatibility.
|
1314
1333
|
#
|
1315
1334
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1316
1335
|
# those of its previous version `CreateAutoMLJob`, as well as
|
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
|
|
1319
1338
|
#
|
1320
1339
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1321
1340
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1322
|
-
# CreateAutoMLJobV2][
|
1341
|
+
# CreateAutoMLJobV2][4].
|
1323
1342
|
#
|
1324
1343
|
# </note>
|
1325
1344
|
#
|
1326
1345
|
# You can find the best-performing model after you run an AutoML job by
|
1327
|
-
# calling [DescribeAutoMLJobV2][
|
1328
|
-
# [DescribeAutoMLJob][
|
1346
|
+
# calling [DescribeAutoMLJobV2][3] (recommended) or
|
1347
|
+
# [DescribeAutoMLJob][5].
|
1329
1348
|
#
|
1330
1349
|
#
|
1331
1350
|
#
|
1332
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1333
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1334
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/
|
1335
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/
|
1351
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1352
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1353
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1354
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1355
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1336
1356
|
#
|
1337
1357
|
# @option params [required, String] :auto_ml_job_name
|
1338
1358
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
|
|
1488
1508
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1489
1509
|
# AutoML job V2.
|
1490
1510
|
#
|
1491
|
-
#
|
1492
|
-
#
|
1511
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1512
|
+
# you to build machine learning models with minimal effort and machine
|
1513
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1514
|
+
# data and optionally specify parameters tailored to your use case.
|
1515
|
+
# SageMaker then automates the entire model development lifecycle,
|
1516
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1517
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1518
|
+
# process by automating various tasks and exploring different
|
1519
|
+
# combinations of machine learning algorithms, data preprocessing
|
1520
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1521
|
+
# comprises one or more trained models ready for deployment and
|
1522
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1523
|
+
# model leaderboard, allowing you to select the best-performing model
|
1524
|
+
# for deployment.
|
1525
|
+
#
|
1526
|
+
# For more information about AutoML jobs, see
|
1527
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1528
|
+
# in the SageMaker developer guide.
|
1529
|
+
#
|
1530
|
+
# AutoML jobs V2 support various problem types such as regression,
|
1531
|
+
# binary, and multiclass classification with tabular data, text and
|
1532
|
+
# image classification, time-series forecasting, and fine-tuning of
|
1533
|
+
# large language models (LLMs) for text generation.
|
1534
|
+
#
|
1535
|
+
# <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
|
1536
|
+
# of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
|
1493
1537
|
# backward compatibility.
|
1494
1538
|
#
|
1495
1539
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
|
|
1499
1543
|
#
|
1500
1544
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1501
1545
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1502
|
-
# CreateAutoMLJobV2][
|
1546
|
+
# CreateAutoMLJobV2][6].
|
1503
1547
|
#
|
1504
1548
|
# </note>
|
1505
1549
|
#
|
1506
1550
|
# For the list of available problem types supported by
|
1507
|
-
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][
|
1551
|
+
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
|
1508
1552
|
#
|
1509
1553
|
# You can find the best-performing model after you run an AutoML job V2
|
1510
|
-
# by calling [DescribeAutoMLJobV2][
|
1554
|
+
# by calling [DescribeAutoMLJobV2][3].
|
1511
1555
|
#
|
1512
1556
|
#
|
1513
1557
|
#
|
1514
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1515
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1516
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1517
