aws-sdk-sagemaker 1.216.0 → 1.217.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +39 -13
- data/lib/aws-sdk-sagemaker/client_api.rb +14 -0
- data/lib/aws-sdk-sagemaker/endpoint_provider.rb +3 -3
- data/lib/aws-sdk-sagemaker/types.rb +186 -35
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 44e7e1f63bcf45a9e3c3c59aa6cc3ff1c72d5dcd343e8fd05a63fe85a95375e6
|
4
|
+
data.tar.gz: 5b10df777ead8d3feb98e0b95951a94ca581285b2d9cdddbbd70248f863b6990
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9393949f989c2a943f2c9a616655e3cc40cc36e6c7568cb5cd513378887862dde9f253cddecd89ec670527fac0953a8e0da6a527eca42f4300e43a292a948286
|
7
|
+
data.tar.gz: f40cd05d91ebe24815c853ed1043b09f4274a08ed4c23980cea7cd53b35f703af2531b660ac78e5b9d10c2a76143b95f20759516d024df7cda3214d9c0ea2643
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.217.0
|
@@ -1221,8 +1221,8 @@ module Aws::SageMaker
|
|
1221
1221
|
#
|
1222
1222
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1223
1223
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1224
|
-
# time-series forecasting,
|
1225
|
-
#
|
1224
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1225
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1226
1226
|
#
|
1227
1227
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1228
1228
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1401,8 +1401,8 @@ module Aws::SageMaker
|
|
1401
1401
|
#
|
1402
1402
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1403
1403
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1404
|
-
# time-series forecasting,
|
1405
|
-
#
|
1404
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1405
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1406
1406
|
#
|
1407
1407
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1408
1408
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1444,6 +1444,8 @@ module Aws::SageMaker
|
|
1444
1444
|
#
|
1445
1445
|
# * For time-series forecasting: `S3Prefix`.
|
1446
1446
|
#
|
1447
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
1448
|
+
#
|
1447
1449
|
#
|
1448
1450
|
#
|
1449
1451
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -1479,16 +1481,27 @@ module Aws::SageMaker
