aws-sdk-sagemaker 1.187.0 → 1.189.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +185 -69
- data/lib/aws-sdk-sagemaker/client_api.rb +54 -0
- data/lib/aws-sdk-sagemaker/types.rb +493 -76
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
|
|
1762
1762
|
# @!attribute [rw] inference_container_definitions
|
1763
1763
|
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1764
1764
|
# inference container definitions for the candidate. This field is
|
1765
|
-
# populated for the
|
1766
|
-
# calling `CreateAutoMLJobV2`)
|
1765
|
+
# populated for the AutoML jobs V2 (for example, for jobs created by
|
1766
|
+
# calling `CreateAutoMLJobV2`) related to image or text classification
|
1767
|
+
# problem types only.
|
1767
1768
|
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1768
1769
|
#
|
1769
1770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
|
|
2035
2036
|
# This structure specifies how to split the data into train and
|
2036
2037
|
# validation datasets.
|
2037
2038
|
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
# type), the validation and training datasets must contain the same
|
2042
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
2043
|
-
# than 2 GB in size.
|
2039
|
+
# The validation and training datasets must contain the same headers.
|
2040
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
2041
|
+
# must be less than 2 GB in size.
|
2044
2042
|
#
|
2045
2043
|
# @!attribute [rw] validation_fraction
|
2046
2044
|
# The validation fraction (optional) is a float that specifies the
|
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
|
|
2077
2075
|
end
|
2078
2076
|
|
2079
2077
|
# A channel is a named input source that training algorithms can
|
2080
|
-
# consume. This channel is used for
|
2081
|
-
#
|
2082
|
-
# AutoMLChannel][1]. For more information, see [ Channel][2].
|
2078
|
+
# consume. This channel is used for AutoML jobs V2 (jobs created by
|
2079
|
+
# calling [CreateAutoMLJobV2][1]).
|
2083
2080
|
#
|
2084
2081
|
#
|
2085
2082
|
#
|
2086
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
2087
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
2083
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
2088
2084
|
#
|
2089
2085
|
# @!attribute [rw] channel_type
|
2090
2086
|
# The type of channel. Defines whether the data are used for training
|
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
|
|
2096
2092
|
# The content type of the data from the input source. The following
|
2097
2093
|
# are the allowed content types for different problems:
|
2098
2094
|
#
|
2099
|
-
# *
|
2100
|
-
# default value is
|
2095
|
+
# * For Tabular problem types: `text/csv;header=present` or
|
2096
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
|
+
# `text/csv;header=present`.
|
2098
|
+
#
|
2099
|
+
# * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
|
+
# The default value is `image/*`.
|
2101
2101
|
#
|
2102
|
-
# * TextClassification: `text/csv;header=present` or
|
2102
|
+
# * For TextClassification: `text/csv;header=present` or
|
2103
2103
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2104
|
# `text/csv;header=present`.
|
2105
2105
|
# @return [String]
|
2106
2106
|
#
|
2107
2107
|
# @!attribute [rw] compression_type
|
2108
|
-
# The allowed compression types depend on the input format
|
2109
|
-
# the compression type `Gzip` for `S3Prefix` inputs
|
2110
|
-
# other inputs, the compression type should
|
2111
|
-
# compression type is provided, we default to `None`.
|
2108
|
+
# The allowed compression types depend on the input format and problem
|
2109
|
+
# type. We allow the compression type `Gzip` for `S3Prefix` inputs on
|
2110
|
+
# tabular data only. For all other inputs, the compression type should
|
2111
|
+
# be `None`. If no compression type is provided, we default to `None`.
|
2112
2112
|
# @return [String]
|
2113
2113
|
#
|
2114
2114
|
# @!attribute [rw] data_source
|
2115
|
-
# The data source for an AutoML channel.
|
2115
|
+
# The data source for an AutoML channel (Required).
|
2116
2116
|
# @return [Types::AutoMLDataSource]
|
2117
2117
|
#
|
2118
2118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
|
|
2132
2132
|
# @!attribute [rw] max_candidates
|
2133
2133
|
# The maximum number of times a training job is allowed to run.
|
2134
2134
|
#
|
2135
|
-
# For
|
2135
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
|
2136
2136
|
# supported value is 1.
|
2137
2137
|
# @return [Integer]
|
2138
2138
|
#
|
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
|
|
2142
2142
|
# tuning job. For more information, see the [StoppingCondition][1]
|
2143
2143
|
# used by the [CreateHyperParameterTuningJob][2] action.
|
2144
2144
|
#
|
2145
|
-
# For
|
2145
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
|
2146
2146
|
# field controls the runtime of the job candidate.
|
2147
2147
|
#
|
2148
2148
|
#
|
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
|
|
2221
2221
|
#
|
2222
2222
|
#
|
2223
2223
|
#
|
2224
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-
