aws-sdk-sagemaker 1.21.0 → 1.22.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 31b564b8721eb488ccddad79bb0929c5ca03f104
4
- data.tar.gz: 55b3ea9c50779301af7e7753cdad5c09e428176a
3
+ metadata.gz: 23a230a548063d7b4c4b79fec12f854b7a1a31ae
4
+ data.tar.gz: 36f05d0d9a75480a1f6290b595fe4debcfbabc5c
5
5
  SHA512:
6
- metadata.gz: 28cd217bdf02cc9e1028683a02b09ae01d841095f9bf98d14e3deb2eddaec9aee3b855c2b61c85c066770c91373f073b455e19965d6b64f0cea459826096cb3e
7
- data.tar.gz: 9efe4c228aff27905a0b47a6f012d9bce877bd3ddf66a2f667f34dd9afcb4c545c0af32cd8adfdeddfc491da6165871f629d3c84f0f79cb6bb115b4527810117
6
+ metadata.gz: 91cfc944da0e803b7608aaa675f1980f17b4ceaaa1b7c913e6659315382fbc8472520d3e2f187f2bddff7e8bd4c492a673bca33db7ef82e3b02e3e3b77f74c6c
7
+ data.tar.gz: 7b4884efa994f9b28b35cd1ae311e2dcdb9bd2b0957074a10fe1dff6b15d928b30335981dab160685d4dceaf5857212a7665129d1ff5800351a46b138871cac3
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.21.0'
46
+ GEM_VERSION = '1.22.0'
47
47
 
