aws-sdk-sagemaker 1.216.0 → 1.217.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: ca75f03989ceecfdd619b9896e6af3dbb0554dd81ea98c3f0f6fac9be41493e2
4
- data.tar.gz: 8c9201413b4e893def08f750d9b561ac560fd77186c1a851fbb54e221c367886
3
+ metadata.gz: 44e7e1f63bcf45a9e3c3c59aa6cc3ff1c72d5dcd343e8fd05a63fe85a95375e6
4
+ data.tar.gz: 5b10df777ead8d3feb98e0b95951a94ca581285b2d9cdddbbd70248f863b6990
5
5
  SHA512:
6
- metadata.gz: ad24efe1b58d1d0a14a2c7d2e4511b0556674c998b105b84e5e786e81a4666110f9e9d21da5c48c6832c811345f51c10c0416a415aebffa90bfcff2313052d14
7
- data.tar.gz: 2a6978535604755b73ab331ac9ee44bde9f9e8bb28d26da37e4faaf457a6e7fd3261d886f96d9738848cda3af540c062e553ddd6ebf898acbd7fe9f462a0c0f8
6
+ metadata.gz: 9393949f989c2a943f2c9a616655e3cc40cc36e6c7568cb5cd513378887862dde9f253cddecd89ec670527fac0953a8e0da6a527eca42f4300e43a292a948286
7
+ data.tar.gz: f40cd05d91ebe24815c853ed1043b09f4274a08ed4c23980cea7cd53b35f703af2531b660ac78e5b9d10c2a76143b95f20759516d024df7cda3214d9c0ea2643
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.217.0 (2023-10-26)
5
+ ------------------
6
+
7
+ * Feature - Amazon Sagemaker Autopilot now supports Text Generation jobs.
8
+
4
9
  1.216.0 (2023-10-12)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.216.0
1
+ 1.217.0
@@ -1221,8 +1221,8 @@ module Aws::SageMaker
1221
1221
  #
1222
1222
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1223
1223
  # those of its previous version `CreateAutoMLJob`, as well as
1224
- # time-series forecasting, and non-tabular problem types such as image
1225
- # or text classification.
1224
+ # time-series forecasting, non-tabular problem types such as image or
1225
+ # text classification, and text generation (LLMs fine-tuning).
1226
1226
  #
1227
1227
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1228
1228
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
@@ -1401,8 +1401,8 @@ module Aws::SageMaker
1401
1401
  #
1402
1402
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1403
1403
  # those of its previous version `CreateAutoMLJob`, as well as
1404
- # time-series forecasting, and non-tabular problem types such as image
1405
- # or text classification.
1404
+ # time-series forecasting, non-tabular problem types such as image or
1405
+ # text classification, and text generation (LLMs fine-tuning).
1406
1406
  #
1407
1407
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1408
1408
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
@@ -1444,6 +1444,8 @@ module Aws::SageMaker
1444
1444
  #
1445
1445
  # * For time-series forecasting: `S3Prefix`.
1446
1446
  #
1447
+ # * For text generation (LLMs fine-tuning): `S3Prefix`.
1448
+ #
1447
1449
  #
1448
1450
  #
1449
1451
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
@@ -1479,16 +1481,27 @@ module Aws::SageMaker
1479
1481
  # type. For the list of default values per problem type, see
1480
1482
  # [AutoMLJobObjective][1].
1481
1483
  #
1482
- # <note markdown="1"> For tabular problem types, you must either provide both the
1483
- # `AutoMLJobObjective` and indicate the type of supervised learning
1484
- # problem in `AutoMLProblemTypeConfig` (`TabularJobConfig.ProblemType`),
1485
- # or none at all.
1484
+ # <note markdown="1"> * For tabular problem types: You must either provide both the
1485
+ # `AutoMLJobObjective` and indicate the type of supervised learning
1486
+ # problem in `AutoMLProblemTypeConfig`
1487
+ # (`TabularJobConfig.ProblemType`), or none at all.
1488
+ #
1489
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
1490
+ # language models in Autopilot does not require setting the
1491
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
1492
+ # requiring multiple candidates to be trained and evaluated. Instead,
1493
+ # using your dataset, Autopilot directly fine-tunes your target model
1494
+ # to enhance a default objective metric, the cross-entropy loss. After
1495
+ # fine-tuning a language model, you can evaluate the quality of its
1496
+ # generated text using different metrics. For a list of the available
1497
+ # metrics, see [Metrics for fine-tuning LLMs in Autopilot][2].
1486
1498
  #
1487
1499
  # </note>
1488
1500
  #
1489
1501
  #
1490
1502
  #
1491
1503
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
1504
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
1492
1505
  #
1493
1506
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1494
1507
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -1602,6 +1615,14 @@ module Aws::SageMaker
1602
1615
  # },
1603
1616
  # ],
1604
1617
  # },
1618
+ # text_generation_job_config: {
1619
+ # completion_criteria: {
1620
+ # max_candidates: 1,
1621
+ # max_runtime_per_training_job_in_seconds: 1,
1622
+ # max_auto_ml_job_runtime_in_seconds: 1,
1623
+ # },
1624
+ # base_model_name: "BaseModelName",
1625
+ # },
1605
1626
  # },
1606
1627
  # role_arn: "RoleArn", # required
1607
1628
  # tags: [
@@ -10314,7 +10335,7 @@ module Aws::SageMaker
10314
10335
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10315
10336
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10316
10337
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10317
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10338
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
10318
10339
  # resp.best_candidate.inference_container_definitions #=> Hash
10319
10340
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10320
10341
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10440,6 +10461,10 @@ module Aws::SageMaker
10440
10461
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10441
10462
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config #=> Array
10442
10463
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config[0].country_code #=> String
10464
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_candidates #=> Integer
10465
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10466
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10467
+ # resp.auto_ml_problem_type_config.text_generation_job_config.base_model_name #=> String
10443
10468
  # resp.creation_time #=> Time
10444
10469
  # resp.end_time #=> Time
10445
10470
  # resp.last_modified_time #=> Time
@@ -10473,7 +10498,7 @@ module Aws::SageMaker
10473
10498
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10474
10499
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10475
10500
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10476
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10501
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
10477
10502
  # resp.best_candidate.inference_container_definitions #=> Hash
10478
10503
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10479
10504
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10499,7 +10524,8 @@ module Aws::SageMaker
10499
10524
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10500
10525
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10501
10526
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10502
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10527
+ # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.text_generation_resolved_attributes.base_model_name #=> String
10528
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting", "TextGeneration"
10503
10529
  #
10504
10530
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10505
10531
  #
@@ -15888,7 +15914,7 @@ module Aws::SageMaker
15888
15914
  # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15889
15915
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15890
15916
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15891
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15917
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
15892
15918
  # resp.candidates[0].inference_container_definitions #=> Hash
15893
15919
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15894
15920
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -24267,7 +24293,7 @@ module Aws::SageMaker
24267
24293
  params: params,
24268
24294
  config: config)
24269
24295
  context[:gem_name] = 'aws-sdk-sagemaker'
24270
- context[:gem_version] = '1.216.0'
24296
+ context[:gem_version] = '1.217.0'
24271
24297
  Seahorse::Client::Request.new(handlers, context)
24272
24298
  end
24273
24299
 
