aws-sdk-sagemaker 1.246.0 → 1.247.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: bf861440b8656d113458819c77b3acb877bfdba32b25141cce94a371a4cdc24a
4
- data.tar.gz: 834fdc5354f1dc3ea86908d6539ceb1c063a5001de60f6d10408483a8b1f0db6
3
+ metadata.gz: 2b1f58145580275ce836f162e0de524a21a8048631c4184cf660e54c8743b6b5
4
+ data.tar.gz: 75513c5403e9e0dedd5c639e4b1336ab4c2d6b4861feb729d8adfbbf88194c57
5
5
  SHA512:
6
- metadata.gz: 3415a59aad19abc82407f505281d0558f5cc33437b370e98e6aff65d808ca42f29715ecb26bc35ae72624daf0941b1c8f255b0d06c10b7274e6c9360415c6121
7
- data.tar.gz: a3a7cd25197fa7ff9cf34d2e22dd369ad3b227f943fecd2a522708a6d5674e55a4f70af1b03e82c1c073bdefafc5c830b7ea5ccad97df13513d398e55deda872
6
+ metadata.gz: f0b919ca1ec7bb5a83c29d79ebacfd6cbb83f117299cb46eef0b7f3ae72cba3e3aa146ff86d92ccb0d99df686195f1c803385be58b9fae5e866a6a71e774d6d1
7
+ data.tar.gz: ad12912cc8d245d77f953afb78d702d1a52ff055ef853225500a6594380c6f4e630130ff49806e91b54115ff279917d8001c0dbd594077ffd946aa919769639a
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.247.0 (2024-06-18)
5
+ ------------------
6
+
7
+ * Feature - Launched a new feature in SageMaker to provide managed MLflow Tracking Servers for customers to track ML experiments. This release also adds a new capability of attaching additional storage to SageMaker HyperPod cluster instances.
8
+
4
9
  1.246.0 (2024-06-07)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.246.0
1
+ 1.247.0
@@ -1814,6 +1814,13 @@ module Aws::SageMaker
1814
1814
  # },
1815
1815
  # execution_role: "RoleArn", # required
1816
1816
  # threads_per_core: 1,
1817
+ # instance_storage_configs: [
1818
+ # {
1819
+ # ebs_volume_config: {
1820
+ # volume_size_in_gb: 1, # required
1821
+ # },
1822
+ # },
1823
+ # ],
1817
1824
  # },
1818
1825
  # ],
1819
1826
  # vpc_config: {
@@ -5401,6 +5408,103 @@ module Aws::SageMaker
5401
5408
  req.send_request(options)
5402
5409
  end
5403
5410
 
5411
+ # Creates an MLflow Tracking Server using a general purpose Amazon S3
5412
+ # bucket as the artifact store. For more information, see [Create an
5413
+ # MLflow Tracking Server][1].
5414
+ #
5415
+ #
5416
+ #
5417
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server.html
5418
+ #
5419
+ # @option params [required, String] :tracking_server_name
5420
+ # A unique string identifying the tracking server name. This string is
5421
+ # part of the tracking server ARN.
5422
+ #
5423
+ # @option params [required, String] :artifact_store_uri
5424
+ # The S3 URI for a general purpose bucket to use as the MLflow Tracking
5425
+ # Server artifact store.
5426
+ #
5427
+ # @option params [String] :tracking_server_size
5428
+ # The size of the tracking server you want to create. You can choose
5429
+ # between `"Small"`, `"Medium"`, and `"Large"`. The default MLflow
5430
+ # Tracking Server configuration size is `"Small"`. You can choose a size
5431
+ # depending on the projected use of the tracking server such as the
5432
+ # volume of data logged, number of users, and frequency of use.
5433
+ #
5434
+ # We recommend using a small tracking server for teams of up to 25
5435
+ # users, a medium tracking server for teams of up to 50 users, and a
5436
+ # large tracking server for teams of up to 100 users.
5437
+ #
5438
+ # @option params [String] :mlflow_version
5439
+ # The version of MLflow that the tracking server uses. To see which
5440
+ # MLflow versions are available to use, see [How it works][1].
5441
+ #
5442
+ #
5443
+ #
5444
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works
5445
+ #
5446
+ # @option params [required, String] :role_arn
5447
+ # The Amazon Resource Name (ARN) for an IAM role in your account that
5448
+ # the MLflow Tracking Server uses to access the artifact store in Amazon
5449
+ # S3. The role should have `AmazonS3FullAccess` permissions. For more
5450
+ # information on IAM permissions for tracking server creation, see [Set
5451
+ # up IAM permissions for MLflow][1].