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1518
|
-
# [5]: https://docs.aws.amazon.com/sagemaker/latest/
|
1519
|
-
# [6]: https://docs.aws.amazon.com/sagemaker/latest/
|
1558
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1559
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1560
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1561
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
1562
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1563
|
+
# [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1564
|
+
# [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
|
1520
1565
|
#
|
1521
1566
|
# @option params [required, String] :auto_ml_job_name
|
1522
1567
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
|
|
1614
1659
|
#
|
1615
1660
|
# </note>
|
1616
1661
|
#
|
1662
|
+
# @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
|
1663
|
+
# Specifies the compute configuration for the AutoML job V2.
|
1664
|
+
#
|
1617
1665
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1618
1666
|
#
|
1619
1667
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
|
|
1755
1803
|
# data_split_config: {
|
1756
1804
|
# validation_fraction: 1.0,
|
1757
1805
|
# },
|
1806
|
+
# auto_ml_compute_config: {
|
1807
|
+
# emr_serverless_compute_config: {
|
1808
|
+
# execution_role_arn: "RoleArn", # required
|
1809
|
+
# },
|
1810
|
+
# },
|
1758
1811
|
# })
|
1759
1812
|
#
|
1760
1813
|
# @example Response structure
|
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
|
|
2604
2657
|
# generative_ai_settings: {
|
2605
2658
|
# amazon_bedrock_role_arn: "RoleArn",
|
2606
2659
|
# },
|
2660
|
+
# emr_serverless_settings: {
|
2661
|
+
# execution_role_arn: "RoleArn",
|
2662
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
2663
|
+
# },
|
2607
2664
|
# },
|
2608
2665
|
# code_editor_app_settings: {
|
2609
2666
|
# default_resource_spec: {
|
@@ -2669,7 +2726,7 @@ module Aws::SageMaker
|
|
2669
2726
|
# },
|
2670
2727
|
# ],
|
2671
2728
|
# studio_web_portal_settings: {
|
2672
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
2729
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
2673
2730
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
2674
2731
|
# },
|
2675
2732
|
# },
|
@@ -7943,7 +8000,7 @@ module Aws::SageMaker
|
|
7943
8000
|
# output_name: "String", # required
|
7944
8001
|
# s3_output: {
|
7945
8002
|
# s3_uri: "S3Uri", # required
|
7946
|
-
# local_path: "ProcessingLocalPath",
|
8003
|
+
# local_path: "ProcessingLocalPath",
|
7947
8004
|
# s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
|
7948
8005
|
# },
|
7949
8006
|
# feature_store_output: {
|
@@ -9343,6 +9400,10 @@ module Aws::SageMaker
|
|
9343
9400
|
# generative_ai_settings: {
|
9344
9401
|
# amazon_bedrock_role_arn: "RoleArn",
|
9345
9402
|
# },
|
9403
|
+
# emr_serverless_settings: {
|
9404
|
+
# execution_role_arn: "RoleArn",
|
9405
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
9406
|
+
# },
|
9346
9407
|
# },
|
9347
9408
|
# code_editor_app_settings: {
|
9348
9409
|
# default_resource_spec: {
|
@@ -9408,7 +9469,7 @@ module Aws::SageMaker
|
|
9408
9469
|
# },
|
9409
9470
|
# ],
|
9410
9471
|
# studio_web_portal_settings: {
|
9411
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
9472
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
9412
9473
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
9413
9474
|
# },
|
9414
9475
|
# },
|
@@ -11777,6 +11838,7 @@ module Aws::SageMaker
|
|
11777
11838
|
# * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
11778
11839
|
# * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
|
11779
11840
|
# * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
|
11841
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
|
11780
11842
|
#
|
11781
11843
|
# @example Request syntax with placeholder values
|
11782
11844
|
#
|
@@ -11909,6 +11971,7 @@ module Aws::SageMaker
|
|
11909
11971
|
# resp.security_config.vpc_config.security_group_ids[0] #=> String
|
11910
11972
|
# resp.security_config.vpc_config.subnets #=> Array
|
11911
11973
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
11974
|
+
# resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
|
11912
