aws-sdk-sagemaker 1.215.0 → 1.217.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +74 -14
- data/lib/aws-sdk-sagemaker/client_api.rb +24 -0
- data/lib/aws-sdk-sagemaker/endpoint_provider.rb +3 -3
- data/lib/aws-sdk-sagemaker/types.rb +249 -39
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 44e7e1f63bcf45a9e3c3c59aa6cc3ff1c72d5dcd343e8fd05a63fe85a95375e6
|
4
|
+
data.tar.gz: 5b10df777ead8d3feb98e0b95951a94ca581285b2d9cdddbbd70248f863b6990
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9393949f989c2a943f2c9a616655e3cc40cc36e6c7568cb5cd513378887862dde9f253cddecd89ec670527fac0953a8e0da6a527eca42f4300e43a292a948286
|
7
|
+
data.tar.gz: f40cd05d91ebe24815c853ed1043b09f4274a08ed4c23980cea7cd53b35f703af2531b660ac78e5b9d10c2a76143b95f20759516d024df7cda3214d9c0ea2643
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.217.0 (2023-10-26)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon Sagemaker Autopilot now supports Text Generation jobs.
|
8
|
+
|
9
|
+
1.216.0 (2023-10-12)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Canvas adds KendraSettings and DirectDeploySettings support for CanvasAppSettings
|
13
|
+
|
4
14
|
1.215.0 (2023-10-04)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.217.0
|
@@ -1221,8 +1221,8 @@ module Aws::SageMaker
|
|
1221
1221
|
#
|
1222
1222
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1223
1223
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1224
|
-
# time-series forecasting,
|
1225
|
-
#
|
1224
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1225
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1226
1226
|
#
|
1227
1227
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1228
1228
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1401,8 +1401,8 @@ module Aws::SageMaker
|
|
1401
1401
|
#
|
1402
1402
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1403
1403
|
# those of its previous version `CreateAutoMLJob`, as well as
|
1404
|
-
# time-series forecasting,
|
1405
|
-
#
|
1404
|
+
# time-series forecasting, non-tabular problem types such as image or
|
1405
|
+
# text classification, and text generation (LLMs fine-tuning).
|
1406
1406
|
#
|
1407
1407
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1408
1408
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
@@ -1444,6 +1444,8 @@ module Aws::SageMaker
|
|
1444
1444
|
#
|
1445
1445
|
# * For time-series forecasting: `S3Prefix`.
|
1446
1446
|
#
|
1447
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
1448
|
+
#
|
1447
1449
|
#
|
1448
1450
|
#
|
1449
1451
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -1479,16 +1481,27 @@ module Aws::SageMaker
|
|
1479
1481
|
# type. For the list of default values per problem type, see
|
1480
1482
|
# [AutoMLJobObjective][1].
|
1481
1483
|
#
|
1482
|
-
# <note markdown="1"> For tabular problem types
|
1483
|
-
#
|
1484
|
-
#
|
1485
|
-
#
|
1484
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
1485
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
1486
|
+
# problem in `AutoMLProblemTypeConfig`
|
1487
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
1488
|
+
#
|
1489
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
1490
|
+
# language models in Autopilot does not require setting the
|
1491
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
1492
|
+
# requiring multiple candidates to be trained and evaluated. Instead,
|
1493
|
+
# using your dataset, Autopilot directly fine-tunes your target model
|
1494
|
+
# to enhance a default objective metric, the cross-entropy loss. After
|
1495
|
+
# fine-tuning a language model, you can evaluate the quality of its
|
1496
|
+
# generated text using different metrics. For a list of the available
|
1497
|
+
# metrics, see [Metrics for fine-tuning LLMs in Autopilot][2].
|
1486
1498
|
#
|
1487
1499
|
# </note>
|
1488
1500
|
#
|
1489
1501
|
#
|
1490
1502
|
#
|
1491
1503
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1504
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
1492
1505
|
#
|
1493
1506
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1494
1507
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -1602,6 +1615,14 @@ module Aws::SageMaker
|
|
1602
1615
|
# },
|
1603
1616
|
# ],
|
1604
1617
|
# },
|
1618
|
+
# text_generation_job_config: {
|
1619
|
+
# completion_criteria: {
|
1620
|
+
# max_candidates: 1,
|
1621
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1622
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1623
|
+
# },
|
1624
|
+
# base_model_name: "BaseModelName",
|
1625
|
+
# },
|
1605
1626
|
# },
|
1606
1627
|
# role_arn: "RoleArn", # required
|
1607
1628
|
# tags: [
|
@@ -2374,6 +2395,12 @@ module Aws::SageMaker
|
|
2374
2395
|
# secret_arn: "SecretArn",
|
2375
2396
|
# },
|
2376
2397
|
# ],
|
2398
|
+
# kendra_settings: {
|
2399
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
2400
|
+
# },
|
2401
|
+
# direct_deploy_settings: {
|
2402
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
2403
|
+
# },
|
2377
2404
|
# },
|
2378
2405
|
# },
|
2379
2406
|
# subnet_ids: ["SubnetId"], # required
|
@@ -3188,12 +3215,15 @@ module Aws::SageMaker
|
|
3188
3215
|
# defined in the `FeatureStore` to describe a `Record`.
|
3189
3216
|
#
|
3190
3217
|
# The `FeatureGroup` defines the schema and features contained in the
|
3191
|
-
# FeatureGroup
|
3218
|
+
# `FeatureGroup`. A `FeatureGroup` definition is composed of a list of
|
3192
3219
|
# `Features`, a `RecordIdentifierFeatureName`, an `EventTimeFeatureName`
|
3193
3220
|
# and configurations for its `OnlineStore` and `OfflineStore`. Check
|
3194
3221
|
# [Amazon Web Services service quotas][1] to see the `FeatureGroup`s
|
3195
3222
|
# quota for your Amazon Web Services account.
|
3196
3223
|
#
|
3224
|
+
# Note that it can take approximately 10-15 minutes to provision an
|
3225
|
+
# `OnlineStore` `FeatureGroup` with the `InMemory` `StorageType`.
|
3226
|
+
#
|
3197
3227
|
# You must include at least one of `OnlineStoreConfig` and
|
3198
3228
|
# `OfflineStoreConfig` to create a `FeatureGroup`.
|
3199
3229
|
#
|
@@ -8229,6 +8259,12 @@ module Aws::SageMaker
|
|
8229
8259
|
# secret_arn: "SecretArn",
|
8230
8260
|
# },
|
8231
8261
|
# ],
|
8262
|
+
# kendra_settings: {
|
8263
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
8264
|
+
# },
|
8265
|
+
# direct_deploy_settings: {
|
8266
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
8267
|
+
# },
|
8232
8268
|
# },
|
8233
8269
|
# },
|
8234
8270
|
# })
|
@@ -8940,6 +8976,9 @@ module Aws::SageMaker
|
|
8940
8976
|
# Web Services Glue database and tables that are automatically created
|
8941
8977
|
# for your `OfflineStore` are not deleted.
|
8942
8978
|
#
|
8979
|
+
# Note that it can take approximately 10-15 minutes to delete an
|
8980
|
+
# `OnlineStore` `FeatureGroup` with the `InMemory` `StorageType`.
|
8981
|
+
#
|
8943
8982
|
# @option params [required, String] :feature_group_name
|
8944
8983
|
# The name of the `FeatureGroup` you want to delete. The name must be
|
8945
8984
|
# unique within an Amazon Web Services Region in an Amazon Web Services
|
@@ -10296,7 +10335,7 @@ module Aws::SageMaker
|
|
10296
10335
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10297
10336
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10298
10337
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10299
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10338
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10300
10339
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10301
10340
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10302
10341
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10422,6 +10461,10 @@ module Aws::SageMaker
|
|
10422
10461
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10423
10462
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config #=> Array
|
10424
10463
|
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config[0].country_code #=> String
|
10464
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_candidates #=> Integer
|
10465
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10466
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10467
|
+
# resp.auto_ml_problem_type_config.text_generation_job_config.base_model_name #=> String
|
10425
10468
|
# resp.creation_time #=> Time
|
10426
10469
|
# resp.end_time #=> Time
|
10427
10470
|
# resp.last_modified_time #=> Time
|
@@ -10455,7 +10498,7 @@ module Aws::SageMaker
|
|
10455
10498
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10456
10499
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10457
10500
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10458
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10501
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
10459
10502
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10460
10503
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10461
10504
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10481,7 +10524,8 @@ module Aws::SageMaker
|
|
10481
10524
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10482
10525
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10483
10526
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10484
|
-
# resp.
|
10527
|
+
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.text_generation_resolved_attributes.base_model_name #=> String
|
10528
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting", "TextGeneration"
|
10485
10529
|
#
|
10486
10530
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10487
10531
|
#
|
@@ -10968,6 +11012,8 @@ module Aws::SageMaker
|
|
10968
11012
|
# resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].data_source_name #=> String, one of "SalesforceGenie", "Snowflake"
|
10969
11013
|
# resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].status #=> String, one of "ENABLED", "DISABLED"
|
10970
11014
|
# resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].secret_arn #=> String
|
11015
|
+
# resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
11016
|
+
# resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
10971
11017
|
# resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
|
10972
11018
|
# resp.home_efs_file_system_kms_key_id #=> String
|
10973
11019
|
# resp.subnet_ids #=> Array
|
@@ -14654,6 +14700,8 @@ module Aws::SageMaker
|
|
14654
14700
|
# resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].data_source_name #=> String, one of "SalesforceGenie", "Snowflake"
|
14655
14701
|
# resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].status #=> String, one of "ENABLED", "DISABLED"
|
14656
14702
|
# resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].secret_arn #=> String
|
14703
|
+
# resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
14704
|
+
# resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
14657
14705
|
#
|
14658
14706
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
|
14659
14707
|
#
|
@@ -15866,7 +15914,7 @@ module Aws::SageMaker
|
|
15866
15914
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15867
15915
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15868
15916
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15869
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15917
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
|
15870
15918
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15871
15919
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15872
15920
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -22207,6 +22255,12 @@ module Aws::SageMaker
|
|
22207
22255
|
# secret_arn: "SecretArn",
|
22208
22256
|
# },
|
22209
22257
|
# ],
|
22258
|
+
# kendra_settings: {
|
22259
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
22260
|
+
# },
|
22261
|
+
# direct_deploy_settings: {
|
22262
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
22263
|
+
# },
|
22210
22264
|
# },
|
22211
22265
|
# },
|
22212
22266
|
# domain_settings_for_update: {
|
@@ -23976,6 +24030,12 @@ module Aws::SageMaker
|
|
23976
24030
|
# secret_arn: "SecretArn",
|
23977
24031
|
# },
|
23978
24032
|
# ],
|
24033
|
+
# kendra_settings: {
|
24034
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
24035
|
+
# },
|
24036
|
+
# direct_deploy_settings: {
|
24037
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
24038
|
+
# },
|
23979
24039
|
# },
|
23980
24040
|
# },
|
23981
24041
|
# })
|
@@ -24233,7 +24293,7 @@ module Aws::SageMaker
|
|
24233
24293
|
params: params,
|
24234
24294
|
config: config)
|
24235
24295
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
24236
|
-
context[:gem_version] = '1.
|
24296
|
+
context[:gem_version] = '1.217.0'
|
24237
24297
|
Seahorse::Client::Request.new(handlers, context)
|
24238
24298
|
end
|
24239
24299
|
|
@@ -157,6 +157,7 @@ module Aws::SageMaker
|
|
157
157
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
158
158
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
159
159
|
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
160
|
+
BaseModelName = Shapes::StringShape.new(name: 'BaseModelName')
|
160
161
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
161
162
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
162
163
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -653,6 +654,7 @@ module Aws::SageMaker
|
|
653
654
|
DeviceSummary = Shapes::StructureShape.new(name: 'DeviceSummary')
|
654
655
|
Devices = Shapes::ListShape.new(name: 'Devices')
|
655
656
|
Dimension = Shapes::IntegerShape.new(name: 'Dimension')
|
657
|
+
DirectDeploySettings = Shapes::StructureShape.new(name: 'DirectDeploySettings')
|
656
658
|
DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
|
657
659
|
Direction = Shapes::StringShape.new(name: 'Direction')
|
658
660
|
DirectoryPath = Shapes::StringShape.new(name: 'DirectoryPath')
|
@@ -1018,6 +1020,7 @@ module Aws::SageMaker
|
|
1018
1020
|
JsonPath = Shapes::StringShape.new(name: 'JsonPath')
|
1019
1021
|
JupyterServerAppSettings = Shapes::StructureShape.new(name: 'JupyterServerAppSettings')
|
1020
1022
|
KeepAlivePeriodInSeconds = Shapes::IntegerShape.new(name: 'KeepAlivePeriodInSeconds')
|
1023
|
+
KendraSettings = Shapes::StructureShape.new(name: 'KendraSettings')
|
1021
1024
|
KernelDisplayName = Shapes::StringShape.new(name: 'KernelDisplayName')
|
1022
1025
|
KernelGatewayAppSettings = Shapes::StructureShape.new(name: 'KernelGatewayAppSettings')
|
1023
1026
|
KernelGatewayImageConfig = Shapes::StructureShape.new(name: 'KernelGatewayImageConfig')
|
@@ -1891,6 +1894,8 @@ module Aws::SageMaker
|
|
1891
1894
|
TenthFractionsOfACent = Shapes::IntegerShape.new(name: 'TenthFractionsOfACent')
|
1892
1895
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1893
1896
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1897
|
+
TextGenerationJobConfig = Shapes::StructureShape.new(name: 'TextGenerationJobConfig')
|
1898
|
+
TextGenerationResolvedAttributes = Shapes::StructureShape.new(name: 'TextGenerationResolvedAttributes')
|
1894
1899
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1895
1900
|
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1896
1901
|
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
@@ -2425,17 +2430,21 @@ module Aws::SageMaker
|
|
2425
2430
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2426
2431
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2427
2432
|
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2433
|
+
AutoMLProblemTypeConfig.add_member(:text_generation_job_config, Shapes::ShapeRef.new(shape: TextGenerationJobConfig, location_name: "TextGenerationJobConfig"))
|
2428
2434
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2429
2435
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2430
2436
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2431
2437
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2432
2438
|
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2439
|
+
AutoMLProblemTypeConfig.add_member_subclass(:text_generation_job_config, Types::AutoMLProblemTypeConfig::TextGenerationJobConfig)
|
2433
2440
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2434
2441
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2435
2442
|
|
2436
2443
|
AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
|
2444
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:text_generation_resolved_attributes, Shapes::ShapeRef.new(shape: TextGenerationResolvedAttributes, location_name: "TextGenerationResolvedAttributes"))
|
2437
2445
|
AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2438
2446
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
|
2447
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:text_generation_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TextGenerationResolvedAttributes)
|
2439
2448
|
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
|
2440
2449
|
AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
|
2441
2450
|
|
@@ -2547,6 +2556,8 @@ module Aws::SageMaker
|
|
2547
2556
|
CanvasAppSettings.add_member(:model_register_settings, Shapes::ShapeRef.new(shape: ModelRegisterSettings, location_name: "ModelRegisterSettings"))
|
2548
2557
|
CanvasAppSettings.add_member(:workspace_settings, Shapes::ShapeRef.new(shape: WorkspaceSettings, location_name: "WorkspaceSettings"))
|
2549
2558
|