48
48
  end
@@ -190,16 +190,28 @@ module Aws::SageMaker
190
190
 
191
191
  # Adds or overwrites one or more tags for the specified Amazon SageMaker
192
192
  # resource. You can add tags to notebook instances, training jobs,
193
- # models, endpoint configurations, and endpoints.
193
+ # hyperparameter tuning jobs, models, endpoint configurations, and
194
+ # endpoints.
194
195
  #
195
196
  # Each tag consists of a key and an optional value. Tag keys must be
196
- # unique per resource. For more information about tags, see [Using Cost
197
- # Allocation Tags][1] in the *AWS Billing and Cost Management User
198
- # Guide*.
197
+ # unique per resource. For more information about tags, see For more
198
+ # information, see [AWS Tagging Strategies][1].
199
+ #
200
+ # <note markdown="1"> Tags that you add to a hyperparameter tuning job by calling this API
201
+ # are also added to any training jobs that the hyperparameter tuning job
202
+ # launches after you call this API, but not to training jobs that the
203
+ # hyperparameter tuning job launched before you called this API. To make
204
+ # sure that the tags associated with a hyperparameter tuning job are
205
+ # also added to all training jobs that the hyperparameter tuning job
206
+ # launches, add the tags when you first create the tuning job by
207
+ # specifying them in the `Tags` parameter of
208
+ # CreateHyperParameterTuningJob
209
+ #
210
+ # </note>
199
211
  #
200
212
  #
201
213
  #
202
- # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
214
+ # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
203
215
  #
204
216
  # @option params [required, String] :resource_arn
205
217
  # The Amazon Resource Name (ARN) of the resource that you want to tag.
@@ -448,12 +460,14 @@ module Aws::SageMaker
448
460
  # @option params [Array<Types::Tag>] :tags
449
461
  # An array of key-value pairs. You can use tags to categorize your AWS
450
462
  # resources in different ways, for example, by purpose, owner, or
451
- # environment. For more information, see [Using Cost Allocation Tags][1]
452
- # in the *AWS Billing and Cost Management User Guide*.
463
+ # environment. For more information, see [AWS Tagging Strategies][1].
464
+ #
465
+ # Tags that you specify for the tuning job are also added to all
466
+ # training jobs that the tuning job launches.
453
467
  #
454
468
  #
455
469
  #
456
- # [1]: http://docs.aws.amazon.com//awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
470
+ # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
457
471
  #
458
472
  # @return [Types::CreateHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
459
473
  #
@@ -524,6 +538,7 @@ module Aws::SageMaker
524
538
  # content_type: "ContentType",
525
539
  # compression_type: "None", # accepts None, Gzip
526
540
  # record_wrapper_type: "None", # accepts None, RecordIO
541
+ # input_mode: "Pipe", # accepts Pipe, File
527
542
  # },
528
543
  # ],
529
544
  # vpc_config: {
@@ -630,8 +645,15 @@ module Aws::SageMaker
630
645
  # @option params [Types::VpcConfig] :vpc_config
631
646
  # A VpcConfig object that specifies the VPC that you want your model to
632
647
  # connect to. Control access to and from your model container by
633
- # configuring the VPC. `VpcConfig` is currently used in hosting services
634
- # but not in batch transform. For more information, see host-vpc.
648
+ # configuring the VPC. `VpcConfig` is used in hosting services and in
649
+ # batch transform. For more information, see [Protect Endpoints by Using
650
+ # an Amazon Virtual Private Cloud][1] and [Protect Data in Batch
651
+ # Transform Jobs by Using an Amazon Virtual Private Cloud][2].
652
+ #
653
+ #
654
+ #
655
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
656
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html
635
657
  #
636
658
  # @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
637
659
  #
@@ -764,8 +786,12 @@ module Aws::SageMaker
764
786
  #
765
787
  # @option params [String] :lifecycle_config_name
766
788
  # The name of a lifecycle configuration to associate with the notebook
767
- # instance. For information about lifestyle configurations, see
768
- # notebook-lifecycle-config.
789
+ # instance. For information about lifestyle configurations, see [Step
790
+ # 2.1: (Optional) Customize a Notebook Instance][1].
791
+ #
792
+ #
793
+ #
794
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
769
795
  #
770
796
  # @option params [String] :direct_internet_access
771
797
  # Sets whether Amazon SageMaker provides internet access to the notebook
@@ -774,9 +800,17 @@ module Aws::SageMaker
774
800
  # connect to Amazon SageMaker training and endpoint services unless your
775
801
  # configure a NAT Gateway in your VPC.
776
802
  #
777
- # For more information, see appendix-notebook-and-internet-access. You
778
- # can set the value of this parameter to `Disabled` only if you set a
779
- # value for the `SubnetId` parameter.
803
+ # For more information, see [Notebook Instances Are Internet-Enabled by
804
+ # Default][1]. You can set the value of this parameter to `Disabled`
805
+ # only if you set a value for the `SubnetId` parameter.
806
+ #
807
+ #
808
+ #
809
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
810
+ #
811
+ # @option params [Integer] :volume_size_in_gb
812
+ # The size, in GB, of the ML storage volume to attach to the notebook
813
+ # instance.
780
814
  #
781
815
  # @return [Types::CreateNotebookInstanceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
782
816
  #
@@ -799,6 +833,7 @@ module Aws::SageMaker
799
833
  # ],
800
834
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
801
835
  # direct_internet_access: "Enabled", # accepts Enabled, Disabled
836
+ # volume_size_in_gb: 1,
802
837
  # })
803
838
  #
804
839
  # @example Response structure
@@ -832,18 +867,23 @@ module Aws::SageMaker
832
867
  # instance is not created or started.
833
868
  #
834
869
  # For information about notebook instance lifestyle configurations, see
835
- # notebook-lifecycle-config.
870
+ # [Step 2.1: (Optional) Customize a Notebook Instance][1].
871
+ #
872
+ #
873
+ #
874
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
836
875
  #
837
876
  # @option params [required, String] :notebook_instance_lifecycle_config_name
838
877
  # The name of the lifecycle configuration.
839
878
  #
840
879
  # @option params [Array<Types::NotebookInstanceLifecycleHook>] :on_create
841
880
  # A shell script that runs only once, when you create a notebook
842
- # instance.
881
+ # instance. The shell script must be a base64-encoded string.
843
882
  #
844
883
  # @option params [Array<Types::NotebookInstanceLifecycleHook>] :on_start
845
884
  # A shell script that runs every time you start a notebook instance,
846
- # including when you create the notebook instance.
885
+ # including when you create the notebook instance. The shell script must
886
+ # be a base64-encoded string.
847
887
  #
848
888
  # @return [Types::CreateNotebookInstanceLifecycleConfigOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
849
889
  #
@@ -892,7 +932,11 @@ module Aws::SageMaker
892
932
  # Use the `NotIpAddress` condition operator and the `aws:SourceIP`
893
933
  # condition context key to specify the list of IP addresses that you
894
934
  # want to have access to the notebook instance. For more information,
895
- # see nbi-ip-filter.
935
+ # see [Limit Access to a Notebook Instance by IP Address][1].
936
+ #
937
+ #
938
+ #
939
+ # [1]: http://docs.aws.amazon.com/https:/docs.aws.amazon.com/sagemaker/latest/dg/howitworks-access-ws.html#nbi-ip-filter
896
940
  #
897
941
  # @option params [required, String] :notebook_instance_name
898
942
  # The name of the notebook instance.
@@ -993,11 +1037,12 @@ module Aws::SageMaker
993
1037
  # algorithm and algorithm-specific metadata, including the input mode.
994
1038
  # For more information about algorithms provided by Amazon SageMaker,
995
1039
  # see [Algorithms][1]. For information about providing your own
996
- # algorithms, see your-algorithms.
1040
+ # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
997
1041
  #
998
1042
  #
999
1043
  #
1000
1044
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
1045
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
1001
1046
  #
1002
1047
  # @option params [required, String] :role_arn
1003
1048
  # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
@@ -1019,7 +1064,7 @@ module Aws::SageMaker
1019
1064
  #
1020
1065
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
1021
1066
  #
1022
- # @option params [required, Array<Types::Channel>] :input_data_config
1067
+ # @option params [Array<Types::Channel>] :input_data_config
1023
1068
  # An array of `Channel` objects. Each channel is a named input source.
1024
1069
  # `InputDataConfig` describes the input data and its location.
1025
1070
  #
@@ -1054,7 +1099,12 @@ module Aws::SageMaker
1054
1099
  # @option params [Types::VpcConfig] :vpc_config
1055
1100
  # A VpcConfig object that specifies the VPC that you want your training
1056
1101
  # job to connect to. Control access to and from your training container
1057
- # by configuring the VPC. For more information, see train-vpc
1102
+ # by configuring the VPC. For more information, see [Protect Training
1103
+ # Jobs by Using an Amazon Virtual Private Cloud][1].
1104
+ #
1105
+ #
1106
+ #
1107
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
1058
1108
  #
1059
1109
  # @option params [required, Types::StoppingCondition] :stopping_condition
1060
1110
  # Sets a duration for training. Use this parameter to cap model training
@@ -1094,7 +1144,7 @@ module Aws::SageMaker
1094
1144
  # training_input_mode: "Pipe", # required, accepts Pipe, File
1095
1145
  # },
1096
1146
  # role_arn: "RoleArn", # required
1097
- # input_data_config: [ # required
1147
+ # input_data_config: [
1098
1148
  # {
1099
1149
  # channel_name: "ChannelName", # required
1100
1150
  # data_source: { # required
@@ -1107,6 +1157,7 @@ module Aws::SageMaker
1107
1157
  # content_type: "ContentType",
1108
1158
  # compression_type: "None", # accepts None, Gzip
1109
1159
  # record_wrapper_type: "None", # accepts None, RecordIO
1160
+ # input_mode: "Pipe", # accepts Pipe, File
1110
1161
  # },
1111
1162
  # ],
1112
1163
  # output_data_config: { # required
@@ -1438,6 +1489,12 @@ module Aws::SageMaker
1438
1489
  #
1439
1490
  # To list a resource's tags, use the `ListTags` API.
1440
1491
  #
1492
+ # <note markdown="1"> When you call this API to delete tags from a hyperparameter tuning
1493
+ # job, the deleted tags are not removed from training jobs that the
1494
+ # hyperparameter tuning job launched before you called this API.
1495
+ #
1496
+ # </note>
1497
+ #
1441
1498
  # @option params [required, String] :resource_arn
1442
1499
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
1443
1500
  # delete.
@@ -1619,6 +1676,7 @@ module Aws::SageMaker
1619
1676
  # resp.training_job_definition.input_data_config[0].content_type #=> String
1620
1677
  # resp.training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
1621
1678
  # resp.training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
1679
+ # resp.training_job_definition.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
1622
1680
  # resp.training_job_definition.vpc_config.security_group_ids #=> Array
1623
1681
  # resp.training_job_definition.vpc_config.security_group_ids[0] #=> String
1624
1682
  # resp.training_job_definition.vpc_config.subnets #=> Array
@@ -1733,6 +1791,7 @@ module Aws::SageMaker
1733
1791
  # * {Types::DescribeNotebookInstanceOutput#creation_time #creation_time} => Time
1734
1792
  # * {Types::DescribeNotebookInstanceOutput#notebook_instance_lifecycle_config_name #notebook_instance_lifecycle_config_name} => String
1735
1793
  # * {Types::DescribeNotebookInstanceOutput#direct_internet_access #direct_internet_access} => String
1794
+ # * {Types::DescribeNotebookInstanceOutput#volume_size_in_gb #volume_size_in_gb} => Integer
1736
1795
  #
1737
1796
  # @example Request syntax with placeholder values
1738
1797
  #
@@ -1758,6 +1817,7 @@ module Aws::SageMaker
1758
1817
  # resp.creation_time #=> Time
1759
1818
  # resp.notebook_instance_lifecycle_config_name #=> String
1760
1819
  # resp.direct_internet_access #=> String, one of "Enabled", "Disabled"
1820
+ # resp.volume_size_in_gb #=> Integer
1761
1821
  #
1762
1822
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstance AWS API Documentation
1763
1823
  #
@@ -1771,7 +1831,11 @@ module Aws::SageMaker
1771
1831
  # Returns a description of a notebook instance lifecycle configuration.
1772
1832
  #
1773
1833
  # For information about notebook instance lifestyle configurations, see
1774
- # notebook-lifecycle-config.
1834
+ # [Step 2.1: (Optional) Customize a Notebook Instance][1].
1835
+ #
1836
+ #
1837
+ #
1838
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
1775
1839
  #
1776
1840
  # @option params [required, String] :notebook_instance_lifecycle_config_name
1777
1841
  # The name of the lifecycle configuration to describe.
@@ -1867,6 +1931,7 @@ module Aws::SageMaker
1867
1931
  # resp.input_data_config[0].content_type #=> String
1868
1932
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
1869
1933
  # resp.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
1934
+ # resp.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
1870
1935
  # resp.output_data_config.kms_key_id #=> String
1871
1936
  # resp.output_data_config.s3_output_path #=> String
1872
1937
  # resp.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
@@ -2976,13 +3041,21 @@ module Aws::SageMaker
2976
3041
  #
2977
3042
  # @option params [String] :lifecycle_config_name
2978
3043
  # The name of a lifecycle configuration to associate with the notebook
2979
- # instance. For information about lifestyle configurations, see
2980
- # notebook-lifecycle-config.
3044
+ # instance. For information about lifestyle configurations, see [Step
3045
+ # 2.1: (Optional) Customize a Notebook Instance][1].
3046
+ #
3047
+ #
3048
+ #
3049
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
2981
3050
  #
2982
3051
  # @option params [Boolean] :disassociate_lifecycle_config
2983
3052
  # Set to `true` to remove the notebook instance lifecycle configuration
2984
3053
  # currently associated with the notebook instance.
2985
3054
  #
3055
+ # @option params [Integer] :volume_size_in_gb
3056
+ # The size, in GB, of the ML storage volume to attach to the notebook
3057
+ # instance.
3058
+ #
2986
3059
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
2987
3060
  #
2988
3061
  # @example Request syntax with placeholder values
@@ -2993,6 +3066,7 @@ module Aws::SageMaker
2993
3066
  # role_arn: "RoleArn",
2994
3067
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
2995
3068
  # disassociate_lifecycle_config: false,
3069
+ # volume_size_in_gb: 1,
2996
3070
  # })
2997
3071
  #
2998
3072
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstance AWS API Documentation
@@ -3058,7 +3132,7 @@ module Aws::SageMaker
3058
3132
  params: params,
3059
3133
  config: config)
3060
3134
  context[:gem_name] = 'aws-sdk-sagemaker'
3061
- context[:gem_version] = '1.21.0'
3135
+ context[:gem_version] = '1.22.0'
3062
3136
  Seahorse::Client::Request.new(handlers, context)
3063
3137
  end
3064
3138
 
