aws-sdk-sagemaker 1.216.0 → 1.217.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +39 -13
- data/lib/aws-sdk-sagemaker/client_api.rb +14 -0
- data/lib/aws-sdk-sagemaker/endpoint_provider.rb +3 -3
- data/lib/aws-sdk-sagemaker/types.rb +186 -35
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 44e7e1f63bcf45a9e3c3c59aa6cc3ff1c72d5dcd343e8fd05a63fe85a95375e6
|
4
|
+
data.tar.gz: 5b10df777ead8d3feb98e0b95951a94ca581285b2d9cdddbbd70248f863b6990
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9393949f989c2a943f2c9a616655e3cc40cc36e6c7568cb5cd513378887862dde9f253cddecd89ec670527fac0953a8e0da6a527eca42f4300e43a292a948286
|
7
|
+
data.tar.gz: f40cd05d91ebe24815c853ed1043b09f4274a08ed4c23980cea7cd53b35f703af2531b660ac78e5b9d10c2a76143b95f20759516d024df7cda3214d9c0ea2643
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.217.0
|
@@ -1221,8 +1221,8 @@ module Aws::SageMaker
|
|
1221
1221
|
#
|
1222
1222
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1223
1223
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1224
|
-
# time-series forecasting,
|
1225
|
-
#
|
1224
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1225
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1226
1226
|
#
|
1227
1227
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1228
1228
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1401,8 +1401,8 @@ module Aws::SageMaker
|
|
1401
1401
|
#
|
1402
1402
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1403
1403
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1404
|
-
# time-series forecasting,
|
1405
|
-
#
|
1404
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1405
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1406
1406
|
#
|
1407
1407
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1408
1408
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1444,6 +1444,8 @@ module Aws::SageMaker
|
|
1444
1444
|
#
|
1445
1445
|
# * For time-series forecasting: `S3Prefix`.
|
1446
1446
|
#
|
1447
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
1448
|
+
#
|
1447
1449
|
#
|
1448
1450
|
#
|
1449
1451
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -1479,16 +1481,27 @@ module Aws::SageMaker
|
|
1479
1481
|
# type. For the list of default values per problem type, see
|
1480
1482
|
# [AutoMLJobObjective][1].
|
1481
1483
|
#
|
1482
|
-
# <note markdown="1"> For tabular problem types
|
1483
|
-
#
|
1484
|
-
#
|
1485
|
-
#
|
1484
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
1485
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
1486
|
+
# problem in `AutoMLProblemTypeConfig`
|
1487
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
1488
|
+
#
|
1489
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
1490
|
+
# language models in Autopilot does not require setting the
|
1491
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
1492
|
+
# requiring multiple candidates to be trained and evaluated. Instead,
|
1493
|
+
# using your dataset, Autopilot directly fine-tunes your target model
|
1494
|
+
# to enhance a default objective metric, the cross-entropy loss. After
|
1495
|
+
# fine-tuning a language model, you can evaluate the quality of its
|
1496
|
+
# generated text using different metrics. For a list of the available
|
1497
|
+
# metrics, see [Metrics for fine-tuning LLMs in Autopilot][2].
|
1486
1498
|
#
|
1487
1499
|
# </note>
|
1488
1500
|
#
|
1489
1501
|
#
|
1490
1502
|
#
|
1491
1503
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1504
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
1492
1505
|
#
|
1493
1506
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1494
1507
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -1602,6 +1615,14 @@ module Aws::SageMaker
|
|
1602
1615
|
# },
|
1603
1616
|
# ],
|
1604
1617
|
# },
|
1618
|
+
# text_generation_job_config: {
|
1619
|
+
# completion_criteria: {
|
1620
|
+
# max_candidates: 1,
|
1621
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1622
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1623
|
+
# },
|
1624
|
+
# base_model_name: "BaseModelName",
|
1625
|
+
# },
|
1605
1626
|
# },
|
1606
1627
|
# role_arn: "RoleArn", # required
|
1607
1628
|
# tags: [
|
@@ -10314,7 +10335,7 @@ module Aws::SageMaker
|
|
10314
10335
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10315
10336
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10316
10337
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10317
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10338
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10318
10339
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10319
10340
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10320
10341
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10440,6 +10461,10 @@ module Aws::SageMaker
|
|
10440
10461
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10441
10462
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config #=> Array
|
10442
10463
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config[0].country_code #=> String
|
10464
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_candidates #=> Integer
|
10465
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10466
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10467
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.base_model_name #=> String
|
10443
10468
|
# resp.creation_time #=> Time
|
10444
10469
|
# resp.end_time #=> Time
|
10445
10470
|
# resp.last_modified_time #=> Time
|
@@ -10473,7 +10498,7 @@ module Aws::SageMaker
|
|
10473
10498
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10474
10499
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10475
10500
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10476
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10501
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10477
10502
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10478
10503
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10479
10504
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10499,7 +10524,8 @@ module Aws::SageMaker
|
|
10499
10524
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10500
10525
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10501
10526
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10502
|
-
# resp.
|
10527
|
+
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.text_generation_resolved_attributes.base_model_name #=> String
|
10528
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting", "TextGeneration"
|
10503
10529
|
#
|
10504
10530
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10505
10531
|
#
|
@@ -15888,7 +15914,7 @@ module Aws::SageMaker
|
|
15888
15914
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15889
15915
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15890
15916
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15891
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15917
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
15892
15918
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15893
15919
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15894
15920
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -24267,7 +24293,7 @@ module Aws::SageMaker
|
|
24267
24293
|
params: params,
|
24268
24294
|
config: config)
|
24269
24295
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
24270
|
-
context[:gem_version] = '1.
|
24296
|
+
context[:gem_version] = '1.217.0'
|
24271
24297
|
Seahorse::Client::Request.new(handlers, context)
|
24272
24298
|
end
|
24273
24299
|
|
@@ -157,6 +157,7 @@ module Aws::SageMaker
|
|
157
157
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
158
158
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
159
159
|
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
160
|
+