|
|
1479
1481
|
# type. For the list of default values per problem type, see
|
1480
1482
|
# [AutoMLJobObjective][1].
|
1481
1483
|
#
|
1482
|
-
# <note markdown="1"> For tabular problem types
|
1483
|
-
#
|
1484
|
-
#
|
1485
|
-
#
|
1484
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
1485
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
1486
|
+
# problem in `AutoMLProblemTypeConfig`
|
1487
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
1488
|
+
#
|
1489
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
1490
|
+
# language models in Autopilot does not require setting the
|
1491
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
1492
|
+
# requiring multiple candidates to be trained and evaluated. Instead,
|
1493
|
+
# using your dataset, Autopilot directly fine-tunes your target model
|
1494
|
+
# to enhance a default objective metric, the cross-entropy loss. After
|
1495
|
+
# fine-tuning a language model, you can evaluate the quality of its
|
1496
|
+
# generated text using different metrics. For a list of the available
|
1497
|
+
# metrics, see [Metrics for fine-tuning LLMs in Autopilot][2].
|
1486
1498
|
#
|
1487
1499
|
# </note>
|
1488
1500
|
#
|
1489
1501
|
#
|
1490
1502
|
#
|
1491
1503
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1504
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
1492
1505
|
#
|
1493
1506
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1494
1507
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -1602,6 +1615,14 @@ module Aws::SageMaker
|
|
1602
1615
|
# },
|
1603
1616
|
# ],
|
1604
1617
|
# },
|
1618
|
+
# text_generation_job_config: {
|
1619
|
+
# completion_criteria: {
|
1620
|
+
# max_candidates: 1,
|
1621
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1622
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1623
|
+
# },
|
1624
|
+
# base_model_name: "BaseModelName",
|
1625
|
+
# },
|
1605
1626
|
# },
|
1606
1627
|
# role_arn: "RoleArn", # required
|
1607
1628
|
# tags: [
|
@@ -10314,7 +10335,7 @@ module Aws::SageMaker
|
|
10314
10335
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10315
10336
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10316
10337
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10317
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10338
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10318
10339
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10319
10340
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10320
10341
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10440,6 +10461,10 @@ module Aws::SageMaker
|
|
10440
10461
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10441
10462
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config #=> Array
|
10442
10463
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config[0].country_code #=> String
|
10464
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_candidates #=> Integer
|
10465
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10466
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10467
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.base_model_name #=> String
|
10443
10468
|
# resp.creation_time #=> Time
|
10444
10469
|
# resp.end_time #=> Time
|
10445
10470
|
# resp.last_modified_time #=> Time
|
@@ -10473,7 +10498,7 @@ module Aws::SageMaker
|
|
10473
10498
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10474
10499
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10475
10500
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10476
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10501
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10477
10502
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10478
10503
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10479
10504
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10499,7 +10524,8 @@ module Aws::SageMaker
|
|
10499
10524
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10500
10525
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10501
10526
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10502
|
-
# resp.
|
10527
|
+
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.text_generation_resolved_attributes.base_model_name #=> String
|
10528
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting", "TextGeneration"
|
10503
10529
|
#
|
10504
10530
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10505
10531
|
#
|
@@ -15888,7 +15914,7 @@ module Aws::SageMaker
|
|
15888
15914
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15889
15915
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15890
15916
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15891
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15917
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
15892
15918
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15893
15919
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15894
15920
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -24267,7 +24293,7 @@ module Aws::SageMaker
|
|
24267
24293
|
params: params,
|
24268
24294
|
config: config)
|
24269
24295
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
24270
|
-
context[:gem_version] = '1.
|
24296
|
+
context[:gem_version] = '1.217.0'
|
24271
24297
|
Seahorse::Client::Request.new(handlers, context)
|
24272
24298
|
end
|
24273
24299
|
|
@@ -157,6 +157,7 @@ module Aws::SageMaker
|
|
157
157
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
158
158
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
159
159
|
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
160
|
+