11975
|
#
|
11913
11976
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
11914
11977
|
#
|
@@ -12508,6 +12571,8 @@ module Aws::SageMaker
|
|
12508
12571
|
# resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12509
12572
|
# resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12510
12573
|
# resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
12574
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
12575
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12511
12576
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
12512
12577
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
12513
12578
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -12546,7 +12611,7 @@ module Aws::SageMaker
|
|
12546
12611
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
12547
12612
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
12548
12613
|
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
12549
|
-
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
12614
|
+
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
12550
12615
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
12551
12616
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
12552
12617
|
# resp.domain_settings.security_group_ids #=> Array
|
@@ -16593,6 +16658,8 @@ module Aws::SageMaker
|
|
16593
16658
|
# resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16594
16659
|
# resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16595
16660
|
# resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
16661
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
16662
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16596
16663
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
16597
16664
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
16598
16665
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -16631,7 +16698,7 @@ module Aws::SageMaker
|
|
16631
16698
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
16632
16699
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
16633
16700
|
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
16634
|
-
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
16701
|
+
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
16635
16702
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
16636
16703
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
16637
16704
|
#
|
@@ -24952,6 +25019,10 @@ module Aws::SageMaker
|
|
24952
25019
|
# generative_ai_settings: {
|
24953
25020
|
# amazon_bedrock_role_arn: "RoleArn",
|
24954
25021
|
# },
|
25022
|
+
# emr_serverless_settings: {
|
25023
|
+
# execution_role_arn: "RoleArn",
|
25024
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
25025
|
+
# },
|
24955
25026
|
# },
|
24956
25027
|
# code_editor_app_settings: {
|
24957
25028
|
# default_resource_spec: {
|
@@ -25017,7 +25088,7 @@ module Aws::SageMaker
|
|
25017
25088
|
# },
|
25018
25089
|
# ],
|
25019
25090
|
# studio_web_portal_settings: {
|
25020
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
25091
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
25021
25092
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
25022
25093
|
# },
|
25023
25094
|
# },
|
@@ -27167,6 +27238,10 @@ module Aws::SageMaker
|
|
27167
27238
|
# generative_ai_settings: {
|
27168
27239
|
# amazon_bedrock_role_arn: "RoleArn",
|
27169
27240
|
# },
|
27241
|
+
# emr_serverless_settings: {
|
27242
|
+
# execution_role_arn: "RoleArn",
|
27243
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
27244
|
+
# },
|
27170
27245
|
# },
|
27171
27246
|
# code_editor_app_settings: {
|
27172
27247
|
# default_resource_spec: {
|
@@ -27232,7 +27307,7 @@ module Aws::SageMaker
|
|
27232
27307
|
# },
|
27233
27308
|
# ],
|
27234
27309
|
# studio_web_portal_settings: {
|
27235
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
27310
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
27236
27311
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
27237
27312
|
# },
|
27238
27313
|
# },
|
@@ -27514,7 +27589,7 @@ module Aws::SageMaker
|
|
27514
27589
|
params: params,
|
27515
27590
|
config: config)
|
27516
27591
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
27517
|
-
context[:gem_version] = '1.