@@ -178,6 +178,7 @@ module Aws::SageMaker
178
178
  NotebookInstanceSummary = Shapes::StructureShape.new(name: 'NotebookInstanceSummary')
179
179
  NotebookInstanceSummaryList = Shapes::ListShape.new(name: 'NotebookInstanceSummaryList')
180
180
  NotebookInstanceUrl = Shapes::StringShape.new(name: 'NotebookInstanceUrl')
181
+ NotebookInstanceVolumeSizeInGB = Shapes::IntegerShape.new(name: 'NotebookInstanceVolumeSizeInGB')
181
182
  ObjectiveStatus = Shapes::StringShape.new(name: 'ObjectiveStatus')
182
183
  ObjectiveStatusCounter = Shapes::IntegerShape.new(name: 'ObjectiveStatusCounter')
183
184
  ObjectiveStatusCounters = Shapes::StructureShape.new(name: 'ObjectiveStatusCounters')
@@ -293,6 +294,7 @@ module Aws::SageMaker
293
294
  Channel.add_member(:content_type, Shapes::ShapeRef.new(shape: ContentType, location_name: "ContentType"))
294
295
  Channel.add_member(:compression_type, Shapes::ShapeRef.new(shape: CompressionType, location_name: "CompressionType"))
295
296
  Channel.add_member(:record_wrapper_type, Shapes::ShapeRef.new(shape: RecordWrapper, location_name: "RecordWrapperType"))
297
+ Channel.add_member(:input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, location_name: "InputMode"))
296
298
  Channel.struct_class = Types::Channel
297
299
 
298
300
  ContainerDefinition.add_member(:container_hostname, Shapes::ShapeRef.new(shape: ContainerHostname, location_name: "ContainerHostname"))
@@ -353,6 +355,7 @@ module Aws::SageMaker
353
355
  CreateNotebookInstanceInput.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
354
356
  CreateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
355
357
  CreateNotebookInstanceInput.add_member(:direct_internet_access, Shapes::ShapeRef.new(shape: DirectInternetAccess, location_name: "DirectInternetAccess"))
358
+ CreateNotebookInstanceInput.add_member(:volume_size_in_gb, Shapes::ShapeRef.new(shape: NotebookInstanceVolumeSizeInGB, location_name: "VolumeSizeInGB"))
356
359
  CreateNotebookInstanceInput.struct_class = Types::CreateNotebookInstanceInput
357
360
 
358
361
  CreateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
@@ -377,7 +380,7 @@ module Aws::SageMaker
377
380
  CreateTrainingJobRequest.add_member(:hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "HyperParameters"))
378
381
  CreateTrainingJobRequest.add_member(:algorithm_specification, Shapes::ShapeRef.new(shape: AlgorithmSpecification, required: true, location_name: "AlgorithmSpecification"))
379
382
  CreateTrainingJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
380
- CreateTrainingJobRequest.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, required: true, location_name: "InputDataConfig"))
383
+ CreateTrainingJobRequest.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
381
384
  CreateTrainingJobRequest.add_member(:output_data_config, Shapes::ShapeRef.new(shape: OutputDataConfig, required: true, location_name: "OutputDataConfig"))
382
385
  CreateTrainingJobRequest.add_member(:resource_config, Shapes::ShapeRef.new(shape: ResourceConfig, required: true, location_name: "ResourceConfig"))
383
386
  CreateTrainingJobRequest.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
@@ -514,6 +517,7 @@ module Aws::SageMaker
514
517
  DescribeNotebookInstanceOutput.add_member(:creation_time, Shapes::ShapeRef.new(shape: CreationTime, location_name: "CreationTime"))
515
518
  DescribeNotebookInstanceOutput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "NotebookInstanceLifecycleConfigName"))
516
519
  DescribeNotebookInstanceOutput.add_member(:direct_internet_access, Shapes::ShapeRef.new(shape: DirectInternetAccess, location_name: "DirectInternetAccess"))
520
+ DescribeNotebookInstanceOutput.add_member(:volume_size_in_gb, Shapes::ShapeRef.new(shape: NotebookInstanceVolumeSizeInGB, location_name: "VolumeSizeInGB"))
517
521
  DescribeNotebookInstanceOutput.struct_class = Types::DescribeNotebookInstanceOutput
518
522
 
519
523
  DescribeTrainingJobRequest.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, required: true, location_name: "TrainingJobName"))
@@ -529,7 +533,7 @@ module Aws::SageMaker
529
533
  DescribeTrainingJobResponse.add_member(:hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "HyperParameters"))
530
534
  DescribeTrainingJobResponse.add_member(:algorithm_specification, Shapes::ShapeRef.new(shape: AlgorithmSpecification, required: true, location_name: "AlgorithmSpecification"))
531
535
  DescribeTrainingJobResponse.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
532
- DescribeTrainingJobResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, required: true, location_name: "InputDataConfig"))
536
+ DescribeTrainingJobResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
533
537
  DescribeTrainingJobResponse.add_member(:output_data_config, Shapes::ShapeRef.new(shape: OutputDataConfig, location_name: "OutputDataConfig"))
534
538
  DescribeTrainingJobResponse.add_member(:resource_config, Shapes::ShapeRef.new(shape: ResourceConfig, required: true, location_name: "ResourceConfig"))
535
539
  DescribeTrainingJobResponse.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
@@ -1003,6 +1007,7 @@ module Aws::SageMaker
1003
1007
  UpdateNotebookInstanceInput.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
1004
1008
  UpdateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
1005
1009
  UpdateNotebookInstanceInput.add_member(:disassociate_lifecycle_config, Shapes::ShapeRef.new(shape: DisassociateNotebookInstanceLifecycleConfig, location_name: "DisassociateLifecycleConfig"))
1010
+ UpdateNotebookInstanceInput.add_member(:volume_size_in_gb, Shapes::ShapeRef.new(shape: NotebookInstanceVolumeSizeInGB, location_name: "VolumeSizeInGB"))
1006
1011
  UpdateNotebookInstanceInput.struct_class = Types::UpdateNotebookInstanceInput
1007
1012
 
1008
1013
  UpdateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
@@ -55,12 +55,13 @@ module Aws::SageMaker
55
55
  #
56
56
  # For more information about algorithms provided by Amazon SageMaker,
57
57
  # see [Algorithms][2]. For information about using your own algorithms,
58
- # see your-algorithms.
58
+ # see [Using Your Own Algorithms with Amazon SageMaker][3].
59
59
  #
60
60
  #
61
61
  #
62
62
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
63
63
  # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
64
+ # [3]: http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
64
65
  #
65
66
  # @note When making an API call, you may pass AlgorithmSpecification
66
67
  # data as a hash:
@@ -73,7 +74,12 @@ module Aws::SageMaker
73
74
  # @!attribute [rw] training_image
74
75
  # The registry path of the Docker image that contains the training
75
76
  # algorithm. For information about docker registry paths for built-in
76
- # algorithms, see sagemaker-algo-docker-registry-paths.
77
+ # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
78
+ # Parameters][1].
79
+ #
80
+ #
81
+ #
82
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
77
83
  # @return [String]
78
84
  #
79
85
  # @!attribute [rw] training_input_mode
@@ -156,6 +162,7 @@ module Aws::SageMaker
156
162
  # content_type: "ContentType",
157
163
  # compression_type: "None", # accepts None, Gzip
158
164
  # record_wrapper_type: "None", # accepts None, RecordIO
165
+ # input_mode: "Pipe", # accepts Pipe, File
159
166
  # }
160
167
  #
161
168
  # @!attribute [rw] channel_name
@@ -193,6 +200,9 @@ module Aws::SageMaker
193
200
  # [1]: https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format
194
201
  # @return [String]
195
202
  #
203
+ # @!attribute [rw] input_mode
204
+ # @return [String]
205
+ #
196
206
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Channel AWS API Documentation
197
207
  #
198
208
  class Channel < Struct.new(
@@ -200,7 +210,8 @@ module Aws::SageMaker
200
210
  :data_source,
201
211
  :content_type,
202
212
  :compression_type,
203
- :record_wrapper_type)
213
+ :record_wrapper_type,
214
+ :input_mode)
204
215
  include Aws::Structure
205
216
  end
206
217
 