BaseModelName = Shapes::StringShape.new(name: 'BaseModelName')
|
160
161
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
161
162
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
162
163
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -1893,6 +1894,8 @@ module Aws::SageMaker
|
|
1893
1894
|
TenthFractionsOfACent = Shapes::IntegerShape.new(name: 'TenthFractionsOfACent')
|
1894
1895
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1895
1896
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1897
|
+
TextGenerationJobConfig = Shapes::StructureShape.new(name: 'TextGenerationJobConfig')
|
1898
|
+
TextGenerationResolvedAttributes = Shapes::StructureShape.new(name: 'TextGenerationResolvedAttributes')
|
1896
1899
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1897
1900
|
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1898
1901
|
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
@@ -2427,17 +2430,21 @@ module Aws::SageMaker
|
|
2427
2430
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2428
2431
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2429
2432
|
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2433
|
+
AutoMLProblemTypeConfig.add_member(:text_generation_job_config, Shapes::ShapeRef.new(shape: TextGenerationJobConfig, location_name: "TextGenerationJobConfig"))
|
2430
2434
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2431
2435
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2432
2436
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2433
2437
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2434
2438
|
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2439
|
+
AutoMLProblemTypeConfig.add_member_subclass(:text_generation_job_config, Types::AutoMLProblemTypeConfig::TextGenerationJobConfig)
|
2435
2440
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2436
2441
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2437
2442
|
|
2438
2443
|
AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
|
2444
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:text_generation_resolved_attributes, Shapes::ShapeRef.new(shape: TextGenerationResolvedAttributes, location_name: "TextGenerationResolvedAttributes"))
|
2439
2445
|
AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2440
2446
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
|
2447
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:text_generation_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TextGenerationResolvedAttributes)
|
2441
2448
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
|
2442
2449
|
AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
|
2443
2450
|
|
@@ -8529,6 +8536,13 @@ module Aws::SageMaker
|
|
8529
8536
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, required: true, location_name: "TargetLabelColumn"))
|
8530
8537
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8531
8538
|
|
8539
|
+
TextGenerationJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8540
|
+
TextGenerationJobConfig.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8541
|
+
TextGenerationJobConfig.struct_class = Types::TextGenerationJobConfig
|
8542
|
+
|
8543
|
+
TextGenerationResolvedAttributes.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8544
|
+
TextGenerationResolvedAttributes.struct_class = Types::TextGenerationResolvedAttributes
|
8545
|
+
|
8532
8546
|
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8533
8547
|
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8534
8548
|
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
@@ -32,11 +32,11 @@ module Aws::SageMaker
|
|
32
32
|
raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
|
33
33
|
end
|
34
34
|
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
|
35
|
-
if Aws::Endpoints::Matchers.boolean_equals?(
|
36
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
35
|
+
if Aws::Endpoints::Matchers.boolean_equals?(Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"), true)
|
36
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws")
|
37
37
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
38
38
|
end
|
39
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
39
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws-us-gov")
|
40
40
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
41
41
|
end
|
42
42
|
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
@@ -2140,6 +2140,10 @@ module Aws::SageMaker
|
|
2140
2140
|
# * For time-series forecasting: `text/csv;header=present` or
|
2141
2141
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2142
2142
|
# `text/csv;header=present`.
|
2143
|
+
#
|
2144
|
+
# * For text generation (LLMs fine-tuning): `text/csv;header=present`
|
2145
|
+
# or `x-application/vnd.amazon+parquet`. The default value is
|
2146
|
+
# `text/csv;header=present`.
|
2143
2147
|
# @return [String]
|
2144
2148
|
#
|
2145
2149
|
# @!attribute [rw] compression_type
|
@@ -2170,9 +2174,9 @@ module Aws::SageMaker
|
|
2170
2174
|
# @!attribute [rw] max_candidates
|
2171
2175
|
# The maximum number of times a training job is allowed to run.
|
2172
2176
|
#
|
2173
|
-
# For text and image classification,
|
2174
|
-
#
|
2175
|
-
# problem types, the maximum value is 750.
|
2177
|
+
# For text and image classification, time-series forecasting, as well
|
2178
|
+
# as text generation (LLMs fine-tuning) problem types, the supported
|
2179
|
+
# value is 1. For tabular problem types, the maximum value is 750.
|
2176
2180
|
# @return [Integer]
|
2177
2181
|
#
|
2178
2182
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2275,7 +2279,8 @@ module Aws::SageMaker