|
27592
|
+
context[:gem_version] = '1.256.0'
|
27518
27593
|
Seahorse::Client::Request.new(handlers, context)
|
27519
27594
|
end
|
27520
27595
|
|
@@ -122,6 +122,7 @@ module Aws::SageMaker
|
|
122
122
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
123
123
|
AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
|
124
124
|
AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
|
125
|
+
AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
|
125
126
|
AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
|
126
127
|
AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
|
127
128
|
AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
|
@@ -809,6 +810,8 @@ module Aws::SageMaker
|
|
809
810
|
EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
|
810
811
|
Edges = Shapes::ListShape.new(name: 'Edges')
|
811
812
|
EfsUid = Shapes::StringShape.new(name: 'EfsUid')
|
813
|
+
EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
|
814
|
+
EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
|
812
815
|
EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
|
813
816
|
EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
|
814
817
|
EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
|
@@ -2624,6 +2627,9 @@ module Aws::SageMaker
|
|
2624
2627
|
AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
2625
2628
|
AutoMLChannel.struct_class = Types::AutoMLChannel
|
2626
2629
|
|
2630
|
+
AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
|
2631
|
+
AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
|
2632
|
+
|
2627
2633
|
AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
|
2628
2634
|
AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
|
2629
2635
|
AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -2827,6 +2833,7 @@ module Aws::SageMaker
|
|
2827
2833
|
CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
|
2828
2834
|
CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
|
2829
2835
|
CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
|
2836
|
+
CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
|
2830
2837
|
CanvasAppSettings.struct_class = Types::CanvasAppSettings
|
2831
2838
|
|
2832
2839
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -3221,6 +3228,7 @@ module Aws::SageMaker
|
|
3221
3228
|
CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
3222
3229
|
CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
3223
3230
|
CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
3231
|
+
CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
3224
3232
|
CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
|
3225
3233
|
|
3226
3234
|
CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -4426,6 +4434,7 @@ module Aws::SageMaker
|
|
4426
4434
|
DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
4427
4435
|
DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
4428
4436
|
DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
4437
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
4429
4438
|
DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
|
4430
4439
|
|
4431
4440
|
DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
|
@@ -5651,6 +5660,13 @@ module Aws::SageMaker
|
|
5651
5660
|
|
5652
5661
|
Edges.member = Shapes::ShapeRef.new(shape: Edge)