@@ -504,6 +515,7 @@ module Aws::SageMaker
504
515
  # content_type: "ContentType",
505
516
  # compression_type: "None", # accepts None, Gzip
506
517
  # record_wrapper_type: "None", # accepts None, RecordIO
518
+ # input_mode: "Pipe", # accepts Pipe, File
507
519
  # },
508
520
  # ],
509
521
  # vpc_config: {
@@ -556,12 +568,14 @@ module Aws::SageMaker
556
568
  # @!attribute [rw] tags
557
569
  # An array of key-value pairs. You can use tags to categorize your AWS
558
570
  # resources in different ways, for example, by purpose, owner, or
559
- # environment. For more information, see [Using Cost Allocation
560
- # Tags][1] in the *AWS Billing and Cost Management User Guide*.
571
+ # environment. For more information, see [AWS Tagging Strategies][1].
572
+ #
573
+ # Tags that you specify for the tuning job are also added to all
574
+ # training jobs that the tuning job launches.
561
575
  #
562
576
  #
563
577
  #
564
- # [1]: http://docs.aws.amazon.com//awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
578
+ # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
565
579
  # @return [Array<Types::Tag>]
566
580
  #
567
581
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobRequest AWS API Documentation
@@ -651,9 +665,15 @@ module Aws::SageMaker
651
665
  # @!attribute [rw] vpc_config
652
666
  # A VpcConfig object that specifies the VPC that you want your model
653
667
  # to connect to. Control access to and from your model container by
654
- # configuring the VPC. `VpcConfig` is currently used in hosting
655
- # services but not in batch transform. For more information, see
656
- # host-vpc.
668
+ # configuring the VPC. `VpcConfig` is used in hosting services and in
669
+ # batch transform. For more information, see [Protect Endpoints by
670
+ # Using an Amazon Virtual Private Cloud][1] and [Protect Data in Batch
671
+ # Transform Jobs by Using an Amazon Virtual Private Cloud][2].
672
+ #
673
+ #
674
+ #
675
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
676
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html
657
677
  # @return [Types::VpcConfig]
658
678
  #
659
679
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
@@ -696,6 +716,7 @@ module Aws::SageMaker
696
716
  # ],
697
717
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
698
718
  # direct_internet_access: "Enabled", # accepts Enabled, Disabled
719
+ # volume_size_in_gb: 1,
699
720
  # }
700
721
  #
701
722
  # @!attribute [rw] notebook_instance_name
@@ -748,8 +769,12 @@ module Aws::SageMaker
748
769
  #
749
770
  # @!attribute [rw] lifecycle_config_name
750
771
  # The name of a lifecycle configuration to associate with the notebook
751
- # instance. For information about lifestyle configurations, see
752
- # notebook-lifecycle-config.
772
+ # instance. For information about lifestyle configurations, see [Step
773
+ # 2.1: (Optional) Customize a Notebook Instance][1].
774
+ #
775
+ #
776
+ #
777
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
753
778
  # @return [String]
754
779
  #
755
780
  # @!attribute [rw] direct_internet_access
@@ -759,11 +784,20 @@ module Aws::SageMaker
759
784
  # not be able to connect to Amazon SageMaker training and endpoint
760
785
  # services unless your configure a NAT Gateway in your VPC.
761
786
  #
762
- # For more information, see appendix-notebook-and-internet-access. You
763
- # can set the value of this parameter to `Disabled` only if you set a
764
- # value for the `SubnetId` parameter.
787
+ # For more information, see [Notebook Instances Are Internet-Enabled
788
+ # by Default][1]. You can set the value of this parameter to
789
+ # `Disabled` only if you set a value for the `SubnetId` parameter.
790
+ #
791
+ #
792
+ #
793
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
765
794
  # @return [String]
766
795
  #
796
+ # @!attribute [rw] volume_size_in_gb
797
+ # The size, in GB, of the ML storage volume to attach to the notebook
798
+ # instance.
799
+ # @return [Integer]
800
+ #
767
801
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceInput AWS API Documentation
768
802
  #
769
803
  class CreateNotebookInstanceInput < Struct.new(
@@ -775,7 +809,8 @@ module Aws::SageMaker
775
809
  :kms_key_id,
776
810
  :tags,
777
811
  :lifecycle_config_name,
778
- :direct_internet_access)
812
+ :direct_internet_access,
813
+ :volume_size_in_gb)
779
814
  include Aws::Structure
780
815
  end
781
816
 