|
|
2275
2279
|
include Aws::Structure
|
2276
2280
|
end
|
2277
2281
|
|
2278
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2282
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2283
|
+
# AutoML job.
|
2279
2284
|
#
|
2280
2285
|
# @!attribute [rw] metric_name
|
2281
2286
|
# The name of the objective metric used to measure the predictive
|
@@ -2284,28 +2289,70 @@ module Aws::SageMaker
|
|
2284
2289
|
# on the feedback provided by the objective metric when evaluating the
|
2285
2290
|
# model on the validation dataset.
|
2286
2291
|
#
|
2287
|
-
#
|
2288
|
-
#
|
2289
|
-
#
|
2290
|
-
# If you do not specify a metric explicitly, the default behavior is
|
2291
|
-
# to automatically use:
|
2292
|
+
# The list of available metrics supported by Autopilot and the default
|
2293
|
+
# metric applied when you do not specify a metric name explicitly
|
2294
|
+
# depend on the problem type.
|
2292
2295
|
#
|
2293
2296
|
# * For tabular problem types:
|
2294
2297
|
#
|
2295
|
-
# *
|
2298
|
+
# * List of available metrics:
|
2299
|
+
#
|
2300
|
+
# * Regression: `InferenceLatency`, `MAE`, `MSE`, `R2`, `RMSE`
|
2301
|
+
#
|
2302
|
+
# * Binary classification: `Accuracy`, `AUC`, `BalancedAccuracy`,
|
2303
|
+
# `F1`, `InferenceLatency`, `LogLoss`, `Precision`, `Recall`
|
2304
|
+
#
|
2305
|
+
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2306
|
+
# `F1macro`, `InferenceLatency`, `LogLoss`, `PrecisionMacro`,
|
2307
|
+
# `RecallMacro`
|
2308
|
+
#
|
2309
|
+
# For a description of each metric, see [Autopilot metrics for
|
2310
|
+
# classification and regression][1].
|
2311
|
+
#
|
2312
|
+
# * Default objective metrics:
|
2313
|
+
#
|
2314
|
+
# * Regression: `MSE`.
|
2296
2315
|
#
|
2297
|
-
#
|
2316
|
+
# * Binary classification: `F1`.
|
2298
2317
|
#
|
2299
|
-
#
|
2318
|
+
# * Multiclass classification: `Accuracy`.
|
2300
2319
|
#
|
2301
|
-
# * For image or text classification problem types:
|
2320
|
+
# * For image or text classification problem types:
|
2321
|
+
#
|
2322
|
+
# * List of available metrics: `Accuracy`
|
2323
|
+
#
|
2324
|
+
# For a description of each metric, see [Autopilot metrics for
|
2325
|
+
# text and image classification][2].
|
2326
|
+
#
|
2327
|
+
# * Default objective metrics: `Accuracy`
|
2302
2328
|
#
|
2303
2329
|
# * For time-series forecasting problem types:
|
2304
|
-
#
|
2330
|
+
#
|
2331
|
+
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
2332
|
+
# `MAPE`, `WAPE`
|
2333
|
+
#
|
2334
|
+
# For a description of each metric, see [Autopilot metrics for
|
2335
|
+
# time-series forecasting][3].
|
2336
|
+
#
|
2337
|
+
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2338
|
+
#
|
2339
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2340
|
+
# language models in Autopilot does not require setting the
|
2341
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
2342
|
+
# requiring multiple candidates to be trained and evaluated.
|
2343
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
2344
|
+
# target model to enhance a default objective metric, the
|
2345
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
2346
|
+
# evaluate the quality of its generated text using different
|
2347
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
2348
|
+
# fine-tuning LLMs in Autopilot][4].
|
2305
2349
|
#
|
2306
2350
|
#
|
2307
2351
|
#
|
2308
2352
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
2353
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html
|
2354
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html
|
2355
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
2309
2356
|
# @return [String]
|
2310
2357
|
#
|
2311
2358
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -2437,15 +2484,31 @@ module Aws::SageMaker