BaseModelName = Shapes::StringShape.new(name: 'BaseModelName')
|
160
161
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
161
162
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
162
163
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -1893,6 +1894,8 @@ module Aws::SageMaker
|
|
1893
1894
|
TenthFractionsOfACent = Shapes::IntegerShape.new(name: 'TenthFractionsOfACent')
|
1894
1895
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1895
1896
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1897
|
+
TextGenerationJobConfig = Shapes::StructureShape.new(name: 'TextGenerationJobConfig')
|
1898
|
+
TextGenerationResolvedAttributes = Shapes::StructureShape.new(name: 'TextGenerationResolvedAttributes')
|
1896
1899
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1897
1900
|
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1898
1901
|
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
@@ -2427,17 +2430,21 @@ module Aws::SageMaker
|
|
2427
2430
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2428
2431
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2429
2432
|
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2433
|
+
AutoMLProblemTypeConfig.add_member(:text_generation_job_config, Shapes::ShapeRef.new(shape: TextGenerationJobConfig, location_name: "TextGenerationJobConfig"))
|
2430
2434
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2431
2435
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2432
2436
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2433
2437
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2434
2438
|
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2439
|
+
AutoMLProblemTypeConfig.add_member_subclass(:text_generation_job_config, Types::AutoMLProblemTypeConfig::TextGenerationJobConfig)
|
2435
2440
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2436
2441
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2437
2442
|
|
2438
2443
|
AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
|
2444
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:text_generation_resolved_attributes, Shapes::ShapeRef.new(shape: TextGenerationResolvedAttributes, location_name: "TextGenerationResolvedAttributes"))
|
2439
2445
|
AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2440
2446
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
|
2447
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:text_generation_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TextGenerationResolvedAttributes)
|
2441
2448
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
|
2442
2449
|
AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
|
2443
2450
|
|
@@ -8529,6 +8536,13 @@ module Aws::SageMaker
|
|
8529
8536
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, required: true, location_name: "TargetLabelColumn"))
|
8530
8537
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8531
8538
|
|
8539
|
+
TextGenerationJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8540
|
+
TextGenerationJobConfig.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8541
|
+
TextGenerationJobConfig.struct_class = Types::TextGenerationJobConfig
|
8542
|
+
|
8543
|
+
TextGenerationResolvedAttributes.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8544
|
+
TextGenerationResolvedAttributes.struct_class = Types::TextGenerationResolvedAttributes
|
8545
|
+
|
8532
8546
|
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8533
8547
|
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8534
8548
|
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
@@ -32,11 +32,11 @@ module Aws::SageMaker
|
|
32
32
|
raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
|
33
33
|
end
|
34
34
|
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
|
35
|
-
if Aws::Endpoints::Matchers.boolean_equals?(
|
36
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
35
|
+
if Aws::Endpoints::Matchers.boolean_equals?(Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"), true)
|
36
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws")
|
37
37
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
38
38
|
end
|
39
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
39
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws-us-gov")
|
40
40
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
41
41
|
end
|
42
42
|
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
@@ -2140,6 +2140,10 @@ module Aws::SageMaker
|
|
2140
2140
|
# * For time-series forecasting: `text/csv;header=present` or
|
2141
2141
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2142
2142
|
# `text/csv;header=present`.
|
2143
|
+
#
|
2144
|
+
# * For text generation (LLMs fine-tuning): `text/csv;header=present`
|
2145
|
+
# or `x-application/vnd.amazon+parquet`. The default value is
|
2146
|
+
# `text/csv;header=present`.
|
2143
2147
|
# @return [String]
|
2144
2148
|
#
|
2145
2149
|
# @!attribute [rw] compression_type
|
@@ -2170,9 +2174,9 @@ module Aws::SageMaker
|
|
2170
2174
|
# @!attribute [rw] max_candidates
|
2171
2175
|
# The maximum number of times a training job is allowed to run.
|
2172
2176
|
#
|
2173
|
-
# For text and image classification,
|
2174
|
-
#
|
2175
|
-
# problem types, the maximum value is 750.
|
2177
|
+
# For text and image classification, time-series forecasting, as well
|
2178
|
+
# as text generation (LLMs fine-tuning) problem types, the supported
|
2179
|
+
# value is 1. For tabular problem types, the maximum value is 750.
|
2176
2180
|
# @return [Integer]
|
2177
2181
|
#
|
2178
2182
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2275,7 +2279,8 @@ module Aws::SageMaker
|
|
2275
2279
|
include Aws::Structure
|
2276
2280
|
end
|
2277
2281
|
|
2278
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2282
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2283
|
+
# AutoML job.
|
2279
2284
|
#
|
2280
2285
|
# @!attribute [rw] metric_name
|
2281
2286
|
# The name of the objective metric used to measure the predictive
|
@@ -2284,28 +2289,70 @@ module Aws::SageMaker
|
|
2284
2289
|
# on the feedback provided by the objective metric when evaluating the
|
2285
2290
|
# model on the validation dataset.
|
2286
2291
|
#
|
2287
|
-
#
|
2288
|
-
#
|
2289
|
-
#
|
2290
|
-
# If you do not specify a metric explicitly, the default behavior is
|
2291
|
-
# to automatically use:
|
2292
|
+
# The list of available metrics supported by Autopilot and the default
|
2293
|
+
# metric applied when you do not specify a metric name explicitly
|
2294
|
+
# depend on the problem type.
|
2292
2295
|
#
|
2293
2296
|
# * For tabular problem types:
|
2294
2297
|
#
|
2295
|
-
# *
|
2298
|
+
# * List of available metrics:
|
2299
|
+
#
|
2300
|
+
# * Regression: `InferenceLatency`, `MAE`, `MSE`, `R2`, `RMSE`
|
2301
|
+
#
|
2302
|
+
# * Binary classification: `Accuracy`, `AUC`, `BalancedAccuracy`,
|
2303
|
+
# `F1`, `InferenceLatency`, `LogLoss`, `Precision`, `Recall`
|
2304
|
+
#
|
2305
|
+
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2306
|
+
# `F1macro`, `InferenceLatency`, `LogLoss`, `PrecisionMacro`,
|
2307
|
+
# `RecallMacro`
|
2308
|
+
#
|
2309
|
+
# For a description of each metric, see [Autopilot metrics for
|
2310
|
+
# classification and regression][1].
|
2311
|
+
#
|
2312
|
+
# * Default objective metrics:
|
2313
|
+
#
|
2314
|
+
# * Regression: `MSE`.
|
2296
2315
|
#
|
2297
|
-
#
|
2316
|
+
# * Binary classification: `F1`.
|
2298
2317
|
#
|
2299
|
-
#
|
2318
|
+
# * Multiclass classification: `Accuracy`.
|
2300
2319
|
#
|
2301
|
-
# * For image or text classification problem types:
|
2320
|
+
# * For image or text classification problem types:
|
2321
|
+
#
|
2322
|
+
# * List of available metrics: `Accuracy`
|
2323
|
+
#
|
2324
|
+
# For a description of each metric, see [Autopilot metrics for
|
2325
|
+
# text and image classification][2].
|
2326
|
+
#
|
2327
|
+
# * Default objective metrics: `Accuracy`
|
2302
2328
|
#
|
2303
2329
|
# * For time-series forecasting problem types:
|
2304
|
-
#
|
2330
|
+
#
|
2331
|
+
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
2332
|
+
# `MAPE`, `WAPE`
|
2333
|
+
#
|
2334
|
+
# For a description of each metric, see [Autopilot metrics for
|
2335
|
+
# time-series forecasting][3].
|
2336
|
+
#
|
2337
|
+
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2338
|
+
#
|
2339
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2340
|
+
# language models in Autopilot does not require setting the
|
2341
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
2342
|
+
# requiring multiple candidates to be trained and evaluated.
|
2343
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
2344
|
+
# target model to enhance a default objective metric, the
|
2345
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
2346
|
+
# evaluate the quality of its generated text using different
|
2347
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
2348
|
+
# fine-tuning LLMs in Autopilot][4].
|
2305
2349
|
#
|
2306
2350
|
#
|
2307
2351
|
#
|
2308
2352
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
2353
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html
|
2354
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html
|
2355
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
2309
2356
|
# @return [String]
|
2310
2357
|
#
|
2311
2358
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -2437,15 +2484,31 @@ module Aws::SageMaker