|
2224
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
2225
2225
|
# @return [String]
|
2226
2226
|
#
|
2227
2227
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
|
|
2237
2237
|
end
|
2238
2238
|
|
2239
2239
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2240
|
-
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2241
|
-
# support `Accuracy` only.
|
2242
2240
|
#
|
2243
2241
|
# @!attribute [rw] metric_name
|
2244
2242
|
# The name of the objective metric used to measure the predictive
|
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
|
|
2253
2251
|
# If you do not specify a metric explicitly, the default behavior is
|
2254
2252
|
# to automatically use:
|
2255
2253
|
#
|
2256
|
-
# *
|
2254
|
+
# * For tabular problem types:
|
2255
|
+
#
|
2256
|
+
# * Regression: `MSE`.
|
2257
2257
|
#
|
2258
|
-
#
|
2258
|
+
# * Binary classification: `F1`.
|
2259
2259
|
#
|
2260
|
-
#
|
2260
|
+
# * Multiclass classification: `Accuracy`.
|
2261
|
+
#
|
2262
|
+
# * For image or text classification problem types: `Accuracy`
|
2261
2263
|
#
|
2262
2264
|
#
|
2263
2265
|
#
|
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
|
|
2375
2377
|
end
|
2376
2378
|
|
2377
2379
|
# A collection of settings specific to the problem type used to
|
2378
|
-
# configure an AutoML job
|
2379
|
-
#
|
2380
|
+
# configure an AutoML job V2. There must be one and only one config of
|
2381
|
+
# the following type.
|
2380
2382
|
#
|
2381
2383
|
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2382
2384
|
#
|
2383
2385
|
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2384
2386
|
#
|
2385
2387
|
# @!attribute [rw] image_classification_job_config
|
2386
|
-
# Settings used to configure an AutoML job
|
2387
|
-
#
|
2388
|
+
# Settings used to configure an AutoML job V2 for the image
|
2389
|
+
# classification problem type.
|
2388
2390
|
# @return [Types::ImageClassificationJobConfig]
|
2389
2391
|
#
|
2390
2392
|
# @!attribute [rw] text_classification_job_config
|
2391
|
-
# Settings used to configure an AutoML job
|
2392
|
-
#
|
2393
|
+
# Settings used to configure an AutoML job V2 for the text
|
2394
|
+
# classification problem type.
|
2393
2395
|
# @return [Types::TextClassificationJobConfig]
|
2394
2396
|
#
|
2397
|
+
# @!attribute [rw] tabular_job_config
|
2398
|
+
# Settings used to configure an AutoML job V2 for a tabular problem
|
2399
|
+
# type (regression, classification).
|
2400
|
+
# @return [Types::TabularJobConfig]
|
2401
|
+
#
|
2395
2402
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2396
2403
|
#
|
2397
2404
|
class AutoMLProblemTypeConfig < Struct.new(
|
2398
2405
|
:image_classification_job_config,
|
2399
2406
|
:text_classification_job_config,
|
2407
|
+
:tabular_job_config,
|
2400
2408
|
:unknown)
|
2401
2409
|
SENSITIVE = []
|
2402
2410
|
include Aws::Structure
|
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
|
|
2404
2412
|
|
2405
2413
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2406
2414
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
|
+
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2407
2416
|
class Unknown < AutoMLProblemTypeConfig; end
|
2408
2417
|
end
|
2409
2418
|
|
2419
|
+
# The resolved attributes specific to the problem type of an AutoML job
|
2420
|
+
# V2.
|
2421
|
+
#
|
2422
|
+
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2423
|
+
#
|
2424
|
+
# @!attribute [rw] tabular_resolved_attributes
|
2425
|
+
# Defines the resolved attributes for the `TABULAR` problem type.
|
2426
|
+
# @return [Types::TabularResolvedAttributes]
|
2427
|
+
#
|
2428
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2429
|
+
#
|
2430
|
+
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2431
|
+
:tabular_resolved_attributes,
|
2432
|
+
:unknown)
|
2433
|
+
SENSITIVE = []
|
2434
|
+
include Aws::Structure
|
2435
|
+
include Aws::Structure::Union
|
2436
|
+
|
2437
|
+
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2438
|
+
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2439
|
+
end
|
2440
|
+
|
2441
|
+
# The resolved attributes used to configure an AutoML job V2.
|
2442
|
+
#
|
2443
|
+
# @!attribute [rw] auto_ml_job_objective
|
2444
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
2445
|
+
# job.
|
2446
|
+
# @return [Types::AutoMLJobObjective]
|
2447
|
+
#
|
2448
|
+
# @!attribute [rw] completion_criteria
|
2449
|
+
# How long a job is allowed to run, or how many candidates a job is
|
2450
|
+
# allowed to generate.
|
2451
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
2452
|
+
#
|
2453
|
+
# @!attribute [rw] auto_ml_problem_type_resolved_attributes
|
2454
|
+
# Defines the resolved attributes specific to a problem type.
|
2455
|
+
# @return [Types::AutoMLProblemTypeResolvedAttributes]
|
2456
|
+
#
|
2457
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
|
2458
|
+
#
|
2459
|
+
class AutoMLResolvedAttributes < Struct.new(
|
2460
|
+
:auto_ml_job_objective,
|
2461
|
+
:completion_criteria,
|
2462
|
+
:auto_ml_problem_type_resolved_attributes)
|
2463
|
+
SENSITIVE = []
|
2464
|
+
include Aws::Structure
|
2465
|
+
end
|
2466
|
+
|
2410
2467
|
# Describes the Amazon S3 data source.
|
2411
2468
|
#
|
2412
2469
|
# @!attribute [rw] s3_data_type
|
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
|
|
2939
2996
|
include Aws::Structure
|
2940
2997
|
end
|
2941
2998
|
|
2999
|
+
# Stores the configuration information for how model candidates are
|
3000
|
+
# generated using an AutoML job V2.
|
3001
|
+
#
|
3002
|
+
# @!attribute [rw] algorithms_config
|
3003
|
+
# Stores the configuration information for the selection of algorithms
|
3004
|
+
# used to train model candidates on tabular data.
|
3005
|
+
#
|
3006
|
+
# The list of available algorithms to choose from depends on the
|
3007
|
+
# training mode set in [ `TabularJobConfig.Mode` ][1].
|
3008
|
+
#
|
3009
|
+
# * `AlgorithmsConfig` should not be set in `AUTO` training mode.
|
3010
|
+
#
|
3011
|
+
# * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
|
3012
|
+
# attribute must be set and one only.
|
3013
|
+
#
|
3014
|
+
# If the list of algorithms provided as values for
|
3015
|
+
# `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
|
3016
|
+
# full set of algorithms for the given training mode.
|
3017
|
+
#
|
3018
|
+
# * When `AlgorithmsConfig` is not provided,
|
3019
|
+
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3020
|
+
# the given training mode.
|
3021
|
+
#
|
3022
|
+
# For the list of all algorithms per problem type and training mode,
|
3023
|
+
# see [ AutoMLAlgorithmConfig][2].
|
3024
|
+
#
|
3025
|
+
# For more information on each algorithm, see the [Algorithm
|
3026
|
+
# support][3] section in Autopilot developer guide.
|
3027
|
+
#
|
3028
|
+
#
|
3029
|
+
#
|
3030
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
|
3031
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
3032
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
3033
|
+
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
3034
|
+
#
|
3035
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
|
3036
|
+
#
|
3037
|
+
class CandidateGenerationConfig < Struct.new(
|
3038
|
+
:algorithms_config)
|
3039
|
+
SENSITIVE = []
|
3040
|
+
include Aws::Structure
|
3041
|
+
end
|
3042
|
+
|
2942
3043
|
# The properties of an AutoML candidate job.
|
2943
3044
|
#
|
2944
3045
|
# @!attribute [rw] candidate_artifact_locations
|
@@ -3998,6 +4099,16 @@ module Aws::SageMaker
|
|
3998
4099
|
# Specifies additional configuration for multi-model endpoints.
|
3999
4100
|
# @return [Types::MultiModelConfig]
|
4000
4101
|
#
|
4102
|
+
# @!attribute [rw] model_data_source
|
4103
|
+
# Specifies the location of ML model data to deploy.
|
4104
|
+
#
|
4105
|
+
# <note markdown="1"> Currently you cannot use `ModelDataSource` in conjuction with
|
4106
|
+
# SageMaker batch transform, SageMaker serverless endpoints, SageMaker
|
4107
|
+
# multi-model endpoints, and SageMaker Marketplace.
|
4108
|
+
#
|
4109
|
+
# </note>
|
4110
|
+
# @return [Types::ModelDataSource]
|
4111
|
+
#
|
4001
4112
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
|
4002
4113
|
#
|
4003
4114
|
class ContainerDefinition < Struct.new(
|
@@ -4009,7 +4120,8 @@ module Aws::SageMaker
|
|
4009
4120
|
:environment,
|
4010
4121
|
:model_package_name,
|
4011
4122
|
:inference_specification_name,
|
4012
|
-
:multi_model_config
|
4123
|
+
:multi_model_config,
|
4124
|
+
:model_data_source)
|
4013
4125
|
SENSITIVE = []
|
4014
4126
|
include Aws::Structure
|
4015
4127
|
end
|
@@ -4525,15 +4637,13 @@ module Aws::SageMaker
|
|
4525
4637
|
# @return [String]
|
4526
4638
|
#
|
4527
4639
|
# @!attribute [rw] auto_ml_job_objective
|
4528
|
-
#
|
4529
|
-
#
|
4530
|
-
#
|
4531
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
4640
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4641
|
+
# job. If not specified, the default objective metric depends on the
|
4642
|
+
# problem type. See [AutoMLJobObjective][1] for the default values.
|
4532
4643
|
#
|
4533
4644
|
#
|
4534
4645
|
#
|
4535
4646
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4536
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4537
4647
|
# @return [Types::AutoMLJobObjective]
|
4538
4648
|
#
|
4539
4649
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4603,14 +4713,16 @@ module Aws::SageMaker