|
|
2437
2484
|
# @return [Types::TextClassificationJobConfig]
|
2438
2485
|
#
|
2439
2486
|
# @!attribute [rw] tabular_job_config
|
2440
|
-
# Settings used to configure an AutoML job V2 for
|
2487
|
+
# Settings used to configure an AutoML job V2 for the tabular problem
|
2441
2488
|
# type (regression, classification).
|
2442
2489
|
# @return [Types::TabularJobConfig]
|
2443
2490
|
#
|
2444
2491
|
# @!attribute [rw] time_series_forecasting_job_config
|
2445
|
-
# Settings used to configure an AutoML job V2 for
|
2492
|
+
# Settings used to configure an AutoML job V2 for the time-series
|
2446
2493
|
# forecasting problem type.
|
2447
2494
|
# @return [Types::TimeSeriesForecastingJobConfig]
|
2448
2495
|
#
|
2496
|
+
# @!attribute [rw] text_generation_job_config
|
2497
|
+
# Settings used to configure an AutoML job V2 for the text generation
|
2498
|
+
# (LLMs fine-tuning) problem type.
|
2499
|
+
#
|
2500
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
2501
|
+
# currently accessible exclusively in regions supported by Canvas.
|
2502
|
+
# Refer to the documentation of Canvas for the [full list of its
|
2503
|
+
# supported Regions][1].
|
2504
|
+
#
|
2505
|
+
# </note>
|
2506
|
+
#
|
2507
|
+
#
|
2508
|
+
#
|
2509
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
2510
|
+
# @return [Types::TextGenerationJobConfig]
|
2511
|
+
#
|
2449
2512
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2450
2513
|
#
|
2451
2514
|
class AutoMLProblemTypeConfig < Struct.new(
|
@@ -2453,6 +2516,7 @@ module Aws::SageMaker
|
|
2453
2516
|
:text_classification_job_config,
|
2454
2517
|
:tabular_job_config,
|
2455
2518
|
:time_series_forecasting_job_config,
|
2519
|
+
:text_generation_job_config,
|
2456
2520
|
:unknown)
|
2457
2521
|
SENSITIVE = []
|
2458
2522
|
include Aws::Structure
|
@@ -2462,36 +2526,43 @@ module Aws::SageMaker
|
|
2462
2526
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2463
2527
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2464
2528
|
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2529
|
+
class TextGenerationJobConfig < AutoMLProblemTypeConfig; end
|
2465
2530
|
class Unknown < AutoMLProblemTypeConfig; end
|
2466
2531
|
end
|
2467
2532
|
|
2468
|
-
#
|
2469
|
-
# V2.
|
2533
|
+
# Stores resolved attributes specific to the problem type of an AutoML
|
2534
|
+
# job V2.
|
2470
2535
|
#
|
2471
2536
|
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2472
2537
|
#
|
2473
2538
|
# @!attribute [rw] tabular_resolved_attributes
|
2474
|
-
#
|
2539
|
+
# The resolved attributes for the tabular problem type.
|
2475
2540
|
# @return [Types::TabularResolvedAttributes]
|
2476
2541
|
#
|
2542
|
+
# @!attribute [rw] text_generation_resolved_attributes
|
2543
|
+
# The resolved attributes for the text generation problem type.
|
2544
|
+
# @return [Types::TextGenerationResolvedAttributes]
|
2545
|
+
#
|
2477
2546
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2478
2547
|
#
|
2479
2548
|
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2480
2549
|
:tabular_resolved_attributes,
|
2550
|
+
:text_generation_resolved_attributes,
|
2481
2551
|
:unknown)
|
2482
2552
|
SENSITIVE = []
|
2483
2553
|
include Aws::Structure
|
2484
2554
|
include Aws::Structure::Union
|
2485
2555
|
|
2486
2556
|
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2557
|
+
class TextGenerationResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2487
2558
|
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2488
2559
|
end
|
2489
2560
|
|
2490
2561
|
# The resolved attributes used to configure an AutoML job V2.
|
2491
2562
|
#
|
2492
2563
|
# @!attribute [rw] auto_ml_job_objective
|
2493
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2494
|
-
# job.
|
2564
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2565
|
+
# AutoML job.
|
2495
2566
|
# @return [Types::AutoMLJobObjective]
|
2496
2567
|
#
|
2497
2568
|
# @!attribute [rw] completion_criteria
|
@@ -4842,6 +4913,8 @@ module Aws::SageMaker
|
|
4842
4913
|
#
|
4843
4914
|
# * For time-series forecasting: `S3Prefix`.
|
4844
4915
|
#
|
4916
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
4917
|
+
#
|
4845
4918
|
#
|
4846
4919
|
#
|
4847
4920
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -4883,16 +4956,28 @@ module Aws::SageMaker
|
|
4883
4956
|
# problem type. For the list of default values per problem type, see
|
4884
4957
|
# [AutoMLJobObjective][1].
|
4885
4958
|
#
|
4886
|
-
# <note markdown="1"> For tabular problem types
|
4887
|
-
#
|
4888
|
-
#
|
4889
|
-
#
|
4959
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
4960
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4961
|
+
# problem in `AutoMLProblemTypeConfig`
|
4962
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
4963
|
+
#
|
4964
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
4965
|
+
# language models in Autopilot does not require setting the
|
4966
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
4967
|
+
# requiring multiple candidates to be trained and evaluated.
|
4968
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
4969
|
+
# target model to enhance a default objective metric, the
|
4970
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
4971
|
+
# evaluate the quality of its generated text using different
|
4972
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
4973
|
+
# fine-tuning LLMs in Autopilot][2].
|
4890
4974
|
#
|
4891
4975
|
# </note>
|
4892
4976
|
#
|
4893
4977
|
#
|
4894
4978
|
#
|
4895
4979
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4980
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
4896
4981
|
# @return [Types::AutoMLJobObjective]
|
4897
4982
|
#
|
4898
4983
|
# @!attribute [rw] model_deploy_config
|
@@ -20226,7 +20311,13 @@ module Aws::SageMaker
|
|
20226
20311
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20227
20312
|
# training jobs it launches, and returns the training job that results
|
20228
20313
|
# in either the highest or lowest value for this metric, depending on
|
20229
|
-
# the value you specify for the `Type` parameter.
|
20314
|
+
# the value you specify for the `Type` parameter. If you want to
|
20315
|
+
# define a custom objective metric, see [Define metrics and
|
20316
|
+
# environment variables][1].
|
20317
|
+
#
|
20318
|
+
#
|
20319
|
+
#
|
20320
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20230
20321
|
# @return [Types::HyperParameterTuningJobObjective]
|
20231
20322
|
#
|
20232
20323
|
# @!attribute [rw] hyper_parameter_ranges
|
@@ -20695,7 +20786,13 @@ module Aws::SageMaker
|
|
20695
20786
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20696
20787
|
# training jobs it launches, and returns the training job that results
|
20697
20788
|
# in either the highest or lowest value for this metric, depending on
|
20698
|
-
# the value you specify for the `Type` parameter.
|
20789
|
+
# the value you specify for the `Type` parameter. If you want to define
|
20790
|
+
# a custom objective metric, see [Define metrics and environment
|
20791
|
+
# variables][1].
|
20792
|
+
#
|
20793
|
+
#
|
20794
|
+
#
|
20795
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20699
20796
|
#
|
20700
20797
|
# @!attribute [rw] type
|
20701
20798
|
# Whether to minimize or maximize the objective metric.
|
@@ -21311,8 +21408,8 @@ module Aws::SageMaker
|
|
21311
21408
|
include Aws::Structure
|
21312
21409
|
end
|
21313
21410
|
|
21314
|
-
#
|
21315
|
-
# problem
|
21411
|
+
# The collection of settings used by an AutoML job V2 for the image
|
21412
|
+
# classification problem type.
|
21316
21413
|
#
|
21317
21414
|
# @!attribute [rw] completion_criteria
|
21318
21415
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -35238,8 +35335,8 @@ module Aws::SageMaker
|
|
35238
35335
|
# The resolved attributes.
|
35239
35336
|
#
|
35240
35337
|
# @!attribute [rw] auto_ml_job_objective
|
35241
|
-
# Specifies a metric to minimize or maximize as the objective of
|
35242
|
-
# job.
|
35338
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
35339
|
+
# AutoML job.
|
35243
35340
|
# @return [Types::AutoMLJobObjective]
|
35244
35341
|
#
|
35245
35342
|
# @!attribute [rw] problem_type
|
@@ -37479,7 +37576,7 @@ module Aws::SageMaker
|
|
37479
37576
|
include Aws::Structure
|
37480
37577
|
end
|
37481
37578
|
|
37482
|
-
# The collection of settings used by an AutoML job V2 for the
|
37579
|
+
# The collection of settings used by an AutoML job V2 for the tabular
|
37483
37580
|
# problem type.
|
37484
37581
|
#
|
37485
37582
|
# @!attribute [rw] candidate_generation_config
|
@@ -37620,7 +37717,7 @@ module Aws::SageMaker
|
|
37620
37717
|
include Aws::Structure
|
37621
37718
|
end
|
37622
37719
|
|
37623
|
-
# The resolved attributes specific to the
|
37720
|
+
# The resolved attributes specific to the tabular problem type.
|
37624
37721
|
#
|
37625
37722
|
# @!attribute [rw] problem_type
|
37626
37723
|
# The type of supervised learning problem available for the model
|
@@ -37794,8 +37891,8 @@ module Aws::SageMaker
|
|
37794
37891
|
include Aws::Structure
|
37795
37892
|
end
|
37796
37893
|
|
37797
|
-
#
|
37798
|
-
# problem
|
37894
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37895
|
+
# classification problem type.
|
37799
37896
|
#
|
37800
37897
|
# @!attribute [rw] completion_criteria
|
37801
37898
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -37822,6 +37919,60 @@ module Aws::SageMaker
|
|
37822
37919
|
include Aws::Structure
|
37823
37920
|
end
|
37824
37921
|
|
37922
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37923
|
+
# generation problem type.
|
37924
|
+
#
|
37925
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
37926
|
+
# currently accessible exclusively in regions supported by Canvas. Refer
|
37927
|
+
# to the documentation of Canvas for the [full list of its supported
|
37928
|
+
# Regions][1].
|
37929
|
+
#
|
37930
|
+
# </note>
|
37931
|
+
#
|
37932
|
+
#
|
37933
|
+
#
|
37934
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
37935
|
+
#
|
37936
|
+
# @!attribute [rw] completion_criteria
|
37937
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37938
|
+
# allowed to generate.
|
37939
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37940
|
+
#
|
37941
|
+
# @!attribute [rw] base_model_name
|
37942
|
+
# The name of the base model to fine-tune. Autopilot supports
|
37943
|
+
# fine-tuning a variety of large language models. For information on
|
37944
|
+
# the list of supported models, see [Text generation models supporting
|
37945
|
+
# fine-tuning in Autopilot][1]. If no `BaseModelName` is provided, the
|
37946
|
+
# default model used is Falcon-7B-Instruct.
|
37947
|
+
#
|
37948
|
+
#
|
37949
|
+
#
|
37950
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms
|
37951
|
+
# @return [String]
|
37952
|
+
#
|
37953
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationJobConfig AWS API Documentation
|
37954
|
+
#
|
37955
|
+
class TextGenerationJobConfig < Struct.new(
|
37956
|
+
:completion_criteria,
|
37957
|
+
:base_model_name)
|
37958
|
+
SENSITIVE = []
|
37959
|
+
include Aws::Structure
|
37960
|
+
end
|
37961
|
+
|
37962
|
+
# The resolved attributes specific to the text generation problem type.
|
37963
|
+
#
|
37964
|
+
# @!attribute [rw] base_model_name
|
37965
|
+
# The name of the base model to fine-tune.
|
37966
|
+
# @return [String]
|
37967
|
+
#
|
37968
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationResolvedAttributes AWS API Documentation
|
37969
|
+
#
|
37970
|
+
class TextGenerationResolvedAttributes < Struct.new(
|
37971
|
+
:base_model_name)
|
37972
|
+
SENSITIVE = []
|
37973
|
+
include Aws::Structure
|
37974
|
+
end
|
37975
|
+
|
37825
37976
|
# The collection of components that defines the time-series.
|
37826
37977
|
#
|
37827
37978
|
# @!attribute [rw] target_attribute_name
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.217.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-10-
|
11
|
+
date: 2023-10-26 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|