aws-sdk-sagemaker 1.187.0 → 1.189.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +185 -69
- data/lib/aws-sdk-sagemaker/client_api.rb +54 -0
- data/lib/aws-sdk-sagemaker/types.rb +493 -76
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
|
|
1762
1762
|
# @!attribute [rw] inference_container_definitions
|
1763
1763
|
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1764
1764
|
# inference container definitions for the candidate. This field is
|
1765
|
-
# populated for the
|
1766
|
-
# calling `CreateAutoMLJobV2`)
|
1765
|
+
# populated for the AutoML jobs V2 (for example, for jobs created by
|
1766
|
+
# calling `CreateAutoMLJobV2`) related to image or text classification
|
1767
|
+
# problem types only.
|
1767
1768
|
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1768
1769
|
#
|
1769
1770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
|
|
2035
2036
|
# This structure specifies how to split the data into train and
|
2036
2037
|
# validation datasets.
|
2037
2038
|
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
# type), the validation and training datasets must contain the same
|
2042
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
2043
|
-
# than 2 GB in size.
|
2039
|
+
# The validation and training datasets must contain the same headers.
|
2040
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
2041
|
+
# must be less than 2 GB in size.
|
2044
2042
|
#
|
2045
2043
|
# @!attribute [rw] validation_fraction
|
2046
2044
|
# The validation fraction (optional) is a float that specifies the
|
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
|
|
2077
2075
|
end
|
2078
2076
|
|
2079
2077
|
# A channel is a named input source that training algorithms can
|
2080
|
-
# consume. This channel is used for
|
2081
|
-
#
|
2082
|
-
# AutoMLChannel][1]. For more information, see [ Channel][2].
|
2078
|
+
# consume. This channel is used for AutoML jobs V2 (jobs created by
|
2079
|
+
# calling [CreateAutoMLJobV2][1]).
|
2083
2080
|
#
|
2084
2081
|
#
|
2085
2082
|
#
|
2086
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
2087
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
2083
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
2088
2084
|
#
|
2089
2085
|
# @!attribute [rw] channel_type
|
2090
2086
|
# The type of channel. Defines whether the data are used for training
|
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
|
|
2096
2092
|
# The content type of the data from the input source. The following
|
2097
2093
|
# are the allowed content types for different problems:
|
2098
2094
|
#
|
2099
|
-
# *
|
2100
|
-
# default value is
|
2095
|
+
# * For Tabular problem types: `text/csv;header=present` or
|
2096
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
|
+
# `text/csv;header=present`.
|
2098
|
+
#
|
2099
|
+
# * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
|
+
# The default value is `image/*`.
|
2101
2101
|
#
|
2102
|
-
# * TextClassification: `text/csv;header=present` or
|
2102
|
+
# * For TextClassification: `text/csv;header=present` or
|
2103
2103
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2104
|
# `text/csv;header=present`.
|
2105
2105
|
# @return [String]
|
2106
2106
|
#
|
2107
2107
|
# @!attribute [rw] compression_type
|
2108
|
-
# The allowed compression types depend on the input format
|
2109
|
-
# the compression type `Gzip` for `S3Prefix` inputs
|
2110
|
-
# other inputs, the compression type should
|
2111
|
-
# compression type is provided, we default to `None`.
|
2108
|
+
# The allowed compression types depend on the input format and problem
|
2109
|
+
# type. We allow the compression type `Gzip` for `S3Prefix` inputs on
|
2110
|
+
# tabular data only. For all other inputs, the compression type should
|
2111
|
+
# be `None`. If no compression type is provided, we default to `None`.
|
2112
2112
|
# @return [String]
|
2113
2113
|
#
|
2114
2114
|
# @!attribute [rw] data_source
|
2115
|
-
# The data source for an AutoML channel.
|
2115
|
+
# The data source for an AutoML channel (Required).
|
2116
2116
|
# @return [Types::AutoMLDataSource]
|
2117
2117
|
#
|
2118
2118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
|
|
2132
2132
|
# @!attribute [rw] max_candidates
|
2133
2133
|
# The maximum number of times a training job is allowed to run.
|
2134
2134
|
#
|
2135
|
-
# For
|
2135
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
|
2136
2136
|
# supported value is 1.
|
2137
2137
|
# @return [Integer]
|
2138
2138
|
#
|
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
|
|
2142
2142
|
# tuning job. For more information, see the [StoppingCondition][1]
|
2143
2143
|
# used by the [CreateHyperParameterTuningJob][2] action.
|
2144
2144
|
#
|
2145
|
-
# For
|
2145
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
|
2146
2146
|
# field controls the runtime of the job candidate.
|
2147
2147
|
#
|
2148
2148
|
#
|
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
|
|
2221
2221
|
#
|
2222
2222
|
#
|
2223
2223
|
#
|
2224
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-