|
|
4603
4713
|
#
|
4604
4714
|
# @!attribute [rw] auto_ml_job_input_data_config
|
4605
4715
|
# An array of channel objects describing the input data and their
|
4606
|
-
# location. Each channel is a named input source. Similar to
|
4607
|
-
# [InputDataConfig][1]
|
4608
|
-
# formats depend on the problem type:
|
4716
|
+
# location. Each channel is a named input source. Similar to the
|
4717
|
+
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
|
+
# parameters. The supported formats depend on the problem type:
|
4609
4719
|
#
|
4610
|
-
# *
|
4611
|
-
# `AugmentedManifestFile`
|
4720
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
4612
4721
|
#
|
4613
|
-
# *
|
4722
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
4723
|
+
# `AugmentedManifestFile`.
|
4724
|
+
#
|
4725
|
+
# * For TextClassification: `S3Prefix`.
|
4614
4726
|
#
|
4615
4727
|
#
|
4616
4728
|
#
|
@@ -4649,11 +4761,20 @@ module Aws::SageMaker
|
|
4649
4761
|
#
|
4650
4762
|
# @!attribute [rw] auto_ml_job_objective
|
4651
4763
|
# Specifies a metric to minimize or maximize as the objective of a
|
4652
|
-
# job.
|
4764
|
+
# job. If not specified, the default objective metric depends on the
|
4765
|
+
# problem type. For the list of default values per problem type, see
|
4766
|
+
# [AutoMLJobObjective][1].
|
4653
4767
|
#
|
4768
|
+
# <note markdown="1"> For tabular problem types, you must either provide both the
|
4769
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4770
|
+
# problem in `AutoMLProblemTypeConfig`
|
4771
|
+
# (`TabularJobConfig.ProblemType`), or none at all.
|
4654
4772
|
#
|
4773
|
+
# </note>
|
4655
4774
|
#
|
4656
|
-
#
|
4775
|
+
#
|
4776
|
+
#
|
4777
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4657
4778
|
# @return [Types::AutoMLJobObjective]
|
4658
4779
|
#
|
4659
4780
|
# @!attribute [rw] model_deploy_config
|
@@ -4665,12 +4786,9 @@ module Aws::SageMaker
|
|
4665
4786
|
# This structure specifies how to split the data into train and
|
4666
4787
|
# validation datasets.
|
4667
4788
|
#
|
4668
|
-
#
|
4669
|
-
#
|
4670
|
-
#
|
4671
|
-
# type), the validation and training datasets must contain the same
|
4672
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4673
|
-
# than 2 GB in size.
|
4789
|
+
# The validation and training datasets must contain the same headers.
|
4790
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
|
+
# dataset must be less than 2 GB in size.
|
4674
4792
|
# @return [Types::AutoMLDataSplitConfig]
|
4675
4793
|
#
|
4676
4794
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10636,8 +10754,7 @@ module Aws::SageMaker
|
|
10636
10754
|
# @!attribute [rw] resolved_attributes
|
10637
10755
|
# Contains `ProblemType`, `AutoMLJobObjective`, and
|
10638
10756
|
# `CompletionCriteria`. If you do not provide these values, they are
|
10639
|
-
#
|
10640
|
-
# you provide.
|
10757
|
+
# inferred.
|
10641
10758
|
# @return [Types::ResolvedAttributes]
|
10642
10759
|
#
|
10643
10760
|
# @!attribute [rw] model_deploy_config
|
@@ -10678,7 +10795,7 @@ module Aws::SageMaker
|
|
10678
10795
|
end
|
10679
10796
|
|
10680
10797
|
# @!attribute [rw] auto_ml_job_name
|
10681
|
-
# Requests information about an AutoML V2
|
10798
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10682
10799
|
# @return [String]
|
10683
10800
|
#
|
10684
10801
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
@@ -10690,11 +10807,11 @@ module Aws::SageMaker
|
|
10690
10807
|
end
|
10691
10808
|
|
10692
10809
|
# @!attribute [rw] auto_ml_job_name
|
10693
|
-
# Returns the name of the AutoML V2
|
10810
|
+
# Returns the name of the AutoML job V2.
|
10694
10811
|
# @return [String]
|
10695
10812
|
#
|
10696
10813
|
# @!attribute [rw] auto_ml_job_arn
|
10697
|
-
# Returns the Amazon Resource Name (ARN) of the AutoML V2
|
10814
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML job V2.
|
10698
10815
|
# @return [String]
|
10699
10816
|
#
|
10700
10817
|
# @!attribute [rw] auto_ml_job_input_data_config
|
@@ -10718,15 +10835,15 @@ module Aws::SageMaker
|
|
10718
10835
|
#
|
10719
10836
|
# @!attribute [rw] auto_ml_problem_type_config
|
10720
10837
|
# Returns the configuration settings of the problem type set for the
|
10721
|
-
# AutoML V2
|
10838
|
+
# AutoML job V2.
|
10722
10839
|
# @return [Types::AutoMLProblemTypeConfig]
|
10723
10840
|
#
|
10724
10841
|
# @!attribute [rw] creation_time
|
10725
|
-
# Returns the creation time of the AutoML V2
|
10842
|
+
# Returns the creation time of the AutoML job V2.
|
10726
10843
|
# @return [Time]
|
10727
10844
|
#
|
10728
10845
|
# @!attribute [rw] end_time
|
10729
|
-
# Returns the end time of the AutoML V2
|
10846
|
+
# Returns the end time of the AutoML job V2.
|
10730
10847
|
# @return [Time]
|
10731
10848
|
#
|
10732
10849
|
# @!attribute [rw] last_modified_time
|
@@ -10734,13 +10851,13 @@ module Aws::SageMaker
|
|
10734
10851
|
# @return [Time]
|
10735
10852
|
#
|
10736
10853
|
# @!attribute [rw] failure_reason
|
10737
|
-
# Returns the reason for the failure of the AutoML V2
|
10854
|
+
# Returns the reason for the failure of the AutoML job V2, when
|
10738
10855
|
# applicable.
|
10739
10856
|
# @return [String]
|
10740
10857
|
#
|
10741
10858
|
# @!attribute [rw] partial_failure_reasons
|
10742
|
-
# Returns a list of reasons for partial failures within an AutoML
|
10743
|
-
#
|
10859
|
+
# Returns a list of reasons for partial failures within an AutoML job
|
10860
|
+
# V2.
|
10744
10861
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10745
10862
|
#
|
10746
10863
|
# @!attribute [rw] best_candidate
|
@@ -10749,11 +10866,11 @@ module Aws::SageMaker
|
|
10749
10866
|
# @return [Types::AutoMLCandidate]
|
10750
10867
|
#
|
10751
10868
|
# @!attribute [rw] auto_ml_job_status
|
10752
|
-
# Returns the status of the AutoML V2
|
10869
|
+
# Returns the status of the AutoML job V2.
|
10753
10870
|
# @return [String]
|
10754
10871
|
#
|
10755
10872
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10756
|
-
# Returns the secondary status of the AutoML V2
|
10873
|
+
# Returns the secondary status of the AutoML job V2.
|
10757
10874
|
# @return [String]
|
10758
10875
|
#
|
10759
10876
|
# @!attribute [rw] model_deploy_config
|
@@ -10775,6 +10892,19 @@ module Aws::SageMaker
|
|
10775
10892
|
# VPC settings.
|
10776
10893
|
# @return [Types::AutoMLSecurityConfig]
|
10777
10894
|
#
|
10895
|
+
# @!attribute [rw] auto_ml_job_artifacts
|
10896
|
+
# The artifacts that are generated during an AutoML job.
|
10897
|
+
# @return [Types::AutoMLJobArtifacts]
|
10898
|
+
#
|
10899
|
+
# @!attribute [rw] resolved_attributes
|
10900
|
+
# Returns the resolved attributes used by the AutoML job V2.
|
10901
|
+
# @return [Types::AutoMLResolvedAttributes]
|
10902
|
+
#
|
10903
|
+
# @!attribute [rw] auto_ml_problem_type_config_name
|
10904
|
+
# Returns the name of the problem type configuration set for the
|
10905
|
+
# AutoML job V2.
|
10906
|
+
# @return [String]
|
10907
|
+
#
|
10778
10908
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10779
10909
|
#
|
10780
10910
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -10796,7 +10926,10 @@ module Aws::SageMaker
|
|
10796
10926
|
:model_deploy_config,
|
10797
10927
|
:model_deploy_result,
|
10798
10928
|
:data_split_config,
|
10799
|
-
:security_config
|
10929
|
+
:security_config,
|
10930
|
+
:auto_ml_job_artifacts,
|
10931
|
+
:resolved_attributes,
|
10932
|
+
:auto_ml_problem_type_config_name)
|
10800
10933
|
SENSITIVE = []
|
10801
10934
|
include Aws::Structure
|
10802
10935
|
end
|
@@ -20733,7 +20866,7 @@ module Aws::SageMaker
|
|
20733
20866
|
end
|
20734
20867
|
|
20735
20868
|
# Stores the configuration information for the image classification
|
20736
|
-
# problem of an AutoML job
|
20869
|
+
# problem of an AutoML job V2.
|
20737
20870
|
#
|
20738
20871
|
# @!attribute [rw] completion_criteria
|
20739
20872
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -28354,6 +28487,21 @@ module Aws::SageMaker
|
|
28354
28487
|
include Aws::Structure
|
28355
28488
|
end
|
28356
28489
|
|
28490
|
+
# Specifies the location of ML model data to deploy. If specified, you
|
28491
|
+
# must specify one and only one of the available data sources.
|
28492
|
+
#
|
28493
|
+
# @!attribute [rw] s3_data_source
|
28494
|
+
# Specifies the S3 location of ML model data to deploy.
|
28495
|
+
# @return [Types::S3ModelDataSource]
|
28496
|
+
#
|
28497
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDataSource AWS API Documentation
|
28498
|
+
#
|
28499
|
+
class ModelDataSource < Struct.new(
|
28500
|
+
:s3_data_source)
|
28501
|
+
SENSITIVE = []