|
|
2437
2484
|
# @return [Types::TextClassificationJobConfig]
|
2438
2485
|
#
|
2439
2486
|
# @!attribute [rw] tabular_job_config
|
2440
|
-
# Settings used to configure an AutoML job V2 for
|
2487
|
+
# Settings used to configure an AutoML job V2 for the tabular problem
|
2441
2488
|
# type (regression, classification).
|
2442
2489
|
# @return [Types::TabularJobConfig]
|
2443
2490
|
#
|
2444
2491
|
# @!attribute [rw] time_series_forecasting_job_config
|
2445
|
-
# Settings used to configure an AutoML job V2 for
|
2492
|
+
# Settings used to configure an AutoML job V2 for the time-series
|
2446
2493
|
# forecasting problem type.
|
2447
2494
|
# @return [Types::TimeSeriesForecastingJobConfig]
|
2448
2495
|
#
|
2496
|
+
# @!attribute [rw] text_generation_job_config
|
2497
|
+
# Settings used to configure an AutoML job V2 for the text generation
|
2498
|
+
# (LLMs fine-tuning) problem type.
|
2499
|
+
#
|
2500
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
2501
|
+
# currently accessible exclusively in regions supported by Canvas.
|
2502
|
+
# Refer to the documentation of Canvas for the [full list of its
|
2503
|
+
# supported Regions][1].
|
2504
|
+
#
|
2505
|
+
# </note>
|
2506
|
+
#
|
2507
|
+
#
|
2508
|
+
#
|
2509
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
2510
|
+
# @return [Types::TextGenerationJobConfig]
|
2511
|
+
#
|
2449
2512
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2450
2513
|
#
|
2451
2514
|
class AutoMLProblemTypeConfig < Struct.new(
|
@@ -2453,6 +2516,7 @@ module Aws::SageMaker
|
|
2453
2516
|
:text_classification_job_config,
|
2454
2517
|
:tabular_job_config,
|
2455
2518
|
:time_series_forecasting_job_config,
|
2519
|
+
:text_generation_job_config,
|
2456
2520
|
:unknown)
|
2457
2521
|
SENSITIVE = []
|
2458
2522
|
include Aws::Structure
|
@@ -2462,36 +2526,43 @@ module Aws::SageMaker
|
|
2462
2526
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2463
2527
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2464
2528
|
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2529
|
+
class TextGenerationJobConfig < AutoMLProblemTypeConfig; end
|
2465
2530
|
class Unknown < AutoMLProblemTypeConfig; end
|
2466
2531
|
end
|
2467
2532
|
|
2468
|
-
#
|
2469
|
-
# V2.
|
2533
|
+
# Stores resolved attributes specific to the problem type of an AutoML
|
2534
|
+
# job V2.
|
2470
2535
|
#
|
2471
2536
|
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2472
2537
|
#
|
2473
2538
|
# @!attribute [rw] tabular_resolved_attributes
|
2474
|
-
#
|
2539
|
+
# The resolved attributes for the tabular problem type.
|
2475
2540
|
# @return [Types::TabularResolvedAttributes]
|
2476
2541
|
#
|
2542
|
+
# @!attribute [rw] text_generation_resolved_attributes
|
2543
|
+
# The resolved attributes for the text generation problem type.
|
2544
|
+
# @return [Types::TextGenerationResolvedAttributes]
|
2545
|
+
#
|
2477
2546
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2478
2547
|
#
|
2479
2548
|
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2480
2549
|
:tabular_resolved_attributes,
|
2550
|
+
:text_generation_resolved_attributes,
|
2481
2551
|
:unknown)
|
2482
2552
|
SENSITIVE = []
|
2483
2553
|
include Aws::Structure
|
2484
2554
|
include Aws::Structure::Union
|
2485
2555
|
|
2486
2556
|
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2557
|
+
class TextGenerationResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2487
2558
|
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2488
2559
|
end
|
2489
2560
|
|
2490
2561
|
# The resolved attributes used to configure an AutoML job V2.
|
2491
2562
|
#
|
2492
2563
|
# @!attribute [rw] auto_ml_job_objective
|
2493
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2494
|
-
# job.
|
2564
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2565
|
+
# AutoML job.
|
2495
2566
|
# @return [Types::AutoMLJobObjective]
|
2496
2567
|
#
|
2497
2568
|
# @!attribute [rw] completion_criteria
|
@@ -4842,6 +4913,8 @@ module Aws::SageMaker
|
|
4842
4913
|
#
|
4843
4914
|
# * For time-series forecasting: `S3Prefix`.
|
4844
4915
|
#
|
4916
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
4917
|
+
#
|
4845
4918
|
#
|
4846
4919
|
#
|
4847
4920
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -4883,16 +4956,28 @@ module Aws::SageMaker
|
|
4883
4956
|
# problem type. For the list of default values per problem type, see
|
4884
4957
|
# [AutoMLJobObjective][1].
|
4885
4958
|
#
|
4886
|
-
# <note markdown="1"> For tabular problem types
|
4887
|
-
#
|
4888
|
-
#
|
4889
|
-
#
|
4959
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
4960
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4961
|
+
# problem in `AutoMLProblemTypeConfig`
|
4962
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
4963
|
+
#
|
4964
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
4965
|
+
# language models in Autopilot does not require setting the
|
4966
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
4967
|
+
# requiring multiple candidates to be trained and evaluated.
|
4968
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
4969
|
+
# target model to enhance a default objective metric, the
|
4970
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
4971
|
+
# evaluate the quality of its generated text using different
|
4972
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
4973
|
+
# fine-tuning LLMs in Autopilot][2].
|
4890
4974
|
#
|
4891
4975
|
# </note>
|
4892
4976
|
#
|
4893
4977
|
#
|
4894
4978
|
#
|
4895
4979
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4980
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
4896
4981
|
# @return [Types::AutoMLJobObjective]
|
4897
4982
|
#
|
4898
4983
|
# @!attribute [rw] model_deploy_config
|
@@ -20226,7 +20311,13 @@ module Aws::SageMaker
|
|
20226
20311
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20227
20312
|
# training jobs it launches, and returns the training job that results
|
20228
20313
|
# in either the highest or lowest value for this metric, depending on
|
20229
|
-
# the value you specify for the `Type` parameter.
|
20314
|
+
# the value you specify for the `Type` parameter. If you want to
|
20315
|
+
# define a custom objective metric, see [Define metrics and
|
20316
|
+
# environment variables][1].
|
20317
|
+
#
|
20318
|
+
#
|
20319
|
+
#
|
20320
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20230
20321
|
# @return [Types::HyperParameterTuningJobObjective]
|
20231
20322
|
#
|
20232
20323
|
# @!attribute [rw] hyper_parameter_ranges
|
@@ -20695,7 +20786,13 @@ module Aws::SageMaker
|
|
20695
20786
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20696
20787
|
# training jobs it launches, and returns the training job that results
|
20697
20788
|
# in either the highest or lowest value for this metric, depending on
|
20698
|
-
# the value you specify for the `Type` parameter.
|
20789
|
+
# the value you specify for the `Type` parameter. If you want to define
|
20790
|
+
# a custom objective metric, see [Define metrics and environment
|
20791
|
+
# variables][1].
|
20792
|
+
#
|
20793
|
+
#
|
20794
|
+
#
|
20795
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20699
20796
|
#
|
20700
20797
|
# @!attribute [rw] type
|
20701
20798
|
# Whether to minimize or maximize the objective metric.
|
@@ -21311,8 +21408,8 @@ module Aws::SageMaker
|
|
21311
21408
|
include Aws::Structure
|
21312
21409
|
end
|
21313
21410
|
|
21314
|
-
#
|
21315
|
-
# problem
|
21411
|
+
# The collection of settings used by an AutoML job V2 for the image
|
21412
|
+
# classification problem type.
|
21316
21413
|
#
|
21317
21414
|
# @!attribute [rw] completion_criteria
|
21318
21415
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -35238,8 +35335,8 @@ module Aws::SageMaker
|
|
35238
35335
|
# The resolved attributes.
|
35239
35336
|
#
|
35240
35337
|
# @!attribute [rw] auto_ml_job_objective
|
35241
|
-
# Specifies a metric to minimize or maximize as the objective of
|
35242
|
-
# job.
|
35338
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
35339
|
+
# AutoML job.
|
35243
35340
|
# @return [Types::AutoMLJobObjective]
|
35244
35341
|
#
|
35245
35342
|
# @!attribute [rw] problem_type
|
@@ -37479,7 +37576,7 @@ module Aws::SageMaker
|
|
37479
37576
|
include Aws::Structure
|
37480
37577
|
end
|
37481
37578
|
|
37482
|
-
# The collection of settings used by an AutoML job V2 for the
|
37579
|
+
# The collection of settings used by an AutoML job V2 for the tabular
|
37483
37580
|
# problem type.
|
37484
37581
|
#
|
37485
37582
|
# @!attribute [rw] candidate_generation_config
|
@@ -37620,7 +37717,7 @@ module Aws::SageMaker
|
|
37620
37717
|
include Aws::Structure
|
37621
37718
|
end
|
37622
37719
|
|
37623
|
-
# The resolved attributes specific to the
|
37720
|
+
# The resolved attributes specific to the tabular problem type.
|
37624
37721
|
#
|
37625
37722
|
# @!attribute [rw] problem_type
|
37626
37723
|
# The type of supervised learning problem available for the model
|
@@ -37794,8 +37891,8 @@ module Aws::SageMaker
|
|
37794
37891
|
include Aws::Structure
|
37795
37892
|
end
|
37796
37893
|
|
37797
|
-
#
|
37798
|
-
# problem
|
37894
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37895
|
+
# classification problem type.
|
37799
37896
|
#
|
37800
37897
|
# @!attribute [rw] completion_criteria
|
37801
37898
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -37822,6 +37919,60 @@ module Aws::SageMaker
|
|
37822
37919
|
include Aws::Structure
|
37823
37920
|
end
|
37824
37921
|
|
37922
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37923
|
+
# generation problem type.
|
37924
|
+
#
|
37925
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
37926
|
+
# currently accessible exclusively in regions supported by Canvas. Refer
|
37927
|
+
# to the documentation of Canvas for the [full list of its supported
|
37928
|
+
# Regions][1].
|
37929
|
+
#
|
37930
|
+
# </note>
|
37931
|
+
#
|
37932
|
+
#
|
37933
|
+
#
|
37934
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
37935
|
+
#
|
37936
|
+
# @!attribute [rw] completion_criteria
|
37937
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37938
|
+
# allowed to generate.
|
37939
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37940
|
+
#
|
37941
|
+
# @!attribute [rw] base_model_name
|
37942
|
+
# The name of the base model to fine-tune. Autopilot supports
|
37943
|
+
# fine-tuning a variety of large language models. For information on
|
37944
|
+
# the list of supported models, see [Text generation models supporting
|
37945
|
+
# fine-tuning in Autopilot][1]. If no `BaseModelName` is provided, the
|
37946
|
+
# default model used is Falcon-7B-Instruct.
|
37947
|
+
#
|
37948
|
+
#
|
37949
|
+
#
|
37950
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms
|
37951
|
+
# @return [String]
|
37952
|
+
#
|
37953
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationJobConfig AWS API Documentation
|
37954
|
+
#
|
37955
|
+
class TextGenerationJobConfig < Struct.new(
|
37956
|
+
:completion_criteria,
|
37957
|
+
:base_model_name)
|
37958
|
+
SENSITIVE = []
|
37959
|
+
include Aws::Structure
|
37960
|
+
end
|
37961
|
+
|
37962
|
+
# The resolved attributes specific to the text generation problem type.
|
37963
|
+
#
|
37964
|
+
# @!attribute [rw] base_model_name
|
37965
|
+
# The name of the base model to fine-tune.
|
37966
|
+
# @return [String]
|
37967
|
+
#
|
37968
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationResolvedAttributes AWS API Documentation
|
37969
|
+
#
|
37970
|
+
class TextGenerationResolvedAttributes < Struct.new(
|
37971
|
+
:base_model_name)
|
37972
|
+
SENSITIVE = []
|
37973
|
+
include Aws::Structure
|
37974
|
+
end
|
37975
|
+
|
37825
37976
|
# The collection of components that defines the time-series.
|
37826
37977
|
#
|
37827
37978
|
# @!attribute [rw] target_attribute_name
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.217.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-10-
|
11
|
+
date: 2023-10-26 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|