@@ -157,6 +157,7 @@ module Aws::SageMaker
157
157
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
158
158
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
159
159
  BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
160
+ BaseModelName = Shapes::StringShape.new(name: 'BaseModelName')
160
161
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
161
162
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
162
163
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -1893,6 +1894,8 @@ module Aws::SageMaker
1893
1894
  TenthFractionsOfACent = Shapes::IntegerShape.new(name: 'TenthFractionsOfACent')
1894
1895
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1895
1896
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1897
+ TextGenerationJobConfig = Shapes::StructureShape.new(name: 'TextGenerationJobConfig')
1898
+ TextGenerationResolvedAttributes = Shapes::StructureShape.new(name: 'TextGenerationResolvedAttributes')
1896
1899
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1897
1900
  TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1898
1901
  TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
@@ -2427,17 +2430,21 @@ module Aws::SageMaker
2427
2430
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2428
2431
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2429
2432
  AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2433
+ AutoMLProblemTypeConfig.add_member(:text_generation_job_config, Shapes::ShapeRef.new(shape: TextGenerationJobConfig, location_name: "TextGenerationJobConfig"))
2430
2434
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2431
2435
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2432
2436
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2433
2437
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2434
2438
  AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2439
+ AutoMLProblemTypeConfig.add_member_subclass(:text_generation_job_config, Types::AutoMLProblemTypeConfig::TextGenerationJobConfig)
2435
2440
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2436
2441
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2437
2442
 