|
2224
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
2225
2225
|
# @return [String]
|
2226
2226
|
#
|
2227
2227
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
|
|
2237
2237
|
end
|
2238
2238
|
|
2239
2239
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2240
|
-
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2241
|
-
# support `Accuracy` only.
|
2242
2240
|
#
|
2243
2241
|
# @!attribute [rw] metric_name
|
2244
2242
|
# The name of the objective metric used to measure the predictive
|
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
|
|
2253
2251
|
# If you do not specify a metric explicitly, the default behavior is
|
2254
2252
|
# to automatically use:
|
2255
2253
|
#
|
2256
|
-
# *
|
2254
|
+
# * For tabular problem types:
|
2255
|
+
#
|
2256
|
+
# * Regression: `MSE`.
|
2257
2257
|
#
|
2258
|
-
#
|
2258
|
+
# * Binary classification: `F1`.
|
2259
2259
|
#
|
2260
|
-
#
|
2260
|
+
# * Multiclass classification: `Accuracy`.
|
2261
|
+
#
|
2262
|
+
# * For image or text classification problem types: `Accuracy`
|
2261
2263
|
#
|
2262
2264
|
#
|
2263
2265
|
#
|
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
|
|
2375
2377
|
end
|
2376
2378
|
|
2377
2379
|
# A collection of settings specific to the problem type used to
|
2378
|
-
# configure an AutoML job
|
2379
|
-
#
|
2380
|
+
# configure an AutoML job V2. There must be one and only one config of
|
2381
|
+
# the following type.
|
2380
2382
|
#
|
2381
2383
|
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2382
2384
|
#
|
2383
2385
|
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2384
2386
|
#
|
2385
2387
|
# @!attribute [rw] image_classification_job_config
|
2386
|
-
# Settings used to configure an AutoML job
|
2387
|
-
#
|
2388
|
+
# Settings used to configure an AutoML job V2 for the image
|
2389
|
+
# classification problem type.
|
2388
2390
|
# @return [Types::ImageClassificationJobConfig]
|
2389
2391
|
#
|
2390
2392
|
# @!attribute [rw] text_classification_job_config
|
2391
|
-
# Settings used to configure an AutoML job
|
2392
|
-
#
|
2393
|
+
# Settings used to configure an AutoML job V2 for the text
|
2394
|
+
# classification problem type.
|
2393
2395
|
# @return [Types::TextClassificationJobConfig]
|
2394
2396
|
#
|
2397
|
+
# @!attribute [rw] tabular_job_config
|
2398
|
+
# Settings used to configure an AutoML job V2 for a tabular problem
|
2399
|
+
# type (regression, classification).
|
2400
|
+
# @return [Types::TabularJobConfig]
|
2401
|
+
#
|
2395
2402
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2396
2403
|
#
|
2397
2404
|
class AutoMLProblemTypeConfig < Struct.new(
|
2398
2405
|
:image_classification_job_config,
|
2399
2406
|
:text_classification_job_config,
|
2407
|
+
:tabular_job_config,
|
2400
2408
|
:unknown)
|
2401
2409
|
SENSITIVE = []
|
2402
2410
|
include Aws::Structure
|
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
|
|
2404
2412
|
|
2405
2413
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2406
2414
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
|
+
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2407
2416
|
class Unknown < AutoMLProblemTypeConfig; end
|
2408
2417
|
end
|
2409
2418
|
|
2419
|
+
# The resolved attributes specific to the problem type of an AutoML job
|
2420
|
+
# V2.
|
2421
|
+
#
|
2422
|
+
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2423
|
+
#
|
2424
|
+
# @!attribute [rw] tabular_resolved_attributes
|
2425
|
+
# Defines the resolved attributes for the `TABULAR` problem type.
|
2426
|
+
# @return [Types::TabularResolvedAttributes]
|
2427
|
+
#
|
2428
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2429
|
+
#
|
2430
|
+
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2431
|
+
:tabular_resolved_attributes,
|
2432
|
+
:unknown)
|
2433
|
+
SENSITIVE = []
|
2434
|
+
include Aws::Structure
|
2435
|
+
include Aws::Structure::Union
|
2436
|
+
|
2437
|
+
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2438
|
+
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2439
|
+
end
|
2440
|
+
|
2441
|
+
# The resolved attributes used to configure an AutoML job V2.
|
2442
|
+
#
|
2443
|
+
# @!attribute [rw] auto_ml_job_objective
|
2444
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
2445
|
+
# job.
|
2446
|
+
# @return [Types::AutoMLJobObjective]
|
2447
|
+
#
|
2448
|
+
# @!attribute [rw] completion_criteria
|
2449
|
+
# How long a job is allowed to run, or how many candidates a job is
|
2450
|
+
# allowed to generate.
|
2451
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
2452
|
+
#
|
2453
|
+
# @!attribute [rw] auto_ml_problem_type_resolved_attributes
|
2454
|
+
# Defines the resolved attributes specific to a problem type.
|
2455
|
+
# @return [Types::AutoMLProblemTypeResolvedAttributes]
|
2456
|
+
#
|
2457
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
|
2458
|
+
#
|
2459
|
+
class AutoMLResolvedAttributes < Struct.new(
|
2460
|
+
:auto_ml_job_objective,
|
2461
|
+
:completion_criteria,
|
2462
|
+
:auto_ml_problem_type_resolved_attributes)
|
2463
|
+
SENSITIVE = []