|
5653
5662
|
|
5663
|
+
EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
|
5664
|
+
EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
|
5665
|
+
|
5666
|
+
EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
|
5667
|
+
EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
5668
|
+
EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
|
5669
|
+
|
5654
5670
|
EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
|
5655
5671
|
EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
|
5656
5672
|
EmrSettings.struct_class = Types::EmrSettings
|
@@ -8677,7 +8693,7 @@ module Aws::SageMaker
|
|
8677
8693
|
ProcessingS3Input.struct_class = Types::ProcessingS3Input
|
8678
8694
|
|
8679
8695
|
ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
8680
|
-
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath,
|
8696
|
+
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
|
8681
8697
|
ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
|
8682
8698
|
ProcessingS3Output.struct_class = Types::ProcessingS3Output
|
8683
8699
|
|
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
|
|
2082
2082
|
include Aws::Structure
|
2083
2083
|
end
|
2084
2084
|
|
2085
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
2086
|
+
# cannot be used in other contexts at the moment.
|
2087
|
+
#
|
2088
|
+
# </note>
|
2089
|
+
#
|
2090
|
+
# Specifies the compute configuration for an AutoML job V2.
|
2091
|
+
#
|
2092
|
+
# @!attribute [rw] emr_serverless_compute_config
|
2093
|
+
# The configuration for using [ EMR Serverless][1] to run the AutoML
|
2094
|
+
# job V2.
|
2095
|
+
#
|
2096
|
+
# To allow your AutoML job V2 to automatically initiate a remote job
|
2097
|
+
# on EMR Serverless when additional compute resources are needed to
|
2098
|
+
# process large datasets, you need to provide an
|
2099
|
+
# `EmrServerlessComputeConfig` object, which includes an
|
2100
|
+
# `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
|
2101
|
+
# AutoML job V2 input request.
|
2102
|
+
#
|
2103
|
+
# By seamlessly transitioning to EMR Serverless when required, the
|
2104
|
+
# AutoML job can handle datasets that would otherwise exceed the
|
2105
|
+
# initially provisioned resources, without any manual intervention
|
2106
|
+
# from you.
|
2107
|
+
#
|
2108
|
+
# EMR Serverless is available for the tabular and time series problem
|
2109
|
+
# types. We recommend setting up this option for tabular datasets
|
2110
|
+
# larger than 5 GB and time series datasets larger than 30 GB.
|
2111
|
+
#
|
2112
|
+
#
|
2113
|
+
#
|
2114
|
+
# [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
|
2115
|
+
# @return [Types::EmrServerlessComputeConfig]
|
2116
|
+
#
|
2117
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
|
2118
|
+
#
|
2119
|
+
class AutoMLComputeConfig < Struct.new(
|
2120
|
+
:emr_serverless_compute_config)
|
2121
|
+
SENSITIVE = []
|
2122
|
+
include Aws::Structure
|
2123
|
+
end
|
2124
|
+
|
2085
2125
|
# A list of container definitions that describe the different containers
|
2086
2126
|
# that make up an AutoML candidate. For more information, see [
|
2087
2127
|
# ContainerDefinition][1].
|
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
|
|
2520
2560
|
# @return [String]
|
2521
2561
|
#
|
2522
2562
|
# @!attribute [rw] s3_output_path
|
2523
|
-
# The Amazon S3 output path. Must be
|
2563
|
+
# The Amazon S3 output path. Must be 512 characters or less.
|
2524
2564
|
# @return [String]
|
2525
2565
|
#
|
2526
2566
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
|
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
|
|
3331
3371
|
# The generative AI settings for the SageMaker Canvas application.
|
3332
3372
|
# @return [Types::GenerativeAiSettings]
|
3333
3373
|
#
|
3374
|
+
# @!attribute [rw] emr_serverless_settings
|
3375
|
+
# The settings for running Amazon EMR Serverless data processing jobs
|
3376
|
+
# in SageMaker Canvas.
|
3377
|
+
# @return [Types::EmrServerlessSettings]
|
3378
|
+
#
|
3334
3379
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
|
3335
3380
|
#
|
3336
3381
|
class CanvasAppSettings < Struct.new(
|
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
|
|
3340
3385
|
:identity_provider_o_auth_settings,
|
3341
3386
|
:direct_deploy_settings,
|
3342
3387
|
:kendra_settings,
|
3343
|
-
:generative_ai_settings
|
3388
|
+
:generative_ai_settings,
|
3389
|
+
:emr_serverless_settings)
|
3344
3390
|
SENSITIVE = []
|
3345
3391
|
include Aws::Structure
|
3346
3392
|
end
|
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
|
|
5603
5649
|
# </note>
|
5604
5650
|
# @return [Types::AutoMLDataSplitConfig]
|
5605
5651
|
#
|
5652
|
+
# @!attribute [rw] auto_ml_compute_config
|
5653
|
+
# Specifies the compute configuration for the AutoML job V2.
|
5654
|
+
# @return [Types::AutoMLComputeConfig]
|
5655
|
+
#
|
5606
5656
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
5607
5657
|
#
|
5608
5658
|
class CreateAutoMLJobV2Request < Struct.new(
|
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
|
|
5615
5665
|
:security_config,
|
5616
5666
|
:auto_ml_job_objective,
|
5617
5667
|
:model_deploy_config,
|
5618
|
-
:data_split_config
|
5668
|
+
:data_split_config,
|
5669
|
+
:auto_ml_compute_config)
|
5619
5670
|
SENSITIVE = []
|
5620
5671
|
include Aws::Structure
|
5621
5672
|
end
|
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
|
|
12620
12671
|
# VPC settings.
|
12621
12672
|
# @return [Types::AutoMLSecurityConfig]
|
12622
12673
|
#
|
12674
|
+
# @!attribute [rw] auto_ml_compute_config
|
12675
|
+
# The compute configuration used for the AutoML job V2.
|
12676
|
+
# @return [Types::AutoMLComputeConfig]
|
12677
|
+
#
|
12623
12678
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
12624
12679
|
#
|
12625
12680
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
|
|
12644
12699
|
:model_deploy_config,
|
12645
12700
|
:model_deploy_result,
|
12646
12701
|
:data_split_config,
|
12647
|
-
:security_config
|
12702
|
+
:security_config,
|
12703
|
+
:auto_ml_compute_config)
|
12648
12704
|
SENSITIVE = []
|
12649
12705
|
include Aws::Structure
|
12650
12706
|
end
|
@@ -19302,6 +19358,61 @@ module Aws::SageMaker
|
|
19302
19358
|
include Aws::Structure
|
19303
19359
|
end
|
19304
19360
|
|
19361
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
19362
|
+
# cannot be used in other contexts at the moment.
|
19363
|
+
#
|
19364
|
+
# </note>
|
19365
|
+
#
|
19366
|
+
# Specifies the compute configuration for the EMR Serverless job.
|
19367
|
+
#
|
19368
|
+
# @!attribute [rw] execution_role_arn
|
19369
|
+
# The ARN of the IAM role granting the AutoML job V2 the necessary
|
19370
|
+
# permissions access policies to list, connect to, or manage EMR
|
19371
|
+
# Serverless jobs. For detailed information about the required
|
19372
|
+
# permissions of this role, see "How to configure AutoML to initiate
|
19373
|
+
# a remote job on EMR Serverless for large datasets" in [Create a
|
19374
|
+
# regression or classification job for tabular data using the AutoML
|
19375
|
+
# API][1] or [Create an AutoML job for time-series forecasting using
|
19376
|
+
# the API][2].
|
19377
|
+
#
|
19378
|
+
#
|
19379
|
+
#
|
19380
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
|
19381
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
|
19382
|
+
# @return [String]
|
19383
|
+
#
|
19384
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
|
19385
|
+
#
|
19386
|
+
class EmrServerlessComputeConfig < Struct.new(
|
19387
|
+
:execution_role_arn)
|
19388
|
+
SENSITIVE = []
|
19389
|
+
include Aws::Structure
|
19390
|
+
end
|
19391
|
+
|
19392
|
+
# The settings for running Amazon EMR Serverless jobs in SageMaker
|
19393
|
+
# Canvas.
|
19394
|
+
#
|
19395
|
+
# @!attribute [rw] execution_role_arn
|
19396
|
+
# The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
|
19397
|
+
# that is assumed for running Amazon EMR Serverless jobs in SageMaker
|
19398
|
+
# Canvas. This role should have the necessary permissions to read and
|
19399
|
+
# write data attached and a trust relationship with EMR Serverless.
|
19400
|
+
# @return [String]
|
19401
|
+
#
|
19402
|
+
# @!attribute [rw] status
|
19403
|
+
# Describes whether Amazon EMR Serverless job capabilities are enabled
|
19404
|
+
# or disabled in the SageMaker Canvas application.
|
19405
|
+
# @return [String]
|
19406
|
+
#
|
19407
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
|
19408
|
+
#
|
19409
|
+
class EmrServerlessSettings < Struct.new(
|
19410
|
+
:execution_role_arn,
|
19411
|
+
:status)
|
19412
|
+
SENSITIVE = []
|
19413
|
+
include Aws::Structure
|
19414
|
+
end
|
19415
|
+
|
19305
19416
|
# The configuration parameters that specify the IAM roles assumed by the
|
19306
19417
|
# execution role of SageMaker (assumable roles) and the cluster
|
19307
19418
|
# instances or job execution environments (execution roles or runtime
|
@@ -37013,6 +37124,18 @@ module Aws::SageMaker
|
|
37013
37124
|
# environment is compatible with specific software requirements, such
|
37014
37125
|
# as CUDA driver versions, Linux kernel versions, or Amazon Web
|
37015
37126
|
# Services Neuron driver versions.
|
37127
|
+
#
|
37128
|
+
# The AMI version names, and their configurations, are the following:
|
37129
|
+
#
|
37130
|
+
# al2-ami-sagemaker-inference-gpu-2
|
37131
|
+
# : * Accelerator: GPU
|
37132
|
+
#
|
37133
|
+
# * NVIDIA driver version: 535.54.03
|
37134
|
+
#
|
37135
|
+
# * CUDA driver version: 12.2
|
37136
|
+
#
|
37137
|
+
# * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
|
37138
|
+
# ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
|
37016
37139
|
# @return [String]
|
37017
37140
|
#
|
37018
37141
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
data/sig/client.rbs
CHANGED
@@ -678,6 +678,11 @@ module Aws
|
|
678
678
|
},
|
679
679
|
?data_split_config: {
|
680
680
|
validation_fraction: ::Float?
|
681
|
+
},
|
682
|
+
?auto_ml_compute_config: {
|
683
|
+
emr_serverless_compute_config: {
|
684
|
+
execution_role_arn: ::String
|
685
|
+
}?
|
681
686
|
}
|
682
687
|
) -> _CreateAutoMLJobV2ResponseSuccess
|
683
688
|
| (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
|
@@ -1041,6 +1046,10 @@ module Aws
|
|
1041
1046
|
}?,
|
1042
1047
|
generative_ai_settings: {
|
1043
1048
|
amazon_bedrock_role_arn: ::String?
|
1049
|
+
}?,
|
1050
|
+
emr_serverless_settings: {
|
1051
|
+
execution_role_arn: ::String?,
|
1052
|
+
status: ("ENABLED" | "DISABLED")?
|
1044
1053
|
}?
|
1045
1054
|
}?,
|
1046
1055
|
code_editor_app_settings: {
|
@@ -1107,7 +1116,7 @@ module Aws
|
|
1107
1116
|
},
|
1108
1117
|
]?,
|
1109
1118
|
studio_web_portal_settings: {
|
1110
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
1119
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
1111
1120
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
1112
1121
|
}?
|
1113
1122
|
},
|
@@ -3483,7 +3492,7 @@ module Aws
|
|
3483
3492
|
output_name: ::String,
|
3484
3493
|
s3_output: {
|
3485
3494
|
s3_uri: ::String,
|
3486
|
-
local_path: ::String
|
3495
|
+
local_path: ::String?,
|
3487
3496
|
s3_upload_mode: ("Continuous" | "EndOfJob")
|
3488
3497
|
}?,
|
3489
3498
|
feature_store_output: {
|
@@ -4080,6 +4089,10 @@ module Aws
|
|
4080
4089
|
}?,
|
4081
4090
|
generative_ai_settings: {
|
4082
4091
|
amazon_bedrock_role_arn: ::String?
|
4092
|
+
}?,
|
4093
|
+
emr_serverless_settings: {
|
4094
|
+
execution_role_arn: ::String?,
|
4095
|
+
status: ("ENABLED" | "DISABLED")?
|
4083
4096
|
}?
|
4084
4097
|
}?,
|
4085
4098
|
code_editor_app_settings: {
|
@@ -4146,7 +4159,7 @@ module Aws
|
|
4146
4159
|
},
|
4147
4160
|
]?,
|
4148
4161
|
studio_web_portal_settings: {
|
4149
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
4162
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
4150
4163
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
4151
4164
|
}?
|
4152
4165
|
}
|
@@ -4806,6 +4819,7 @@ module Aws
|
|
4806
4819
|
def model_deploy_result: () -> Types::ModelDeployResult
|
4807
4820
|
def data_split_config: () -> Types::AutoMLDataSplitConfig
|
4808
4821
|
def security_config: () -> Types::AutoMLSecurityConfig
|
4822
|
+
def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
|
4809
4823
|
end
|
4810
4824
|
# https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
|
4811
4825
|
def describe_auto_ml_job_v2: (
|
@@ -8182,6 +8196,10 @@ module Aws
|
|
8182
8196
|
}?,
|
8183
8197
|
generative_ai_settings: {
|
8184
8198
|
amazon_bedrock_role_arn: ::String?
|
8199
|
+
}?,
|
8200
|
+
emr_serverless_settings: {
|
8201
|
+
execution_role_arn: ::String?,
|
8202
|
+
status: ("ENABLED" | "DISABLED")?
|
8185
8203
|
}?
|
8186
8204
|
}?,
|
8187
8205
|
code_editor_app_settings: {
|
@@ -8248,7 +8266,7 @@ module Aws
|
|
8248
8266
|
},
|
8249
8267
|
]?,
|
8250
8268
|
studio_web_portal_settings: {
|
8251
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
8269
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
8252
8270
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
8253
8271
|
}?