2438
2443
  AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
2444
+ AutoMLProblemTypeResolvedAttributes.add_member(:text_generation_resolved_attributes, Shapes::ShapeRef.new(shape: TextGenerationResolvedAttributes, location_name: "TextGenerationResolvedAttributes"))
2439
2445
  AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2440
2446
  AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
2447
+ AutoMLProblemTypeResolvedAttributes.add_member_subclass(:text_generation_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TextGenerationResolvedAttributes)
2441
2448
  AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
2442
2449
  AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
2443
2450
 
@@ -8529,6 +8536,13 @@ module Aws::SageMaker
8529
8536
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, required: true, location_name: "TargetLabelColumn"))
8530
8537
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8531
8538
 
8539
+ TextGenerationJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8540
+ TextGenerationJobConfig.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
8541
+ TextGenerationJobConfig.struct_class = Types::TextGenerationJobConfig
8542
+
8543
+ TextGenerationResolvedAttributes.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
8544
+ TextGenerationResolvedAttributes.struct_class = Types::TextGenerationResolvedAttributes
8545
+
8532
8546
  TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8533
8547
  TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8534
8548
  TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
@@ -32,11 +32,11 @@ module Aws::SageMaker
32
32
  raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
33
33
  end
34
34
  if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
35
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
36
- if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
35
+ if Aws::Endpoints::Matchers.boolean_equals?(Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"), true)
36
+ if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws")
37
37
  return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
38
38
  end
39
- if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
39
+ if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws-us-gov")
40
40
  return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
41
41
  end
42
42
  return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
@@ -2140,6 +2140,10 @@ module Aws::SageMaker
2140
2140
  # * For time-series forecasting: `text/csv;header=present` or
2141
2141
  # `x-application/vnd.amazon+parquet`. The default value is
2142
2142
  # `text/csv;header=present`.
2143
+ #
2144
+ # * For text generation (LLMs fine-tuning): `text/csv;header=present`
2145
+ # or `x-application/vnd.amazon+parquet`. The default value is
2146
+ # `text/csv;header=present`.
2143
2147
  # @return [String]
2144
2148
  #
2145
2149
  # @!attribute [rw] compression_type
@@ -2170,9 +2174,9 @@ module Aws::SageMaker
2170
2174
  # @!attribute [rw] max_candidates
2171
2175
  # The maximum number of times a training job is allowed to run.
2172
2176
  #
2173
- # For text and image classification, as well as time-series
2174
- # forecasting problem types, the supported value is 1. For tabular
2175
- # problem types, the maximum value is 750.
2177
+ # For text and image classification, time-series forecasting, as well
2178
+ # as text generation (LLMs fine-tuning) problem types, the supported
2179
+ # value is 1. For tabular problem types, the maximum value is 750.
2176
2180
  # @return [Integer]
2177
2181
  #
2178
2182
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2275,7 +2279,8 @@ module Aws::SageMaker
2275
2279
  include Aws::Structure
2276
2280
  end
2277
2281
 