|
2464
|
+
include Aws::Structure
|
2465
|
+
end
|
2466
|
+
|
2410
2467
|
# Describes the Amazon S3 data source.
|
2411
2468
|
#
|
2412
2469
|
# @!attribute [rw] s3_data_type
|
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
|
|
2939
2996
|
include Aws::Structure
|
2940
2997
|
end
|
2941
2998
|
|
2999
|
+
# Stores the configuration information for how model candidates are
|
3000
|
+
# generated using an AutoML job V2.
|
3001
|
+
#
|
3002
|
+
# @!attribute [rw] algorithms_config
|
3003
|
+
# Stores the configuration information for the selection of algorithms
|
3004
|
+
# used to train model candidates on tabular data.
|
3005
|
+
#
|
3006
|
+
# The list of available algorithms to choose from depends on the
|
3007
|
+
# training mode set in [ `TabularJobConfig.Mode` ][1].
|
3008
|
+
#
|
3009
|
+
# * `AlgorithmsConfig` should not be set in `AUTO` training mode.
|
3010
|
+
#
|
3011
|
+
# * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
|
3012
|
+
# attribute must be set and one only.
|
3013
|
+
#
|
3014
|
+
# If the list of algorithms provided as values for
|
3015
|
+
# `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
|
3016
|
+
# full set of algorithms for the given training mode.
|
3017
|
+
#
|
3018
|
+
# * When `AlgorithmsConfig` is not provided,
|
3019
|
+
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3020
|
+
# the given training mode.
|
3021
|
+
#
|
3022
|
+
# For the list of all algorithms per problem type and training mode,
|
3023
|
+
# see [ AutoMLAlgorithmConfig][2].
|
3024
|
+
#
|
3025
|
+
# For more information on each algorithm, see the [Algorithm
|
3026
|
+
# support][3] section in Autopilot developer guide.
|
3027
|
+
#
|
3028
|
+
#
|
3029
|
+
#
|
3030
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
|
3031
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
3032
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
3033
|
+
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
3034
|
+
#
|
3035
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
|
3036
|
+
#
|
3037
|
+
class CandidateGenerationConfig < Struct.new(
|
3038
|
+
:algorithms_config)
|
3039
|
+
SENSITIVE = []
|
3040
|
+
include Aws::Structure
|
3041
|
+
end
|
3042
|
+
|
2942
3043
|
# The properties of an AutoML candidate job.
|
2943
3044
|
#
|
2944
3045
|
# @!attribute [rw] candidate_artifact_locations
|
@@ -3998,6 +4099,16 @@ module Aws::SageMaker
|
|
3998
4099
|
# Specifies additional configuration for multi-model endpoints.
|
3999
4100
|
# @return [Types::MultiModelConfig]
|
4000
4101
|
#
|
4102
|
+
# @!attribute [rw] model_data_source
|
4103
|
+
# Specifies the location of ML model data to deploy.
|
4104
|
+
#
|
4105
|
+
# <note markdown="1"> Currently you cannot use `ModelDataSource` in conjuction with
|
4106
|
+
# SageMaker batch transform, SageMaker serverless endpoints, SageMaker
|
4107
|
+
# multi-model endpoints, and SageMaker Marketplace.
|
4108
|
+
#
|
4109
|
+
# </note>
|
4110
|
+
# @return [Types::ModelDataSource]
|
4111
|
+
#
|
4001
4112
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
|
4002
4113
|
#
|
4003
4114
|
class ContainerDefinition < Struct.new(
|
@@ -4009,7 +4120,8 @@ module Aws::SageMaker
|
|
4009
4120
|
:environment,
|
4010
4121
|
:model_package_name,
|
4011
4122
|
:inference_specification_name,
|
4012
|
-
:multi_model_config
|
4123
|
+
:multi_model_config,
|
4124
|
+
:model_data_source)
|
4013
4125
|
SENSITIVE = []
|
4014
4126
|
include Aws::Structure
|
4015
4127
|
end
|
@@ -4525,15 +4637,13 @@ module Aws::SageMaker
|
|
4525
4637
|
# @return [String]
|
4526
4638
|
#
|
4527
4639
|
# @!attribute [rw] auto_ml_job_objective
|
4528
|
-
#
|
4529
|
-
#
|
4530
|
-
#
|
4531
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
4640
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4641
|
+
# job. If not specified, the default objective metric depends on the
|
4642
|
+
# problem type. See [AutoMLJobObjective][1] for the default values.
|
4532
4643
|
#
|
4533
4644
|
#
|
4534
4645
|
#
|
4535
4646
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4536
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4537
4647
|
# @return [Types::AutoMLJobObjective]
|
4538
4648
|
#
|
4539
4649
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4603,14 +4713,16 @@ module Aws::SageMaker