CanvasAppSettings.add_member(:identity_provider_o_auth_settings, Shapes::ShapeRef.new(shape: IdentityProviderOAuthSettings, location_name: "IdentityProviderOAuthSettings"))
|
2559
|
+
CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
|
2560
|
+
CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
|
2550
2561
|
CanvasAppSettings.struct_class = Types::CanvasAppSettings
|
2551
2562
|
|
2552
2563
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -4857,6 +4868,9 @@ module Aws::SageMaker
|
|
4857
4868
|
|
4858
4869
|
Devices.member = Shapes::ShapeRef.new(shape: Device)
|
4859
4870
|
|
4871
|
+
DirectDeploySettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
4872
|
+
DirectDeploySettings.struct_class = Types::DirectDeploySettings
|
4873
|
+
|
4860
4874
|
DisableSagemakerServicecatalogPortfolioInput.struct_class = Types::DisableSagemakerServicecatalogPortfolioInput
|
4861
4875
|
|
4862
4876
|
DisableSagemakerServicecatalogPortfolioOutput.struct_class = Types::DisableSagemakerServicecatalogPortfolioOutput
|
@@ -5733,6 +5747,9 @@ module Aws::SageMaker
|
|
5733
5747
|
JupyterServerAppSettings.add_member(:code_repositories, Shapes::ShapeRef.new(shape: CodeRepositories, location_name: "CodeRepositories"))
|
5734
5748
|
JupyterServerAppSettings.struct_class = Types::JupyterServerAppSettings
|
5735
5749
|
|
5750
|
+
KendraSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
5751
|
+
KendraSettings.struct_class = Types::KendraSettings
|
5752
|
+
|
5736
5753
|
KernelGatewayAppSettings.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
|
5737
5754
|
KernelGatewayAppSettings.add_member(:custom_images, Shapes::ShapeRef.new(shape: CustomImages, location_name: "CustomImages"))
|
5738
5755
|
KernelGatewayAppSettings.add_member(:lifecycle_config_arns, Shapes::ShapeRef.new(shape: LifecycleConfigArns, location_name: "LifecycleConfigArns"))
|
@@ -8519,6 +8536,13 @@ module Aws::SageMaker
|
|
8519
8536
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, required: true, location_name: "TargetLabelColumn"))
|
8520
8537
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8521
8538
|
|
8539
|
+
TextGenerationJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8540
|
+
TextGenerationJobConfig.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8541
|
+
TextGenerationJobConfig.struct_class = Types::TextGenerationJobConfig
|
8542
|
+
|
8543
|
+
TextGenerationResolvedAttributes.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
|
8544
|
+
TextGenerationResolvedAttributes.struct_class = Types::TextGenerationResolvedAttributes
|
8545
|
+
|
8522
8546
|
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8523
8547
|
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8524
8548
|
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
@@ -32,11 +32,11 @@ module Aws::SageMaker
|
|
32
32
|
raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
|
33
33
|
end
|
34
34
|
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
|
35
|
-
if Aws::Endpoints::Matchers.boolean_equals?(
|
36
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
35
|
+
if Aws::Endpoints::Matchers.boolean_equals?(Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"), true)
|
36
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws")
|
37
37
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
38
38
|
end
|
39
|
-
if Aws::Endpoints::Matchers.string_equals?(
|
39
|
+
if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws-us-gov")
|
40
40
|
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
41
41
|
end
|
42
42
|
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
@@ -2140,6 +2140,10 @@ module Aws::SageMaker
|
|
2140
2140
|
# * For time-series forecasting: `text/csv;header=present` or
|
2141
2141
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2142
2142
|
# `text/csv;header=present`.
|
2143
|
+
#
|
2144
|
+
# * For text generation (LLMs fine-tuning): `text/csv;header=present`
|
2145
|
+
# or `x-application/vnd.amazon+parquet`. The default value is
|
2146
|
+
# `text/csv;header=present`.
|
2143
2147
|
# @return [String]
|
2144
2148
|
#
|
2145
2149
|
# @!attribute [rw] compression_type
|
@@ -2170,9 +2174,9 @@ module Aws::SageMaker
|
|
2170
2174
|
# @!attribute [rw] max_candidates
|
2171
2175
|
# The maximum number of times a training job is allowed to run.
|
2172
2176
|
#
|
2173
|
-
# For text and image classification,
|
2174
|
-
#
|
2175
|
-
# problem types, the maximum value is 750.
|
2177
|
+
# For text and image classification, time-series forecasting, as well
|
2178
|
+
# as text generation (LLMs fine-tuning) problem types, the supported
|
2179
|
+
# value is 1. For tabular problem types, the maximum value is 750.
|
2176
2180
|
# @return [Integer]
|
2177
2181
|
#
|
2178
2182
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2275,7 +2279,8 @@ module Aws::SageMaker
|
|
2275
2279
|
include Aws::Structure
|
2276
2280
|
end
|
2277
2281
|
|
2278
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2282
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2283
|
+
# AutoML job.
|
2279
2284
|
#
|
2280
2285
|
# @!attribute [rw] metric_name
|
2281
2286
|
# The name of the objective metric used to measure the predictive
|
@@ -2284,28 +2289,70 @@ module Aws::SageMaker
|
|
2284
2289
|
# on the feedback provided by the objective metric when evaluating the
|
2285
2290
|
# model on the validation dataset.
|
2286
2291
|
#
|
2287
|
-
#
|
2288
|
-
#
|
2289
|
-
#
|
2290
|
-
# If you do not specify a metric explicitly, the default behavior is
|
2291
|
-
# to automatically use:
|
2292
|
+
# The list of available metrics supported by Autopilot and the default
|
2293
|
+
# metric applied when you do not specify a metric name explicitly
|
2294
|
+
# depend on the problem type.
|
2292
2295
|
#
|
2293
2296
|
# * For tabular problem types:
|
2294
2297
|
#
|
2295
|
-
# *
|
2298
|
+
# * List of available metrics:
|
2299
|
+
#
|
2300
|
+
# * Regression: `InferenceLatency`, `MAE`, `MSE`, `R2`, `RMSE`
|
2301
|
+
#
|
2302
|
+
# * Binary classification: `Accuracy`, `AUC`, `BalancedAccuracy`,
|
2303
|
+
# `F1`, `InferenceLatency`, `LogLoss`, `Precision`, `Recall`
|
2304
|
+
#
|
2305
|
+
# * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
|
2306
|
+
# `F1macro`, `InferenceLatency`, `LogLoss`, `PrecisionMacro`,
|
2307
|
+
# `RecallMacro`
|
2308
|
+
#
|
2309
|
+
# For a description of each metric, see [Autopilot metrics for
|
2310
|
+
# classification and regression][1].
|
2296
2311
|
#
|
2297
|
-
# *
|
2312
|
+
# * Default objective metrics:
|
2298
2313
|
#
|
2299
|
-
#
|
2314
|
+
# * Regression: `MSE`.
|
2300
2315
|
#
|
2301
|
-
#
|
2316
|
+
# * Binary classification: `F1`.
|
2317
|
+
#
|
2318
|
+
# * Multiclass classification: `Accuracy`.
|
2319
|
+
#
|
2320
|
+
# * For image or text classification problem types:
|
2321
|
+
#
|
2322
|
+
# * List of available metrics: `Accuracy`
|
2323
|
+
#
|
2324
|
+
# For a description of each metric, see [Autopilot metrics for
|
2325
|
+
# text and image classification][2].
|
2326
|
+
#
|
2327
|
+
# * Default objective metrics: `Accuracy`
|
2302
2328
|
#
|
2303
2329
|
# * For time-series forecasting problem types:
|
2304
|
-
#
|
2330
|
+
#
|
2331
|
+
# * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
|
2332
|
+
# `MAPE`, `WAPE`
|
2333
|
+
#
|
2334
|
+
# For a description of each metric, see [Autopilot metrics for
|
2335
|
+
# time-series forecasting][3].
|
2336
|
+
#
|
2337
|
+
# * Default objective metrics: `AverageWeightedQuantileLoss`
|
2338
|
+
#
|
2339
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
2340
|
+
# language models in Autopilot does not require setting the
|
2341
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
2342
|
+
# requiring multiple candidates to be trained and evaluated.
|
2343
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
2344
|
+
# target model to enhance a default objective metric, the
|
2345
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
2346
|
+
# evaluate the quality of its generated text using different
|
2347
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
2348
|
+
# fine-tuning LLMs in Autopilot][4].
|
2305
2349
|
#
|
2306
2350
|
#
|
2307
2351
|
#
|
2308
2352
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
2353
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html
|
2354
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html
|
2355
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
2309
2356
|
# @return [String]
|
2310
2357
|
#
|
2311
2358
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -2437,15 +2484,31 @@ module Aws::SageMaker
|
|
2437
2484
|
# @return [Types::TextClassificationJobConfig]
|
2438
2485
|
#
|
2439
2486
|
# @!attribute [rw] tabular_job_config
|
2440
|
-
# Settings used to configure an AutoML job V2 for
|
2487
|
+
# Settings used to configure an AutoML job V2 for the tabular problem
|
2441
2488
|
# type (regression, classification).
|
2442
2489
|
# @return [Types::TabularJobConfig]
|
2443
2490
|
#
|
2444
2491
|
# @!attribute [rw] time_series_forecasting_job_config
|
2445
|
-
# Settings used to configure an AutoML job V2 for
|
2492
|
+
# Settings used to configure an AutoML job V2 for the time-series
|
2446
2493
|
# forecasting problem type.
|
2447
2494
|
# @return [Types::TimeSeriesForecastingJobConfig]
|
2448
2495
|
#
|
2496
|
+
# @!attribute [rw] text_generation_job_config
|
2497
|
+
# Settings used to configure an AutoML job V2 for the text generation
|
2498
|
+
# (LLMs fine-tuning) problem type.
|
2499
|
+
#
|
2500
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
2501
|
+
# currently accessible exclusively in regions supported by Canvas.
|
2502
|
+
# Refer to the documentation of Canvas for the [full list of its
|
2503
|
+
# supported Regions][1].
|
2504
|
+
#
|
2505
|
+
# </note>
|
2506
|
+
#
|
2507
|
+
#
|
2508
|
+
#
|
2509
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
2510
|
+
# @return [Types::TextGenerationJobConfig]
|
2511
|
+
#
|
2449
2512
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2450
2513
|
#
|
2451
2514
|
class AutoMLProblemTypeConfig < Struct.new(
|
@@ -2453,6 +2516,7 @@ module Aws::SageMaker
|
|
2453
2516
|
:text_classification_job_config,
|
2454
2517
|
:tabular_job_config,
|
2455
2518
|
:time_series_forecasting_job_config,
|
2519
|
+
:text_generation_job_config,
|
2456
2520
|
:unknown)
|
2457
2521
|
SENSITIVE = []
|
2458
2522
|
include Aws::Structure
|
@@ -2462,36 +2526,43 @@ module Aws::SageMaker
|
|
2462
2526
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2463
2527
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2464
2528
|
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2529
|
+
class TextGenerationJobConfig < AutoMLProblemTypeConfig; end
|
2465
2530
|
class Unknown < AutoMLProblemTypeConfig; end
|
2466
2531
|
end
|
2467
2532
|
|
2468
|
-
#
|
2469
|
-
# V2.
|
2533
|
+
# Stores resolved attributes specific to the problem type of an AutoML
|
2534
|
+
# job V2.
|
2470
2535
|
#
|
2471
2536
|
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2472
2537
|
#
|
2473
2538
|
# @!attribute [rw] tabular_resolved_attributes
|
2474
|
-
#
|
2539
|
+
# The resolved attributes for the tabular problem type.
|
2475
2540
|
# @return [Types::TabularResolvedAttributes]
|
2476
2541
|
#
|
2542
|
+
# @!attribute [rw] text_generation_resolved_attributes
|
2543
|
+
# The resolved attributes for the text generation problem type.
|
2544
|
+
# @return [Types::TextGenerationResolvedAttributes]
|
2545
|
+
#
|
2477
2546
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2478
2547
|
#
|
2479
2548
|
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2480
2549
|
:tabular_resolved_attributes,
|
2550
|
+
:text_generation_resolved_attributes,
|
2481
2551
|
:unknown)
|
2482
2552
|
SENSITIVE = []
|
2483
2553
|
include Aws::Structure
|
2484
2554
|
include Aws::Structure::Union
|
2485
2555
|
|
2486
2556
|
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2557
|
+
class TextGenerationResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2487
2558
|
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2488
2559
|
end
|
2489
2560
|
|
2490
2561
|
# The resolved attributes used to configure an AutoML job V2.
|
2491
2562
|
#
|
2492
2563
|
# @!attribute [rw] auto_ml_job_objective
|
2493
|
-
# Specifies a metric to minimize or maximize as the objective of
|
2494
|
-
# job.
|
2564
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
2565
|
+
# AutoML job.
|
2495
2566
|
# @return [Types::AutoMLJobObjective]
|
2496
2567
|
#
|
2497
2568
|
# @!attribute [rw] completion_criteria
|
@@ -3124,7 +3195,7 @@ module Aws::SageMaker
|
|
3124
3195
|
# The SageMaker Canvas application settings.
|
3125
3196
|
#
|
3126
3197
|
# @!attribute [rw] time_series_forecasting_settings
|
3127
|
-
# Time series forecast settings for the Canvas application.
|
3198
|
+
# Time series forecast settings for the SageMaker Canvas application.
|
3128
3199
|
# @return [Types::TimeSeriesForecastingSettings]
|
3129
3200
|
#
|
3130
3201
|
# @!attribute [rw] model_register_settings
|
@@ -3139,13 +3210,23 @@ module Aws::SageMaker
|
|
3139
3210
|
# The settings for connecting to an external data source with OAuth.
|
3140
3211
|
# @return [Array<Types::IdentityProviderOAuthSetting>]
|
3141
3212
|
#
|
3213
|
+
# @!attribute [rw] kendra_settings
|
3214
|
+
# The settings for document querying.
|
3215
|
+
# @return [Types::KendraSettings]
|
3216
|
+
#
|
3217
|
+
# @!attribute [rw] direct_deploy_settings
|
3218
|
+
# The model deployment settings for the SageMaker Canvas application.
|
3219
|
+
# @return [Types::DirectDeploySettings]
|
3220
|
+
#
|
3142
3221
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
|
3143
3222
|
#
|
3144
3223
|
class CanvasAppSettings < Struct.new(
|
3145
3224
|
:time_series_forecasting_settings,
|
3146
3225
|
:model_register_settings,
|
3147
3226
|
:workspace_settings,
|
3148
|
-
:identity_provider_o_auth_settings
|
3227
|
+
:identity_provider_o_auth_settings,
|
3228
|
+
:kendra_settings,
|
3229
|
+
:direct_deploy_settings)
|
3149
3230
|
SENSITIVE = []