2278
- # Specifies a metric to minimize or maximize as the objective of a job.
2282
+ # Specifies a metric to minimize or maximize as the objective of an
2283
+ # AutoML job.
2279
2284
  #
2280
2285
  # @!attribute [rw] metric_name
2281
2286
  # The name of the objective metric used to measure the predictive
@@ -2284,28 +2289,70 @@ module Aws::SageMaker
2284
2289
  # on the feedback provided by the objective metric when evaluating the
2285
2290
  # model on the validation dataset.
2286
2291
  #
2287
- # For the list of all available metrics supported by Autopilot, see
2288
- # [Autopilot metrics][1].
2289
- #
2290
- # If you do not specify a metric explicitly, the default behavior is
2291
- # to automatically use:
2292
+ # The list of available metrics supported by Autopilot and the default
2293
+ # metric applied when you do not specify a metric name explicitly
2294
+ # depend on the problem type.
2292
2295
  #
2293
2296
  # * For tabular problem types:
2294
2297
  #
2295
- # * Regression: `MSE`.
2298
+ # * List of available metrics:
2299
+ #
2300
+ # * Regression: `InferenceLatency`, `MAE`, `MSE`, `R2`, `RMSE`
2301
+ #
2302
+ # * Binary classification: `Accuracy`, `AUC`, `BalancedAccuracy`,
2303
+ # `F1`, `InferenceLatency`, `LogLoss`, `Precision`, `Recall`
2304
+ #
2305
+ # * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
2306
+ # `F1macro`, `InferenceLatency`, `LogLoss`, `PrecisionMacro`,
2307
+ # `RecallMacro`
2308
+ #
2309
+ # For a description of each metric, see [Autopilot metrics for
2310
+ # classification and regression][1].
2311
+ #
2312
+ # * Default objective metrics:
2313
+ #
2314
+ # * Regression: `MSE`.
2296
2315
  #
2297
- # * Binary classification: `F1`.
2316
+ # * Binary classification: `F1`.
2298
2317
  #
2299
- # * Multiclass classification: `Accuracy`.
2318
+ # * Multiclass classification: `Accuracy`.
2300
2319
  #
2301
- # * For image or text classification problem types: `Accuracy`
2320
+ # * For image or text classification problem types:
2321
+ #
2322
+ # * List of available metrics: `Accuracy`
2323
+ #
2324
+ # For a description of each metric, see [Autopilot metrics for
2325
+ # text and image classification][2].
2326
+ #
2327
+ # * Default objective metrics: `Accuracy`
2302
2328
  #
2303
2329
  # * For time-series forecasting problem types:
2304
- # `AverageWeightedQuantileLoss`
2330
+ #
2331
+ # * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
2332
+ # `MAPE`, `WAPE`
2333
+ #
2334
+ # For a description of each metric, see [Autopilot metrics for
2335
+ # time-series forecasting][3].
2336
+ #
2337
+ # * Default objective metrics: `AverageWeightedQuantileLoss`
2338
+ #
2339
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
2340
+ # language models in Autopilot does not require setting the
2341
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
2342
+ # requiring multiple candidates to be trained and evaluated.
2343
+ # Instead, using your dataset, Autopilot directly fine-tunes your
2344
+ # target model to enhance a default objective metric, the
2345
+ # cross-entropy loss. After fine-tuning a language model, you can
2346
+ # evaluate the quality of its generated text using different
2347
+ # metrics. For a list of the available metrics, see [Metrics for
2348
+ # fine-tuning LLMs in Autopilot][4].
2305
2349
  #
2306
2350
  #
2307
2351
  #
2308
2352
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
2353
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html
2354
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html
2355
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
2309
2356
  # @return [String]
2310
2357
  #
2311
2358
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2437,15 +2484,31 @@ module Aws::SageMaker
2437
2484
  # @return [Types::TextClassificationJobConfig]
2438
2485
  #
2439
2486
  # @!attribute [rw] tabular_job_config
2440
- # Settings used to configure an AutoML job V2 for a tabular problem
2487
+ # Settings used to configure an AutoML job V2 for the tabular problem
2441
2488
  # type (regression, classification).
2442
2489
  # @return [Types::TabularJobConfig]
2443
2490
  #
2444
2491
  # @!attribute [rw] time_series_forecasting_job_config
2445
- # Settings used to configure an AutoML job V2 for a time-series
2492
+ # Settings used to configure an AutoML job V2 for the time-series
2446
2493
  # forecasting problem type.
2447
2494
  # @return [Types::TimeSeriesForecastingJobConfig]
2448
2495
  #
2496
+ # @!attribute [rw] text_generation_job_config
2497
+ # Settings used to configure an AutoML job V2 for the text generation
2498
+ # (LLMs fine-tuning) problem type.
2499
+ #
2500
+ # <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
2501
+ # currently accessible exclusively in regions supported by Canvas.
2502
+ # Refer to the documentation of Canvas for the [full list of its
2503
+ # supported Regions][1].
2504
+ #
2505
+ # </note>
2506
+ #
2507
+ #
2508
+ #
2509
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
2510
+ # @return [Types::TextGenerationJobConfig]
2511
+ #
2449
2512
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2450
2513
  #
2451
2514
  class AutoMLProblemTypeConfig < Struct.new(
@@ -2453,6 +2516,7 @@ module Aws::SageMaker
2453
2516
  :text_classification_job_config,
2454
2517
  :tabular_job_config,
2455
2518
  :time_series_forecasting_job_config,
2519
+ :text_generation_job_config,
2456
2520
  :unknown)
2457
2521
  SENSITIVE = []
2458
2522
  include Aws::Structure
@@ -2462,36 +2526,43 @@ module Aws::SageMaker
2462
2526
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2463
2527
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2464
2528
  class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2529
+ class TextGenerationJobConfig < AutoMLProblemTypeConfig; end
2465
2530
  class Unknown < AutoMLProblemTypeConfig; end
2466
2531
  end
2467
2532
 