|
28502
|
+
include Aws::Structure
|
28503
|
+
end
|
28504
|
+
|
28357
28505
|
# Specifies how to generate the endpoint name for an automatic one-click
|
28358
28506
|
# Autopilot model deployment.
|
28359
28507
|
#
|
@@ -30828,6 +30976,11 @@ module Aws::SageMaker
|
|
30828
30976
|
# using [TargetPlatform][1] fields. It can be used instead of
|
30829
30977
|
# `TargetPlatform`.
|
30830
30978
|
#
|
30979
|
+
# <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
|
30980
|
+
# Region, and `ml_inf2` is available only in US East (Ohio) Region.
|
30981
|
+
#
|
30982
|
+
# </note>
|
30983
|
+
#
|
30831
30984
|
#
|
30832
30985
|
#
|
30833
30986
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
|
@@ -31069,11 +31222,18 @@ module Aws::SageMaker
|
|
31069
31222
|
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
31070
31223
|
# @return [String]
|
31071
31224
|
#
|
31225
|
+
# @!attribute [rw] compression_type
|
31226
|
+
# The model output compression type. Select `None` to output an
|
31227
|
+
# uncompressed model, recommended for large model outputs. Defaults to
|
31228
|
+
# gzip.
|
31229
|
+
# @return [String]
|
31230
|
+
#
|
31072
31231
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
31073
31232
|
#
|
31074
31233
|
class OutputDataConfig < Struct.new(
|
31075
31234
|
:kms_key_id,
|
31076
|
-
:s3_output_path
|
31235
|
+
:s3_output_path,
|
31236
|
+
:compression_type)
|
31077
31237
|
SENSITIVE = []
|
31078
31238
|
include Aws::Structure
|
31079
31239
|
end
|
@@ -34402,8 +34562,7 @@ module Aws::SageMaker
|
|
34402
34562
|
#
|
34403
34563
|
# @!attribute [rw] auto_ml_job_objective
|
34404
34564
|
# Specifies a metric to minimize or maximize as the objective of a
|
34405
|
-
# job.
|
34406
|
-
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
34565
|
+
# job.
|
34407
34566
|
# @return [Types::AutoMLJobObjective]
|
34408
34567
|
#
|
34409
34568
|
# @!attribute [rw] problem_type
|
@@ -34875,6 +35034,101 @@ module Aws::SageMaker
|
|
34875
35034
|
include Aws::Structure
|
34876
35035
|
end
|
34877
35036
|
|
35037
|
+
# Specifies the S3 location of ML model data to deploy.
|
35038
|
+
#
|
35039
|
+
# @!attribute [rw] s3_uri
|
35040
|
+
# Specifies the S3 path of ML model data to deploy.
|
35041
|
+
# @return [String]
|
35042
|
+
#
|
35043
|
+
# @!attribute [rw] s3_data_type
|
35044
|
+
# Specifies the type of ML model data to deploy.
|
35045
|
+
#
|
35046
|
+
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
35047
|
+
# SageMaker uses all objects that match the specified key name prefix
|
35048
|
+
# as part of the ML model data to deploy. A valid key name prefix
|
35049
|
+
# identified by `S3Uri` always ends with a forward slash (/).
|
35050
|
+
#
|
35051
|
+
# If you choose S3Object, S3Uri identifies an object that is the ML
|
35052
|
+
# model data to deploy.
|
35053
|
+
# @return [String]
|
35054
|
+
#
|
35055
|
+
# @!attribute [rw] compression_type
|
35056
|
+
# Specifies how the ML model data is prepared.
|
35057
|
+
#
|
35058
|
+
# If you choose `Gzip` and choose `S3Object` as the value of
|
35059
|
+
# `S3DataType`, `S3Uri` identifies an object that is a gzip-compressed
|
35060
|
+
# TAR archive. SageMaker will attempt to decompress and untar the
|
35061
|
+
# object during model deployment.
|
35062
|
+
#
|
35063
|
+
# If you choose `None` and chooose `S3Object` as the value of
|
35064
|
+
# `S3DataType`, `S3Uri` identifies an object that represents an
|
35065
|
+
# uncompressed ML model to deploy.
|
35066
|
+
#
|
35067
|
+
# If you choose None and choose `S3Prefix` as the value of
|
35068
|
+
# `S3DataType`, `S3Uri` identifies a key name prefix, under which all
|
35069
|
+
# objects represents the uncompressed ML model to deploy.
|
35070
|
+
#
|
35071
|
+
# If you choose None, then SageMaker will follow rules below when
|
35072
|
+
# creating model data files under /opt/ml/model directory for use by
|
35073
|
+
# your inference code:
|
35074
|
+
#
|
35075
|
+
# * If you choose `S3Object` as the value of `S3DataType`, then
|
35076
|
+
# SageMaker will split the key of the S3 object referenced by
|
35077
|
+
# `S3Uri` by slash (/), and use the last part as the filename of the
|
35078
|
+
# file holding the content of the S3 object.
|
35079
|
+
#
|
35080
|
+
# * If you choose `S3Prefix` as the value of `S3DataType`, then for
|
35081
|
+
# each S3 object under the key name pefix referenced by `S3Uri`,
|
35082
|
+
# SageMaker will trim its key by the prefix, and use the remainder
|
35083
|
+
# as the path (relative to `/opt/ml/model`) of the file holding the
|
35084
|
+
# content of the S3 object. SageMaker will split the remainder by
|
35085
|
+
# slash (/), using intermediate parts as directory names and the
|
35086
|
+
# last part as filename of the file holding the content of the S3
|
35087
|
+
# object.
|
35088
|
+
#
|
35089
|
+
# * Do not use any of the following as file names or directory names:
|
35090
|
+
#
|
35091
|
+
# * An empty or blank string
|
35092
|
+
#
|
35093
|
+
# * A string which contains null bytes
|
35094
|
+
#
|
35095
|
+
# * A string longer than 255 bytes
|
35096
|
+
#
|
35097
|
+
# * A single dot (`.`)
|
35098
|
+
#
|
35099
|
+
# * A double dot (`..`)
|
35100
|
+
#
|
35101
|
+
# * Ambiguous file names will result in model deployment failure. For
|
35102
|
+
# example, if your uncompressed ML model consists of two S3 objects
|
35103
|
+
# `s3://mybucket/model/weights` and
|
35104
|
+
# `s3://mybucket/model/weights/part1` and you specify
|
35105
|
+
# `s3://mybucket/model/` as the value of `S3Uri` and `S3Prefix` as
|
35106
|
+
# the value of S3DataType, then it will result in name clash between
|
35107
|
+
# `/opt/ml/model/weights` (a regular file) and
|
35108
|
+
# `/opt/ml/model/weights/` (a directory).
|
35109
|
+
#
|
35110
|
+
# * Do not organize the model artifacts in [S3 console using
|
35111
|
+
# folders][1]. When you create a folder in S3 console, S3 creates a
|
35112
|
+
# 0-byte object with a key set to the folder name you provide. They
|
35113
|
+
# key of the 0-byte object ends with a slash (/) which violates
|
35114
|
+
# SageMaker restrictions on model artifact file names, leading to
|
35115
|
+
# model deployment failure.
|
35116
|
+
#
|
35117
|
+
#
|
35118
|
+
#
|
35119
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html
|
35120
|
+
# @return [String]
|
35121
|
+
#
|
35122
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3ModelDataSource AWS API Documentation
|
35123
|
+
#
|
35124
|
+
class S3ModelDataSource < Struct.new(
|
35125
|
+
:s3_uri,
|
35126
|
+
:s3_data_type,
|
35127
|
+
:compression_type)
|
35128
|
+
SENSITIVE = []
|
35129
|
+
include Aws::Structure
|
35130
|
+
end
|
35131
|
+
|
34878
35132
|
# The Amazon Simple Storage (Amazon S3) location and and security
|
34879
35133
|
# configuration for `OfflineStore`.
|
34880
35134
|
#
|
@@ -36307,6 +36561,168 @@ module Aws::SageMaker
|
|
36307
36561
|
include Aws::Structure
|
36308
36562
|
end
|
36309
36563
|
|
36564
|
+
# The collection of settings used by an AutoML job V2 for the `TABULAR`
|
36565
|
+
# problem type.
|
36566
|
+
#
|
36567
|
+
# @!attribute [rw] candidate_generation_config
|
36568
|
+
# The configuration information of how model candidates are generated.
|
36569
|
+
# @return [Types::CandidateGenerationConfig]
|
36570
|
+
#
|
36571
|
+
# @!attribute [rw] completion_criteria
|
36572
|
+
# How long a job is allowed to run, or how many candidates a job is
|
36573
|
+
# allowed to generate.
|
36574
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
36575
|
+
#
|
36576
|
+
# @!attribute [rw] feature_specification_s3_uri
|
36577
|
+
# A URL to the Amazon S3 data source containing selected features from
|
36578
|
+
# the input data source to run an Autopilot job V2. You can input
|
36579
|
+
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
36580
|
+
#
|
36581
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
36582
|
+
#
|
36583
|
+
# You can also specify the data type of the feature (optional) in the
|
36584
|
+
# format shown below:
|
36585
|
+
#
|
36586
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
36587
|
+
# \} \}`
|
36588
|
+
#
|
36589
|
+
# <note markdown="1"> These column keys may not include the target column.
|
36590
|
+
#
|
36591
|
+
# </note>
|
36592
|
+
#
|
36593
|
+
# In ensembling mode, Autopilot only supports the following data
|
36594
|
+
# types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
|
36595
|
+
# mode, Autopilot can support `numeric`, `categorical`, `text`,
|
36596
|
+
# `datetime`, and `sequence`.
|
36597
|
+
#
|
36598
|
+
# If only `FeatureDataTypes` is provided, the column keys (`col1`,
|
36599
|
+
# `col2`,..) should be a subset of the column names in the input data.
|
36600
|
+
#
|
36601
|
+
# If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
|
36602
|
+
# then the column keys should be a subset of the column names provided
|
36603
|
+
# in `FeatureAttributeNames`.
|
36604
|
+
#
|
36605
|
+
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
36606
|
+
# `["col1", "col2", ...]` are case sensitive and should be a list of
|
36607
|
+
# strings containing unique values that are a subset of the column
|
36608
|
+
# names in the input data. The list of columns provided must not
|
36609
|
+
# include the target column.
|
36610
|
+
# @return [String]
|
36611
|
+
#
|
36612
|
+
# @!attribute [rw] mode
|
36613
|
+
# The method that Autopilot uses to train the data. You can either
|
36614
|
+
# specify the mode manually or let Autopilot choose for you based on
|
36615
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
36616
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
36617
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
36618
|
+
#
|
36619
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
36620
|
+
# classification and regression tasks directly from your dataset. This
|
36621
|
+
# machine learning mode combines several base models to produce an
|
36622
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
36623
|
+
# combine predictions from contributing members. A multi-stack
|
36624
|
+
# ensemble model can provide better performance over a single model by
|
36625
|
+
# combining the predictive capabilities of multiple models. See
|
36626
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36627
|
+
# by `ENSEMBLING` mode.
|
36628
|
+
#
|
36629
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
36630
|
+
# to train the best version of a model. HPO automatically selects an
|
36631
|
+
# algorithm for the type of problem you want to solve. Then HPO finds
|
36632
|
+
# the best hyperparameters according to your objective metric. See
|
36633
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36634
|
+
# by `HYPERPARAMETER_TUNING` mode.
|
36635
|
+
#
|
36636
|
+
#
|
36637
|
+
#
|
36638
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
36639
|
+
# @return [String]
|
36640
|
+
#
|
36641
|
+
# @!attribute [rw] generate_candidate_definitions_only
|
36642
|
+
# Generates possible candidates without training the models. A model
|
36643
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
36644
|
+
# algorithm parameter settings.
|
36645
|
+
# @return [Boolean]
|
36646
|
+
#
|
36647
|
+
# @!attribute [rw] problem_type
|
36648
|
+
# The type of supervised learning problem available for the model
|
36649
|
+
# candidates of the AutoML job V2. For more information, see [ Amazon
|
36650
|
+
# SageMaker Autopilot problem types][1].
|
36651
|
+
#
|
36652
|
+
# <note markdown="1"> You must either specify the type of supervised learning problem in
|
36653
|
+
# `ProblemType` and provide the [AutoMLJobObjective][2] metric, or
|
36654
|
+
# none at all.
|
36655
|
+
#
|
36656
|
+
# </note>
|
36657
|
+
#
|
36658
|
+
#
|
36659
|
+
#
|
36660
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36661
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective
|
36662
|
+
# @return [String]
|
36663
|
+
#
|
36664
|
+
# @!attribute [rw] target_attribute_name
|
36665
|
+
# The name of the target variable in supervised learning, usually
|
36666
|
+
# represented by 'y'.
|
36667
|
+
# @return [String]
|
36668
|
+
#
|
36669
|
+
# @!attribute [rw] sample_weight_attribute_name
|
36670
|
+
# If specified, this column name indicates which column of the dataset
|
36671
|
+
# should be treated as sample weights for use by the objective metric
|
36672
|
+
# during the training, evaluation, and the selection of the best
|
36673
|
+
# model. This column is not considered as a predictive feature. For
|
36674
|
+
# more information on Autopilot metrics, see [Metrics and
|
36675
|
+
# validation][1].
|
36676
|
+
#
|
36677
|
+
# Sample weights should be numeric, non-negative, with larger values
|
36678
|
+
# indicating which rows are more important than others. Data points
|
36679
|
+
# that have invalid or no weight value are excluded.
|
36680
|
+
#
|
36681
|
+
# Support for sample weights is available in [Ensembling][2] mode
|
36682
|
+
# only.
|
36683
|
+
#
|
36684
|
+
#
|
36685
|
+
#
|
36686
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
36687
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
36688
|
+
# @return [String]
|
36689
|
+
#
|
36690
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
|
36691
|
+
#
|
36692
|
+
class TabularJobConfig < Struct.new(
|
36693
|
+
:candidate_generation_config,
|
36694
|
+
:completion_criteria,
|
36695
|
+
:feature_specification_s3_uri,
|
36696
|
+
:mode,
|
36697
|
+
:generate_candidate_definitions_only,
|
36698
|
+
:problem_type,
|
36699
|
+
:target_attribute_name,
|
36700
|
+
:sample_weight_attribute_name)
|
36701
|
+
SENSITIVE = []
|
36702
|
+
include Aws::Structure
|
36703
|
+
end
|
36704
|
+
|
36705
|
+
# The resolved attributes specific to the `TABULAR` problem type.
|
36706
|
+
#
|
36707
|
+
# @!attribute [rw] problem_type
|
36708
|
+
# The type of supervised learning problem available for the model
|
36709
|
+
# candidates of the AutoML job V2 (Binary Classification, Multiclass
|
36710
|
+
# Classification, Regression). For more information, see [ Amazon
|
36711
|
+
# SageMaker Autopilot problem types][1].
|
36712
|
+
#
|
36713
|
+
#
|
36714
|
+
#
|
36715
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36716
|
+
# @return [String]
|
36717
|
+
#
|
36718
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
|
36719
|
+
#
|
36720
|
+
class TabularResolvedAttributes < Struct.new(
|
36721
|
+
:problem_type)
|
36722
|
+
SENSITIVE = []
|
36723
|
+
include Aws::Structure
|
36724
|
+
end
|
36725
|
+
|
36310
36726
|
# A tag object that consists of a key and an optional value, used to
|
36311
36727
|
# manage metadata for SageMaker Amazon Web Services resources.
|
36312
36728
|
#
|
@@ -36432,7 +36848,7 @@ module Aws::SageMaker
|
|
36432
36848
|
end
|
36433
36849
|
|
36434
36850
|
# Stores the configuration information for the text classification
|
36435
|
-
# problem of an AutoML job
|
36851
|
+
# problem of an AutoML job V2.
|
36436
36852
|
#
|
36437
36853
|
# @!attribute [rw] completion_criteria
|
36438
36854
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -36441,12 +36857,13 @@ module Aws::SageMaker
|
|
36441
36857
|
#
|
36442
36858
|
# @!attribute [rw] content_column
|
36443
36859
|
# The name of the column used to provide the sentences to be
|
36444
|
-
# classified. It should not be the same as the target column
|
36860
|
+
# classified. It should not be the same as the target column
|
36861
|
+
# (Required).
|
36445
36862
|
# @return [String]
|
36446
36863
|
#
|
36447
36864
|
# @!attribute [rw] target_label_column
|
36448
36865
|
# The name of the column used to provide the class labels. It should
|
36449
|
-
# not be same as the content column.
|
36866
|
+
# not be same as the content column (Required).
|
36450
36867
|
# @return [String]
|
36451
36868
|
#
|
36452
36869
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|