5452
+ #
5453
+ #
5454
+ #
5455
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html
5456
+ #
5457
+ # @option params [Boolean] :automatic_model_registration
5458
+ # Whether to enable or disable automatic registration of new MLflow
5459
+ # models to the SageMaker Model Registry. To enable automatic model
5460
+ # registration, set this value to `True`. To disable automatic model
5461
+ # registration, set this value to `False`. If not specified,
5462
+ # `AutomaticModelRegistration` defaults to `False`.
5463
+ #
5464
+ # @option params [String] :weekly_maintenance_window_start
5465
+ # The day and time of the week in Coordinated Universal Time (UTC)
5466
+ # 24-hour standard time that weekly maintenance updates are scheduled.
5467
+ # For example: TUE:03:30.
5468
+ #
5469
+ # @option params [Array<Types::Tag>] :tags
5470
+ # Tags consisting of key-value pairs used to manage metadata for the
5471
+ # tracking server.
5472
+ #
5473
+ # @return [Types::CreateMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5474
+ #
5475
+ # * {Types::CreateMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
5476
+ #
5477
+ # @example Request syntax with placeholder values
5478
+ #
5479
+ # resp = client.create_mlflow_tracking_server({
5480
+ # tracking_server_name: "TrackingServerName", # required
5481
+ # artifact_store_uri: "S3Uri", # required
5482
+ # tracking_server_size: "Small", # accepts Small, Medium, Large
5483
+ # mlflow_version: "MlflowVersion",
5484
+ # role_arn: "RoleArn", # required
5485
+ # automatic_model_registration: false,
5486
+ # weekly_maintenance_window_start: "WeeklyMaintenanceWindowStart",
5487
+ # tags: [
5488
+ # {
5489
+ # key: "TagKey", # required
5490
+ # value: "TagValue", # required
5491
+ # },
5492
+ # ],
5493
+ # })
5494
+ #
5495
+ # @example Response structure
5496
+ #
5497
+ # resp.tracking_server_arn #=> String
5498
+ #
5499
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateMlflowTrackingServer AWS API Documentation
5500
+ #
5501
+ # @overload create_mlflow_tracking_server(params = {})
5502
+ # @param [Hash] params ({})
5503
+ def create_mlflow_tracking_server(params = {}, options = {})
5504
+ req = build_request(:create_mlflow_tracking_server, params)
5505
+ req.send_request(options)
5506
+ end
5507
+
5404
5508
  # Creates a model in SageMaker. In the request, you name the model and
5405
5509
  # describe a primary container. For the primary container, you specify
5406
5510
  # the Docker image that contains inference code, artifacts (from prior
@@ -7330,6 +7434,49 @@ module Aws::SageMaker
7330
7434
  req.send_request(options)
7331
7435
  end
7332
7436
 
7437
+ # Returns a presigned URL that you can use to connect to the MLflow UI
7438
+ # attached to your tracking server. For more information, see [Launch
7439
+ # the MLflow UI using a presigned URL][1].
7440
+ #
7441
+ #
7442
+ #
7443
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-launch-ui.html
7444
+ #
7445
+ # @option params [required, String] :tracking_server_name
7446
+ # The name of the tracking server to connect to your MLflow UI.
7447
+ #
7448
+ # @option params [Integer] :expires_in_seconds
7449
+ # The duration in seconds that your presigned URL is valid. The
7450
+ # presigned URL can be used only once.
7451
+ #
7452
+ # @option params [Integer] :session_expiration_duration_in_seconds
7453
+ # The duration in seconds that your MLflow UI session is valid.