2468
- # The resolved attributes specific to the problem type of an AutoML job
2469
- # V2.
2533
+ # Stores resolved attributes specific to the problem type of an AutoML
2534
+ # job V2.
2470
2535
  #
2471
2536
  # @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
2472
2537
  #
2473
2538
  # @!attribute [rw] tabular_resolved_attributes
2474
- # Defines the resolved attributes for the `TABULAR` problem type.
2539
+ # The resolved attributes for the tabular problem type.
2475
2540
  # @return [Types::TabularResolvedAttributes]
2476
2541
  #
2542
+ # @!attribute [rw] text_generation_resolved_attributes
2543
+ # The resolved attributes for the text generation problem type.
2544
+ # @return [Types::TextGenerationResolvedAttributes]
2545
+ #
2477
2546
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
2478
2547
  #
2479
2548
  class AutoMLProblemTypeResolvedAttributes < Struct.new(
2480
2549
  :tabular_resolved_attributes,
2550
+ :text_generation_resolved_attributes,
2481
2551
  :unknown)
2482
2552
  SENSITIVE = []
2483
2553
  include Aws::Structure
2484
2554
  include Aws::Structure::Union
2485
2555
 
2486
2556
  class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2557
+ class TextGenerationResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2487
2558
  class Unknown < AutoMLProblemTypeResolvedAttributes; end
2488
2559
  end
2489
2560
 
