aws-sdk-sagemaker 1.187.0 → 1.189.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
1762
1762
  # @!attribute [rw] inference_container_definitions
1763
1763
  # The mapping of all supported processing unit (CPU, GPU, etc...) to
1764
1764
  # inference container definitions for the candidate. This field is
1765
- # populated for the V2 API only (for example, for jobs created by
1766
- # calling `CreateAutoMLJobV2`).
1765
+ # populated for the AutoML jobs V2 (for example, for jobs created by
1766
+ # calling `CreateAutoMLJobV2`) related to image or text classification
1767
+ # problem types only.
1767
1768
  # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1768
1769
  #
1769
1770
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
2035
2036
  # This structure specifies how to split the data into train and
2036
2037
  # validation datasets.
2037
2038
  #
2038
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
2039
- # API for Natural Language Processing problems (for example
2040
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
2041
- # type), the validation and training datasets must contain the same
2042
- # headers. Also, for V1 API jobs, the validation dataset must be less
2043
- # than 2 GB in size.
2039
+ # The validation and training datasets must contain the same headers.
2040
+ # For jobs created by calling `CreateAutoMLJob`, the validation dataset
2041
+ # must be less than 2 GB in size.
2044
2042
  #
2045
2043
  # @!attribute [rw] validation_fraction
2046
2044
  # The validation fraction (optional) is a float that specifies the
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
2077
2075
  end
2078
2076
 
2079
2077
  # A channel is a named input source that training algorithms can
2080
- # consume. This channel is used for the non tabular training data of an
2081
- # AutoML job using the V2 API. For tabular training data, see [
2082
- # AutoMLChannel][1]. For more information, see [ Channel][2].
2078
+ # consume. This channel is used for AutoML jobs V2 (jobs created by
2079
+ # calling [CreateAutoMLJobV2][1]).
2083
2080
  #
2084
2081
  #
2085
2082
  #
2086
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
2087
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
2083
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
2088
2084
  #
2089
2085
  # @!attribute [rw] channel_type
2090
2086
  # The type of channel. Defines whether the data are used for training
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
2096
2092
  # The content type of the data from the input source. The following
2097
2093
  # are the allowed content types for different problems:
2098
2094
  #
2099
- # * ImageClassification: `image/png`, `image/jpeg`, or `image/*`. The
2100
- # default value is `image/*`.
2095
+ # * For Tabular problem types: `text/csv;header=present` or
2096
+ # `x-application/vnd.amazon+parquet`. The default value is
2097
+ # `text/csv;header=present`.
2098
+ #
2099
+ # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2100
+ # The default value is `image/*`.
2101
2101
  #
2102
- # * TextClassification: `text/csv;header=present` or
2102
+ # * For TextClassification: `text/csv;header=present` or
2103
2103
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2104
  # `text/csv;header=present`.
2105
2105
  # @return [String]
2106
2106
  #
2107
2107
  # @!attribute [rw] compression_type
2108
- # The allowed compression types depend on the input format. We allow
2109
- # the compression type `Gzip` for `S3Prefix` inputs only. For all
2110
- # other inputs, the compression type should be `None`. If no
2111
- # compression type is provided, we default to `None`.
2108
+ # The allowed compression types depend on the input format and problem
2109
+ # type. We allow the compression type `Gzip` for `S3Prefix` inputs on
2110
+ # tabular data only. For all other inputs, the compression type should
2111
+ # be `None`. If no compression type is provided, we default to `None`.
2112
2112
  # @return [String]
2113
2113
  #
2114
2114
  # @!attribute [rw] data_source
2115
- # The data source for an AutoML channel.
2115
+ # The data source for an AutoML channel (Required).
2116
2116
  # @return [Types::AutoMLDataSource]
2117
2117
  #
2118
2118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
2132
2132
  # @!attribute [rw] max_candidates
2133
2133
  # The maximum number of times a training job is allowed to run.
2134
2134
  #
2135
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2135
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
2136
  # supported value is 1.
2137
2137
  # @return [Integer]
2138
2138
  #
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
2142
2142
  # tuning job. For more information, see the [StoppingCondition][1]
2143
2143
  # used by the [CreateHyperParameterTuningJob][2] action.
2144
2144
  #
2145
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2145
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
2146
2146
  # field controls the runtime of the job candidate.
2147
2147
  #
2148
2148
  #
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
2221
2221
  #
2222
2222
  #
2223
2223
  #
2224
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2224
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
2225
2225
  # @return [String]
2226
2226
  #
2227
2227
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
2237
2237
  end
2238
2238
 
2239
2239
  # Specifies a metric to minimize or maximize as the objective of a job.
2240
- # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2241
- # support `Accuracy` only.