7454
+ #
7455
+ # @return [Types::CreatePresignedMlflowTrackingServerUrlResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7456
+ #
7457
+ # * {Types::CreatePresignedMlflowTrackingServerUrlResponse#authorized_url #authorized_url} => String
7458
+ #
7459
+ # @example Request syntax with placeholder values
7460
+ #
7461
+ # resp = client.create_presigned_mlflow_tracking_server_url({
7462
+ # tracking_server_name: "TrackingServerName", # required
7463
+ # expires_in_seconds: 1,
7464
+ # session_expiration_duration_in_seconds: 1,
7465
+ # })
7466
+ #
7467
+ # @example Response structure
7468
+ #
7469
+ # resp.authorized_url #=> String
7470
+ #
7471
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedMlflowTrackingServerUrl AWS API Documentation
7472
+ #
7473
+ # @overload create_presigned_mlflow_tracking_server_url(params = {})
7474
+ # @param [Hash] params ({})
7475
+ def create_presigned_mlflow_tracking_server_url(params = {}, options = {})
7476
+ req = build_request(:create_presigned_mlflow_tracking_server_url, params)
7477
+ req.send_request(options)
7478
+ end
7479
+
7333
7480
  # Returns a URL that you can use to connect to the Jupyter server from a
7334
7481
  # notebook instance. In the SageMaker console, when you choose `Open`
7335
7482
  # next to a notebook instance, SageMaker opens a new tab showing the
@@ -9032,7 +9179,7 @@ module Aws::SageMaker
9032
9179
  # @option params [Types::SourceIpConfig] :source_ip_config
9033
9180
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
9034
9181
  # of IP addresses for a private workforce. Workers will only be able to
9035
- # login to their worker portal from an IP address within this range. By
9182
+ # log in to their worker portal from an IP address within this range. By
9036
9183
  # default, a workforce isn't restricted to specific IP addresses.
9037
9184
  #
9038
9185
  #
@@ -9070,6 +9217,10 @@ module Aws::SageMaker
9070
9217
  # user_info_endpoint: "OidcEndpoint", # required
9071
9218
  # logout_endpoint: "OidcEndpoint", # required
9072
9219
  # jwks_uri: "OidcEndpoint", # required
9220
+ # scope: "Scope",
9221
+ # authentication_request_extra_params: {
9222
+ # "AuthenticationRequestExtraParamsKey" => "AuthenticationRequestExtraParamsValue",
9223
+ # },
9073
9224
  # },
9074
9225
  # source_ip_config: {
9075
9226
  # cidrs: ["Cidr"], # required
@@ -10032,6 +10183,39 @@ module Aws::SageMaker
10032
10183
  req.send_request(options)
10033
10184
  end
10034
10185
 
10186
+ # Deletes an MLflow Tracking Server. For more information, see [Clean up
10187
+ # MLflow resources][1].
10188
+ #
10189
+ #
10190
+ #
10191
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-cleanup.html.html
10192
+ #
10193
+ # @option params [required, String] :tracking_server_name
10194
+ # The name of the the tracking server to delete.
10195
+ #
10196
+ # @return [Types::DeleteMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10197
+ #
10198
+ # * {Types::DeleteMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
10199
+ #
10200
+ # @example Request syntax with placeholder values
10201
+ #
10202
+ # resp = client.delete_mlflow_tracking_server({
10203
+ # tracking_server_name: "TrackingServerName", # required
10204
+ # })
10205
+ #
10206
+ # @example Response structure
10207
+ #
10208
+ # resp.tracking_server_arn #=> String
10209
+ #
10210
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteMlflowTrackingServer AWS API Documentation
10211
+ #
10212
+ # @overload delete_mlflow_tracking_server(params = {})
10213
+ # @param [Hash] params ({})
10214
+ def delete_mlflow_tracking_server(params = {}, options = {})
10215
+ req = build_request(:delete_mlflow_tracking_server, params)
10216
+ req.send_request(options)
10217
+ end
10218
+
10035
10219
  # Deletes a model. The `DeleteModel` API deletes only the model entry
10036
10220
  # that was created in SageMaker when you called the `CreateModel` API.
10037
10221
  # It does not delete model artifacts, inference code, or the IAM role
@@ -10555,7 +10739,7 @@ module Aws::SageMaker
10555
10739
  # If a private workforce contains one or more work teams, you must use
10556
10740
  # the [DeleteWorkteam][2] operation to delete all work teams before you
10557
10741
  # delete the workforce. If you try to delete a workforce that contains
10558
- # one or more work teams, you will recieve a `ResourceInUse` error.
10742
+ # one or more work teams, you will receive a `ResourceInUse` error.
10559
10743
  #
10560
10744
  #
10561
10745
  #
@@ -11431,6 +11615,8 @@ module Aws::SageMaker
11431
11615
  # resp.instance_groups[0].life_cycle_config.on_create #=> String
11432
11616
  # resp.instance_groups[0].execution_role #=> String
11433
11617
  # resp.instance_groups[0].threads_per_core #=> Integer
11618
+ # resp.instance_groups[0].instance_storage_configs #=> Array
11619
+ # resp.instance_groups[0].instance_storage_configs[0].ebs_volume_config.volume_size_in_gb #=> Integer
11434
11620
  # resp.vpc_config.security_group_ids #=> Array
11435
11621
  # resp.vpc_config.security_group_ids[0] #=> String
11436
11622
  # resp.vpc_config.subnets #=> Array
@@ -11477,6 +11663,8 @@ module Aws::SageMaker
11477
11663
  # resp.node_details.life_cycle_config.source_s3_uri #=> String
11478
11664
  # resp.node_details.life_cycle_config.on_create #=> String
11479
11665
  # resp.node_details.threads_per_core #=> Integer
11666
+ # resp.node_details.instance_storage_configs #=> Array
11667
+ # resp.node_details.instance_storage_configs[0].ebs_volume_config.volume_size_in_gb #=> Integer
11480
11668
  # resp.node_details.private_primary_ip #=> String
11481
11669
  # resp.node_details.private_dns_hostname #=> String
11482
11670
  # resp.node_details.placement.availability_zone #=> String
@@ -13816,6 +14004,72 @@ module Aws::SageMaker
13816
14004
  req.send_request(options)
13817
14005
  end
13818
14006
 
14007
+ # Returns information about an MLflow Tracking Server.
14008
+ #
14009
+ # @option params [required, String] :tracking_server_name
14010
+ # The name of the MLflow Tracking Server to describe.
14011
+ #
14012
+ # @return [Types::DescribeMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
14013
+ #
14014
+ # * {Types::DescribeMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
14015
+ # * {Types::DescribeMlflowTrackingServerResponse#tracking_server_name #tracking_server_name} => String
14016
+ # * {Types::DescribeMlflowTrackingServerResponse#artifact_store_uri #artifact_store_uri} => String
14017
+ # * {Types::DescribeMlflowTrackingServerResponse#tracking_server_size #tracking_server_size} => String
14018
+ # * {Types::DescribeMlflowTrackingServerResponse#mlflow_version #mlflow_version} => String
14019
+ # * {Types::DescribeMlflowTrackingServerResponse#role_arn #role_arn} => String
14020
+ # * {Types::DescribeMlflowTrackingServerResponse#tracking_server_status #tracking_server_status} => String
14021
+ # * {Types::DescribeMlflowTrackingServerResponse#is_active #is_active} => String
14022
+ # * {Types::DescribeMlflowTrackingServerResponse#tracking_server_url #tracking_server_url} => String
14023
+ # * {Types::DescribeMlflowTrackingServerResponse#weekly_maintenance_window_start #weekly_maintenance_window_start} => String
14024
+ # * {Types::DescribeMlflowTrackingServerResponse#automatic_model_registration #automatic_model_registration} => Boolean
14025
+ # * {Types::DescribeMlflowTrackingServerResponse#creation_time #creation_time} => Time
14026
+ # * {Types::DescribeMlflowTrackingServerResponse#created_by #created_by} => Types::UserContext
14027
+ # * {Types::DescribeMlflowTrackingServerResponse#last_modified_time #last_modified_time} => Time
14028
+ # * {Types::DescribeMlflowTrackingServerResponse#last_modified_by #last_modified_by} => Types::UserContext
14029
+ #
14030
+ # @example Request syntax with placeholder values
14031
+ #
14032
+ # resp = client.describe_mlflow_tracking_server({
14033
+ # tracking_server_name: "TrackingServerName", # required
14034
+ # })
14035
+ #
14036
+ # @example Response structure
14037
+ #
14038
+ # resp.tracking_server_arn #=> String
14039
+ # resp.tracking_server_name #=> String
14040
+ # resp.artifact_store_uri #=> String
14041
+ # resp.tracking_server_size #=> String, one of "Small", "Medium", "Large"
14042
+ # resp.mlflow_version #=> String
14043
+ # resp.role_arn #=> String
14044
+ # resp.tracking_server_status #=> String, one of "Creating", "Created", "CreateFailed", "Updating", "Updated", "UpdateFailed", "Deleting", "DeleteFailed", "Stopping", "Stopped", "StopFailed", "Starting", "Started", "StartFailed", "MaintenanceInProgress", "MaintenanceComplete", "MaintenanceFailed"
14045
+ # resp.is_active #=> String, one of "Active", "Inactive"
14046
+ # resp.tracking_server_url #=> String
14047
+ # resp.weekly_maintenance_window_start #=> String
14048
+ # resp.automatic_model_registration #=> Boolean
14049
+ # resp.creation_time #=> Time
14050
+ # resp.created_by.user_profile_arn #=> String
14051
+ # resp.created_by.user_profile_name #=> String
14052
+ # resp.created_by.domain_id #=> String
14053
+ # resp.created_by.iam_identity.arn #=> String
14054
+ # resp.created_by.iam_identity.principal_id #=> String
14055
+ # resp.created_by.iam_identity.source_identity #=> String
14056
+ # resp.last_modified_time #=> Time
14057
+ # resp.last_modified_by.user_profile_arn #=> String
14058
+ # resp.last_modified_by.user_profile_name #=> String
14059
+ # resp.last_modified_by.domain_id #=> String
14060
+ # resp.last_modified_by.iam_identity.arn #=> String
14061
+ # resp.last_modified_by.iam_identity.principal_id #=> String
14062
+ # resp.last_modified_by.iam_identity.source_identity #=> String
14063
+ #
14064
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeMlflowTrackingServer AWS API Documentation
14065
+ #
14066
+ # @overload describe_mlflow_tracking_server(params = {})
14067
+ # @param [Hash] params ({})
14068
+ def describe_mlflow_tracking_server(params = {}, options = {})
14069
+ req = build_request(:describe_mlflow_tracking_server, params)
14070
+ req.send_request(options)