2490
2561
  # The resolved attributes used to configure an AutoML job V2.
2491
2562
  #
2492
2563
  # @!attribute [rw] auto_ml_job_objective
2493
- # Specifies a metric to minimize or maximize as the objective of a
2494
- # job.
2564
+ # Specifies a metric to minimize or maximize as the objective of an
2565
+ # AutoML job.
2495
2566
  # @return [Types::AutoMLJobObjective]
2496
2567
  #
2497
2568
  # @!attribute [rw] completion_criteria
@@ -4842,6 +4913,8 @@ module Aws::SageMaker
4842
4913
  #
4843
4914
  # * For time-series forecasting: `S3Prefix`.
4844
4915
  #
4916
+ # * For text generation (LLMs fine-tuning): `S3Prefix`.
4917
+ #
4845
4918
  #
4846
4919
  #
4847
4920
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
@@ -4883,16 +4956,28 @@ module Aws::SageMaker
4883
4956
  # problem type. For the list of default values per problem type, see
4884
4957
  # [AutoMLJobObjective][1].
4885
4958
  #
4886
- # <note markdown="1"> For tabular problem types, you must either provide both the
4887
- # `AutoMLJobObjective` and indicate the type of supervised learning
4888
- # problem in `AutoMLProblemTypeConfig`
4889
- # (`TabularJobConfig.ProblemType`), or none at all.
4959
+ # <note markdown="1"> * For tabular problem types: You must either provide both the
4960
+ # `AutoMLJobObjective` and indicate the type of supervised learning
4961
+ # problem in `AutoMLProblemTypeConfig`
4962
+ # (`TabularJobConfig.ProblemType`), or none at all.
4963
+ #
4964
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
4965
+ # language models in Autopilot does not require setting the
4966
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
4967
+ # requiring multiple candidates to be trained and evaluated.
4968
+ # Instead, using your dataset, Autopilot directly fine-tunes your
4969
+ # target model to enhance a default objective metric, the
4970
+ # cross-entropy loss. After fine-tuning a language model, you can
4971
+ # evaluate the quality of its generated text using different
4972
+ # metrics. For a list of the available metrics, see [Metrics for
4973
+ # fine-tuning LLMs in Autopilot][2].
4890
4974
  #
4891
4975
  # </note>
4892
4976
  #
4893
4977
  #
4894
4978
  #
4895
4979
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4980
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
4896
4981
  # @return [Types::AutoMLJobObjective]
4897
4982
  #
4898
4983
  # @!attribute [rw] model_deploy_config
@@ -20226,7 +20311,13 @@ module Aws::SageMaker
20226
20311
  # Hyperparameter tuning uses the value of this metric to evaluate the
20227
20312
  # training jobs it launches, and returns the training job that results
20228
20313
  # in either the highest or lowest value for this metric, depending on
20229
- # the value you specify for the `Type` parameter.
20314
+ # the value you specify for the `Type` parameter. If you want to
20315
+ # define a custom objective metric, see [Define metrics and
20316
+ # environment variables][1].
20317
+ #
20318
+ #
20319
+ #
20320
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
20230
20321
  # @return [Types::HyperParameterTuningJobObjective]
20231
20322
  #
20232
20323
  # @!attribute [rw] hyper_parameter_ranges
@@ -20695,7 +20786,13 @@ module Aws::SageMaker
20695
20786
  # Hyperparameter tuning uses the value of this metric to evaluate the
20696
20787
  # training jobs it launches, and returns the training job that results
20697
20788
  # in either the highest or lowest value for this metric, depending on
20698
- # the value you specify for the `Type` parameter.
20789
+ # the value you specify for the `Type` parameter. If you want to define
20790
+ # a custom objective metric, see [Define metrics and environment
20791
+ # variables][1].
20792
+ #
20793
+ #
20794
+ #
20795
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
20699
20796
  #
20700
20797
  # @!attribute [rw] type
20701
20798
  # Whether to minimize or maximize the objective metric.
@@ -21311,8 +21408,8 @@ module Aws::SageMaker
21311
21408
  include Aws::Structure
21312
21409
  end
21313
21410
 
21314
- # Stores the configuration information for the image classification
21315
- # problem of an AutoML job V2.
21411
+ # The collection of settings used by an AutoML job V2 for the image
21412
+ # classification problem type.
21316
21413
  #
21317
21414
  # @!attribute [rw] completion_criteria
21318
21415
  # How long a job is allowed to run, or how many candidates a job is
@@ -35238,8 +35335,8 @@ module Aws::SageMaker
35238
35335
  # The resolved attributes.
35239
35336
  #
35240
35337
  # @!attribute [rw] auto_ml_job_objective
35241
- # Specifies a metric to minimize or maximize as the objective of a
35242
- # job.
35338
+ # Specifies a metric to minimize or maximize as the objective of an
35339
+ # AutoML job.
35243
35340
  # @return [Types::AutoMLJobObjective]
35244
35341
  #
35245
35342
  # @!attribute [rw] problem_type
@@ -37479,7 +37576,7 @@ module Aws::SageMaker
37479
37576
  include Aws::Structure
37480
37577
  end
37481
37578
 
37482
- # The collection of settings used by an AutoML job V2 for the `TABULAR`
37579
+ # The collection of settings used by an AutoML job V2 for the tabular
37483
37580
  # problem type.
37484
37581
  #
37485
37582
  # @!attribute [rw] candidate_generation_config
@@ -37620,7 +37717,7 @@ module Aws::SageMaker
37620
37717
  include Aws::Structure
37621
37718
  end
37622
37719
 
37623
- # The resolved attributes specific to the `TABULAR` problem type.
37720
+ # The resolved attributes specific to the tabular problem type.
37624
37721
  #
37625
37722
  # @!attribute [rw] problem_type
37626
37723
  # The type of supervised learning problem available for the model
@@ -37794,8 +37891,8 @@ module Aws::SageMaker
37794
37891
  include Aws::Structure
37795
37892
  end
37796
37893
 
37797
- # Stores the configuration information for the text classification
37798
- # problem of an AutoML job V2.
37894
+ # The collection of settings used by an AutoML job V2 for the text
37895
+ # classification problem type.
37799
37896
  #
37800
37897
  # @!attribute [rw] completion_criteria
37801
37898
  # How long a job is allowed to run, or how many candidates a job is
@@ -37822,6 +37919,60 @@ module Aws::SageMaker
37822
37919
  include Aws::Structure
37823
37920
  end
37824
37921
 
37922
+ # The collection of settings used by an AutoML job V2 for the text
37923
+ # generation problem type.
37924
+ #
37925
+ # <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
37926
+ # currently accessible exclusively in regions supported by Canvas. Refer
37927
+ # to the documentation of Canvas for the [full list of its supported
37928
+ # Regions][1].
37929
+ #
37930
+ # </note>
37931
+ #
37932
+ #
37933
+ #
37934
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
37935
+ #
37936
+ # @!attribute [rw] completion_criteria
37937
+ # How long a job is allowed to run, or how many candidates a job is
37938
+ # allowed to generate.
37939
+ # @return [Types::AutoMLJobCompletionCriteria]
37940
+ #
37941
+ # @!attribute [rw] base_model_name
37942
+ # The name of the base model to fine-tune. Autopilot supports
37943
+ # fine-tuning a variety of large language models. For information on
37944
+ # the list of supported models, see [Text generation models supporting
37945
+ # fine-tuning in Autopilot][1]. If no `BaseModelName` is provided, the
37946
+ # default model used is Falcon-7B-Instruct.
37947
+ #
37948
+ #
37949
+ #
37950
+ # [1]: https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms
37951
+ # @return [String]
37952
+ #
37953
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationJobConfig AWS API Documentation
37954
+ #
37955
+ class TextGenerationJobConfig < Struct.new(
37956
+ :completion_criteria,
37957
+ :base_model_name)
37958
+ SENSITIVE = []
37959
+ include Aws::Structure
37960
+ end
37961
+
37962
+ # The resolved attributes specific to the text generation problem type.
37963
+ #
37964
+ # @!attribute [rw] base_model_name
37965
+ # The name of the base model to fine-tune.
37966
+ # @return [String]
37967
+ #
37968
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationResolvedAttributes AWS API Documentation
37969
+ #
37970
+ class TextGenerationResolvedAttributes < Struct.new(
37971
+ :base_model_name)
37972
+ SENSITIVE = []
37973
+ include Aws::Structure
37974
+ end
37975
+
37825
37976
  # The collection of components that defines the time-series.
37826
37977
  #
37827
37978
  # @!attribute [rw] target_attribute_name
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.216.0'
56
+ GEM_VERSION = '1.217.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.216.0
4
+ version: 1.217.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-10-12 00:00:00.000000000 Z
11
+ date: 2023-10-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core