|
|
4603
4713
|
#
|
4604
4714
|
# @!attribute [rw] auto_ml_job_input_data_config
|
4605
4715
|
# An array of channel objects describing the input data and their
|
4606
|
-
# location. Each channel is a named input source. Similar to
|
4607
|
-
# [InputDataConfig][1]
|
4608
|
-
# formats depend on the problem type:
|
4716
|
+
# location. Each channel is a named input source. Similar to the
|
4717
|
+
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
|
+
# parameters. The supported formats depend on the problem type:
|
4609
4719
|
#
|
4610
|
-
# *
|
4611
|
-
# `AugmentedManifestFile`
|
4720
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
4612
4721
|
#
|
4613
|
-
# *
|
4722
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
4723
|
+
# `AugmentedManifestFile`.
|
4724
|
+
#
|
4725
|
+
# * For TextClassification: `S3Prefix`.
|
4614
4726
|
#
|
4615
4727
|
#
|
4616
4728
|
#
|
@@ -4649,11 +4761,20 @@ module Aws::SageMaker
|
|
4649
4761
|
#
|
4650
4762
|
# @!attribute [rw] auto_ml_job_objective
|
4651
4763
|
# Specifies a metric to minimize or maximize as the objective of a
|
4652
|
-
# job.
|
4764
|
+
# job. If not specified, the default objective metric depends on the
|
4765
|
+
# problem type. For the list of default values per problem type, see
|
4766
|
+
# [AutoMLJobObjective][1].
|
4653
4767
|
#
|
4768
|
+
# <note markdown="1"> For tabular problem types, you must either provide both the
|
4769
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4770
|
+
# problem in `AutoMLProblemTypeConfig`
|
4771
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
4654
4772
|
#
|
4773
|
+
# </note>
|
4655
4774
|
#
|
4656
|
-
#
|
4775
|
+
#
|
4776
|
+
#
|
4777
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4657
4778
|
# @return [Types::AutoMLJobObjective]
|
4658
4779
|
#
|
4659
4780
|
# @!attribute [rw] model_deploy_config
|
@@ -4665,12 +4786,9 @@ module Aws::SageMaker
|
|
4665
4786
|
# This structure specifies how to split the data into train and
|
4666
4787
|
# validation datasets.
|
4667
4788
|
#
|
4668
|
-
#
|
4669
|
-
#
|
4670
|
-
#
|
4671
|
-
# type), the validation and training datasets must contain the same
|
4672
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4673
|
-
# than 2 GB in size.
|
4789
|
+
# The validation and training datasets must contain the same headers.
|
4790
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
|
+
# dataset must be less than 2 GB in size.
|
4674
4792
|
# @return [Types::AutoMLDataSplitConfig]
|
4675
4793
|
#
|
4676
4794
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10636,8 +10754,7 @@ module Aws::SageMaker
|
|
10636
10754
|
# @!attribute [rw] resolved_attributes
|
10637
10755
|
# Contains `ProblemType`, `AutoMLJobObjective`, and
|
10638
10756
|
# `CompletionCriteria`. If you do not provide these values, they are
|
10639
|
-
#
|
10640
|
-
# you provide.
|
10757
|
+
# inferred.
|
10641
10758
|
# @return [Types::ResolvedAttributes]
|
10642
10759
|
#
|
10643
10760
|
# @!attribute [rw] model_deploy_config
|
@@ -10678,7 +10795,7 @@ module Aws::SageMaker
|
|
10678
10795
|
end
|
10679
10796
|
|
10680
10797
|
# @!attribute [rw] auto_ml_job_name
|
10681
|
-
# Requests information about an AutoML V2
|
10798
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10682
10799
|
# @return [String]
|
10683
10800
|
#
|
10684
10801
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
@@ -10690,11 +10807,11 @@ module Aws::SageMaker
|
|
10690
10807
|
end
|
10691
10808
|
|
10692
10809
|
# @!attribute [rw] auto_ml_job_name
|
10693
|
-
# Returns the name of the AutoML V2
|
10810
|
+
# Returns the name of the AutoML job V2.
|
10694
10811
|
# @return [String]
|
10695
10812
|
#
|
10696
10813
|
# @!attribute [rw] auto_ml_job_arn
|
10697
|
-
# Returns the Amazon Resource Name (ARN) of the AutoML V2
|
10814
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML job V2.
|
10698
10815
|
# @return [String]
|
10699
10816
|
#
|
10700
10817
|
# @!attribute [rw] auto_ml_job_input_data_config
|
@@ -10718,15 +10835,15 @@ module Aws::SageMaker
|
|
10718
10835
|
#
|
10719
10836
|
# @!attribute [rw] auto_ml_problem_type_config
|
10720
10837
|
# Returns the configuration settings of the problem type set for the
|
10721
|
-
# AutoML V2
|
10838
|
+
# AutoML job V2.
|
10722
10839
|
# @return [Types::AutoMLProblemTypeConfig]
|
10723
10840
|
#
|
10724
10841
|
# @!attribute [rw] creation_time
|
10725
|
-
# Returns the creation time of the AutoML V2
|
10842
|
+
# Returns the creation time of the AutoML job V2.
|
10726
10843
|
# @return [Time]
|
10727
10844
|
#
|
10728
10845
|
# @!attribute [rw] end_time
|
10729
|
-
# Returns the end time of the AutoML V2
|
10846
|
+
# Returns the end time of the AutoML job V2.
|
10730
10847
|
# @return [Time]
|
10731
10848
|
#
|
10732
10849
|
# @!attribute [rw] last_modified_time
|
@@ -10734,13 +10851,13 @@ module Aws::SageMaker
|
|
10734
10851
|
# @return [Time]
|
10735
10852
|
#
|
10736
10853
|
# @!attribute [rw] failure_reason
|
10737
|
-
# Returns the reason for the failure of the AutoML V2
|
10854
|
+
# Returns the reason for the failure of the AutoML job V2, when
|
10738
10855
|
# applicable.
|
10739
10856
|
# @return [String]
|
10740
10857
|
#
|
10741
10858
|
# @!attribute [rw] partial_failure_reasons
|
10742
|
-
# Returns a list of reasons for partial failures within an AutoML
|
10743
|
-
#
|
10859
|
+
# Returns a list of reasons for partial failures within an AutoML job
|
10860
|
+
# V2.
|
10744
10861
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10745
10862
|
#
|
10746
10863
|
# @!attribute [rw] best_candidate
|
@@ -10749,11 +10866,11 @@ module Aws::SageMaker
|
|
10749
10866
|
# @return [Types::AutoMLCandidate]
|
10750
10867
|
#
|
10751
10868
|
# @!attribute [rw] auto_ml_job_status
|
10752
|
-
# Returns the status of the AutoML V2
|
10869
|
+
# Returns the status of the AutoML job V2.
|
10753
10870
|
# @return [String]
|
10754
10871
|
#
|
10755
10872
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10756
|
-
# Returns the secondary status of the AutoML V2
|
10873
|
+
# Returns the secondary status of the AutoML job V2.
|
10757
10874
|
# @return [String]
|
10758
10875
|
#
|
10759
10876
|
# @!attribute [rw] model_deploy_config
|
@@ -10775,6 +10892,19 @@ module Aws::SageMaker
|
|
10775
10892
|
# VPC settings.
|
10776
10893
|
# @return [Types::AutoMLSecurityConfig]
|
10777
10894
|
#
|
10895
|
+
# @!attribute [rw] auto_ml_job_artifacts
|
10896
|
+
# The artifacts that are generated during an AutoML job.
|
10897
|
+
# @return [Types::AutoMLJobArtifacts]
|
10898
|
+
#
|
10899
|
+
# @!attribute [rw] resolved_attributes
|
10900
|
+
# Returns the resolved attributes used by the AutoML job V2.
|
10901
|
+
# @return [Types::AutoMLResolvedAttributes]
|
10902
|
+
#
|
10903
|
+
# @!attribute [rw] auto_ml_problem_type_config_name
|
10904
|
+
# Returns the name of the problem type configuration set for the
|
10905
|
+
# AutoML job V2.
|
10906
|
+
# @return [String]
|
10907
|
+
#
|
10778
10908
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10779
10909
|
#
|
10780
10910
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -10796,7 +10926,10 @@ module Aws::SageMaker
|
|
10796
10926
|
:model_deploy_config,
|
10797
10927
|
:model_deploy_result,
|
10798
10928
|
:data_split_config,
|
10799
|
-
:security_config
|
10929
|
+
:security_config,
|
10930
|
+
:auto_ml_job_artifacts,
|
10931
|
+
:resolved_attributes,
|
10932
|
+
:auto_ml_problem_type_config_name)
|
10800
10933
|
SENSITIVE = []
|
10801
10934
|
include Aws::Structure
|
10802
10935
|
end
|
@@ -20733,7 +20866,7 @@ module Aws::SageMaker
|
|
20733
20866
|
end
|
20734
20867
|
|
20735
20868
|
# Stores the configuration information for the image classification
|
20736
|
-
# problem of an AutoML job
|
20869
|
+
# problem of an AutoML job V2.
|
20737
20870
|
#
|
20738
20871
|
# @!attribute [rw] completion_criteria
|
20739
20872
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -28354,6 +28487,21 @@ module Aws::SageMaker
|
|
28354
28487
|
include Aws::Structure
|
28355
28488
|
end
|
28356
28489
|
|
28490
|
+
# Specifies the location of ML model data to deploy. If specified, you
|
28491
|
+
# must specify one and only one of the available data sources.
|
28492
|
+
#
|
28493
|
+
# @!attribute [rw] s3_data_source
|
28494
|
+
# Specifies the S3 location of ML model data to deploy.
|
28495
|
+
# @return [Types::S3ModelDataSource]
|
28496
|
+
#
|
28497
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDataSource AWS API Documentation
|
28498
|
+
#
|
28499
|
+
class ModelDataSource < Struct.new(
|
28500
|
+
:s3_data_source)
|
28501
|
+
SENSITIVE = []
|
28502
|
+
include Aws::Structure
|
28503
|
+
end
|
28504
|
+
|
28357
28505
|
# Specifies how to generate the endpoint name for an automatic one-click
|
28358
28506
|
# Autopilot model deployment.
|
28359
28507
|
#
|
@@ -30828,6 +30976,11 @@ module Aws::SageMaker
|
|
30828
30976
|
# using [TargetPlatform][1] fields. It can be used instead of
|
30829
30977
|
# `TargetPlatform`.
|
30830
30978
|
#
|
30979
|
+
# <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
|
30980
|
+
# Region, and `ml_inf2` is available only in US East (Ohio) Region.
|
30981
|
+
#
|
30982
|
+
# </note>
|
30983
|
+
#
|
30831
30984
|
#
|
30832
30985
|
#
|
30833
30986
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
|
@@ -31069,11 +31222,18 @@ module Aws::SageMaker
|
|
31069
31222
|
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
31070
31223
|
# @return [String]
|
31071
31224
|
#
|
31225
|
+
# @!attribute [rw] compression_type
|
31226
|
+
# The model output compression type. Select `None` to output an
|
31227
|
+
# uncompressed model, recommended for large model outputs. Defaults to
|
31228
|
+
# gzip.
|
31229
|
+
# @return [String]
|
31230
|
+
#
|
31072
31231
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
31073
31232
|
#
|
31074
31233
|
class OutputDataConfig < Struct.new(
|
31075
31234
|
:kms_key_id,
|
31076
|
-
:s3_output_path
|
31235
|
+
:s3_output_path,
|
31236
|
+
:compression_type)
|
31077
31237
|
SENSITIVE = []
|
31078
31238
|
include Aws::Structure
|
31079
31239
|
end
|
@@ -34402,8 +34562,7 @@ module Aws::SageMaker
|
|
34402
34562
|
#
|
34403
34563
|
# @!attribute [rw] auto_ml_job_objective
|
34404
34564
|
# Specifies a metric to minimize or maximize as the objective of a
|
34405
|
-
# job.
|
34406
|
-
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
34565
|
+
# job.
|
34407
34566
|
# @return [Types::AutoMLJobObjective]
|
34408
34567
|
#
|
34409
34568
|
# @!attribute [rw] problem_type
|
@@ -34875,6 +35034,101 @@ module Aws::SageMaker
|
|
34875
35034
|
include Aws::Structure
|
34876
35035
|
end
|
34877
35036
|
|
35037
|
+
# Specifies the S3 location of ML model data to deploy.
|
35038
|
+
#
|
35039
|
+
# @!attribute [rw] s3_uri
|
35040
|
+
# Specifies the S3 path of ML model data to deploy.
|
35041
|
+
# @return [String]
|
35042
|
+
#
|
35043
|
+
# @!attribute [rw] s3_data_type
|
35044
|
+
# Specifies the type of ML model data to deploy.
|
35045
|
+
#
|
35046
|
+
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
35047
|
+
# SageMaker uses all objects that match the specified key name prefix
|
35048
|
+
# as part of the ML model data to deploy. A valid key name prefix
|
35049
|
+
# identified by `S3Uri` always ends with a forward slash (/).
|
35050
|
+
#
|
35051
|
+
# If you choose S3Object, S3Uri identifies an object that is the ML
|
35052
|
+
# model data to deploy.
|
35053
|
+
# @return [String]
|
35054
|
+
#
|
35055
|
+
# @!attribute [rw] compression_type
|
35056
|
+
# Specifies how the ML model data is prepared.
|
35057
|
+
#
|
35058
|
+
# If you choose `Gzip` and choose `S3Object` as the value of
|
35059
|
+
# `S3DataType`, `S3Uri` identifies an object that is a gzip-compressed
|
35060
|
+
# TAR archive. SageMaker will attempt to decompress and untar the
|
35061
|
+
# object during model deployment.
|
35062
|
+
#
|
35063
|
+
# If you choose `None` and chooose `S3Object` as the value of
|
35064
|
+
# `S3DataType`, `S3Uri` identifies an object that represents an
|
35065
|
+
# uncompressed ML model to deploy.
|
35066
|
+
#
|
35067
|
+
# If you choose None and choose `S3Prefix` as the value of
|
35068
|
+
# `S3DataType`, `S3Uri` identifies a key name prefix, under which all
|
35069
|
+
# objects represents the uncompressed ML model to deploy.
|
35070
|
+
#
|
35071
|
+
# If you choose None, then SageMaker will follow rules below when
|
35072
|
+
# creating model data files under /opt/ml/model directory for use by
|
35073
|
+
# your inference code:
|
35074
|
+
#
|
35075
|
+
# * If you choose `S3Object` as the value of `S3DataType`, then
|
35076
|
+
# SageMaker will split the key of the S3 object referenced by
|
35077
|
+
# `S3Uri` by slash (/), and use the last part as the filename of the
|
35078
|
+
# file holding the content of the S3 object.
|
35079
|
+
#
|
35080
|
+
# * If you choose `S3Prefix` as the value of `S3DataType`, then for
|
35081
|
+
# each S3 object under the key name pefix referenced by `S3Uri`,
|
35082
|
+
# SageMaker will trim its key by the prefix, and use the remainder
|
35083
|
+
# as the path (relative to `/opt/ml/model`) of the file holding the
|
35084
|
+
# content of the S3 object. SageMaker will split the remainder by
|
35085
|
+
# slash (/), using intermediate parts as directory names and the
|
35086
|
+
# last part as filename of the file holding the content of the S3
|
35087
|
+
# object.
|
35088
|
+
#
|
35089
|
+
# * Do not use any of the following as file names or directory names:
|
35090
|
+
#
|
35091
|
+
# * An empty or blank string
|
35092
|
+
#
|
35093
|
+
# * A string which contains null bytes
|
35094
|
+
#
|
35095
|
+
# * A string longer than 255 bytes
|
35096
|
+
#
|
35097
|
+
# * A single dot (`.`)
|
35098
|
+
#
|
35099
|
+
# * A double dot (`..`)
|
35100
|
+
#
|
35101
|
+
# * Ambiguous file names will result in model deployment failure. For
|
35102
|
+
# example, if your uncompressed ML model consists of two S3 objects
|
35103
|
+
# `s3://mybucket/model/weights` and
|
35104
|
+
# `s3://mybucket/model/weights/part1` and you specify
|
35105
|
+
# `s3://mybucket/model/` as the value of `S3Uri` and `S3Prefix` as
|
35106
|
+
# the value of S3DataType, then it will result in name clash between
|
35107
|
+
# `/opt/ml/model/weights` (a regular file) and
|
35108
|
+
# `/opt/ml/model/weights/` (a directory).
|
35109
|
+
#
|
35110
|
+
# * Do not organize the model artifacts in [S3 console using
|
35111
|
+
# folders][1]. When you create a folder in S3 console, S3 creates a
|
35112
|
+
# 0-byte object with a key set to the folder name you provide. They
|
35113
|
+
# key of the 0-byte object ends with a slash (/) which violates
|
35114
|
+
# SageMaker restrictions on model artifact file names, leading to
|
35115
|
+
# model deployment failure.
|
35116
|
+
#
|
35117
|
+
#
|
35118
|
+
#
|
35119
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html
|
35120
|
+
# @return [String]
|
35121
|
+
#
|
35122
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3ModelDataSource AWS API Documentation
|
35123
|
+
#
|
35124
|
+
class S3ModelDataSource < Struct.new(
|
35125
|
+
:s3_uri,
|
35126
|
+
:s3_data_type,
|
35127
|
+
:compression_type)
|
35128
|
+
SENSITIVE = []
|
35129
|
+
include Aws::Structure
|
35130
|
+
end
|
35131
|
+
|
34878
35132
|
# The Amazon Simple Storage (Amazon S3) location and and security
|
34879
35133
|
# configuration for `OfflineStore`.
|
34880
35134
|
#
|
@@ -36307,6 +36561,168 @@ module Aws::SageMaker
|
|
36307
36561
|
include Aws::Structure
|
36308
36562
|
end
|
36309
36563
|
|
36564
|
+
# The collection of settings used by an AutoML job V2 for the `TABULAR`
|
36565
|
+
# problem type.
|
36566
|
+
#
|
36567
|
+
# @!attribute [rw] candidate_generation_config
|
36568
|
+
# The configuration information of how model candidates are generated.
|
36569
|
+
# @return [Types::CandidateGenerationConfig]
|
36570
|
+
#
|
36571
|
+
# @!attribute [rw] completion_criteria
|
36572
|
+
# How long a job is allowed to run, or how many candidates a job is
|
36573
|
+
# allowed to generate.
|
36574
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
36575
|
+
#
|
36576
|
+
# @!attribute [rw] feature_specification_s3_uri
|
36577
|
+
# A URL to the Amazon S3 data source containing selected features from
|
36578
|
+
# the input data source to run an Autopilot job V2. You can input
|
36579
|
+
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
36580
|
+
#
|
36581
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
36582
|
+
#
|
36583
|
+
# You can also specify the data type of the feature (optional) in the
|
36584
|
+
# format shown below:
|
36585
|
+
#
|
36586
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
36587
|
+
# \} \}`
|
36588
|
+
#
|
36589
|
+
# <note markdown="1"> These column keys may not include the target column.
|
36590
|
+
#
|
36591
|
+
# </note>
|
36592
|
+
#
|
36593
|
+
# In ensembling mode, Autopilot only supports the following data
|
36594
|
+
# types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
|
36595
|
+
# mode, Autopilot can support `numeric`, `categorical`, `text`,
|
36596
|
+
# `datetime`, and `sequence`.
|
36597
|
+
#
|
36598
|
+
# If only `FeatureDataTypes` is provided, the column keys (`col1`,
|
36599
|
+
# `col2`,..) should be a subset of the column names in the input data.
|
36600
|
+
#
|
36601
|
+
# If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
|
36602
|
+
# then the column keys should be a subset of the column names provided
|
36603
|
+
# in `FeatureAttributeNames`.
|
36604
|
+
#
|
36605
|
+
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
36606
|
+
# `["col1", "col2", ...]` are case sensitive and should be a list of
|
36607
|
+
# strings containing unique values that are a subset of the column
|
36608
|
+
# names in the input data. The list of columns provided must not
|
36609
|
+
# include the target column.
|
36610
|
+
# @return [String]
|
36611
|
+
#
|
36612
|
+
# @!attribute [rw] mode
|
36613
|
+
# The method that Autopilot uses to train the data. You can either
|
36614
|
+
# specify the mode manually or let Autopilot choose for you based on
|
36615
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
36616
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
36617
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
36618
|
+
#
|
36619
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
36620
|
+
# classification and regression tasks directly from your dataset. This
|
36621
|
+
# machine learning mode combines several base models to produce an
|
36622
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
36623
|
+
# combine predictions from contributing members. A multi-stack
|
36624
|
+
# ensemble model can provide better performance over a single model by
|
36625
|
+
# combining the predictive capabilities of multiple models. See
|
36626
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36627
|
+
# by `ENSEMBLING` mode.
|
36628
|
+
#
|
36629
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
36630
|
+
# to train the best version of a model. HPO automatically selects an
|
36631
|
+
# algorithm for the type of problem you want to solve. Then HPO finds
|
36632
|
+
# the best hyperparameters according to your objective metric. See
|
36633
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36634
|
+
# by `HYPERPARAMETER_TUNING` mode.
|
36635
|
+
#
|
36636
|
+
#
|
36637
|
+
#
|
36638
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
36639
|
+
# @return [String]
|
36640
|
+
#
|
36641
|
+
# @!attribute [rw] generate_candidate_definitions_only
|
36642
|
+
# Generates possible candidates without training the models. A model
|
36643
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
36644
|
+
# algorithm parameter settings.
|
36645
|
+
# @return [Boolean]
|
36646
|
+
#
|
36647
|
+
# @!attribute [rw] problem_type
|
36648
|
+
# The type of supervised learning problem available for the model
|
36649
|
+
# candidates of the AutoML job V2. For more information, see [ Amazon
|
36650
|
+
# SageMaker Autopilot problem types][1].
|
36651
|
+
#
|
36652
|
+
# <note markdown="1"> You must either specify the type of supervised learning problem in
|
36653
|
+
# `ProblemType` and provide the [AutoMLJobObjective][2] metric, or
|
36654
|
+
# none at all.
|
36655
|
+
#
|
36656
|
+
# </note>
|
36657
|
+
#
|
36658
|
+
#
|
36659
|
+
#
|
36660
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36661
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective
|
36662
|
+
# @return [String]
|
36663
|
+
#
|
36664
|
+
# @!attribute [rw] target_attribute_name
|
36665
|
+
# The name of the target variable in supervised learning, usually
|
36666
|
+
# represented by 'y'.
|
36667
|
+
# @return [String]
|
36668
|
+
#
|
36669
|
+
# @!attribute [rw] sample_weight_attribute_name
|
36670
|
+
# If specified, this column name indicates which column of the dataset
|
36671
|
+
# should be treated as sample weights for use by the objective metric
|
36672
|
+
# during the training, evaluation, and the selection of the best
|
36673
|
+
# model. This column is not considered as a predictive feature. For
|
36674
|
+
# more information on Autopilot metrics, see [Metrics and
|
36675
|
+
# validation][1].
|
36676
|
+
#
|
36677
|
+
# Sample weights should be numeric, non-negative, with larger values
|
36678
|
+
# indicating which rows are more important than others. Data points
|
36679
|
+
# that have invalid or no weight value are excluded.
|
36680
|
+
#
|
36681
|
+
# Support for sample weights is available in [Ensembling][2] mode
|
36682
|
+
# only.
|
36683
|
+
#
|
36684
|
+
#
|
36685
|
+
#
|
36686
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
36687
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
36688
|
+
# @return [String]
|
36689
|
+
#
|
36690
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
|
36691
|
+
#
|
36692
|
+
class TabularJobConfig < Struct.new(
|
36693
|
+
:candidate_generation_config,
|
36694
|
+
:completion_criteria,
|
36695
|
+
:feature_specification_s3_uri,
|
36696
|
+
:mode,
|
36697
|
+
:generate_candidate_definitions_only,
|
36698
|
+
:problem_type,
|
36699
|
+
:target_attribute_name,
|
36700
|
+
:sample_weight_attribute_name)
|
36701
|
+
SENSITIVE = []
|
36702
|
+
include Aws::Structure
|
36703
|
+
end
|
36704
|
+
|
36705
|
+
# The resolved attributes specific to the `TABULAR` problem type.
|
36706
|
+
#
|
36707
|
+
# @!attribute [rw] problem_type
|
36708
|
+
# The type of supervised learning problem available for the model
|
36709
|
+
# candidates of the AutoML job V2 (Binary Classification, Multiclass
|
36710
|
+
# Classification, Regression). For more information, see [ Amazon
|
36711
|
+
# SageMaker Autopilot problem types][1].
|
36712
|
+
#
|
36713
|
+
#
|
36714
|
+
#
|
36715
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36716
|
+
# @return [String]
|
36717
|
+
#
|
36718
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
|
36719
|
+
#
|
36720
|
+
class TabularResolvedAttributes < Struct.new(
|
36721
|
+
:problem_type)
|
36722
|
+
SENSITIVE = []
|
36723
|
+
include Aws::Structure
|
36724
|
+
end
|
36725
|
+
|
36310
36726
|
# A tag object that consists of a key and an optional value, used to
|
36311
36727
|
# manage metadata for SageMaker Amazon Web Services resources.
|
36312
36728
|
#
|
@@ -36432,7 +36848,7 @@ module Aws::SageMaker
|
|
36432
36848
|
end
|
36433
36849
|
|
36434
36850
|
# Stores the configuration information for the text classification
|
36435
|
-
# problem of an AutoML job
|
36851
|
+
# problem of an AutoML job V2.
|
36436
36852
|
#
|
36437
36853
|
# @!attribute [rw] completion_criteria
|
36438
36854
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -36441,12 +36857,13 @@ module Aws::SageMaker
|
|
36441
36857
|
#
|
36442
36858
|
# @!attribute [rw] content_column
|
36443
36859
|
# The name of the column used to provide the sentences to be
|
36444
|
-
# classified. It should not be the same as the target column
|
36860
|
+
# classified. It should not be the same as the target column
|
36861
|
+
# (Required).
|
36445
36862
|
# @return [String]
|
36446
36863
|
#
|
36447
36864
|
# @!attribute [rw] target_label_column
|
36448
36865
|
# The name of the column used to provide the class labels. It should
|
36449
|
-
# not be same as the content column.
|
36866
|
+
# not be same as the content column (Required).
|
36450
36867
|
# @return [String]
|
36451
36868
|
#
|
36452
36869
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|