2242
2240
  #
2243
2241
  # @!attribute [rw] metric_name
2244
2242
  # The name of the objective metric used to measure the predictive
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
2253
2251
  # If you do not specify a metric explicitly, the default behavior is
2254
2252
  # to automatically use:
2255
2253
  #
2256
- # * `MSE`: for regression.
2254
+ # * For tabular problem types:
2255
+ #
2256
+ # * Regression: `MSE`.
2257
2257
  #
2258
- # * `F1`: for binary classification
2258
+ # * Binary classification: `F1`.
2259
2259
  #
2260
- # * `Accuracy`: for multiclass classification.
2260
+ # * Multiclass classification: `Accuracy`.
2261
+ #
2262
+ # * For image or text classification problem types: `Accuracy`
2261
2263
  #
2262
2264
  #
2263
2265
  #
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
2375
2377
  end
2376
2378
 
2377
2379
  # A collection of settings specific to the problem type used to
2378
- # configure an AutoML job using the V2 API. There must be one and only
2379
- # one config of the following type.
2380
+ # configure an AutoML job V2. There must be one and only one config of
2381
+ # the following type.
2380
2382
  #
2381
2383
  # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2382
2384
  #
2383
2385
  # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2384
2386
  #
2385
2387
  # @!attribute [rw] image_classification_job_config
2386
- # Settings used to configure an AutoML job using the V2 API for the
2387
- # image classification problem type.
2388
+ # Settings used to configure an AutoML job V2 for the image
2389
+ # classification problem type.
2388
2390
  # @return [Types::ImageClassificationJobConfig]
2389
2391
  #
2390
2392
  # @!attribute [rw] text_classification_job_config
2391
- # Settings used to configure an AutoML job using the V2 API for the
2392
- # text classification problem type.
2393
+ # Settings used to configure an AutoML job V2 for the text
2394
+ # classification problem type.
2393
2395
  # @return [Types::TextClassificationJobConfig]
2394
2396
  #
2397
+ # @!attribute [rw] tabular_job_config
2398
+ # Settings used to configure an AutoML job V2 for a tabular problem
2399
+ # type (regression, classification).
2400
+ # @return [Types::TabularJobConfig]
2401
+ #
2395
2402
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2396
2403
  #
2397
2404
  class AutoMLProblemTypeConfig < Struct.new(
2398
2405
  :image_classification_job_config,
2399
2406
  :text_classification_job_config,
2407
+ :tabular_job_config,
2400
2408
  :unknown)
2401
2409
  SENSITIVE = []
2402
2410
  include Aws::Structure
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
2404
2412
 
2405
2413
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2406
2414
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
+ class TabularJobConfig < AutoMLProblemTypeConfig; end
2407
2416
  class Unknown < AutoMLProblemTypeConfig; end
2408
2417
  end
2409
2418
 
2419
+ # The resolved attributes specific to the problem type of an AutoML job
2420
+ # V2.
2421
+ #
2422
+ # @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
2423
+ #
2424
+ # @!attribute [rw] tabular_resolved_attributes
2425
+ # Defines the resolved attributes for the `TABULAR` problem type.
2426
+ # @return [Types::TabularResolvedAttributes]
2427
+ #
2428
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
2429
+ #
2430
+ class AutoMLProblemTypeResolvedAttributes < Struct.new(
2431
+ :tabular_resolved_attributes,
2432
+ :unknown)
2433
+ SENSITIVE = []
2434
+ include Aws::Structure
2435
+ include Aws::Structure::Union
2436
+
2437
+ class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2438
+ class Unknown < AutoMLProblemTypeResolvedAttributes; end
2439
+ end
2440
+
2441
+ # The resolved attributes used to configure an AutoML job V2.
2442
+ #
2443
+ # @!attribute [rw] auto_ml_job_objective
2444
+ # Specifies a metric to minimize or maximize as the objective of a
2445
+ # job.
2446
+ # @return [Types::AutoMLJobObjective]
2447
+ #
2448
+ # @!attribute [rw] completion_criteria
2449
+ # How long a job is allowed to run, or how many candidates a job is
2450
+ # allowed to generate.
2451
+ # @return [Types::AutoMLJobCompletionCriteria]
2452
+ #
2453
+ # @!attribute [rw] auto_ml_problem_type_resolved_attributes
2454
+ # Defines the resolved attributes specific to a problem type.
2455
+ # @return [Types::AutoMLProblemTypeResolvedAttributes]
2456
+ #
2457
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
2458
+ #
2459
+ class AutoMLResolvedAttributes < Struct.new(
2460
+ :auto_ml_job_objective,
2461
+ :completion_criteria,
2462
+ :auto_ml_problem_type_resolved_attributes)
2463
+ SENSITIVE = []
2464
+ include Aws::Structure
2465
+ end
2466
+
2410
2467
  # Describes the Amazon S3 data source.
2411
2468
  #
2412
2469
  # @!attribute [rw] s3_data_type
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
2939
2996
  include Aws::Structure
2940
2997
  end
2941
2998
 
2999
+ # Stores the configuration information for how model candidates are
3000
+ # generated using an AutoML job V2.
3001
+ #
3002
+ # @!attribute [rw] algorithms_config
3003
+ # Stores the configuration information for the selection of algorithms
3004
+ # used to train model candidates on tabular data.
3005
+ #
3006
+ # The list of available algorithms to choose from depends on the
3007
+ # training mode set in [ `TabularJobConfig.Mode` ][1].
3008
+ #
3009
+ # * `AlgorithmsConfig` should not be set in `AUTO` training mode.
3010
+ #
3011
+ # * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
3012
+ # attribute must be set and one only.
3013
+ #
3014
+ # If the list of algorithms provided as values for
3015
+ # `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
3016
+ # full set of algorithms for the given training mode.
3017
+ #
3018
+ # * When `AlgorithmsConfig` is not provided,
3019
+ # `CandidateGenerationConfig` uses the full set of algorithms for
3020
+ # the given training mode.
3021
+ #
3022
+ # For the list of all algorithms per problem type and training mode,
3023
+ # see [ AutoMLAlgorithmConfig][2].
3024
+ #
3025
+ # For more information on each algorithm, see the [Algorithm
3026
+ # support][3] section in Autopilot developer guide.
3027
+ #
3028
+ #
3029
+ #
3030
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
3031
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
3032
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
3033
+ # @return [Array<Types::AutoMLAlgorithmConfig>]
3034
+ #
3035
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
3036
+ #
3037
+ class CandidateGenerationConfig < Struct.new(
3038
+ :algorithms_config)
3039
+ SENSITIVE = []
3040
+ include Aws::Structure
3041
+ end
3042
+
2942
3043
  # The properties of an AutoML candidate job.
2943
3044
  #
2944
3045
  # @!attribute [rw] candidate_artifact_locations
@@ -3998,6 +4099,16 @@ module Aws::SageMaker
3998
4099
  # Specifies additional configuration for multi-model endpoints.
3999
4100
  # @return [Types::MultiModelConfig]
4000
4101
  #
4102
+ # @!attribute [rw] model_data_source
4103
+ # Specifies the location of ML model data to deploy.
4104
+ #
4105
+ # <note markdown="1"> Currently you cannot use `ModelDataSource` in conjuction with
4106
+ # SageMaker batch transform, SageMaker serverless endpoints, SageMaker
4107
+ # multi-model endpoints, and SageMaker Marketplace.
4108
+ #
4109
+ # </note>
4110
+ # @return [Types::ModelDataSource]
4111
+ #
4001
4112
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
4002
4113
  #
4003
4114
  class ContainerDefinition < Struct.new(
@@ -4009,7 +4120,8 @@ module Aws::SageMaker
4009
4120
  :environment,
4010
4121
  :model_package_name,
4011
4122
  :inference_specification_name,
4012
- :multi_model_config)
4123
+ :multi_model_config,
4124
+ :model_data_source)
4013
4125
  SENSITIVE = []
4014
4126
  include Aws::Structure
4015
4127
  end
@@ -4525,15 +4637,13 @@ module Aws::SageMaker
4525
4637
  # @return [String]
4526
4638
  #
4527
4639
  # @!attribute [rw] auto_ml_job_objective
4528
- # Defines the objective metric used to measure the predictive quality
4529
- # of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
4530
- # and Autopilot infers whether to minimize or maximize it. For
4531
- # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
4640
+ # Specifies a metric to minimize or maximize as the objective of a
4641
+ # job. If not specified, the default objective metric depends on the
4642
+ # problem type. See [AutoMLJobObjective][1] for the default values.
4532
4643
  #
4533
4644
  #
4534
4645
  #
4535
4646
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4536
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4537
4647
  # @return [Types::AutoMLJobObjective]
4538
4648
  #
4539
4649
  # @!attribute [rw] auto_ml_job_config
@@ -4603,14 +4713,16 @@ module Aws::SageMaker
4603
4713
  #
4604
4714
  # @!attribute [rw] auto_ml_job_input_data_config
4605
4715
  # An array of channel objects describing the input data and their
4606
- # location. Each channel is a named input source. Similar to
4607
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4608
- # formats depend on the problem type:
4716
+ # location. Each channel is a named input source. Similar to the
4717
+ # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
+ # parameters. The supported formats depend on the problem type:
4609
4719
  #
4610
- # * ImageClassification: S3Prefix, `ManifestFile`,
4611
- # `AugmentedManifestFile`
4720
+ # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4612
4721
  #
4613
- # * TextClassification: S3Prefix
4722
+ # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4723
+ # `AugmentedManifestFile`.
4724
+ #
4725
+ # * For TextClassification: `S3Prefix`.
4614
4726
  #
4615
4727
  #
4616
4728
  #
@@ -4649,11 +4761,20 @@ module Aws::SageMaker
4649
4761
  #
4650
4762
  # @!attribute [rw] auto_ml_job_objective
4651
4763
  # Specifies a metric to minimize or maximize as the objective of a
4652
- # job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
4764
+ # job. If not specified, the default objective metric depends on the
4765
+ # problem type. For the list of default values per problem type, see
4766
+ # [AutoMLJobObjective][1].
4653
4767
  #
4768
+ # <note markdown="1"> For tabular problem types, you must either provide both the
4769
+ # `AutoMLJobObjective` and indicate the type of supervised learning
4770
+ # problem in `AutoMLProblemTypeConfig`
4771
+ # (`TabularJobConfig.ProblemType`), or none at all.
4654
4772
  #
4773
+ # </note>
4655
4774
  #
4656
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4775
+ #
4776
+ #
4777
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4657
4778
  # @return [Types::AutoMLJobObjective]
4658
4779
  #
4659
4780
  # @!attribute [rw] model_deploy_config
@@ -4665,12 +4786,9 @@ module Aws::SageMaker
4665
4786
  # This structure specifies how to split the data into train and
4666
4787
  # validation datasets.
4667
4788
  #
4668
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4669
- # V2 API for Natural Language Processing problems (for example
4670
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4671
- # type), the validation and training datasets must contain the same
4672
- # headers. Also, for V1 API jobs, the validation dataset must be less
4673
- # than 2 GB in size.
4789
+ # The validation and training datasets must contain the same headers.
4790
+ # For jobs created by calling `CreateAutoMLJob`, the validation
4791
+ # dataset must be less than 2 GB in size.
4674
4792
  # @return [Types::AutoMLDataSplitConfig]
4675
4793
  #
4676
4794
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -10636,8 +10754,7 @@ module Aws::SageMaker
10636
10754
  # @!attribute [rw] resolved_attributes
10637
10755
  # Contains `ProblemType`, `AutoMLJobObjective`, and
10638
10756
  # `CompletionCriteria`. If you do not provide these values, they are
10639
- # auto-inferred. If you do provide them, the values used are the ones
10640
- # you provide.
10757
+ # inferred.
10641
10758
  # @return [Types::ResolvedAttributes]
10642
10759
  #
10643
10760
  # @!attribute [rw] model_deploy_config
@@ -10678,7 +10795,7 @@ module Aws::SageMaker
10678
10795
  end
10679
10796
 
10680
10797
  # @!attribute [rw] auto_ml_job_name
10681
- # Requests information about an AutoML V2 job using its unique name.
10798
+ # Requests information about an AutoML job V2 using its unique name.
10682
10799
  # @return [String]
10683
10800
  #
10684
10801
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
@@ -10690,11 +10807,11 @@ module Aws::SageMaker
10690
10807
  end
10691
10808
 
10692
10809
  # @!attribute [rw] auto_ml_job_name
10693
- # Returns the name of the AutoML V2 job.
10810
+ # Returns the name of the AutoML job V2.
10694
10811
  # @return [String]
10695
10812
  #
10696
10813
  # @!attribute [rw] auto_ml_job_arn
10697
- # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10814
+ # Returns the Amazon Resource Name (ARN) of the AutoML job V2.
10698
10815
  # @return [String]
10699
10816
  #
10700
10817
  # @!attribute [rw] auto_ml_job_input_data_config
@@ -10718,15 +10835,15 @@ module Aws::SageMaker
10718
10835
  #
10719
10836
  # @!attribute [rw] auto_ml_problem_type_config
10720
10837
  # Returns the configuration settings of the problem type set for the
10721
- # AutoML V2 job.
10838
+ # AutoML job V2.
10722
10839
  # @return [Types::AutoMLProblemTypeConfig]
10723
10840
  #
10724
10841
  # @!attribute [rw] creation_time
10725
- # Returns the creation time of the AutoML V2 job.
10842
+ # Returns the creation time of the AutoML job V2.
10726
10843
  # @return [Time]
10727
10844
  #
10728
10845
  # @!attribute [rw] end_time
10729
- # Returns the end time of the AutoML V2 job.
10846
+ # Returns the end time of the AutoML job V2.
10730
10847
  # @return [Time]
10731
10848
  #
10732
10849
  # @!attribute [rw] last_modified_time
@@ -10734,13 +10851,13 @@ module Aws::SageMaker
10734
10851
  # @return [Time]
10735
10852
  #
10736
10853
  # @!attribute [rw] failure_reason
10737
- # Returns the reason for the failure of the AutoML V2 job, when
10854
+ # Returns the reason for the failure of the AutoML job V2, when
10738
10855
  # applicable.
10739
10856
  # @return [String]
10740
10857
  #
10741
10858
  # @!attribute [rw] partial_failure_reasons
10742
- # Returns a list of reasons for partial failures within an AutoML V2
10743
- # job.
10859
+ # Returns a list of reasons for partial failures within an AutoML job
10860
+ # V2.
10744
10861
  # @return [Array<Types::AutoMLPartialFailureReason>]
10745
10862
  #
10746
10863
  # @!attribute [rw] best_candidate
@@ -10749,11 +10866,11 @@ module Aws::SageMaker
10749
10866
  # @return [Types::AutoMLCandidate]
10750
10867
  #
10751
10868
  # @!attribute [rw] auto_ml_job_status
10752
- # Returns the status of the AutoML V2 job.
10869
+ # Returns the status of the AutoML job V2.
10753
10870
  # @return [String]
10754
10871
  #
10755
10872
  # @!attribute [rw] auto_ml_job_secondary_status
10756
- # Returns the secondary status of the AutoML V2 job.
10873
+ # Returns the secondary status of the AutoML job V2.
10757
10874
  # @return [String]
10758
10875
  #
10759
10876
  # @!attribute [rw] model_deploy_config
@@ -10775,6 +10892,19 @@ module Aws::SageMaker
10775
10892
  # VPC settings.
10776
10893
  # @return [Types::AutoMLSecurityConfig]
10777
10894
  #
10895
+ # @!attribute [rw] auto_ml_job_artifacts
10896
+ # The artifacts that are generated during an AutoML job.
10897
+ # @return [Types::AutoMLJobArtifacts]
10898
+ #
10899
+ # @!attribute [rw] resolved_attributes
10900
+ # Returns the resolved attributes used by the AutoML job V2.
10901
+ # @return [Types::AutoMLResolvedAttributes]
10902
+ #
10903
+ # @!attribute [rw] auto_ml_problem_type_config_name
10904
+ # Returns the name of the problem type configuration set for the
10905
+ # AutoML job V2.
10906
+ # @return [String]
10907
+ #
10778
10908
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10779
10909
  #
10780
10910
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -10796,7 +10926,10 @@ module Aws::SageMaker
10796
10926
  :model_deploy_config,
10797
10927
  :model_deploy_result,
10798
10928
  :data_split_config,
10799
- :security_config)
10929
+ :security_config,
10930
+ :auto_ml_job_artifacts,
10931
+ :resolved_attributes,
10932
+ :auto_ml_problem_type_config_name)
10800
10933
  SENSITIVE = []
10801
10934
  include Aws::Structure
10802
10935
  end
@@ -20733,7 +20866,7 @@ module Aws::SageMaker
20733
20866
  end
20734
20867
 
20735
20868
  # Stores the configuration information for the image classification
20736
- # problem of an AutoML job using the V2 API.
20869
+ # problem of an AutoML job V2.
20737
20870
  #
20738
20871
  # @!attribute [rw] completion_criteria
20739
20872
  # How long a job is allowed to run, or how many candidates a job is
@@ -28354,6 +28487,21 @@ module Aws::SageMaker
28354
28487
  include Aws::Structure
28355
28488
  end
28356
28489
 
28490
+ # Specifies the location of ML model data to deploy. If specified, you
28491
+ # must specify one and only one of the available data sources.
28492
+ #
28493
+ # @!attribute [rw] s3_data_source
28494
+ # Specifies the S3 location of ML model data to deploy.
28495
+ # @return [Types::S3ModelDataSource]
28496
+ #
28497
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDataSource AWS API Documentation
28498
+ #
28499
+ class ModelDataSource < Struct.new(
28500
+ :s3_data_source)
28501
+ SENSITIVE = []
28502
+ include Aws::Structure
28503
+ end
28504
+
28357
28505
  # Specifies how to generate the endpoint name for an automatic one-click
28358
28506
  # Autopilot model deployment.
28359
28507
  #
@@ -30828,6 +30976,11 @@ module Aws::SageMaker
30828
30976
  # using [TargetPlatform][1] fields. It can be used instead of
30829
30977
  # `TargetPlatform`.
30830
30978
  #
30979
+ # <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
30980
+ # Region, and `ml_inf2` is available only in US East (Ohio) Region.
30981
+ #
30982
+ # </note>
30983
+ #
30831
30984
  #
30832
30985
  #
30833
30986
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
@@ -31069,11 +31222,18 @@ module Aws::SageMaker
31069
31222
  # artifacts. For example, `s3://bucket-name/key-name-prefix`.
31070
31223
  # @return [String]
31071
31224
  #
31225
+ # @!attribute [rw] compression_type
31226
+ # The model output compression type. Select `None` to output an
31227
+ # uncompressed model, recommended for large model outputs. Defaults to
31228
+ # gzip.
31229
+ # @return [String]
31230
+ #
31072
31231
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
31073
31232
  #
31074
31233
  class OutputDataConfig < Struct.new(
31075
31234
  :kms_key_id,
31076
- :s3_output_path)
31235
+ :s3_output_path,
31236
+ :compression_type)
31077
31237
  SENSITIVE = []
31078
31238
  include Aws::Structure
31079
31239
  end
@@ -34402,8 +34562,7 @@ module Aws::SageMaker
34402
34562
  #
34403
34563
  # @!attribute [rw] auto_ml_job_objective
34404
34564
  # Specifies a metric to minimize or maximize as the objective of a
34405
- # job. V2 API jobs (for example jobs created by calling
34406
- # `CreateAutoMLJobV2`), support `Accuracy` only.
34565
+ # job.
34407
34566
  # @return [Types::AutoMLJobObjective]
34408
34567
  #
34409
34568
  # @!attribute [rw] problem_type
@@ -34875,6 +35034,101 @@ module Aws::SageMaker
34875
35034
  include Aws::Structure
34876
35035
  end
34877
35036
 
35037
+ # Specifies the S3 location of ML model data to deploy.
35038
+ #
35039
+ # @!attribute [rw] s3_uri
35040
+ # Specifies the S3 path of ML model data to deploy.
35041
+ # @return [String]
35042
+ #
35043
+ # @!attribute [rw] s3_data_type
35044
+ # Specifies the type of ML model data to deploy.
35045
+ #
35046
+ # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
35047
+ # SageMaker uses all objects that match the specified key name prefix
35048
+ # as part of the ML model data to deploy. A valid key name prefix
35049
+ # identified by `S3Uri` always ends with a forward slash (/).
35050
+ #
35051
+ # If you choose S3Object, S3Uri identifies an object that is the ML
35052
+ # model data to deploy.
35053
+ # @return [String]
35054
+ #
35055
+ # @!attribute [rw] compression_type
35056
+ # Specifies how the ML model data is prepared.
35057
+ #
35058
+ # If you choose `Gzip` and choose `S3Object` as the value of
35059
+ # `S3DataType`, `S3Uri` identifies an object that is a gzip-compressed
35060
+ # TAR archive. SageMaker will attempt to decompress and untar the
35061
+ # object during model deployment.
35062
+ #
35063
+ # If you choose `None` and chooose `S3Object` as the value of
35064
+ # `S3DataType`, `S3Uri` identifies an object that represents an
35065
+ # uncompressed ML model to deploy.
35066
+ #
35067
+ # If you choose None and choose `S3Prefix` as the value of
35068
+ # `S3DataType`, `S3Uri` identifies a key name prefix, under which all
35069
+ # objects represents the uncompressed ML model to deploy.
35070
+ #
35071
+ # If you choose None, then SageMaker will follow rules below when
35072
+ # creating model data files under /opt/ml/model directory for use by
35073
+ # your inference code:
35074
+ #
35075
+ # * If you choose `S3Object` as the value of `S3DataType`, then
35076
+ # SageMaker will split the key of the S3 object referenced by
35077
+ # `S3Uri` by slash (/), and use the last part as the filename of the
35078
+ # file holding the content of the S3 object.
35079
+ #
35080
+ # * If you choose `S3Prefix` as the value of `S3DataType`, then for
35081
+ # each S3 object under the key name pefix referenced by `S3Uri`,
35082
+ # SageMaker will trim its key by the prefix, and use the remainder
35083
+ # as the path (relative to `/opt/ml/model`) of the file holding the
35084
+ # content of the S3 object. SageMaker will split the remainder by
35085
+ # slash (/), using intermediate parts as directory names and the
35086
+ # last part as filename of the file holding the content of the S3
35087
+ # object.
35088
+ #
35089
+ # * Do not use any of the following as file names or directory names:
35090
+ #
35091
+ # * An empty or blank string
35092
+ #
35093
+ # * A string which contains null bytes
35094
+ #
35095
+ # * A string longer than 255 bytes
35096
+ #
35097
+ # * A single dot (`.`)
35098
+ #
35099
+ # * A double dot (`..`)
35100
+ #
35101
+ # * Ambiguous file names will result in model deployment failure. For
35102
+ # example, if your uncompressed ML model consists of two S3 objects
35103
+ # `s3://mybucket/model/weights` and
35104
+ # `s3://mybucket/model/weights/part1` and you specify
35105
+ # `s3://mybucket/model/` as the value of `S3Uri` and `S3Prefix` as
35106
+ # the value of S3DataType, then it will result in name clash between
35107
+ # `/opt/ml/model/weights` (a regular file) and
35108
+ # `/opt/ml/model/weights/` (a directory).
35109
+ #
35110
+ # * Do not organize the model artifacts in [S3 console using
35111
+ # folders][1]. When you create a folder in S3 console, S3 creates a
35112
+ # 0-byte object with a key set to the folder name you provide. They
35113
+ # key of the 0-byte object ends with a slash (/) which violates
35114
+ # SageMaker restrictions on model artifact file names, leading to
35115
+ # model deployment failure.
35116
+ #
35117
+ #
35118
+ #
35119
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html
35120
+ # @return [String]
35121
+ #
35122
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3ModelDataSource AWS API Documentation
35123
+ #
35124
+ class S3ModelDataSource < Struct.new(
35125
+ :s3_uri,
35126
+ :s3_data_type,
35127
+ :compression_type)
35128
+ SENSITIVE = []
35129
+ include Aws::Structure
35130
+ end
35131
+
34878
35132
  # The Amazon Simple Storage (Amazon S3) location and and security
34879
35133
  # configuration for `OfflineStore`.
34880
35134
  #
@@ -36307,6 +36561,168 @@ module Aws::SageMaker
36307
36561
  include Aws::Structure
36308
36562
  end
36309
36563
 
36564
+ # The collection of settings used by an AutoML job V2 for the `TABULAR`
36565
+ # problem type.
36566
+ #
36567
+ # @!attribute [rw] candidate_generation_config
36568
+ # The configuration information of how model candidates are generated.
36569
+ # @return [Types::CandidateGenerationConfig]
36570
+ #
36571
+ # @!attribute [rw] completion_criteria
36572
+ # How long a job is allowed to run, or how many candidates a job is
36573
+ # allowed to generate.
36574
+ # @return [Types::AutoMLJobCompletionCriteria]
36575
+ #
36576
+ # @!attribute [rw] feature_specification_s3_uri
36577
+ # A URL to the Amazon S3 data source containing selected features from
36578
+ # the input data source to run an Autopilot job V2. You can input
36579
+ # `FeatureAttributeNames` (optional) in JSON format as shown below:
36580
+ #
36581
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
36582
+ #
36583
+ # You can also specify the data type of the feature (optional) in the
36584
+ # format shown below:
36585
+ #
36586
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
36587
+ # \} \}`
36588
+ #
36589
+ # <note markdown="1"> These column keys may not include the target column.
36590
+ #
36591
+ # </note>
36592
+ #
36593
+ # In ensembling mode, Autopilot only supports the following data
36594
+ # types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
36595
+ # mode, Autopilot can support `numeric`, `categorical`, `text`,
36596
+ # `datetime`, and `sequence`.
36597
+ #
36598
+ # If only `FeatureDataTypes` is provided, the column keys (`col1`,
36599
+ # `col2`,..) should be a subset of the column names in the input data.
36600
+ #
36601
+ # If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
36602
+ # then the column keys should be a subset of the column names provided
36603
+ # in `FeatureAttributeNames`.
36604
+ #
36605
+ # The key name `FeatureAttributeNames` is fixed. The values listed in
36606
+ # `["col1", "col2", ...]` are case sensitive and should be a list of
36607
+ # strings containing unique values that are a subset of the column
36608
+ # names in the input data. The list of columns provided must not
36609
+ # include the target column.
36610
+ # @return [String]
36611
+ #
36612
+ # @!attribute [rw] mode
36613
+ # The method that Autopilot uses to train the data. You can either
36614
+ # specify the mode manually or let Autopilot choose for you based on
36615
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
36616
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
36617
+ # `HYPERPARAMETER_TUNING` for larger ones.
36618
+ #
36619
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
36620
+ # classification and regression tasks directly from your dataset. This
36621
+ # machine learning mode combines several base models to produce an
36622
+ # optimal predictive model. It then uses a stacking ensemble method to
36623
+ # combine predictions from contributing members. A multi-stack
36624
+ # ensemble model can provide better performance over a single model by
36625
+ # combining the predictive capabilities of multiple models. See
36626
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36627
+ # by `ENSEMBLING` mode.
36628
+ #
36629
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
36630
+ # to train the best version of a model. HPO automatically selects an
36631
+ # algorithm for the type of problem you want to solve. Then HPO finds
36632
+ # the best hyperparameters according to your objective metric. See
36633
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36634
+ # by `HYPERPARAMETER_TUNING` mode.
36635
+ #
36636
+ #
36637
+ #
36638
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
36639
+ # @return [String]
36640
+ #
36641
+ # @!attribute [rw] generate_candidate_definitions_only
36642
+ # Generates possible candidates without training the models. A model
36643
+ # candidate is a combination of data preprocessors, algorithms, and
36644
+ # algorithm parameter settings.
36645
+ # @return [Boolean]
36646
+ #
36647
+ # @!attribute [rw] problem_type
36648
+ # The type of supervised learning problem available for the model
36649
+ # candidates of the AutoML job V2. For more information, see [ Amazon
36650
+ # SageMaker Autopilot problem types][1].
36651
+ #
36652
+ # <note markdown="1"> You must either specify the type of supervised learning problem in
36653
+ # `ProblemType` and provide the [AutoMLJobObjective][2] metric, or
36654
+ # none at all.
36655
+ #
36656
+ # </note>
36657
+ #
36658
+ #
36659
+ #
36660
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36661
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective
36662
+ # @return [String]
36663
+ #
36664
+ # @!attribute [rw] target_attribute_name
36665
+ # The name of the target variable in supervised learning, usually
36666
+ # represented by 'y'.
36667
+ # @return [String]
36668
+ #
36669
+ # @!attribute [rw] sample_weight_attribute_name
36670
+ # If specified, this column name indicates which column of the dataset
36671
+ # should be treated as sample weights for use by the objective metric
36672
+ # during the training, evaluation, and the selection of the best
36673
+ # model. This column is not considered as a predictive feature. For
36674
+ # more information on Autopilot metrics, see [Metrics and
36675
+ # validation][1].
36676
+ #
36677
+ # Sample weights should be numeric, non-negative, with larger values
36678
+ # indicating which rows are more important than others. Data points
36679
+ # that have invalid or no weight value are excluded.
36680
+ #
36681
+ # Support for sample weights is available in [Ensembling][2] mode
36682
+ # only.
36683
+ #
36684
+ #
36685
+ #
36686
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
36687
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
36688
+ # @return [String]
36689
+ #
36690
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
36691
+ #
36692
+ class TabularJobConfig < Struct.new(
36693
+ :candidate_generation_config,
36694
+ :completion_criteria,
36695
+ :feature_specification_s3_uri,
36696
+ :mode,
36697
+ :generate_candidate_definitions_only,
36698
+ :problem_type,
36699
+ :target_attribute_name,
36700
+ :sample_weight_attribute_name)
36701
+ SENSITIVE = []
36702
+ include Aws::Structure
36703
+ end
36704
+
36705
+ # The resolved attributes specific to the `TABULAR` problem type.
36706
+ #
36707
+ # @!attribute [rw] problem_type
36708
+ # The type of supervised learning problem available for the model
36709
+ # candidates of the AutoML job V2 (Binary Classification, Multiclass
36710
+ # Classification, Regression). For more information, see [ Amazon
36711
+ # SageMaker Autopilot problem types][1].
36712
+ #
36713
+ #
36714
+ #
36715
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36716
+ # @return [String]
36717
+ #
36718
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
36719
+ #
36720
+ class TabularResolvedAttributes < Struct.new(
36721
+ :problem_type)
36722
+ SENSITIVE = []
36723
+ include Aws::Structure
36724
+ end
36725
+
36310
36726
  # A tag object that consists of a key and an optional value, used to
36311
36727
  # manage metadata for SageMaker Amazon Web Services resources.
36312
36728
  #
@@ -36432,7 +36848,7 @@ module Aws::SageMaker
36432
36848
  end
36433
36849
 
36434
36850
  # Stores the configuration information for the text classification
36435
- # problem of an AutoML job using the V2 API.
36851
+ # problem of an AutoML job V2.
36436
36852
  #
36437
36853
  # @!attribute [rw] completion_criteria
36438
36854
  # How long a job is allowed to run, or how many candidates a job is
@@ -36441,12 +36857,13 @@ module Aws::SageMaker
36441
36857
  #
36442
36858
  # @!attribute [rw] content_column
36443
36859
  # The name of the column used to provide the sentences to be
36444
- # classified. It should not be the same as the target column.
36860
+ # classified. It should not be the same as the target column
36861
+ # (Required).
36445
36862
  # @return [String]
36446
36863
  #
36447
36864
  # @!attribute [rw] target_label_column
36448
36865
  # The name of the column used to provide the class labels. It should
36449
- # not be same as the content column.
36866
+ # not be same as the content column (Required).
36450
36867
  # @return [String]
36451
36868
  #
36452
36869
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation