aws-sdk-sagemaker 1.215.0 → 1.217.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 6880c6cc47c69ee153e353f898dfe8c99187de86a93852f830cd5b6f9aee9c6c
4
- data.tar.gz: 3ac90fadd408f9040b995d11e53555b5106b5d383fb9f214896db06240804c84
3
+ metadata.gz: 44e7e1f63bcf45a9e3c3c59aa6cc3ff1c72d5dcd343e8fd05a63fe85a95375e6
4
+ data.tar.gz: 5b10df777ead8d3feb98e0b95951a94ca581285b2d9cdddbbd70248f863b6990
5
5
  SHA512:
6
- metadata.gz: 00ae8e4c956de1e2cd2bdf7817ceb367d57be829be26b51ff98cfa7a21a84e896a6b84d783995277d0bef230677cccae445a1e3037bd0f0801a4338931432312
7
- data.tar.gz: 0355f7de8ffb9ebfde7ae289122d38924a28661353d6054a184c69fc954ca1bd158d06766fabaefe880cb9c0fae9becc78c2eb58898de8746e1c3f92607c879e
6
+ metadata.gz: 9393949f989c2a943f2c9a616655e3cc40cc36e6c7568cb5cd513378887862dde9f253cddecd89ec670527fac0953a8e0da6a527eca42f4300e43a292a948286
7
+ data.tar.gz: f40cd05d91ebe24815c853ed1043b09f4274a08ed4c23980cea7cd53b35f703af2531b660ac78e5b9d10c2a76143b95f20759516d024df7cda3214d9c0ea2643
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.217.0 (2023-10-26)
5
+ ------------------
6
+
7
+ * Feature - Amazon Sagemaker Autopilot now supports Text Generation jobs.
8
+
9
+ 1.216.0 (2023-10-12)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Canvas adds KendraSettings and DirectDeploySettings support for CanvasAppSettings
13
+
4
14
  1.215.0 (2023-10-04)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.215.0
1
+ 1.217.0
@@ -1221,8 +1221,8 @@ module Aws::SageMaker
1221
1221
  #
1222
1222
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1223
1223
  # those of its previous version `CreateAutoMLJob`, as well as
1224
- # time-series forecasting, and non-tabular problem types such as image
1225
- # or text classification.
1224
+ # time-series forecasting, non-tabular problem types such as image or
1225
+ # text classification, and text generation (LLMs fine-tuning).
1226
1226
  #
1227
1227
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1228
1228
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
@@ -1401,8 +1401,8 @@ module Aws::SageMaker
1401
1401
  #
1402
1402
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1403
1403
  # those of its previous version `CreateAutoMLJob`, as well as
1404
- # time-series forecasting, and non-tabular problem types such as image
1405
- # or text classification.
1404
+ # time-series forecasting, non-tabular problem types such as image or
1405
+ # text classification, and text generation (LLMs fine-tuning).
1406
1406
  #
1407
1407
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1408
1408
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
@@ -1444,6 +1444,8 @@ module Aws::SageMaker
1444
1444
  #
1445
1445
  # * For time-series forecasting: `S3Prefix`.
1446
1446
  #
1447
+ # * For text generation (LLMs fine-tuning): `S3Prefix`.
1448
+ #
1447
1449
  #
1448
1450
  #
1449
1451
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
@@ -1479,16 +1481,27 @@ module Aws::SageMaker
1479
1481
  # type. For the list of default values per problem type, see
1480
1482
  # [AutoMLJobObjective][1].
1481
1483
  #
1482
- # <note markdown="1"> For tabular problem types, you must either provide both the
1483
- # `AutoMLJobObjective` and indicate the type of supervised learning
1484
- # problem in `AutoMLProblemTypeConfig` (`TabularJobConfig.ProblemType`),
1485
- # or none at all.
1484
+ # <note markdown="1"> * For tabular problem types: You must either provide both the
1485
+ # `AutoMLJobObjective` and indicate the type of supervised learning
1486
+ # problem in `AutoMLProblemTypeConfig`
1487
+ # (`TabularJobConfig.ProblemType`), or none at all.
1488
+ #
1489
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
1490
+ # language models in Autopilot does not require setting the
1491
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
1492
+ # requiring multiple candidates to be trained and evaluated. Instead,
1493
+ # using your dataset, Autopilot directly fine-tunes your target model
1494
+ # to enhance a default objective metric, the cross-entropy loss. After
1495
+ # fine-tuning a language model, you can evaluate the quality of its
1496
+ # generated text using different metrics. For a list of the available
1497
+ # metrics, see [Metrics for fine-tuning LLMs in Autopilot][2].
1486
1498
  #
1487
1499
  # </note>
1488
1500
  #
1489
1501
  #
1490
1502
  #
1491
1503
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
1504
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
1492
1505
  #
1493
1506
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1494
1507
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -1602,6 +1615,14 @@ module Aws::SageMaker
1602
1615
  # },
1603
1616
  # ],
1604
1617
  # },
1618
+ # text_generation_job_config: {
1619
+ # completion_criteria: {
1620
+ # max_candidates: 1,
1621
+ # max_runtime_per_training_job_in_seconds: 1,
1622
+ # max_auto_ml_job_runtime_in_seconds: 1,
1623
+ # },
1624
+ # base_model_name: "BaseModelName",
1625
+ # },
1605
1626
  # },
1606
1627
  # role_arn: "RoleArn", # required
1607
1628
  # tags: [
@@ -2374,6 +2395,12 @@ module Aws::SageMaker
2374
2395
  # secret_arn: "SecretArn",
2375
2396
  # },
2376
2397
  # ],
2398
+ # kendra_settings: {
2399
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2400
+ # },
2401
+ # direct_deploy_settings: {
2402
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2403
+ # },
2377
2404
  # },
2378
2405
  # },
2379
2406
  # subnet_ids: ["SubnetId"], # required
@@ -3188,12 +3215,15 @@ module Aws::SageMaker
3188
3215
  # defined in the `FeatureStore` to describe a `Record`.
3189
3216
  #
3190
3217
  # The `FeatureGroup` defines the schema and features contained in the
3191
- # FeatureGroup. A `FeatureGroup` definition is composed of a list of
3218
+ # `FeatureGroup`. A `FeatureGroup` definition is composed of a list of
3192
3219
  # `Features`, a `RecordIdentifierFeatureName`, an `EventTimeFeatureName`
3193
3220
  # and configurations for its `OnlineStore` and `OfflineStore`. Check
3194
3221
  # [Amazon Web Services service quotas][1] to see the `FeatureGroup`s
3195
3222
  # quota for your Amazon Web Services account.
3196
3223
  #
3224
+ # Note that it can take approximately 10-15 minutes to provision an
3225
+ # `OnlineStore` `FeatureGroup` with the `InMemory` `StorageType`.
3226
+ #
3197
3227
  # You must include at least one of `OnlineStoreConfig` and
3198
3228
  # `OfflineStoreConfig` to create a `FeatureGroup`.
3199
3229
  #
@@ -8229,6 +8259,12 @@ module Aws::SageMaker
8229
8259
  # secret_arn: "SecretArn",
8230
8260
  # },
8231
8261
  # ],
8262
+ # kendra_settings: {
8263
+ # status: "ENABLED", # accepts ENABLED, DISABLED
8264
+ # },
8265
+ # direct_deploy_settings: {
8266
+ # status: "ENABLED", # accepts ENABLED, DISABLED
8267
+ # },
8232
8268
  # },
8233
8269
  # },
8234
8270
  # })
@@ -8940,6 +8976,9 @@ module Aws::SageMaker
8940
8976
  # Web Services Glue database and tables that are automatically created
8941
8977
  # for your `OfflineStore` are not deleted.
8942
8978
  #
8979
+ # Note that it can take approximately 10-15 minutes to delete an
8980
+ # `OnlineStore` `FeatureGroup` with the `InMemory` `StorageType`.
8981
+ #
8943
8982
  # @option params [required, String] :feature_group_name
8944
8983
  # The name of the `FeatureGroup` you want to delete. The name must be
8945
8984
  # unique within an Amazon Web Services Region in an Amazon Web Services
@@ -10296,7 +10335,7 @@ module Aws::SageMaker
10296
10335
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10297
10336
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10298
10337
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10299
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10338
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
10300
10339
  # resp.best_candidate.inference_container_definitions #=> Hash
10301
10340
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10302
10341
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10422,6 +10461,10 @@ module Aws::SageMaker
10422
10461
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10423
10462
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config #=> Array
10424
10463
  # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.holiday_config[0].country_code #=> String
10464
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_candidates #=> Integer
10465
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10466
+ # resp.auto_ml_problem_type_config.text_generation_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10467
+ # resp.auto_ml_problem_type_config.text_generation_job_config.base_model_name #=> String
10425
10468
  # resp.creation_time #=> Time
10426
10469
  # resp.end_time #=> Time
10427
10470
  # resp.last_modified_time #=> Time
@@ -10455,7 +10498,7 @@ module Aws::SageMaker
10455
10498
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10456
10499
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10457
10500
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10458
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10501
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
10459
10502
  # resp.best_candidate.inference_container_definitions #=> Hash
10460
10503
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10461
10504
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10481,7 +10524,8 @@ module Aws::SageMaker
10481
10524
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10482
10525
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10483
10526
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10484
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10527
+ # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.text_generation_resolved_attributes.base_model_name #=> String
10528
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting", "TextGeneration"
10485
10529
  #
10486
10530
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10487
10531
  #
@@ -10968,6 +11012,8 @@ module Aws::SageMaker
10968
11012
  # resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].data_source_name #=> String, one of "SalesforceGenie", "Snowflake"
10969
11013
  # resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].status #=> String, one of "ENABLED", "DISABLED"
10970
11014
  # resp.default_user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].secret_arn #=> String
11015
+ # resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
11016
+ # resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
10971
11017
  # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
10972
11018
  # resp.home_efs_file_system_kms_key_id #=> String
10973
11019
  # resp.subnet_ids #=> Array
@@ -14654,6 +14700,8 @@ module Aws::SageMaker
14654
14700
  # resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].data_source_name #=> String, one of "SalesforceGenie", "Snowflake"
14655
14701
  # resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].status #=> String, one of "ENABLED", "DISABLED"
14656
14702
  # resp.user_settings.canvas_app_settings.identity_provider_o_auth_settings[0].secret_arn #=> String
14703
+ # resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
14704
+ # resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
14657
14705
  #
14658
14706
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
14659
14707
  #
@@ -15866,7 +15914,7 @@ module Aws::SageMaker
15866
15914
  # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15867
15915
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15868
15916
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15869
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15917
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss", "Rouge1", "Rouge2", "RougeL", "RougeLSum", "Perplexity", "ValidationLoss", "TrainingLoss"
15870
15918
  # resp.candidates[0].inference_container_definitions #=> Hash
15871
15919
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15872
15920
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -22207,6 +22255,12 @@ module Aws::SageMaker
22207
22255
  # secret_arn: "SecretArn",
22208
22256
  # },
22209
22257
  # ],
22258
+ # kendra_settings: {
22259
+ # status: "ENABLED", # accepts ENABLED, DISABLED
22260
+ # },
22261
+ # direct_deploy_settings: {
22262
+ # status: "ENABLED", # accepts ENABLED, DISABLED
22263
+ # },
22210
22264
  # },
22211
22265
  # },
22212
22266
  # domain_settings_for_update: {
@@ -23976,6 +24030,12 @@ module Aws::SageMaker
23976
24030
  # secret_arn: "SecretArn",
23977
24031
  # },
23978
24032
  # ],
24033
+ # kendra_settings: {
24034
+ # status: "ENABLED", # accepts ENABLED, DISABLED
24035
+ # },
24036
+ # direct_deploy_settings: {
24037
+ # status: "ENABLED", # accepts ENABLED, DISABLED
24038
+ # },
23979
24039
  # },
23980
24040
  # },
23981
24041
  # })
@@ -24233,7 +24293,7 @@ module Aws::SageMaker
24233
24293
  params: params,
24234
24294
  config: config)
24235
24295
  context[:gem_name] = 'aws-sdk-sagemaker'
24236
- context[:gem_version] = '1.215.0'
24296
+ context[:gem_version] = '1.217.0'
24237
24297
  Seahorse::Client::Request.new(handlers, context)
24238
24298
  end
24239
24299
 
@@ -157,6 +157,7 @@ module Aws::SageMaker
157
157
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
158
158
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
159
159
  BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
160
+ BaseModelName = Shapes::StringShape.new(name: 'BaseModelName')
160
161
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
161
162
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
162
163
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -653,6 +654,7 @@ module Aws::SageMaker
653
654
  DeviceSummary = Shapes::StructureShape.new(name: 'DeviceSummary')
654
655
  Devices = Shapes::ListShape.new(name: 'Devices')
655
656
  Dimension = Shapes::IntegerShape.new(name: 'Dimension')
657
+ DirectDeploySettings = Shapes::StructureShape.new(name: 'DirectDeploySettings')
656
658
  DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
657
659
  Direction = Shapes::StringShape.new(name: 'Direction')
658
660
  DirectoryPath = Shapes::StringShape.new(name: 'DirectoryPath')
@@ -1018,6 +1020,7 @@ module Aws::SageMaker
1018
1020
  JsonPath = Shapes::StringShape.new(name: 'JsonPath')
1019
1021
  JupyterServerAppSettings = Shapes::StructureShape.new(name: 'JupyterServerAppSettings')
1020
1022
  KeepAlivePeriodInSeconds = Shapes::IntegerShape.new(name: 'KeepAlivePeriodInSeconds')
1023
+ KendraSettings = Shapes::StructureShape.new(name: 'KendraSettings')
1021
1024
  KernelDisplayName = Shapes::StringShape.new(name: 'KernelDisplayName')
1022
1025
  KernelGatewayAppSettings = Shapes::StructureShape.new(name: 'KernelGatewayAppSettings')
1023
1026
  KernelGatewayImageConfig = Shapes::StructureShape.new(name: 'KernelGatewayImageConfig')
@@ -1891,6 +1894,8 @@ module Aws::SageMaker
1891
1894
  TenthFractionsOfACent = Shapes::IntegerShape.new(name: 'TenthFractionsOfACent')
1892
1895
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1893
1896
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1897
+ TextGenerationJobConfig = Shapes::StructureShape.new(name: 'TextGenerationJobConfig')
1898
+ TextGenerationResolvedAttributes = Shapes::StructureShape.new(name: 'TextGenerationResolvedAttributes')
1894
1899
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1895
1900
  TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1896
1901
  TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
@@ -2425,17 +2430,21 @@ module Aws::SageMaker
2425
2430
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2426
2431
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2427
2432
  AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2433
+ AutoMLProblemTypeConfig.add_member(:text_generation_job_config, Shapes::ShapeRef.new(shape: TextGenerationJobConfig, location_name: "TextGenerationJobConfig"))
2428
2434
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2429
2435
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2430
2436
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2431
2437
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2432
2438
  AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2439
+ AutoMLProblemTypeConfig.add_member_subclass(:text_generation_job_config, Types::AutoMLProblemTypeConfig::TextGenerationJobConfig)
2433
2440
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2434
2441
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2435
2442
 