14071
+ end
14072
+
13819
14073
  # Describes a model that you created using the `CreateModel` API.
13820
14074
  #
13821
14075
  # @option params [required, String] :model_name
@@ -15978,6 +16232,9 @@ module Aws::SageMaker
15978
16232
  # resp.workforce.oidc_config.user_info_endpoint #=> String
15979
16233
  # resp.workforce.oidc_config.logout_endpoint #=> String
15980
16234
  # resp.workforce.oidc_config.jwks_uri #=> String
16235
+ # resp.workforce.oidc_config.scope #=> String
16236
+ # resp.workforce.oidc_config.authentication_request_extra_params #=> Hash
16237
+ # resp.workforce.oidc_config.authentication_request_extra_params["AuthenticationRequestExtraParamsKey"] #=> String
15981
16238
  # resp.workforce.create_date #=> Time
15982
16239
  # resp.workforce.workforce_vpc_config.vpc_id #=> String
15983
16240
  # resp.workforce.workforce_vpc_config.security_group_ids #=> Array
@@ -15998,7 +16255,7 @@ module Aws::SageMaker
15998
16255
  end
15999
16256
 
16000
16257
  # Gets information about a specific work team. You can see information
16001
- # such as the create date, the last updated date, membership
16258
+ # such as the creation date, the last updated date, membership
16002
16259
  # information, and the work team's Amazon Resource Name (ARN).
16003
16260
  #
16004
16261
  # @option params [required, String] :workteam_name
@@ -19572,6 +19829,93 @@ module Aws::SageMaker
19572
19829
  req.send_request(options)
19573
19830
  end
19574
19831
 
19832
+ # Lists all MLflow Tracking Servers.
19833
+ #
19834
+ # @option params [Time,DateTime,Date,Integer,String] :created_after
19835
+ # Use the `CreatedAfter` filter to only list tracking servers created
19836
+ # after a specific date and time. Listed tracking servers are shown with
19837
+ # a date and time such as `"2024-03-16T01:46:56+00:00"`. The
19838
+ # `CreatedAfter` parameter takes in a Unix timestamp. To convert a date
19839
+ # and time into a Unix timestamp, see [EpochConverter][1].
19840
+ #
19841
+ #
19842
+ #
19843
+ # [1]: https://www.epochconverter.com/
19844
+ #
19845
+ # @option params [Time,DateTime,Date,Integer,String] :created_before
19846
+ # Use the `CreatedBefore` filter to only list tracking servers created
19847
+ # before a specific date and time. Listed tracking servers are shown
19848
+ # with a date and time such as `"2024-03-16T01:46:56+00:00"`. The
19849
+ # `CreatedBefore` parameter takes in a Unix timestamp. To convert a date
19850
+ # and time into a Unix timestamp, see [EpochConverter][1].
19851
+ #
19852
+ #
19853
+ #
19854
+ # [1]: https://www.epochconverter.com/
19855
+ #
19856
+ # @option params [String] :tracking_server_status
19857
+ # Filter for tracking servers with a specified creation status.
19858
+ #
19859
+ # @option params [String] :mlflow_version
19860
+ # Filter for tracking servers using the specified MLflow version.
19861
+ #
19862
+ # @option params [String] :sort_by
19863
+ # Filter for trackings servers sorting by name, creation time, or
19864
+ # creation status.
19865
+ #
19866
+ # @option params [String] :sort_order
19867
+ # Change the order of the listed tracking servers. By default, tracking
19868
+ # servers are listed in `Descending` order by creation time. To change
19869
+ # the list order, you can specify `SortOrder` to be `Ascending`.
19870
+ #
19871
+ # @option params [String] :next_token
19872
+ # If the previous response was truncated, you will receive this token.
19873
+ # Use it in your next request to receive the next set of results.
19874
+ #
19875
+ # @option params [Integer] :max_results
19876
+ # The maximum number of tracking servers to list.
19877
+ #
19878
+ # @return [Types::ListMlflowTrackingServersResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
19879
+ #
19880
+ # * {Types::ListMlflowTrackingServersResponse#tracking_server_summaries #tracking_server_summaries} => Array&lt;Types::TrackingServerSummary&gt;
19881
+ # * {Types::ListMlflowTrackingServersResponse#next_token #next_token} => String
19882
+ #
19883
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
19884
+ #
19885
+ # @example Request syntax with placeholder values
19886
+ #
19887
+ # resp = client.list_mlflow_tracking_servers({
19888
+ # created_after: Time.now,
19889
+ # created_before: Time.now,
19890
+ # tracking_server_status: "Creating", # accepts Creating, Created, CreateFailed, Updating, Updated, UpdateFailed, Deleting, DeleteFailed, Stopping, Stopped, StopFailed, Starting, Started, StartFailed, MaintenanceInProgress, MaintenanceComplete, MaintenanceFailed
19891
+ # mlflow_version: "MlflowVersion",
19892
+ # sort_by: "Name", # accepts Name, CreationTime, Status
19893
+ # sort_order: "Ascending", # accepts Ascending, Descending
19894
+ # next_token: "NextToken",
19895
+ # max_results: 1,
19896
+ # })
19897
+ #
19898
+ # @example Response structure
19899
+ #
19900
+ # resp.tracking_server_summaries #=> Array
19901
+ # resp.tracking_server_summaries[0].tracking_server_arn #=> String
19902
+ # resp.tracking_server_summaries[0].tracking_server_name #=> String
19903
+ # resp.tracking_server_summaries[0].creation_time #=> Time
19904
+ # resp.tracking_server_summaries[0].last_modified_time #=> Time
19905
+ # resp.tracking_server_summaries[0].tracking_server_status #=> String, one of "Creating", "Created", "CreateFailed", "Updating", "Updated", "UpdateFailed", "Deleting", "DeleteFailed", "Stopping", "Stopped", "StopFailed", "Starting", "Started", "StartFailed", "MaintenanceInProgress", "MaintenanceComplete", "MaintenanceFailed"
19906
+ # resp.tracking_server_summaries[0].is_active #=> String, one of "Active", "Inactive"
19907
+ # resp.tracking_server_summaries[0].mlflow_version #=> String
19908
+ # resp.next_token #=> String
19909
+ #
19910
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListMlflowTrackingServers AWS API Documentation
19911
+ #
19912
+ # @overload list_mlflow_tracking_servers(params = {})
19913
+ # @param [Hash] params ({})
19914
+ def list_mlflow_tracking_servers(params = {}, options = {})
19915
+ req = build_request(:list_mlflow_tracking_servers, params)
19916
+ req.send_request(options)
19917
+ end
19918
+
19575
19919
  # Lists model bias jobs definitions that satisfy various filters.
19576
19920
  #
19577
19921
  # @option params [String] :endpoint_name
@@ -20022,6 +20366,13 @@ module Aws::SageMaker
20022
20366
  # @option params [String] :sort_order
20023
20367
  # The sort order for results. The default is `Ascending`.
20024
20368
  #
20369
+ # @option params [String] :cross_account_filter_option
20370
+ # A filter that returns either model groups shared with you or model
20371
+ # groups in your own account. When the value is `CrossAccount`, the
20372
+ # results show the resources made discoverable to you from other
20373
+ # accounts. When the value is `SameAccount` or `null`, the results show
20374
+ # resources from your account. The default is `SameAccount`.
20375
+ #
20025
20376
  # @return [Types::ListModelPackageGroupsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
20026
20377
  #
20027
20378
  # * {Types::ListModelPackageGroupsOutput#model_package_group_summary_list #model_package_group_summary_list} => Array&lt;Types::ModelPackageGroupSummary&gt;
@@ -20039,6 +20390,7 @@ module Aws::SageMaker
20039
20390
  # next_token: "NextToken",
20040
20391
  # sort_by: "Name", # accepts Name, CreationTime
20041
20392
  # sort_order: "Ascending", # accepts Ascending, Descending
20393
+ # cross_account_filter_option: "SameAccount", # accepts SameAccount, CrossAccount
20042
20394
  # })
20043
20395
  #
20044
20396
  # @example Response structure
@@ -22194,6 +22546,9 @@ module Aws::SageMaker
22194
22546
  # resp.workforces[0].oidc_config.user_info_endpoint #=> String
22195
22547
  # resp.workforces[0].oidc_config.logout_endpoint #=> String
22196
22548
  # resp.workforces[0].oidc_config.jwks_uri #=> String
22549
+ # resp.workforces[0].oidc_config.scope #=> String
22550
+ # resp.workforces[0].oidc_config.authentication_request_extra_params #=> Hash
22551
+ # resp.workforces[0].oidc_config.authentication_request_extra_params["AuthenticationRequestExtraParamsKey"] #=> String
22197
22552
  # resp.workforces[0].create_date #=> Time
22198
22553
  # resp.workforces[0].workforce_vpc_config.vpc_id #=> String
22199
22554
  # resp.workforces[0].workforce_vpc_config.security_group_ids #=> Array
@@ -22845,6 +23200,34 @@ module Aws::SageMaker
22845
23200
  req.send_request(options)
22846
23201
  end
22847
23202
 
23203
+ # Programmatically start an MLflow Tracking Server.
23204
+ #
23205
+ # @option params [required, String] :tracking_server_name
23206
+ # The name of the tracking server to start.
23207
+ #
23208
+ # @return [Types::StartMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
23209
+ #
23210
+ # * {Types::StartMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
23211
+ #
23212
+ # @example Request syntax with placeholder values
23213
+ #
23214
+ # resp = client.start_mlflow_tracking_server({
23215
+ # tracking_server_name: "TrackingServerName", # required
23216
+ # })
23217
+ #
23218
+ # @example Response structure
23219
+ #
23220
+ # resp.tracking_server_arn #=> String
23221
+ #
23222
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StartMlflowTrackingServer AWS API Documentation
23223
+ #
23224
+ # @overload start_mlflow_tracking_server(params = {})
23225
+ # @param [Hash] params ({})
23226
+ def start_mlflow_tracking_server(params = {}, options = {})
23227
+ req = build_request(:start_mlflow_tracking_server, params)
23228
+ req.send_request(options)
23229
+ end
23230
+
22848
23231
  # Starts a previously stopped monitoring schedule.
22849
23232
  #
22850
23233
  # <note markdown="1"> By default, when you successfully create a new schedule, the status of
@@ -23219,6 +23602,34 @@ module Aws::SageMaker
23219
23602
  req.send_request(options)
23220
23603
  end
23221
23604
 
23605
+ # Programmatically stop an MLflow Tracking Server.
23606
+ #
23607
+ # @option params [required, String] :tracking_server_name
23608
+ # The name of the tracking server to stop.
23609
+ #
23610
+ # @return [Types::StopMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
23611
+ #
23612
+ # * {Types::StopMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
23613
+ #
23614
+ # @example Request syntax with placeholder values
23615
+ #
23616
+ # resp = client.stop_mlflow_tracking_server({
23617
+ # tracking_server_name: "TrackingServerName", # required
23618
+ # })
23619
+ #
23620
+ # @example Response structure
23621
+ #
23622
+ # resp.tracking_server_arn #=> String
23623
+ #
23624
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopMlflowTrackingServer AWS API Documentation
23625
+ #
23626
+ # @overload stop_mlflow_tracking_server(params = {})
23627
+ # @param [Hash] params ({})
23628
+ def stop_mlflow_tracking_server(params = {}, options = {})
23629
+ req = build_request(:stop_mlflow_tracking_server, params)
23630
+ req.send_request(options)
23631
+ end
23632
+
23222
23633
  # Stops a previously started monitoring schedule.
23223
23634
  #
23224
23635
  # @option params [required, String] :monitoring_schedule_name
@@ -23608,6 +24019,13 @@ module Aws::SageMaker
23608
24019
  # },
23609
24020
  # execution_role: "RoleArn", # required
23610
24021
  # threads_per_core: 1,
24022
+ # instance_storage_configs: [
24023
+ # {
24024
+ # ebs_volume_config: {
24025
+ # volume_size_in_gb: 1, # required
24026
+ # },
24027
+ # },
24028
+ # ],
23611
24029
  # },
23612
24030
  # ],
23613
24031
  # })
@@ -24887,6 +25305,57 @@ module Aws::SageMaker
24887
25305
  req.send_request(options)
24888
25306
  end
24889
25307
 
25308
+ # Updates properties of an existing MLflow Tracking Server.
25309
+ #
25310
+ # @option params [required, String] :tracking_server_name
25311
+ # The name of the MLflow Tracking Server to update.
25312
+ #
25313
+ # @option params [String] :artifact_store_uri
25314
+ # The new S3 URI for the general purpose bucket to use as the artifact
25315
+ # store for the MLflow Tracking Server.
25316
+ #
25317
+ # @option params [String] :tracking_server_size
25318
+ # The new size for the MLflow Tracking Server.
25319
+ #
25320
+ # @option params [Boolean] :automatic_model_registration
25321
+ # Whether to enable or disable automatic registration of new MLflow
25322
+ # models to the SageMaker Model Registry. To enable automatic model
25323
+ # registration, set this value to `True`. To disable automatic model
25324
+ # registration, set this value to `False`. If not specified,
25325
+ # `AutomaticModelRegistration` defaults to `False`
25326
+ #
25327
+ # @option params [String] :weekly_maintenance_window_start
25328
+ # The new weekly maintenance window start day and time to update. The
25329
+ # maintenance window day and time should be in Coordinated Universal
25330
+ # Time (UTC) 24-hour standard time. For example: TUE:03:30.
25331
+ #
25332
+ # @return [Types::UpdateMlflowTrackingServerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
25333
+ #
25334
+ # * {Types::UpdateMlflowTrackingServerResponse#tracking_server_arn #tracking_server_arn} => String
25335
+ #
25336
+ # @example Request syntax with placeholder values
25337
+ #
25338
+ # resp = client.update_mlflow_tracking_server({
25339
+ # tracking_server_name: "TrackingServerName", # required
25340
+ # artifact_store_uri: "S3Uri",
25341
+ # tracking_server_size: "Small", # accepts Small, Medium, Large
25342
+ # automatic_model_registration: false,
25343
+ # weekly_maintenance_window_start: "WeeklyMaintenanceWindowStart",
25344
+ # })
25345
+ #
25346
+ # @example Response structure
25347
+ #
25348
+ # resp.tracking_server_arn #=> String
25349
+ #
25350
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateMlflowTrackingServer AWS API Documentation
25351
+ #
25352
+ # @overload update_mlflow_tracking_server(params = {})
25353
+ # @param [Hash] params ({})
25354
+ def update_mlflow_tracking_server(params = {}, options = {})
25355
+ req = build_request(:update_mlflow_tracking_server, params)
25356
+ req.send_request(options)
25357
+ end
25358
+
24890
25359
  # Update an Amazon SageMaker Model Card.
24891
25360
  #
24892
25361
  # You cannot update both model card content and model card status in a
@@ -26280,6 +26749,10 @@ module Aws::SageMaker
26280
26749
  # user_info_endpoint: "OidcEndpoint", # required
26281
26750
  # logout_endpoint: "OidcEndpoint", # required
26282
26751
  # jwks_uri: "OidcEndpoint", # required
26752
+ # scope: "Scope",
26753
+ # authentication_request_extra_params: {
26754
+ # "AuthenticationRequestExtraParamsKey" => "AuthenticationRequestExtraParamsValue",
26755
+ # },
26283
26756
  # },
26284
26757
  # workforce_vpc_config: {
26285
26758
  # vpc_id: "WorkforceVpcId",
@@ -26305,6 +26778,9 @@ module Aws::SageMaker
26305
26778
  # resp.workforce.oidc_config.user_info_endpoint #=> String
26306
26779
  # resp.workforce.oidc_config.logout_endpoint #=> String
26307
26780
  # resp.workforce.oidc_config.jwks_uri #=> String
26781
+ # resp.workforce.oidc_config.scope #=> String
26782
+ # resp.workforce.oidc_config.authentication_request_extra_params #=> Hash
26783
+ # resp.workforce.oidc_config.authentication_request_extra_params["AuthenticationRequestExtraParamsKey"] #=> String
26308
26784
  # resp.workforce.create_date #=> Time
26309
26785
  # resp.workforce.workforce_vpc_config.vpc_id #=> String
26310
26786
  # resp.workforce.workforce_vpc_config.security_group_ids #=> Array
@@ -26451,7 +26927,7 @@ module Aws::SageMaker
26451
26927
  params: params,
26452
26928
  config: config)
26453
26929
  context[:gem_name] = 'aws-sdk-sagemaker'
26454
- context[:gem_version] = '1.246.0'
26930
+ context[:gem_version] = '1.247.0'
26455
26931
  Seahorse::Client::Request.new(handlers, context)
26456
26932
  end
26457
26933