|
3150
3231
|
include Aws::Structure
|
3151
3232
|
end
|
@@ -4832,6 +4913,8 @@ module Aws::SageMaker
|
|
4832
4913
|
#
|
4833
4914
|
# * For time-series forecasting: `S3Prefix`.
|
4834
4915
|
#
|
4916
|
+
# * For text generation (LLMs fine-tuning): `S3Prefix`.
|
4917
|
+
#
|
4835
4918
|
#
|
4836
4919
|
#
|
4837
4920
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
@@ -4873,16 +4956,28 @@ module Aws::SageMaker
|
|
4873
4956
|
# problem type. For the list of default values per problem type, see
|
4874
4957
|
# [AutoMLJobObjective][1].
|
4875
4958
|
#
|
4876
|
-
# <note markdown="1"> For tabular problem types
|
4877
|
-
#
|
4878
|
-
#
|
4879
|
-
#
|
4959
|
+
# <note markdown="1"> * For tabular problem types: You must either provide both the
|
4960
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4961
|
+
# problem in `AutoMLProblemTypeConfig`
|
4962
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
4963
|
+
#
|
4964
|
+
# * For text generation problem types (LLMs fine-tuning): Fine-tuning
|
4965
|
+
# language models in Autopilot does not require setting the
|
4966
|
+
# `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
|
4967
|
+
# requiring multiple candidates to be trained and evaluated.
|
4968
|
+
# Instead, using your dataset, Autopilot directly fine-tunes your
|
4969
|
+
# target model to enhance a default objective metric, the
|
4970
|
+
# cross-entropy loss. After fine-tuning a language model, you can
|
4971
|
+
# evaluate the quality of its generated text using different
|
4972
|
+
# metrics. For a list of the available metrics, see [Metrics for
|
4973
|
+
# fine-tuning LLMs in Autopilot][2].
|
4880
4974
|
#
|
4881
4975
|
# </note>
|
4882
4976
|
#
|
4883
4977
|
#
|
4884
4978
|
#
|
4885
4979
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4980
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
|
4886
4981
|
# @return [Types::AutoMLJobObjective]
|
4887
4982
|
#
|
4888
4983
|
# @!attribute [rw] model_deploy_config
|
@@ -16341,6 +16436,30 @@ module Aws::SageMaker
|
|
16341
16436
|
include Aws::Structure
|
16342
16437
|
end
|
16343
16438
|
|
16439
|
+
# The model deployment settings for the SageMaker Canvas application.
|
16440
|
+
#
|
16441
|
+
# <note markdown="1"> In order to enable model deployment for Canvas, the SageMaker
|
16442
|
+
# Domain's or user profile's Amazon Web Services IAM execution role
|
16443
|
+
# must have the `AmazonSageMakerCanvasDirectDeployAccess` policy
|
16444
|
+
# attached. You can also turn on model deployment permissions through
|
16445
|
+
# the SageMaker Domain's or user profile's settings in the SageMaker
|
16446
|
+
# console.
|
16447
|
+
#
|
16448
|
+
# </note>
|
16449
|
+
#
|
16450
|
+
# @!attribute [rw] status
|
16451
|
+
# Describes whether model deployment permissions are enabled or
|
16452
|
+
# disabled in the Canvas application.
|
16453
|
+
# @return [String]
|
16454
|
+
#
|
16455
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DirectDeploySettings AWS API Documentation
|
16456
|
+
#
|
16457
|
+
class DirectDeploySettings < Struct.new(
|
16458
|
+
:status)
|
16459
|
+
SENSITIVE = []
|
16460
|
+
include Aws::Structure
|
16461
|
+
end
|
16462
|
+
|
16344
16463
|
# @api private
|
16345
16464
|
#
|
16346
16465
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DisableSagemakerServicecatalogPortfolioInput AWS API Documentation
|
@@ -20192,7 +20311,13 @@ module Aws::SageMaker
|
|
20192
20311
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20193
20312
|
# training jobs it launches, and returns the training job that results
|
20194
20313
|
# in either the highest or lowest value for this metric, depending on
|
20195
|
-
# the value you specify for the `Type` parameter.
|
20314
|
+
# the value you specify for the `Type` parameter. If you want to
|
20315
|
+
# define a custom objective metric, see [Define metrics and
|
20316
|
+
# environment variables][1].
|
20317
|
+
#
|
20318
|
+
#
|
20319
|
+
#
|
20320
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20196
20321
|
# @return [Types::HyperParameterTuningJobObjective]
|
20197
20322
|
#
|
20198
20323
|
# @!attribute [rw] hyper_parameter_ranges
|
@@ -20661,7 +20786,13 @@ module Aws::SageMaker
|
|
20661
20786
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
20662
20787
|
# training jobs it launches, and returns the training job that results
|
20663
20788
|
# in either the highest or lowest value for this metric, depending on
|
20664
|
-
# the value you specify for the `Type` parameter.
|
20789
|
+
# the value you specify for the `Type` parameter. If you want to define
|
20790
|
+
# a custom objective metric, see [Define metrics and environment
|
20791
|
+
# variables][1].
|
20792
|
+
#
|
20793
|
+
#
|
20794
|
+
#
|
20795
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
20665
20796
|
#
|
20666
20797
|
# @!attribute [rw] type
|
20667
20798
|
# Whether to minimize or maximize the objective metric.
|
@@ -21196,8 +21327,8 @@ module Aws::SageMaker
|
|
21196
21327
|
include Aws::Structure
|
21197
21328
|
end
|
21198
21329
|
|
21199
|
-
# The Amazon SageMaker Canvas
|
21200
|
-
# connecting to an external data source, such as Snowflake.
|
21330
|
+
# The Amazon SageMaker Canvas application setting where you configure
|
21331
|
+
# OAuth for connecting to an external data source, such as Snowflake.
|
21201
21332
|
#
|
21202
21333
|
# @!attribute [rw] data_source_name
|
21203
21334
|
# The name of the data source that you're connecting to. Canvas
|
@@ -21277,8 +21408,8 @@ module Aws::SageMaker
|
|
21277
21408
|
include Aws::Structure
|
21278
21409
|
end
|
21279
21410
|
|
21280
|
-
#
|
21281
|
-
# problem
|
21411
|
+
# The collection of settings used by an AutoML job V2 for the image
|
21412
|
+
# classification problem type.
|
21282
21413
|
#
|
21283
21414
|
# @!attribute [rw] completion_criteria
|
21284
21415
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -22194,6 +22325,22 @@ module Aws::SageMaker
|
|
22194
22325
|
include Aws::Structure
|
22195
22326
|
end
|
22196
22327
|
|
22328
|
+
# The Amazon SageMaker Canvas application setting where you configure
|
22329
|
+
# document querying.
|
22330
|
+
#
|
22331
|
+
# @!attribute [rw] status
|
22332
|
+
# Describes whether the document querying feature is enabled or
|
22333
|
+
# disabled in the Canvas application.
|
22334
|
+
# @return [String]
|
22335
|
+
#
|
22336
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KendraSettings AWS API Documentation
|
22337
|
+
#
|
22338
|
+
class KendraSettings < Struct.new(
|
22339
|
+
:status)
|
22340
|
+
SENSITIVE = []