@@ -802,12 +837,13 @@ module Aws::SageMaker
802
837
  #
803
838
  # @!attribute [rw] on_create
804
839
  # A shell script that runs only once, when you create a notebook
805
- # instance.
840
+ # instance. The shell script must be a base64-encoded string.
806
841
  # @return [Array<Types::NotebookInstanceLifecycleHook>]
807
842
  #
808
843
  # @!attribute [rw] on_start
809
844
  # A shell script that runs every time you start a notebook instance,
810
- # including when you create the notebook instance.
845
+ # including when you create the notebook instance. The shell script
846
+ # must be a base64-encoded string.
811
847
  # @return [Array<Types::NotebookInstanceLifecycleHook>]
812
848
  #
813
849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceLifecycleConfigInput AWS API Documentation
@@ -889,7 +925,7 @@ module Aws::SageMaker
889
925
  # training_input_mode: "Pipe", # required, accepts Pipe, File
890
926
  # },
891
927
  # role_arn: "RoleArn", # required
892
- # input_data_config: [ # required
928
+ # input_data_config: [
893
929
  # {
894
930
  # channel_name: "ChannelName", # required
895
931
  # data_source: { # required
@@ -902,6 +938,7 @@ module Aws::SageMaker
902
938
  # content_type: "ContentType",
903
939
  # compression_type: "None", # accepts None, Gzip
904
940
  # record_wrapper_type: "None", # accepts None, RecordIO
941
+ # input_mode: "Pipe", # accepts Pipe, File
905
942
  # },
906
943
  # ],
907
944
  # output_data_config: { # required
@@ -954,11 +991,13 @@ module Aws::SageMaker
954
991
  # algorithm and algorithm-specific metadata, including the input mode.
955
992
  # For more information about algorithms provided by Amazon SageMaker,
956
993
  # see [Algorithms][1]. For information about providing your own
957
- # algorithms, see your-algorithms.
994
+ # algorithms, see [Using Your Own Algorithms with Amazon
995
+ # SageMaker][2].
958
996
  #
959
997
  #
960
998
  #
961
999
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
1000
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
962
1001
  # @return [Types::AlgorithmSpecification]
963
1002
  #
964
1003
  # @!attribute [rw] role_arn
@@ -1020,8 +1059,12 @@ module Aws::SageMaker
1020
1059
  # @!attribute [rw] vpc_config
1021
1060
  # A VpcConfig object that specifies the VPC that you want your
1022
1061
  # training job to connect to. Control access to and from your training
1023
- # container by configuring the VPC. For more information, see
1024
- # train-vpc
1062
+ # container by configuring the VPC. For more information, see [Protect
1063
+ # Training Jobs by Using an Amazon Virtual Private Cloud][1].
1064
+ #
1065
+ #
1066
+ #
1067
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
1025
1068
  # @return [Types::VpcConfig]
1026
1069
  #
1027
1070
  # @!attribute [rw] stopping_condition
@@ -1364,9 +1407,9 @@ module Aws::SageMaker
1364
1407
  # Gets the Amazon EC2 Container Registry path of the docker image of the
1365
1408
  # model that is hosted in this ProductionVariant.
1366
1409
  #
1367
- # If you used the `registry/repository[:tag]` form to to specify the
1368
- # image path of the primary container when you created the model hosted
1369
- # in this `ProductionVariant`, the path resolves to a path of the form
1410
+ # If you used the `registry/repository[:tag]` form to specify the image
1411
+ # path of the primary container when you created the model hosted in
1412
+ # this `ProductionVariant`, the path resolves to a path of the form
1370
1413
  # `registry/repository[@digest]`. A digest is a hash value that
1371
1414
  # identifies a specific version of an image. For information about
1372
1415
  # Amazon ECR paths, see [Pulling an Image][1] in the *Amazon ECR User
@@ -1488,6 +1531,38 @@ module Aws::SageMaker
1488
1531
  #
1489
1532
  # @!attribute [rw] endpoint_status
1490
1533
  # The status of the endpoint.
1534
+ #
1535
+ # * `OutOfService`\: Endpoint is not available to take incoming
1536
+ # requests.
1537
+ #
1538
+ # * `Creating`\: CreateEndpoint is executing.
1539
+ #
1540
+ # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
1541
+ # is executing.
1542
+ #
1543
+ # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
1544
+ # be updated or deleted or re-scaled until it has completed. This
1545
+ # maintenance operation does not change any customer-specified
1546
+ # values such as VPC config, KMS encryption, model, instance type,
1547
+ # or instance count.
1548
+ #
1549
+ # * `RollingBack`\: Endpoint fails to scale up or down or change its
1550
+ # variant weight and is in the process of rolling back to its
1551
+ # previous configuration. Once the rollback completes, endpoint
1552
+ # returns to an `InService` status. This transitional status only
1553
+ # applies to an endpoint that has autoscaling enabled and is
1554
+ # undergoing variant weight or capacity changes as part of an
1555
+ # UpdateEndpointWeightsAndCapacities call or when the
1556
+ # UpdateEndpointWeightsAndCapacities operation is called explicitly.
1557
+ #
1558
+ # * `InService`\: Endpoint is available to process incoming requests.
1559
+ #
1560
+ # * `Deleting`\: DeleteEndpoint is executing.
1561
+ #
1562
+ # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
1563
+ # Use DescribeEndpointOutput$FailureReason for information about the
1564
+ # failure. DeleteEndpoint is the only operation that can be
1565
+ # performed on a failed endpoint.
1491
1566
  # @return [String]
1492
1567
  #
1493
1568
  # @!attribute [rw] failure_reason
@@ -1642,7 +1717,12 @@ module Aws::SageMaker
1642
1717
  #
1643
1718
  # @!attribute [rw] vpc_config
1644
1719
  # A VpcConfig object that specifies the VPC that this model has access
1645
- # to. For more information, see host-vpc
1720
+ # to. For more information, see [Protect Endpoints by Using an Amazon
1721
+ # Virtual Private Cloud][1]
1722
+ #
1723
+ #
1724
+ #
1725
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
1646
1726
  # @return [Types::VpcConfig]
1647
1727
  #
1648
1728
  # @!attribute [rw] creation_time
@@ -1802,7 +1882,11 @@ module Aws::SageMaker
1802
1882
  # Returns the name of a notebook instance lifecycle configuration.
1803
1883
  #
1804
1884
  # For information about notebook instance lifestyle configurations,
1805
- # see notebook-lifecycle-config.
1885
+ # see [Step 2.1: (Optional) Customize a Notebook Instance][1]
1886
+ #
1887
+ #
1888
+ #
1889
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
1806
1890
  # @return [String]
1807
1891
  #
1808
1892
  # @!attribute [rw] direct_internet_access
@@ -1811,9 +1895,19 @@ module Aws::SageMaker
1811
1895
  # instance does not have internet access, and cannot connect to Amazon
1812
1896
  # SageMaker training and endpoint services*.
1813
1897
  #
1814
- # For more information, see appendix-notebook-and-internet-access.
1898
+ # For more information, see [Notebook Instances Are Internet-Enabled
1899
+ # by Default][1].
1900
+ #
1901
+ #
1902
+ #
1903
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access
1815
1904
  # @return [String]
1816
1905
  #
1906
+ # @!attribute [rw] volume_size_in_gb
1907
+ # The size, in GB, of the ML storage volume attached to the notebook
1908
+ # instance.
1909
+ # @return [Integer]
1910
+ #
1817
1911
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstanceOutput AWS API Documentation
1818
1912
  #
1819
1913
  class DescribeNotebookInstanceOutput < Struct.new(
@@ -1831,7 +1925,8 @@ module Aws::SageMaker
1831
1925
  :last_modified_time,
1832
1926
  :creation_time,
1833
1927
  :notebook_instance_lifecycle_config_name,
1834
- :direct_internet_access)
1928
+ :direct_internet_access,
1929
+ :volume_size_in_gb)
1835
1930
  include Aws::Structure
1836
1931
  end
1837
1932
 
@@ -1875,55 +1970,75 @@ module Aws::SageMaker
1875
1970
  # @!attribute [rw] training_job_status
1876
1971
  # The status of the training job.
1877
1972
  #
1878
- # For the `InProgress` status, Amazon SageMaker can return these
1879
- # secondary statuses:
1880
- #
1881
- # * Starting - Preparing for training.
1973
+ # Amazon SageMaker provides the following training job statuses:
1882
1974
  #
1883
- # * Downloading - Optional stage for algorithms that support File
1884
- # training input mode. It indicates data is being downloaded to ML
1885
- # storage volumes.
1975
+ # * `InProgress` - The training is in progress.
1886
1976
  #
1887
- # * Training - Training is in progress.
1977
+ # * `Completed` - The training job has completed.
1888
1978
  #
1889
- # * Uploading - Training is complete and model upload is in progress.
1979
+ # * `Failed` - The training job has failed. To see the reason for the
1980
+ # failure, see the `FailureReason` field in the response to a
1981
+ # `DescribeTrainingJobResponse` call.
1890
1982
  #
1891
- # For the `Stopped` training status, Amazon SageMaker can return these
1892
- # secondary statuses:
1983
+ # * `Stopping` - The training job is stopping.
1893
1984
  #
1894
- # * MaxRuntimeExceeded - Job stopped as a result of maximum allowed
1895
- # runtime exceeded.
1985
+ # * `Stopped` - The training job has stopped.
1896
1986
  #
1897
- # ^
1987
+ # For more detailed information, see `SecondaryStatus`.
1898
1988
  # @return [String]
1899
1989
  #
1900
1990
  # @!attribute [rw] secondary_status
1901
- # Provides granular information about the system state. For more
1902
- # information, see `TrainingJobStatus`.
1991
+ # Provides detailed information about the state of the training job.
1992
+ # For detailed information on the secondary status of the training
1993
+ # job, see `StatusMessage` under SecondaryStatusTransition.
1994
+ #
1995
+ # Amazon SageMaker provides primary statuses and secondary statuses
1996
+ # that apply to each of them:
1903
1997
  #
1904
- # * `Starting` - starting the training job.
1998
+ # InProgress
1999
+ # : * `Starting` - Starting the training job.
1905
2000
  #
1906
- # * `Downloading` - downloading the input data.
2001
+ # * `Downloading` - An optional stage for algorithms that support
2002
+ # `File` training input mode. It indicates that data is being
2003
+ # downloaded to the ML storage volumes.
1907
2004
  #
1908
- # * `Training` - model training is in progress.
2005
+ # * `Training` - Training is in progress.
1909
2006
  #
1910
- # * `Uploading` - uploading the trained model.
2007
+ # * `Uploading` - Training is complete and the model artifacts are
2008
+ # being uploaded to the S3 location.
1911
2009
  #
1912
- # * `Stopping` - stopping the training job.
2010
+ # Completed
2011
+ # : * `Completed` - The training job has completed.
1913
2012
  #
1914
- # * `Stopped` - the training job has stopped.
2013
+ # ^
1915
2014
  #
1916
- # * `MaxRuntimeExceeded` - the training job exceeded the specified max
1917
- # run time and has been stopped.
2015
+ # Failed
2016
+ # : * `Failed` - The training job has failed. The reason for the
2017
+ # failure is returned in the `FailureReason` field of
2018
+ # `DescribeTrainingJobResponse`.
1918
2019
  #
1919
- # * `Completed` - the training job has completed.
2020
+ # ^
1920
2021
  #
1921
- # * `Failed` - the training job has failed. The failure reason is
1922
- # stored in the `FailureReason` field of
1923
- # `DescribeTrainingJobResponse`.
2022
+ # Stopped
2023
+ # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
2024
+ # maximum allowed runtime.
1924
2025
  #
1925
- # The valid values for `SecondaryStatus` are subject to change. They
1926
- # primarily provide information on the progress of the training job.
2026
+ # * `Stopped` - The training job has stopped.
2027
+ #
2028
+ # Stopping
2029
+ # : * `Stopping` - Stopping the training job.
2030
+ #
2031
+ # ^
2032
+ #
2033
+ # Valid values for `SecondaryStatus` are subject to change.
2034
+ #
2035
+ # We no longer support the following secondary statuses:
2036
+ #
2037
+ # * `LaunchingMLInstances`
2038
+ #
2039
+ # * `PreparingTrainingStack`
2040
+ #
2041
+ # * `DownloadingTrainingImage`
1927
2042
  # @return [String]
1928
2043
  #
1929
2044
  # @!attribute [rw] failure_reason
@@ -1962,7 +2077,12 @@ module Aws::SageMaker
1962
2077
  #
1963
2078
  # @!attribute [rw] vpc_config
1964
2079
  # A VpcConfig object that specifies the VPC that this training job has
1965
- # access to. For more information, see train-vpc.
2080
+ # access to. For more information, see [Protect Training Jobs by Using
2081
+ # an Amazon Virtual Private Cloud][1].
2082
+ #
2083
+ #
2084
+ #
2085
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
1966
2086
  # @return [Types::VpcConfig]
1967
2087
  #
1968
2088
  # @!attribute [rw] stopping_condition
@@ -1997,9 +2117,8 @@ module Aws::SageMaker
1997
2117
  # @return [Time]
1998
2118
  #
1999
2119
  # @!attribute [rw] secondary_status_transitions
2000
- # To give an overview of the training job lifecycle,
2001
- # `SecondaryStatusTransitions` is a log of time-ordered secondary
2002
- # statuses that a training job has transitioned.
2120
+ # A history of all of the secondary statuses that the training job has
2121
+ # transitioned through.
2003
2122
  # @return [Array<Types::SecondaryStatusTransition>]
2004
2123
  #
2005
2124
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
@@ -2212,6 +2331,41 @@ module Aws::SageMaker
2212
2331
  #
2213
2332
  # @!attribute [rw] endpoint_status
2214
2333
  # The status of the endpoint.
2334
+ #
2335
+ # * `OutOfService`\: Endpoint is not available to take incoming
2336
+ # requests.
2337
+ #
2338
+ # * `Creating`\: CreateEndpoint is executing.
2339
+ #
2340
+ # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
2341
+ # is executing.
2342
+ #
2343
+ # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
2344
+ # be updated or deleted or re-scaled until it has completed. This
2345
+ # mainenance operation does not change any customer-specified values
2346
+ # such as VPC config, KMS encryption, model, instance type, or
2347
+ # instance count.
2348
+ #
2349
+ # * `RollingBack`\: Endpoint fails to scale up or down or change its
2350
+ # variant weight and is in the process of rolling back to its
2351
+ # previous configuration. Once the rollback completes, endpoint
2352
+ # returns to an `InService` status. This transitional status only
2353
+ # applies to an endpoint that has autoscaling enabled and is
2354
+ # undergoing variant weight or capacity changes as part of an
2355
+ # UpdateEndpointWeightsAndCapacities call or when the
2356
+ # UpdateEndpointWeightsAndCapacities operation is called explicitly.
2357
+ #
2358
+ # * `InService`\: Endpoint is available to process incoming requests.
2359
+ #
2360
+ # * `Deleting`\: DeleteEndpoint is executing.
2361
+ #
2362
+ # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
2363
+ # Use DescribeEndpointOutput$FailureReason for information about the
2364
+ # failure. DeleteEndpoint is the only operation that can be
2365
+ # performed on a failed endpoint.
2366
+ #
2367
+ # To get a list of endpoints with a specified status, use the
2368
+ # ListEndpointsInput$StatusEquals filter.
2215
2369
  # @return [String]
2216
2370
  #
2217
2371
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointSummary AWS API Documentation
@@ -2272,7 +2426,12 @@ module Aws::SageMaker
2272
2426
  # @!attribute [rw] training_image
2273
2427
  # The registry path of the Docker image that contains the training
2274
2428
  # algorithm. For information about Docker registry paths for built-in
2275
- # algorithms, see sagemaker-algo-docker-registry-paths.
2429
+ # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
2430
+ # Parameters][1].
2431
+ #
2432
+ #
2433
+ #
2434
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
2276
2435
  # @return [String]
2277
2436
  #
2278
2437
  # @!attribute [rw] training_input_mode
@@ -2344,6 +2503,7 @@ module Aws::SageMaker
2344
2503
  # content_type: "ContentType",
2345
2504
  # compression_type: "None", # accepts None, Gzip
2346
2505
  # record_wrapper_type: "None", # accepts None, RecordIO
2506
+ # input_mode: "Pipe", # accepts Pipe, File
2347
2507
  # },
2348
2508
  # ],
2349
2509
  # vpc_config: {
@@ -2389,7 +2549,12 @@ module Aws::SageMaker
2389
2549
  # The VpcConfig object that specifies the VPC that you want the
2390
2550
  # training jobs that this hyperparameter tuning job launches to
2391
2551
  # connect to. Control access to and from your training container by
2392
- # configuring the VPC. For more information, see train-vpc.
2552
+ # configuring the VPC. For more information, see [Protect Training
2553
+ # Jobs by Using an Amazon Virtual Private Cloud][1].
2554
+ #
2555
+ #
2556
+ #
2557
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
2393
2558
  # @return [Types::VpcConfig]
2394
2559
  #
2395
2560
  # @!attribute [rw] output_data_config
@@ -3600,7 +3765,7 @@ module Aws::SageMaker
3600
3765
  end
3601
3766
 
3602
3767
  # Specifies a metric that the training algorithm writes to `stderr` or
3603
- # `stdout`. Amazon SageMakerHyperparamter tuning captures all defined
3768
+ # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
3604
3769
  # metrics. You specify one metric that a hyperparameter tuning job uses
3605
3770
  # as its objective metric to choose the best training job.
3606
3771
  #
@@ -3619,8 +3784,12 @@ module Aws::SageMaker
3619
3784
  # @!attribute [rw] regex
3620
3785
  # A regular expression that searches the output of a training job and
3621
3786
  # gets the value of the metric. For more information about using
3622
- # regular expressions to define metrics, see
3623
- # automatic-model-tuning-define-metrics.
3787
+ # regular expressions to define metrics, see [Defining Objective
3788
+ # Metrics][1].
3789
+ #
3790
+ #
3791
+ #
3792
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
3624
3793
  # @return [String]
3625
3794
  #
3626
3795
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -3714,7 +3883,11 @@ module Aws::SageMaker
3714
3883
  # instance is not created or started.
3715
3884
  #
3716
3885
  # For information about notebook instance lifestyle configurations, see
3717
- # notebook-lifecycle-config.
3886
+ # [Step 2.1: (Optional) Customize a Notebook Instance][1].
3887
+ #
3888
+ #
3889
+ #
3890
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
3718
3891
  #
3719
3892
  # @note When making an API call, you may pass NotebookInstanceLifecycleHook
3720
3893
  # data as a hash:
@@ -3773,7 +3946,11 @@ module Aws::SageMaker
3773
3946
  # with this notebook instance.
3774
3947
  #
3775
3948
  # For information about notebook instance lifestyle configurations,
3776
- # see notebook-lifecycle-config.
3949
+ # see [Step 2.1: (Optional) Customize a Notebook Instance][1].
3950
+ #
3951
+ #
3952
+ #
3953
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
3777
3954
  # @return [String]
3778
3955
  #
3779
3956
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/NotebookInstanceSummary AWS API Documentation
@@ -3837,18 +4014,33 @@ module Aws::SageMaker
3837
4014
  # @!attribute [rw] kms_key_id
3838
4015
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
3839
4016
  # uses to encrypt the model artifacts at rest using Amazon S3
3840
- # server-side encryption.
4017
+ # server-side encryption. The `KmsKeyId` can be any of the following
4018
+ # formats:
3841
4019
  #
3842
- # <note markdown="1"> If you don't provide the KMS key ID, Amazon SageMaker uses the
3843
- # default KMS key for Amazon S3 for your role's account. For more
3844
- # information, see [KMS-Managed Encryption Keys][1] in Amazon Simple
3845
- # Storage Service developer guide.
4020
+ # * // KMS Key ID
3846
4021
  #
3847
- # </note>
4022
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
4023
+ #
4024
+ # * // Amazon Resource Name (ARN) of a KMS Key
4025
+ #
4026
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
4027
+ #
4028
+ # * // KMS Key Alias
4029
+ #
4030
+ # `"alias/ExampleAlias"`
3848
4031
  #
3849
- # <note markdown="1"> The KMS key policy must grant permission to the IAM role you specify
3850
- # in your `CreateTrainingJob` request. [Using Key Policies in AWS
3851
- # KMS][2] in the AWS Key Management Service Developer Guide.
4032
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
4033
+ #
4034
+ # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
4035
+ #
4036
+ # If you don't provide the KMS key ID, Amazon SageMaker uses the
4037
+ # default KMS key for Amazon S3 for your role's account. For more
4038
+ # information, see [KMS-Managed Encryption Keys][1] in *Amazon Simple
4039
+ # Storage Service Developer Guide.*
4040
+ #
4041
+ # <note markdown="1"> The KMS key policy must grant permission to the IAM role that you
4042
+ # specify in your `CreateTrainingJob` request. [Using Key Policies in
4043
+ # AWS KMS][2] in the *AWS Key Management Service Developer Guide*.
3852
4044
  #
3853
4045
  # </note>
3854
4046
  #
@@ -4063,9 +4255,18 @@ module Aws::SageMaker
4063
4255
  # @return [Integer]
4064
4256
  #
4065
4257
  # @!attribute [rw] volume_kms_key_id
4066
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
4067
- # that Amazon SageMaker uses to encrypt data on the storage volume
4068
- # attached to the ML compute instance(s) that run the training job.
4258
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
4259
+ # uses to encrypt data on the storage volume attached to the ML
4260
+ # compute instance(s) that run the training job. The `VolumeKmsKeyId`
4261
+ # can be any of the following formats:
4262
+ #
4263
+ # * // KMS Key ID
4264
+ #
4265
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
4266
+ #
4267
+ # * // Amazon Resource Name (ARN) of a KMS Key
4268
+ #
4269
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
4069
4270
  # @return [String]
4070
4271
  #
4071
4272
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceConfig AWS API Documentation
@@ -4201,33 +4402,114 @@ module Aws::SageMaker
4201
4402
  include Aws::Structure
4202
4403
  end
4203
4404
 
4204
- # Specifies a secondary status the job has transitioned into. It
4205
- # includes a start timestamp and later an end timestamp. The end
4206
- # timestamp is added either after the job transitions to a different
4207
- # secondary status or after the job has ended.
4405
+ # An array element of
4406
+ # DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides
4407
+ # additional details about a status that the training job has
4408
+ # transitioned through. A training job can be in one of several states,
4409
+ # for example, starting, downloading, training, or uploading. Within
4410
+ # each state, there are a number of intermediate states. For example,
4411
+ # within the starting state, Amazon SageMaker could be starting the
4412
+ # training job or launching the ML instances. These transitional states
4413
+ # are referred to as the job's secondary status.
4208
4414
  #
4209
4415
  # @!attribute [rw] status
4210
- # Provides granular information about the system state. For more
4211
- # information, see `SecondaryStatus` under the DescribeTrainingJob
4212
- # response elements.
4416
+ # Contains a secondary status information from a training job.
4417
+ #
4418
+ # Status might be one of the following secondary statuses:
4419
+ #
4420
+ # InProgress
4421
+ # : * `Starting` - Starting the training job.
4422
+ #
4423
+ # * `Downloading` - An optional stage for algorithms that support
4424
+ # `File` training input mode. It indicates that data is being
4425
+ # downloaded to the ML storage volumes.
4426
+ #
4427
+ # * `Training` - Training is in progress.
4428
+ #
4429
+ # * `Uploading` - Training is complete and the model artifacts are
4430
+ # being uploaded to the S3 location.
4431
+ #
4432
+ # Completed
4433
+ # : * `Completed` - The training job has completed.
4434
+ #
4435
+ # ^
4436
+ #
4437
+ # Failed
4438
+ # : * `Failed` - The training job has failed. The reason for the
4439
+ # failure is returned in the `FailureReason` field of
4440
+ # `DescribeTrainingJobResponse`.
4441
+ #
4442
+ # ^
4443
+ #
4444
+ # Stopped
4445
+ # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
4446
+ # maximum allowed runtime.
4447
+ #
4448
+ # * `Stopped` - The training job has stopped.
4449
+ #
4450
+ # Stopping
4451
+ # : * `Stopping` - Stopping the training job.
4452
+ #
4453
+ # ^
4454
+ #
4455
+ # We no longer support the following secondary statuses:
4456
+ #
4457
+ # * `LaunchingMLInstances`
4458
+ #
4459
+ # * `PreparingTrainingStack`
4460
+ #
4461
+ # * `DownloadingTrainingImage`
4213
4462
  # @return [String]
4214
4463
  #
4215
4464
  # @!attribute [rw] start_time
4216
- # A timestamp that shows when the training job has entered this
4217
- # secondary status.
4465
+ # A timestamp that shows when the training job transitioned to the
4466
+ # current secondary status state.
4218
4467
  # @return [Time]
4219
4468
  #
4220
4469
  # @!attribute [rw] end_time
4221
- # A timestamp that shows when the secondary status has ended and the
4222
- # job has transitioned into another secondary status. The `EndTime`
4223
- # timestamp is also set after the training job has ended.
4470
+ # A timestamp that shows when the training job transitioned out of
4471
+ # this secondary status state into another secondary status state or
4472
+ # when the training job has ended.
4224
4473
  # @return [Time]
4225
4474
  #
4226
4475
  # @!attribute [rw] status_message
4227
- # Shows a brief description and other information about the secondary
4228
- # status. For example, the `LaunchingMLInstances` secondary status
4229
- # could show a status message of "Insufficent capacity error while
4230
- # launching instances".
4476
+ # A detailed description of the progress within a secondary status.
4477
+ #
4478
+ # Amazon SageMaker provides secondary statuses and status messages
4479
+ # that apply to each of them:
4480
+ #
4481
+ # Starting
4482
+ # : * Starting the training job.
4483
+ #
4484
+ # * Launching requested ML instances.
4485
+ #
4486
+ # * Insufficient capacity error from EC2 while launching instances,
4487
+ # retrying!
4488
+ #
4489
+ # * Launched instance was unhealthy, replacing it!
4490
+ #
4491
+ # * Preparing the instances for training.
4492
+ #
4493
+ # Training
4494
+ # : * Downloading the training image.
4495
+ #
4496
+ # * Training image download completed. Training in progress.
4497
+ #
4498
+ # Status messages are subject to change. Therefore, we recommend not
4499
+ # including them in code that programmatically initiates actions. For
4500
+ # examples, don't use status messages in if statements.
4501
+ #
4502
+ # To have an overview of your training job's progress, view
4503
+ # `TrainingJobStatus` and `SecondaryStatus` in
4504
+ # DescribeTrainingJobResponse, and `StatusMessage` together. For
4505
+ # example, at the start of a training job, you might see the
4506
+ # following:
4507
+ #
4508
+ # * `TrainingJobStatus` - InProgress
4509
+ #
4510
+ # * `SecondaryStatus` - Training
4511
+ #
4512
+ # * `StatusMessage` - Downloading the training image
4231
4513
  # @return [String]
4232
4514
  #
4233
4515
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SecondaryStatusTransition AWS API Documentation
@@ -4528,8 +4810,8 @@ module Aws::SageMaker
4528
4810
  #
4529
4811
  # @!attribute [rw] compression_type
4530
4812
  # Compressing data helps save on storage space. If your transform data
4531
- # is compressed, specify the compression type.and Amazon SageMaker
4532
- # will automatically decompress the data for the transform job
4813
+ # is compressed, specify the compression type. Amazon SageMaker
4814
+ # automatically decompresses the data for the transform job
4533
4815
  # accordingly. The default value is `None`.
4534
4816
  # @return [String]
4535
4817
  #
@@ -4563,9 +4845,8 @@ module Aws::SageMaker
4563
4845
  include Aws::Structure
4564
4846
  end
4565
4847
 