2436
2443
  AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
2444
+ AutoMLProblemTypeResolvedAttributes.add_member(:text_generation_resolved_attributes, Shapes::ShapeRef.new(shape: TextGenerationResolvedAttributes, location_name: "TextGenerationResolvedAttributes"))
2437
2445
  AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2438
2446
  AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
2447
+ AutoMLProblemTypeResolvedAttributes.add_member_subclass(:text_generation_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TextGenerationResolvedAttributes)
2439
2448
  AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
2440
2449
  AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
2441
2450
 
@@ -2547,6 +2556,8 @@ module Aws::SageMaker
2547
2556
  CanvasAppSettings.add_member(:model_register_settings, Shapes::ShapeRef.new(shape: ModelRegisterSettings, location_name: "ModelRegisterSettings"))
2548
2557
  CanvasAppSettings.add_member(:workspace_settings, Shapes::ShapeRef.new(shape: WorkspaceSettings, location_name: "WorkspaceSettings"))
2549
2558
  CanvasAppSettings.add_member(:identity_provider_o_auth_settings, Shapes::ShapeRef.new(shape: IdentityProviderOAuthSettings, location_name: "IdentityProviderOAuthSettings"))
2559
+ CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
2560
+ CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
2550
2561
  CanvasAppSettings.struct_class = Types::CanvasAppSettings
2551
2562
 
2552
2563
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -4857,6 +4868,9 @@ module Aws::SageMaker
4857
4868
 
4858
4869
  Devices.member = Shapes::ShapeRef.new(shape: Device)
4859
4870
 
4871
+ DirectDeploySettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
4872
+ DirectDeploySettings.struct_class = Types::DirectDeploySettings
4873
+
4860
4874
  DisableSagemakerServicecatalogPortfolioInput.struct_class = Types::DisableSagemakerServicecatalogPortfolioInput
4861
4875
 
4862
4876
  DisableSagemakerServicecatalogPortfolioOutput.struct_class = Types::DisableSagemakerServicecatalogPortfolioOutput
@@ -5733,6 +5747,9 @@ module Aws::SageMaker
5733
5747
  JupyterServerAppSettings.add_member(:code_repositories, Shapes::ShapeRef.new(shape: CodeRepositories, location_name: "CodeRepositories"))
5734
5748
  JupyterServerAppSettings.struct_class = Types::JupyterServerAppSettings
5735
5749
 
5750
+ KendraSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
5751
+ KendraSettings.struct_class = Types::KendraSettings
5752
+
5736
5753
  KernelGatewayAppSettings.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
5737
5754
  KernelGatewayAppSettings.add_member(:custom_images, Shapes::ShapeRef.new(shape: CustomImages, location_name: "CustomImages"))
5738
5755
  KernelGatewayAppSettings.add_member(:lifecycle_config_arns, Shapes::ShapeRef.new(shape: LifecycleConfigArns, location_name: "LifecycleConfigArns"))
@@ -8519,6 +8536,13 @@ module Aws::SageMaker
8519
8536
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, required: true, location_name: "TargetLabelColumn"))
8520
8537
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8521
8538
 
8539
+ TextGenerationJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8540
+ TextGenerationJobConfig.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
8541
+ TextGenerationJobConfig.struct_class = Types::TextGenerationJobConfig
8542
+
8543
+ TextGenerationResolvedAttributes.add_member(:base_model_name, Shapes::ShapeRef.new(shape: BaseModelName, location_name: "BaseModelName"))
8544
+ TextGenerationResolvedAttributes.struct_class = Types::TextGenerationResolvedAttributes
8545
+
8522
8546
  TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8523
8547
  TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8524
8548
  TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
@@ -32,11 +32,11 @@ module Aws::SageMaker
32
32
  raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
33
33
  end
34
34
  if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
35
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
36
- if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
35
+ if Aws::Endpoints::Matchers.boolean_equals?(Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"), true)
36
+ if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws")
37
37
  return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
38
38
  end
39
- if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
39
+ if Aws::Endpoints::Matchers.string_equals?(Aws::Endpoints::Matchers.attr(partition_result, "name"), "aws-us-gov")
40
40
  return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
41
41
  end
42
42
  return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
@@ -2140,6 +2140,10 @@ module Aws::SageMaker
2140
2140
  # * For time-series forecasting: `text/csv;header=present` or
2141
2141
  # `x-application/vnd.amazon+parquet`. The default value is
2142
2142
  # `text/csv;header=present`.
2143
+ #
2144
+ # * For text generation (LLMs fine-tuning): `text/csv;header=present`
2145
+ # or `x-application/vnd.amazon+parquet`. The default value is
2146
+ # `text/csv;header=present`.
2143
2147
  # @return [String]
2144
2148
  #
2145
2149
  # @!attribute [rw] compression_type
@@ -2170,9 +2174,9 @@ module Aws::SageMaker
2170
2174
  # @!attribute [rw] max_candidates
2171
2175
  # The maximum number of times a training job is allowed to run.
2172
2176
  #
2173
- # For text and image classification, as well as time-series
2174
- # forecasting problem types, the supported value is 1. For tabular
2175
- # problem types, the maximum value is 750.
2177
+ # For text and image classification, time-series forecasting, as well
2178
+ # as text generation (LLMs fine-tuning) problem types, the supported
2179
+ # value is 1. For tabular problem types, the maximum value is 750.
2176
2180
  # @return [Integer]
2177
2181
  #
2178
2182
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2275,7 +2279,8 @@ module Aws::SageMaker
2275
2279
  include Aws::Structure
2276
2280
  end
2277
2281
 
2278
- # Specifies a metric to minimize or maximize as the objective of a job.
2282
+ # Specifies a metric to minimize or maximize as the objective of an
2283
+ # AutoML job.
2279
2284
  #
2280
2285
  # @!attribute [rw] metric_name
2281
2286
  # The name of the objective metric used to measure the predictive
@@ -2284,28 +2289,70 @@ module Aws::SageMaker
2284
2289
  # on the feedback provided by the objective metric when evaluating the
2285
2290
  # model on the validation dataset.
2286
2291
  #
2287
- # For the list of all available metrics supported by Autopilot, see
2288
- # [Autopilot metrics][1].
2289
- #
2290
- # If you do not specify a metric explicitly, the default behavior is
2291
- # to automatically use:
2292
+ # The list of available metrics supported by Autopilot and the default
2293
+ # metric applied when you do not specify a metric name explicitly
2294
+ # depend on the problem type.
2292
2295
  #
2293
2296
  # * For tabular problem types:
2294
2297
  #
2295
- # * Regression: `MSE`.
2298
+ # * List of available metrics:
2299
+ #
2300
+ # * Regression: `InferenceLatency`, `MAE`, `MSE`, `R2`, `RMSE`
2301
+ #
2302
+ # * Binary classification: `Accuracy`, `AUC`, `BalancedAccuracy`,
2303
+ # `F1`, `InferenceLatency`, `LogLoss`, `Precision`, `Recall`
2304
+ #
2305
+ # * Multiclass classification: `Accuracy`, `BalancedAccuracy`,
2306
+ # `F1macro`, `InferenceLatency`, `LogLoss`, `PrecisionMacro`,
2307
+ # `RecallMacro`
2308
+ #
2309
+ # For a description of each metric, see [Autopilot metrics for
2310
+ # classification and regression][1].
2296
2311
  #
2297
- # * Binary classification: `F1`.
2312
+ # * Default objective metrics:
2298
2313
  #
2299
- # * Multiclass classification: `Accuracy`.
2314
+ # * Regression: `MSE`.
2300
2315
  #
2301
- # * For image or text classification problem types: `Accuracy`
2316
+ # * Binary classification: `F1`.
2317
+ #
2318
+ # * Multiclass classification: `Accuracy`.
2319
+ #
2320
+ # * For image or text classification problem types:
2321
+ #
2322
+ # * List of available metrics: `Accuracy`
2323
+ #
2324
+ # For a description of each metric, see [Autopilot metrics for
2325
+ # text and image classification][2].
2326
+ #
2327
+ # * Default objective metrics: `Accuracy`
2302
2328
  #
2303
2329
  # * For time-series forecasting problem types:
2304
- # `AverageWeightedQuantileLoss`
2330
+ #
2331
+ # * List of available metrics: `RMSE`, `wQL`, `Average wQL`, `MASE`,
2332
+ # `MAPE`, `WAPE`
2333
+ #
2334
+ # For a description of each metric, see [Autopilot metrics for
2335
+ # time-series forecasting][3].
2336
+ #
2337
+ # * Default objective metrics: `AverageWeightedQuantileLoss`
2338
+ #
2339
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
2340
+ # language models in Autopilot does not require setting the
2341
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
2342
+ # requiring multiple candidates to be trained and evaluated.
2343
+ # Instead, using your dataset, Autopilot directly fine-tunes your
2344
+ # target model to enhance a default objective metric, the
2345
+ # cross-entropy loss. After fine-tuning a language model, you can
2346
+ # evaluate the quality of its generated text using different
2347
+ # metrics. For a list of the available metrics, see [Metrics for
2348
+ # fine-tuning LLMs in Autopilot][4].
2305
2349
  #
2306
2350
  #
2307
2351
  #
2308
2352
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
2353
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html
2354
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html
2355
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
2309
2356
  # @return [String]
2310
2357
  #
2311
2358
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2437,15 +2484,31 @@ module Aws::SageMaker
2437
2484
  # @return [Types::TextClassificationJobConfig]
2438
2485
  #
2439
2486
  # @!attribute [rw] tabular_job_config
2440
- # Settings used to configure an AutoML job V2 for a tabular problem
2487
+ # Settings used to configure an AutoML job V2 for the tabular problem
2441
2488
  # type (regression, classification).
2442
2489
  # @return [Types::TabularJobConfig]
2443
2490
  #
2444
2491
  # @!attribute [rw] time_series_forecasting_job_config
2445
- # Settings used to configure an AutoML job V2 for a time-series
2492
+ # Settings used to configure an AutoML job V2 for the time-series
2446
2493
  # forecasting problem type.
2447
2494
  # @return [Types::TimeSeriesForecastingJobConfig]
2448
2495
  #
2496
+ # @!attribute [rw] text_generation_job_config
2497
+ # Settings used to configure an AutoML job V2 for the text generation
2498
+ # (LLMs fine-tuning) problem type.
2499
+ #
2500
+ # <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
2501
+ # currently accessible exclusively in regions supported by Canvas.
2502
+ # Refer to the documentation of Canvas for the [full list of its
2503
+ # supported Regions][1].
2504
+ #
2505
+ # </note>
2506
+ #
2507
+ #
2508
+ #
2509
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
2510
+ # @return [Types::TextGenerationJobConfig]
2511
+ #
2449
2512
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2450
2513
  #
2451
2514
  class AutoMLProblemTypeConfig < Struct.new(
@@ -2453,6 +2516,7 @@ module Aws::SageMaker
2453
2516
  :text_classification_job_config,
2454
2517
  :tabular_job_config,
2455
2518
  :time_series_forecasting_job_config,
2519
+ :text_generation_job_config,
2456
2520
  :unknown)
2457
2521
  SENSITIVE = []
2458
2522
  include Aws::Structure
@@ -2462,36 +2526,43 @@ module Aws::SageMaker
2462
2526
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2463
2527
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2464
2528
  class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2529
+ class TextGenerationJobConfig < AutoMLProblemTypeConfig; end
2465
2530
  class Unknown < AutoMLProblemTypeConfig; end
2466
2531
  end
2467
2532
 
2468
- # The resolved attributes specific to the problem type of an AutoML job
2469
- # V2.
2533
+ # Stores resolved attributes specific to the problem type of an AutoML
2534
+ # job V2.
2470
2535
  #
2471
2536
  # @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
2472
2537
  #
2473
2538
  # @!attribute [rw] tabular_resolved_attributes
2474
- # Defines the resolved attributes for the `TABULAR` problem type.
2539
+ # The resolved attributes for the tabular problem type.
2475
2540
  # @return [Types::TabularResolvedAttributes]
2476
2541
  #
2542
+ # @!attribute [rw] text_generation_resolved_attributes
2543
+ # The resolved attributes for the text generation problem type.
2544
+ # @return [Types::TextGenerationResolvedAttributes]
2545
+ #
2477
2546
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
2478
2547
  #
2479
2548
  class AutoMLProblemTypeResolvedAttributes < Struct.new(
2480
2549
  :tabular_resolved_attributes,
2550
+ :text_generation_resolved_attributes,
2481
2551
  :unknown)
2482
2552
  SENSITIVE = []
2483
2553
  include Aws::Structure
2484
2554
  include Aws::Structure::Union
2485
2555
 
2486
2556
  class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2557
+ class TextGenerationResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2487
2558
  class Unknown < AutoMLProblemTypeResolvedAttributes; end
2488
2559
  end
2489
2560
 
2490
2561
  # The resolved attributes used to configure an AutoML job V2.
2491
2562
  #
2492
2563
  # @!attribute [rw] auto_ml_job_objective
2493
- # Specifies a metric to minimize or maximize as the objective of a
2494
- # job.
2564
+ # Specifies a metric to minimize or maximize as the objective of an
2565
+ # AutoML job.
2495
2566
  # @return [Types::AutoMLJobObjective]
2496
2567
  #
2497
2568
  # @!attribute [rw] completion_criteria
@@ -3124,7 +3195,7 @@ module Aws::SageMaker
3124
3195
  # The SageMaker Canvas application settings.
3125
3196
  #
3126
3197
  # @!attribute [rw] time_series_forecasting_settings
3127
- # Time series forecast settings for the Canvas application.
3198
+ # Time series forecast settings for the SageMaker Canvas application.
3128
3199
  # @return [Types::TimeSeriesForecastingSettings]
3129
3200
  #
3130
3201
  # @!attribute [rw] model_register_settings
@@ -3139,13 +3210,23 @@ module Aws::SageMaker
3139
3210
  # The settings for connecting to an external data source with OAuth.
3140
3211
  # @return [Array<Types::IdentityProviderOAuthSetting>]
3141
3212
  #
3213
+ # @!attribute [rw] kendra_settings
3214
+ # The settings for document querying.
3215
+ # @return [Types::KendraSettings]
3216
+ #
3217
+ # @!attribute [rw] direct_deploy_settings
3218
+ # The model deployment settings for the SageMaker Canvas application.
3219
+ # @return [Types::DirectDeploySettings]
3220
+ #
3142
3221
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
3143
3222
  #
3144
3223
  class CanvasAppSettings < Struct.new(
3145
3224
  :time_series_forecasting_settings,
3146
3225
  :model_register_settings,
3147
3226
  :workspace_settings,
3148
- :identity_provider_o_auth_settings)
3227
+ :identity_provider_o_auth_settings,
3228
+ :kendra_settings,
3229
+ :direct_deploy_settings)
3149
3230
  SENSITIVE = []
3150
3231
  include Aws::Structure
3151
3232
  end
@@ -4832,6 +4913,8 @@ module Aws::SageMaker
4832
4913
  #
4833
4914
  # * For time-series forecasting: `S3Prefix`.
4834
4915
  #
4916
+ # * For text generation (LLMs fine-tuning): `S3Prefix`.
4917
+ #
4835
4918
  #
4836
4919
  #
4837
4920
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
@@ -4873,16 +4956,28 @@ module Aws::SageMaker
4873
4956
  # problem type. For the list of default values per problem type, see
4874
4957
  # [AutoMLJobObjective][1].
4875
4958
  #
4876
- # <note markdown="1"> For tabular problem types, you must either provide both the
4877
- # `AutoMLJobObjective` and indicate the type of supervised learning
4878
- # problem in `AutoMLProblemTypeConfig`
4879
- # (`TabularJobConfig.ProblemType`), or none at all.
4959
+ # <note markdown="1"> * For tabular problem types: You must either provide both the
4960
+ # `AutoMLJobObjective` and indicate the type of supervised learning
4961
+ # problem in `AutoMLProblemTypeConfig`
4962
+ # (`TabularJobConfig.ProblemType`), or none at all.
4963
+ #
4964
+ # * For text generation problem types (LLMs fine-tuning): Fine-tuning
4965
+ # language models in Autopilot does not require setting the
4966
+ # `AutoMLJobObjective` field. Autopilot fine-tunes LLMs without
4967
+ # requiring multiple candidates to be trained and evaluated.
4968
+ # Instead, using your dataset, Autopilot directly fine-tunes your
4969
+ # target model to enhance a default objective metric, the
4970
+ # cross-entropy loss. After fine-tuning a language model, you can
4971
+ # evaluate the quality of its generated text using different
4972
+ # metrics. For a list of the available metrics, see [Metrics for
4973
+ # fine-tuning LLMs in Autopilot][2].
4880
4974
  #
4881
4975
  # </note>
4882
4976
  #
4883
4977
  #
4884
4978
  #
4885
4979
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4980
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html
4886
4981
  # @return [Types::AutoMLJobObjective]
4887
4982
  #
4888
4983
  # @!attribute [rw] model_deploy_config
@@ -16341,6 +16436,30 @@ module Aws::SageMaker
16341
16436
  include Aws::Structure
16342
16437
  end
16343
16438
 
16439
+ # The model deployment settings for the SageMaker Canvas application.
16440
+ #
16441
+ # <note markdown="1"> In order to enable model deployment for Canvas, the SageMaker
16442
+ # Domain's or user profile's Amazon Web Services IAM execution role
16443
+ # must have the `AmazonSageMakerCanvasDirectDeployAccess` policy
16444
+ # attached. You can also turn on model deployment permissions through
16445
+ # the SageMaker Domain's or user profile's settings in the SageMaker
16446
+ # console.
16447
+ #
16448
+ # </note>
16449
+ #
16450
+ # @!attribute [rw] status
16451
+ # Describes whether model deployment permissions are enabled or
16452
+ # disabled in the Canvas application.
16453
+ # @return [String]
16454
+ #
16455
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DirectDeploySettings AWS API Documentation
16456
+ #
16457
+ class DirectDeploySettings < Struct.new(
16458
+ :status)
16459
+ SENSITIVE = []
16460
+ include Aws::Structure
16461
+ end
16462
+
16344
16463
  # @api private
16345
16464
  #
16346
16465
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DisableSagemakerServicecatalogPortfolioInput AWS API Documentation
@@ -20192,7 +20311,13 @@ module Aws::SageMaker
20192
20311
  # Hyperparameter tuning uses the value of this metric to evaluate the
20193
20312
  # training jobs it launches, and returns the training job that results
20194
20313
  # in either the highest or lowest value for this metric, depending on
20195
- # the value you specify for the `Type` parameter.
20314
+ # the value you specify for the `Type` parameter. If you want to
20315
+ # define a custom objective metric, see [Define metrics and
20316
+ # environment variables][1].
20317
+ #
20318
+ #
20319
+ #
20320
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
20196
20321
  # @return [Types::HyperParameterTuningJobObjective]
20197
20322
  #
20198
20323
  # @!attribute [rw] hyper_parameter_ranges
@@ -20661,7 +20786,13 @@ module Aws::SageMaker
20661
20786
  # Hyperparameter tuning uses the value of this metric to evaluate the
20662
20787
  # training jobs it launches, and returns the training job that results
20663
20788
  # in either the highest or lowest value for this metric, depending on
20664
- # the value you specify for the `Type` parameter.
20789
+ # the value you specify for the `Type` parameter. If you want to define
20790
+ # a custom objective metric, see [Define metrics and environment
20791
+ # variables][1].
20792
+ #
20793
+ #
20794
+ #
20795
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
20665
20796
  #
20666
20797
  # @!attribute [rw] type
20667
20798
  # Whether to minimize or maximize the objective metric.
@@ -21196,8 +21327,8 @@ module Aws::SageMaker
21196
21327
  include Aws::Structure
21197
21328
  end
21198
21329
 
21199
- # The Amazon SageMaker Canvas app setting where you configure OAuth for
21200
- # connecting to an external data source, such as Snowflake.
21330
+ # The Amazon SageMaker Canvas application setting where you configure
21331
+ # OAuth for connecting to an external data source, such as Snowflake.
21201
21332
  #
21202
21333
  # @!attribute [rw] data_source_name
21203
21334
  # The name of the data source that you're connecting to. Canvas
@@ -21277,8 +21408,8 @@ module Aws::SageMaker
21277
21408
  include Aws::Structure
21278
21409
  end
21279
21410
 
21280
- # Stores the configuration information for the image classification
21281
- # problem of an AutoML job V2.
21411
+ # The collection of settings used by an AutoML job V2 for the image
21412
+ # classification problem type.
21282
21413
  #
21283
21414
  # @!attribute [rw] completion_criteria
21284
21415
  # How long a job is allowed to run, or how many candidates a job is
@@ -22194,6 +22325,22 @@ module Aws::SageMaker
22194
22325
  include Aws::Structure
22195
22326
  end
22196
22327
 
22328
+ # The Amazon SageMaker Canvas application setting where you configure
22329
+ # document querying.
22330
+ #
22331
+ # @!attribute [rw] status
22332
+ # Describes whether the document querying feature is enabled or
22333
+ # disabled in the Canvas application.
22334
+ # @return [String]
22335
+ #
22336
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KendraSettings AWS API Documentation
22337
+ #
22338
+ class KendraSettings < Struct.new(
22339
+ :status)
22340
+ SENSITIVE = []
22341
+ include Aws::Structure
22342
+ end
22343
+
22197
22344
  # The KernelGateway app settings.
22198
22345
  #
22199
22346
  # @!attribute [rw] default_resource_spec
@@ -35188,8 +35335,8 @@ module Aws::SageMaker
35188
35335
  # The resolved attributes.
35189
35336
  #
35190
35337
  # @!attribute [rw] auto_ml_job_objective
35191
- # Specifies a metric to minimize or maximize as the objective of a
35192
- # job.
35338
+ # Specifies a metric to minimize or maximize as the objective of an
35339
+ # AutoML job.
35193
35340
  # @return [Types::AutoMLJobObjective]
35194
35341
  #
35195
35342
  # @!attribute [rw] problem_type
@@ -36412,6 +36559,15 @@ module Aws::SageMaker
36412
36559
  # copy input collaterals needed for the selected steps to run. The
36413
36560
  # execution status of the pipeline can be either `Failed` or
36414
36561
  # `Success`.
36562
+ #
36563
+ # This field is required if the steps you specify for `SelectedSteps`
36564
+ # depend on output collaterals from any non-specified pipeline steps.
36565
+ # For more information, see [Selective Execution for Pipeline
36566
+ # Steps][1].
36567
+ #
36568
+ #
36569
+ #
36570
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-selective-ex.html
36415
36571
  # @return [String]
36416
36572
  #
36417
36573
  # @!attribute [rw] selected_steps
@@ -37420,7 +37576,7 @@ module Aws::SageMaker
37420
37576
  include Aws::Structure
37421
37577
  end
37422
37578
 
37423
- # The collection of settings used by an AutoML job V2 for the `TABULAR`
37579
+ # The collection of settings used by an AutoML job V2 for the tabular
37424
37580
  # problem type.
37425
37581
  #
37426
37582
  # @!attribute [rw] candidate_generation_config
@@ -37561,7 +37717,7 @@ module Aws::SageMaker
37561
37717
  include Aws::Structure
37562
37718
  end
37563
37719
 
37564
- # The resolved attributes specific to the `TABULAR` problem type.
37720
+ # The resolved attributes specific to the tabular problem type.
37565
37721
  #
37566
37722
  # @!attribute [rw] problem_type
37567
37723
  # The type of supervised learning problem available for the model
@@ -37735,8 +37891,8 @@ module Aws::SageMaker
37735
37891
  include Aws::Structure
37736
37892
  end
37737
37893
 
37738
- # Stores the configuration information for the text classification
37739
- # problem of an AutoML job V2.
37894
+ # The collection of settings used by an AutoML job V2 for the text
37895
+ # classification problem type.
37740
37896
  #
37741
37897
  # @!attribute [rw] completion_criteria
37742
37898
  # How long a job is allowed to run, or how many candidates a job is
@@ -37763,6 +37919,60 @@ module Aws::SageMaker
37763
37919
  include Aws::Structure
37764
37920
  end
37765
37921
 
37922
+ # The collection of settings used by an AutoML job V2 for the text
37923
+ # generation problem type.
37924
+ #
37925
+ # <note markdown="1"> The text generation models that support fine-tuning in Autopilot are
37926
+ # currently accessible exclusively in regions supported by Canvas. Refer
37927
+ # to the documentation of Canvas for the [full list of its supported
37928
+ # Regions][1].
37929
+ #
37930
+ # </note>
37931
+ #
37932
+ #
37933
+ #
37934
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
37935
+ #
37936
+ # @!attribute [rw] completion_criteria
37937
+ # How long a job is allowed to run, or how many candidates a job is
37938
+ # allowed to generate.
37939
+ # @return [Types::AutoMLJobCompletionCriteria]
37940
+ #
37941
+ # @!attribute [rw] base_model_name
37942
+ # The name of the base model to fine-tune. Autopilot supports
37943
+ # fine-tuning a variety of large language models. For information on
37944
+ # the list of supported models, see [Text generation models supporting
37945
+ # fine-tuning in Autopilot][1]. If no `BaseModelName` is provided, the
37946
+ # default model used is Falcon-7B-Instruct.
37947
+ #
37948
+ #
37949
+ #
37950
+ # [1]: https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms
37951
+ # @return [String]
37952
+ #
37953
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationJobConfig AWS API Documentation
37954
+ #
37955
+ class TextGenerationJobConfig < Struct.new(
37956
+ :completion_criteria,
37957
+ :base_model_name)
37958
+ SENSITIVE = []
37959
+ include Aws::Structure
37960
+ end
37961
+
37962
+ # The resolved attributes specific to the text generation problem type.
37963
+ #
37964
+ # @!attribute [rw] base_model_name
37965
+ # The name of the base model to fine-tune.
37966
+ # @return [String]
37967
+ #
37968
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextGenerationResolvedAttributes AWS API Documentation
37969
+ #
37970
+ class TextGenerationResolvedAttributes < Struct.new(
37971
+ :base_model_name)
37972
+ SENSITIVE = []
37973
+ include Aws::Structure
37974
+ end
37975
+
37766
37976
  # The collection of components that defines the time-series.
37767
37977
  #
37768
37978
  # @!attribute [rw] target_attribute_name
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.215.0'
56
+ GEM_VERSION = '1.217.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.215.0
4
+ version: 1.217.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-10-04 00:00:00.000000000 Z
11
+ date: 2023-10-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core