|
8254
8272
|
},
|
@@ -9257,6 +9275,10 @@ module Aws
|
|
9257
9275
|
}?,
|
9258
9276
|
generative_ai_settings: {
|
9259
9277
|
amazon_bedrock_role_arn: ::String?
|
9278
|
+
}?,
|
9279
|
+
emr_serverless_settings: {
|
9280
|
+
execution_role_arn: ::String?,
|
9281
|
+
status: ("ENABLED" | "DISABLED")?
|
9260
9282
|
}?
|
9261
9283
|
}?,
|
9262
9284
|
code_editor_app_settings: {
|
@@ -9323,7 +9345,7 @@ module Aws
|
|
9323
9345
|
},
|
9324
9346
|
]?,
|
9325
9347
|
studio_web_portal_settings: {
|
9326
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
9348
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
9327
9349
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
9328
9350
|
}?
|
9329
9351
|
}
|
data/sig/types.rbs
CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
|
|
302
302
|
SENSITIVE: []
|
303
303
|
end
|
304
304
|
|
305
|
+
class AutoMLComputeConfig
|
306
|
+
attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
|
307
|
+
SENSITIVE: []
|
308
|
+
end
|
309
|
+
|
305
310
|
class AutoMLContainerDefinition
|
306
311
|
attr_accessor image: ::String
|
307
312
|
attr_accessor model_data_url: ::String
|
@@ -565,6 +570,7 @@ module Aws::SageMaker
|
|
565
570
|
attr_accessor direct_deploy_settings: Types::DirectDeploySettings
|
566
571
|
attr_accessor kendra_settings: Types::KendraSettings
|
567
572
|
attr_accessor generative_ai_settings: Types::GenerativeAiSettings
|
573
|
+
attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
|
568
574
|
SENSITIVE: []
|
569
575
|
end
|
570
576
|
|
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
|
|
1022
1028
|
attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
|
1023
1029
|
attr_accessor model_deploy_config: Types::ModelDeployConfig
|
1024
1030
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
1031
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
1025
1032
|
SENSITIVE: []
|
1026
1033
|
end
|
1027
1034
|
|
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
|
|
2627
2634
|
attr_accessor model_deploy_result: Types::ModelDeployResult
|
2628
2635
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
2629
2636
|
attr_accessor security_config: Types::AutoMLSecurityConfig
|
2637
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
2630
2638
|
SENSITIVE: []
|
2631
2639
|
end
|
2632
2640
|
|
@@ -4119,6 +4127,17 @@ module Aws::SageMaker
|
|
4119
4127
|
SENSITIVE: []
|
4120
4128
|
end
|
4121
4129
|
|
4130
|
+
class EmrServerlessComputeConfig
|
4131
|
+
attr_accessor execution_role_arn: ::String
|
4132
|
+
SENSITIVE: []
|
4133
|
+
end
|
4134
|
+
|
4135
|
+
class EmrServerlessSettings
|
4136
|
+
attr_accessor execution_role_arn: ::String
|
4137
|
+
attr_accessor status: ("ENABLED" | "DISABLED")
|
4138
|
+
SENSITIVE: []
|
4139
|
+
end
|
4140
|
+
|
4122
4141
|
class EmrSettings
|
4123
4142
|
attr_accessor assumable_role_arns: ::Array[::String]
|
4124
4143
|
attr_accessor execution_role_arns: ::Array[::String]
|
@@ -8714,7 +8733,7 @@ module Aws::SageMaker
|
|
8714
8733
|
end
|
8715
8734
|
|
8716
8735
|
class StudioWebPortalSettings
|
8717
|
-
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
|
8736
|
+
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
|
8718
8737
|
attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
|
8719
8738
|
SENSITIVE: []
|
8720
8739
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.256.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-08-
|
11
|
+
date: 2024-08-12 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|