|
22341
|
+
include Aws::Structure
|
22342
|
+
end
|
22343
|
+
|
22197
22344
|
# The KernelGateway app settings.
|
22198
22345
|
#
|
22199
22346
|
# @!attribute [rw] default_resource_spec
|
@@ -35188,8 +35335,8 @@ module Aws::SageMaker
|
|
35188
35335
|
# The resolved attributes.
|
35189
35336
|
#
|
35190
35337
|
# @!attribute [rw] auto_ml_job_objective
|
35191
|
-
# Specifies a metric to minimize or maximize as the objective of
|
35192
|
-
# job.
|
35338
|
+
# Specifies a metric to minimize or maximize as the objective of an
|
35339
|
+
# AutoML job.
|
35193
35340
|
# @return [Types::AutoMLJobObjective]
|
35194
35341
|
#
|
35195
35342
|
# @!attribute [rw] problem_type
|
@@ -36412,6 +36559,15 @@ module Aws::SageMaker
|
|
36412
36559
|
# copy input collaterals needed for the selected steps to run. The
|
36413
36560
|
# execution status of the pipeline can be either `Failed` or
|
36414
36561
|
# `Success`.
|
36562
|
+
#
|
36563
|
+
# This field is required if the steps you specify for `SelectedSteps`
|
36564
|
+
# depend on output collaterals from any non-specified pipeline steps.
|
36565
|
+
# For more information, see [Selective Execution for Pipeline
|
36566
|
+
# Steps][1].
|
36567
|
+
#
|
36568
|
+
#
|
36569
|
+
#
|
36570
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-selective-ex.html
|
36415
36571
|
# @return [String]
|
36416
36572
|
#
|
36417
36573
|
# @!attribute [rw] selected_steps
|
@@ -37420,7 +37576,7 @@ module Aws::SageMaker
|
|
37420
37576
|
include Aws::Structure
|
37421
37577
|
end
|
37422
37578
|
|
37423
|
-
# The collection of settings used by an AutoML job V2 for the
|
37579
|
+
# The collection of settings used by an AutoML job V2 for the tabular
|
37424
37580
|
# problem type.
|
37425
37581
|
#
|
37426
37582
|
# @!attribute [rw] candidate_generation_config
|
@@ -37561,7 +37717,7 @@ module Aws::SageMaker
|
|
37561
37717
|
include Aws::Structure
|
37562
37718
|
end
|
37563
37719
|
|
37564
|
-
# The resolved attributes specific to the
|
37720
|
+
# The resolved attributes specific to the tabular problem type.
|
37565
37721
|
#
|
37566
37722
|
# @!attribute [rw] problem_type
|
37567
37723
|
# The type of supervised learning problem available for the model
|
@@ -37735,8 +37891,8 @@ module Aws::SageMaker
|
|
37735
37891
|
include Aws::Structure
|
37736
37892
|
end
|
37737
37893
|
|
37738
|
-
#
|
37739
|
-
# problem
|
37894
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37895
|
+
# classification problem type.
|
37740
37896
|
#
|
37741
37897
|
# @!attribute [rw] completion_criteria
|
37742
37898
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -37763,6 +37919,60 @@ module Aws::SageMaker
|
|
37763
37919
|
include Aws::Structure
|
37764
37920
|
end
|
37765
37921
|
|
37922
|
+
# The collection of settings used by an AutoML job V2 for the text
|
37923
|
+
# generation problem type.
|
37924
|
+
#
|
37925
|
+
# <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
|
37926
|
+
# currently accessible exclusively in regions supported by Canvas. Refer
|
37927
|
+
# to the documentation of Canvas for the [full list of its supported
|
37928
|
+
# Regions][1].
|
37929
|
+
#
|
37930
|
+
# </note>
|
37931
|
+
#
|
37932
|
+
#
|
37933
|
+
#
|
37934
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
|
37935
|
+
#
|
37936
|
+
# @!attribute [rw] completion_criteria
|
37937
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37938
|
+
# allowed to generate.
|
37939
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37940
|
+
#
|
37941
|
+
# @!attribute [rw] base_model_name
|
37942
|
+
# The name of the base model to fine-tune. Autopilot supports
|
37943
|
+
# fine-tuning a variety of large language models. For information on
|
37944
|
+
# the list of supported models, see [Text generation models supporting
|
37945
|
+
# fine-tuning in Autopilot][1]. If no `BaseModelName` is provided, the
|
37946
|
+
# default model used is Falcon-7B-Instruct.
|
37947
|
+
#
|
37948
|
+
#
|
37949
|
+
#
|
37950
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms
|
37951
|
+
# @return [String]
|
37952
|
+
#
|
37953
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationJobConfig AWS API Documentation
|
37954
|
+
#
|
37955
|
+
class TextGenerationJobConfig < Struct.new(
|
37956
|
+
:completion_criteria,
|
37957
|
+
:base_model_name)
|
37958
|
+
SENSITIVE = []
|
37959
|
+
include Aws::Structure
|
37960
|
+
end
|
37961
|
+
|
37962
|
+
# The resolved attributes specific to the text generation problem type.
|
37963
|
+
#
|
37964
|
+
# @!attribute [rw] base_model_name
|
37965
|
+
# The name of the base model to fine-tune.
|
37966
|
+
# @return [String]
|
37967
|
+
#
|
37968
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationResolvedAttributes AWS API Documentation
|
37969
|
+
#
|
37970
|
+
class TextGenerationResolvedAttributes < Struct.new(
|
37971
|
+
:base_model_name)
|
37972
|
+
SENSITIVE = []
|
37973
|
+
include Aws::Structure
|
37974
|
+
end
|
37975
|
+
|
37766
37976
|
# The collection of components that defines the time-series.
|
37767
37977
|
#
|
37768
37978
|
# @!attribute [rw] target_attribute_name
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.217.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-10-
|
11
|
+
date: 2023-10-26 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|