4566
- # Provides a summary information for a transform job. Multiple
4567
- # TransformJobSummary objects are returned as a list after calling
4568
- # ListTransformJobs.
4848
+ # Provides a summary of a transform job. Multiple TransformJobSummary
4849
+ # objects are returned as a list after calling ListTransformJobs.
4569
4850
  #
4570
4851
  # @!attribute [rw] transform_job_name
4571
4852
  # The name of the transform job.
@@ -4648,20 +4929,30 @@ module Aws::SageMaker
4648
4929
  # S3 object. You should select a format that is most convenient to
4649
4930
  # you. To concatenate the results in binary format, specify `None`. To
4650
4931
  # add a newline character at the end of every transformed record,
4651
- # specify `Line`. To assemble the output in RecordIO format, specify
4652
- # `RecordIO`. The default value is `None`.
4932
+ # specify `Line`.
4933
+ # @return [String]
4934
+ #
4935
+ # @!attribute [rw] kms_key_id
4936
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
4937
+ # uses to encrypt the model artifacts at rest using Amazon S3
4938
+ # server-side encryption. The `KmsKeyId` can be any of the following
4939
+ # formats:
4653
4940
  #
4654
- # For information about the `RecordIO` format, see [Data Format][1].
4941
+ # * // KMS Key ID
4655
4942
  #
4943
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
4656
4944
  #
4945
+ # * // Amazon Resource Name (ARN) of a KMS Key
4657
4946
  #
4658
- # [1]: http://mxnet.io/architecture/note_data_loading.html#data-format
4659
- # @return [String]
4947
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
4660
4948
  #
4661
- # @!attribute [rw] kms_key_id
4662
- # The AWS Key Management Service (AWS KMS) key for Amazon S3
4663
- # server-side encryption that Amazon SageMaker uses to encrypt the
4664
- # transformed data.
4949
+ # * // KMS Key Alias
4950
+ #
4951
+ # `"alias/ExampleAlias"`
4952
+ #
4953
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
4954
+ #
4955
+ # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
4665
4956
  #
4666
4957
  # If you don't provide a KMS key ID, Amazon SageMaker uses the
4667
4958
  # default KMS key for Amazon S3 for your role's account. For more
@@ -4715,10 +5006,18 @@ module Aws::SageMaker
4715
5006
  # @return [Integer]
4716
5007
  #
4717
5008
  # @!attribute [rw] volume_kms_key_id
4718
- # The Amazon Resource Name (ARN) of a AWS Key Management Service key
4719
- # that Amazon SageMaker uses to encrypt data on the storage volume
4720
- # attached to the ML compute instance(s) that run the batch transform
4721
- # job.
5009
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
5010
+ # uses to encrypt data on the storage volume attached to the ML
5011
+ # compute instance(s) that run the batch transform job. The
5012
+ # `VolumeKmsKeyId` can be any of the following formats:
5013
+ #
5014
+ # * // KMS Key ID
5015
+ #
5016
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
5017
+ #
5018
+ # * // Amazon Resource Name (ARN) of a KMS Key
5019
+ #
5020
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
4722
5021
  # @return [String]
4723
5022
  #
4724
5023
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformResources AWS API Documentation
@@ -4883,6 +5182,7 @@ module Aws::SageMaker
4883
5182
  # role_arn: "RoleArn",
4884
5183
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
4885
5184
  # disassociate_lifecycle_config: false,
5185
+ # volume_size_in_gb: 1,
4886
5186
  # }
4887
5187
  #
4888
5188
  # @!attribute [rw] notebook_instance_name
@@ -4910,8 +5210,12 @@ module Aws::SageMaker
4910
5210
  #
4911
5211
  # @!attribute [rw] lifecycle_config_name
4912
5212
  # The name of a lifecycle configuration to associate with the notebook
4913
- # instance. For information about lifestyle configurations, see
4914
- # notebook-lifecycle-config.
5213
+ # instance. For information about lifestyle configurations, see [Step
5214
+ # 2.1: (Optional) Customize a Notebook Instance][1].
5215
+ #
5216
+ #
5217
+ #
5218
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4915
5219
  # @return [String]
4916
5220
  #
4917
5221
  # @!attribute [rw] disassociate_lifecycle_config
@@ -4919,6 +5223,11 @@ module Aws::SageMaker
4919
5223
  # configuration currently associated with the notebook instance.
4920
5224
  # @return [Boolean]
4921
5225
  #
5226
+ # @!attribute [rw] volume_size_in_gb
5227
+ # The size, in GB, of the ML storage volume to attach to the notebook
5228
+ # instance.
5229
+ # @return [Integer]
5230
+ #
4922
5231
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
4923
5232
  #
4924
5233
  class UpdateNotebookInstanceInput < Struct.new(
@@ -4926,7 +5235,8 @@ module Aws::SageMaker
4926
5235
  :instance_type,
4927
5236
  :role_arn,
4928
5237
  :lifecycle_config_name,
4929
- :disassociate_lifecycle_config)
5238
+ :disassociate_lifecycle_config,
5239
+ :volume_size_in_gb)
4930
5240
  include Aws::Structure
4931
5241
  end
4932
5242
 
@@ -4980,7 +5290,14 @@ module Aws::SageMaker
4980
5290
 
4981
5291
  # Specifies a VPC that your training jobs and hosted models have access
4982
5292
  # to. Control access to and from your training and model containers by
4983
- # configuring the VPC. For more information, see host-vpc and train-vpc.
5293
+ # configuring the VPC. For more information, see [Protect Endpoints by
5294
+ # Using an Amazon Virtual Private Cloud][1] and [Protect Training Jobs
5295
+ # by Using an Amazon Virtual Private Cloud][2].
5296
+ #
5297
+ #
5298
+ #
5299
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
5300
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
4984
5301
  #
4985
5302
  # @note When making an API call, you may pass VpcConfig
4986
5303
  # data as a hash: