aws-sdk-sagemaker 1.187.0 → 1.189.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
1762
1762
  # @!attribute [rw] inference_container_definitions
1763
1763
  # The mapping of all supported processing unit (CPU, GPU, etc...) to
1764
1764
  # inference container definitions for the candidate. This field is
1765
- # populated for the V2 API only (for example, for jobs created by
1766
- # calling `CreateAutoMLJobV2`).
1765
+ # populated for the AutoML jobs V2 (for example, for jobs created by
1766
+ # calling `CreateAutoMLJobV2`) related to image or text classification
1767
+ # problem types only.
1767
1768
  # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1768
1769
  #
1769
1770
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
2035
2036
  # This structure specifies how to split the data into train and
2036
2037
  # validation datasets.
2037
2038
  #
2038
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
2039
- # API for Natural Language Processing problems (for example
2040
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
2041
- # type), the validation and training datasets must contain the same
2042
- # headers. Also, for V1 API jobs, the validation dataset must be less
2043
- # than 2 GB in size.
2039
+ # The validation and training datasets must contain the same headers.
2040
+ # For jobs created by calling `CreateAutoMLJob`, the validation dataset
2041
+ # must be less than 2 GB in size.
2044
2042
  #
2045
2043
  # @!attribute [rw] validation_fraction
2046
2044
  # The validation fraction (optional) is a float that specifies the
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
2077
2075
  end
2078
2076
 
2079
2077
  # A channel is a named input source that training algorithms can
2080
- # consume. This channel is used for the non tabular training data of an
2081
- # AutoML job using the V2 API. For tabular training data, see [
2082
- # AutoMLChannel][1]. For more information, see [ Channel][2].
2078
+ # consume. This channel is used for AutoML jobs V2 (jobs created by
2079
+ # calling [CreateAutoMLJobV2][1]).
2083
2080
  #
2084
2081
  #
2085
2082
  #
2086
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
2087
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
2083
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
2088
2084
  #
2089
2085
  # @!attribute [rw] channel_type
2090
2086
  # The type of channel. Defines whether the data are used for training
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
2096
2092
  # The content type of the data from the input source. The following
2097
2093
  # are the allowed content types for different problems:
2098
2094
  #
2099
- # * ImageClassification: `image/png`, `image/jpeg`, or `image/*`. The
2100
- # default value is `image/*`.
2095
+ # * For Tabular problem types: `text/csv;header=present` or
2096
+ # `x-application/vnd.amazon+parquet`. The default value is
2097
+ # `text/csv;header=present`.
2098
+ #
2099
+ # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2100
+ # The default value is `image/*`.
2101
2101
  #
2102
- # * TextClassification: `text/csv;header=present` or
2102
+ # * For TextClassification: `text/csv;header=present` or
2103
2103
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2104
  # `text/csv;header=present`.
2105
2105
  # @return [String]
2106
2106
  #
2107
2107
  # @!attribute [rw] compression_type
2108
- # The allowed compression types depend on the input format. We allow
2109
- # the compression type `Gzip` for `S3Prefix` inputs only. For all
2110
- # other inputs, the compression type should be `None`. If no
2111
- # compression type is provided, we default to `None`.
2108
+ # The allowed compression types depend on the input format and problem
2109
+ # type. We allow the compression type `Gzip` for `S3Prefix` inputs on
2110
+ # tabular data only. For all other inputs, the compression type should
2111
+ # be `None`. If no compression type is provided, we default to `None`.
2112
2112
  # @return [String]
2113
2113
  #
2114
2114
  # @!attribute [rw] data_source
2115
- # The data source for an AutoML channel.
2115
+ # The data source for an AutoML channel (Required).
2116
2116
  # @return [Types::AutoMLDataSource]
2117
2117
  #
2118
2118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
2132
2132
  # @!attribute [rw] max_candidates
2133
2133
  # The maximum number of times a training job is allowed to run.
2134
2134
  #
2135
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2135
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
2136
  # supported value is 1.
2137
2137
  # @return [Integer]
2138
2138
  #
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
2142
2142
  # tuning job. For more information, see the [StoppingCondition][1]
2143
2143
  # used by the [CreateHyperParameterTuningJob][2] action.
2144
2144
  #
2145
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2145
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
2146
2146
  # field controls the runtime of the job candidate.
2147
2147
  #
2148
2148
  #
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
2221
2221
  #
2222
2222
  #
2223
2223
  #
2224
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2224
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
2225
2225
  # @return [String]
2226
2226
  #
2227
2227
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
2237
2237
  end
2238
2238
 
2239
2239
  # Specifies a metric to minimize or maximize as the objective of a job.
2240
- # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2241
- # support `Accuracy` only.
2242
2240
  #
2243
2241
  # @!attribute [rw] metric_name
2244
2242
  # The name of the objective metric used to measure the predictive
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
2253
2251
  # If you do not specify a metric explicitly, the default behavior is
2254
2252
  # to automatically use:
2255
2253
  #
2256
- # * `MSE`: for regression.
2254
+ # * For tabular problem types:
2255
+ #
2256
+ # * Regression: `MSE`.
2257
2257
  #
2258
- # * `F1`: for binary classification
2258
+ # * Binary classification: `F1`.
2259
2259
  #
2260
- # * `Accuracy`: for multiclass classification.
2260
+ # * Multiclass classification: `Accuracy`.
2261
+ #
2262
+ # * For image or text classification problem types: `Accuracy`
2261
2263
  #
2262
2264
  #
2263
2265
  #
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
2375
2377
  end
2376
2378
 
2377
2379
  # A collection of settings specific to the problem type used to
2378
- # configure an AutoML job using the V2 API. There must be one and only
2379
- # one config of the following type.
2380
+ # configure an AutoML job V2. There must be one and only one config of
2381
+ # the following type.
2380
2382
  #
2381
2383
  # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2382
2384
  #
2383
2385
  # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2384
2386
  #
2385
2387
  # @!attribute [rw] image_classification_job_config
2386
- # Settings used to configure an AutoML job using the V2 API for the
2387
- # image classification problem type.
2388
+ # Settings used to configure an AutoML job V2 for the image
2389
+ # classification problem type.
2388
2390
  # @return [Types::ImageClassificationJobConfig]
2389
2391
  #
2390
2392
  # @!attribute [rw] text_classification_job_config
2391
- # Settings used to configure an AutoML job using the V2 API for the
2392
- # text classification problem type.
2393
+ # Settings used to configure an AutoML job V2 for the text
2394
+ # classification problem type.
2393
2395
  # @return [Types::TextClassificationJobConfig]
2394
2396
  #
2397
+ # @!attribute [rw] tabular_job_config
2398
+ # Settings used to configure an AutoML job V2 for a tabular problem
2399
+ # type (regression, classification).
2400
+ # @return [Types::TabularJobConfig]
2401
+ #
2395
2402
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2396
2403
  #
2397
2404
  class AutoMLProblemTypeConfig < Struct.new(
2398
2405
  :image_classification_job_config,
2399
2406
  :text_classification_job_config,
2407
+ :tabular_job_config,
2400
2408
  :unknown)
2401
2409
  SENSITIVE = []
2402
2410
  include Aws::Structure
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
2404
2412
 
2405
2413
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2406
2414
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
+ class TabularJobConfig < AutoMLProblemTypeConfig; end
2407
2416
  class Unknown < AutoMLProblemTypeConfig; end
2408
2417
  end
2409
2418
 
2419
+ # The resolved attributes specific to the problem type of an AutoML job
2420
+ # V2.
2421
+ #
2422
+ # @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
2423
+ #
2424
+ # @!attribute [rw] tabular_resolved_attributes
2425
+ # Defines the resolved attributes for the `TABULAR` problem type.
2426
+ # @return [Types::TabularResolvedAttributes]
2427
+ #
2428
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
2429
+ #
2430
+ class AutoMLProblemTypeResolvedAttributes < Struct.new(
2431
+ :tabular_resolved_attributes,
2432
+ :unknown)
2433
+ SENSITIVE = []
2434
+ include Aws::Structure
2435
+ include Aws::Structure::Union
2436
+
2437
+ class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2438
+ class Unknown < AutoMLProblemTypeResolvedAttributes; end
2439
+ end
2440
+
2441
+ # The resolved attributes used to configure an AutoML job V2.
2442
+ #
2443
+ # @!attribute [rw] auto_ml_job_objective
2444
+ # Specifies a metric to minimize or maximize as the objective of a
2445
+ # job.
2446
+ # @return [Types::AutoMLJobObjective]
2447
+ #
2448
+ # @!attribute [rw] completion_criteria
2449
+ # How long a job is allowed to run, or how many candidates a job is
2450
+ # allowed to generate.
2451
+ # @return [Types::AutoMLJobCompletionCriteria]
2452
+ #
2453
+ # @!attribute [rw] auto_ml_problem_type_resolved_attributes
2454
+ # Defines the resolved attributes specific to a problem type.
2455
+ # @return [Types::AutoMLProblemTypeResolvedAttributes]
2456
+ #
2457
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
2458
+ #
2459
+ class AutoMLResolvedAttributes < Struct.new(
2460
+ :auto_ml_job_objective,
2461
+ :completion_criteria,
2462
+ :auto_ml_problem_type_resolved_attributes)
2463
+ SENSITIVE = []
2464
+ include Aws::Structure
2465
+ end
2466
+
2410
2467
  # Describes the Amazon S3 data source.
2411
2468
  #
2412
2469
  # @!attribute [rw] s3_data_type
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
2939
2996
  include Aws::Structure
2940
2997
  end
2941
2998
 
2999
+ # Stores the configuration information for how model candidates are
3000
+ # generated using an AutoML job V2.
3001
+ #
3002
+ # @!attribute [rw] algorithms_config
3003
+ # Stores the configuration information for the selection of algorithms
3004
+ # used to train model candidates on tabular data.
3005
+ #
3006
+ # The list of available algorithms to choose from depends on the
3007
+ # training mode set in [ `TabularJobConfig.Mode` ][1].
3008
+ #
3009
+ # * `AlgorithmsConfig` should not be set in `AUTO` training mode.
3010
+ #
3011
+ # * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
3012
+ # attribute must be set and one only.
3013
+ #
3014
+ # If the list of algorithms provided as values for
3015
+ # `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
3016
+ # full set of algorithms for the given training mode.
3017
+ #
3018
+ # * When `AlgorithmsConfig` is not provided,
3019
+ # `CandidateGenerationConfig` uses the full set of algorithms for
3020
+ # the given training mode.
3021
+ #
3022
+ # For the list of all algorithms per problem type and training mode,
3023
+ # see [ AutoMLAlgorithmConfig][2].
3024
+ #
3025
+ # For more information on each algorithm, see the [Algorithm
3026
+ # support][3] section in Autopilot developer guide.
3027
+ #
3028
+ #
3029
+ #
3030
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
3031
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
3032
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
3033
+ # @return [Array<Types::AutoMLAlgorithmConfig>]
3034
+ #
3035
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
3036
+ #
3037
+ class CandidateGenerationConfig < Struct.new(
3038
+ :algorithms_config)
3039
+ SENSITIVE = []
3040
+ include Aws::Structure
3041
+ end
3042
+
2942
3043
  # The properties of an AutoML candidate job.
2943
3044
  #
2944
3045
  # @!attribute [rw] candidate_artifact_locations
@@ -3998,6 +4099,16 @@ module Aws::SageMaker
3998
4099
  # Specifies additional configuration for multi-model endpoints.
3999
4100
  # @return [Types::MultiModelConfig]
4000
4101
  #
4102
+ # @!attribute [rw] model_data_source
4103
+ # Specifies the location of ML model data to deploy.
4104
+ #
4105
+ # <note markdown="1"> Currently you cannot use `ModelDataSource` in conjuction with
4106
+ # SageMaker batch transform, SageMaker serverless endpoints, SageMaker
4107
+ # multi-model endpoints, and SageMaker Marketplace.
4108
+ #
4109
+ # </note>
4110
+ # @return [Types::ModelDataSource]
4111
+ #
4001
4112
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
4002
4113
  #
4003
4114
  class ContainerDefinition < Struct.new(
@@ -4009,7 +4120,8 @@ module Aws::SageMaker
4009
4120
  :environment,
4010
4121
  :model_package_name,
4011
4122
  :inference_specification_name,
4012
- :multi_model_config)
4123
+ :multi_model_config,
4124
+ :model_data_source)
4013
4125
  SENSITIVE = []
4014
4126
  include Aws::Structure
4015
4127
  end
@@ -4525,15 +4637,13 @@ module Aws::SageMaker
4525
4637
  # @return [String]
4526
4638
  #
4527
4639
  # @!attribute [rw] auto_ml_job_objective
4528
- # Defines the objective metric used to measure the predictive quality
4529
- # of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
4530
- # and Autopilot infers whether to minimize or maximize it. For
4531
- # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
4640
+ # Specifies a metric to minimize or maximize as the objective of a
4641
+ # job. If not specified, the default objective metric depends on the
4642
+ # problem type. See [AutoMLJobObjective][1] for the default values.
4532
4643
  #
4533
4644
  #
4534
4645
  #
4535
4646
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4536
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4537
4647
  # @return [Types::AutoMLJobObjective]
4538
4648
  #
4539
4649
  # @!attribute [rw] auto_ml_job_config
@@ -4603,14 +4713,16 @@ module Aws::SageMaker
4603
4713
  #
4604
4714
  # @!attribute [rw] auto_ml_job_input_data_config
4605
4715
  # An array of channel objects describing the input data and their
4606
- # location. Each channel is a named input source. Similar to
4607
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4608
- # formats depend on the problem type:
4716
+ # location. Each channel is a named input source. Similar to the
4717
+ # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
+ # parameters. The supported formats depend on the problem type:
4609
4719
  #
4610
- # * ImageClassification: S3Prefix, `ManifestFile`,
4611
- # `AugmentedManifestFile`
4720
+ # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4612
4721
  #
4613
- # * TextClassification: S3Prefix
4722
+ # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4723
+ # `AugmentedManifestFile`.
4724
+ #
4725
+ # * For TextClassification: `S3Prefix`.
4614
4726
  #
4615
4727
  #
4616
4728
  #
@@ -4649,11 +4761,20 @@ module Aws::SageMaker
4649
4761
  #
4650
4762
  # @!attribute [rw] auto_ml_job_objective
4651
4763
  # Specifies a metric to minimize or maximize as the objective of a
4652
- # job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
4764
+ # job. If not specified, the default objective metric depends on the
4765
+ # problem type. For the list of default values per problem type, see
4766
+ # [AutoMLJobObjective][1].
4653
4767
  #
4768
+ # <note markdown="1"> For tabular problem types, you must either provide both the
4769
+ # `AutoMLJobObjective` and indicate the type of supervised learning
4770
+ # problem in `AutoMLProblemTypeConfig`
4771
+ # (`TabularJobConfig.ProblemType`), or none at all.
4654
4772
  #
4773
+ # </note>
4655
4774
  #
4656
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4775
+ #
4776
+ #
4777
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4657
4778
  # @return [Types::AutoMLJobObjective]
4658
4779
  #
4659
4780
  # @!attribute [rw] model_deploy_config
@@ -4665,12 +4786,9 @@ module Aws::SageMaker
4665
4786
  # This structure specifies how to split the data into train and
4666
4787
  # validation datasets.
4667
4788
  #
4668
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4669
- # V2 API for Natural Language Processing problems (for example
4670
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4671
- # type), the validation and training datasets must contain the same
4672
- # headers. Also, for V1 API jobs, the validation dataset must be less
4673
- # than 2 GB in size.
4789
+ # The validation and training datasets must contain the same headers.
4790
+ # For jobs created by calling `CreateAutoMLJob`, the validation
4791
+ # dataset must be less than 2 GB in size.
4674
4792
  # @return [Types::AutoMLDataSplitConfig]
4675
4793
  #
4676
4794
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -10636,8 +10754,7 @@ module Aws::SageMaker
10636
10754
  # @!attribute [rw] resolved_attributes
10637
10755
  # Contains `ProblemType`, `AutoMLJobObjective`, and
10638
10756
  # `CompletionCriteria`. If you do not provide these values, they are
10639
- # auto-inferred. If you do provide them, the values used are the ones
10640
- # you provide.
10757
+ # inferred.
10641
10758
  # @return [Types::ResolvedAttributes]
10642
10759
  #
10643
10760
  # @!attribute [rw] model_deploy_config
@@ -10678,7 +10795,7 @@ module Aws::SageMaker
10678
10795
  end
10679
10796
 
10680
10797
  # @!attribute [rw] auto_ml_job_name
10681
- # Requests information about an AutoML V2 job using its unique name.
10798
+ # Requests information about an AutoML job V2 using its unique name.
10682
10799
  # @return [String]
10683
10800
  #
10684
10801
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
@@ -10690,11 +10807,11 @@ module Aws::SageMaker
10690
10807
  end
10691
10808
 
10692
10809
  # @!attribute [rw] auto_ml_job_name
10693
- # Returns the name of the AutoML V2 job.
10810
+ # Returns the name of the AutoML job V2.
10694
10811
  # @return [String]
10695
10812
  #
10696
10813
  # @!attribute [rw] auto_ml_job_arn
10697
- # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10814
+ # Returns the Amazon Resource Name (ARN) of the AutoML job V2.
10698
10815
  # @return [String]
10699
10816
  #
10700
10817
  # @!attribute [rw] auto_ml_job_input_data_config
@@ -10718,15 +10835,15 @@ module Aws::SageMaker
10718
10835
  #
10719
10836
  # @!attribute [rw] auto_ml_problem_type_config
10720
10837
  # Returns the configuration settings of the problem type set for the
10721
- # AutoML V2 job.
10838
+ # AutoML job V2.
10722
10839
  # @return [Types::AutoMLProblemTypeConfig]
10723
10840
  #
10724
10841
  # @!attribute [rw] creation_time
10725
- # Returns the creation time of the AutoML V2 job.
10842
+ # Returns the creation time of the AutoML job V2.
10726
10843
  # @return [Time]
10727
10844
  #
10728
10845
  # @!attribute [rw] end_time
10729
- # Returns the end time of the AutoML V2 job.
10846
+ # Returns the end time of the AutoML job V2.
10730
10847
  # @return [Time]
10731
10848
  #
10732
10849
  # @!attribute [rw] last_modified_time
@@ -10734,13 +10851,13 @@ module Aws::SageMaker
10734
10851
  # @return [Time]
10735
10852
  #
10736
10853
  # @!attribute [rw] failure_reason
10737
- # Returns the reason for the failure of the AutoML V2 job, when
10854
+ # Returns the reason for the failure of the AutoML job V2, when
10738
10855
  # applicable.
10739
10856
  # @return [String]
10740
10857
  #
10741
10858
  # @!attribute [rw] partial_failure_reasons
10742
- # Returns a list of reasons for partial failures within an AutoML V2
10743
- # job.
10859
+ # Returns a list of reasons for partial failures within an AutoML job
10860
+ # V2.
10744
10861
  # @return [Array<Types::AutoMLPartialFailureReason>]
10745
10862
  #
10746
10863
  # @!attribute [rw] best_candidate
@@ -10749,11 +10866,11 @@ module Aws::SageMaker
10749
10866
  # @return [Types::AutoMLCandidate]
10750
10867
  #
10751
10868
  # @!attribute [rw] auto_ml_job_status
10752
- # Returns the status of the AutoML V2 job.
10869
+ # Returns the status of the AutoML job V2.
10753
10870
  # @return [String]
10754
10871
  #
10755
10872
  # @!attribute [rw] auto_ml_job_secondary_status
10756
- # Returns the secondary status of the AutoML V2 job.
10873
+ # Returns the secondary status of the AutoML job V2.
10757
10874
  # @return [String]
10758
10875
  #
10759
10876
  # @!attribute [rw] model_deploy_config
@@ -10775,6 +10892,19 @@ module Aws::SageMaker
10775
10892
  # VPC settings.
10776
10893
  # @return [Types::AutoMLSecurityConfig]
10777
10894
  #
10895
+ # @!attribute [rw] auto_ml_job_artifacts
10896
+ # The artifacts that are generated during an AutoML job.
10897
+ # @return [Types::AutoMLJobArtifacts]
10898
+ #
10899
+ # @!attribute [rw] resolved_attributes
10900
+ # Returns the resolved attributes used by the AutoML job V2.
10901
+ # @return [Types::AutoMLResolvedAttributes]
10902
+ #
10903
+ # @!attribute [rw] auto_ml_problem_type_config_name
10904
+ # Returns the name of the problem type configuration set for the
10905
+ # AutoML job V2.
10906
+ # @return [String]
10907
+ #
10778
10908
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10779
10909
  #
10780
10910
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -10796,7 +10926,10 @@ module Aws::SageMaker
10796
10926
  :model_deploy_config,
10797
10927
  :model_deploy_result,
10798
10928
  :data_split_config,
10799
- :security_config)
10929
+ :security_config,
10930
+ :auto_ml_job_artifacts,
10931
+ :resolved_attributes,
10932
+ :auto_ml_problem_type_config_name)
10800
10933
  SENSITIVE = []
10801
10934
  include Aws::Structure
10802
10935
  end
@@ -20733,7 +20866,7 @@ module Aws::SageMaker
20733
20866
  end
20734
20867
 
20735
20868
  # Stores the configuration information for the image classification
20736
- # problem of an AutoML job using the V2 API.
20869
+ # problem of an AutoML job V2.
20737
20870
  #
20738
20871
  # @!attribute [rw] completion_criteria
20739
20872
  # How long a job is allowed to run, or how many candidates a job is
@@ -28354,6 +28487,21 @@ module Aws::SageMaker
28354
28487
  include Aws::Structure
28355
28488
  end
28356
28489
 
28490
+ # Specifies the location of ML model data to deploy. If specified, you
28491
+ # must specify one and only one of the available data sources.
28492
+ #
28493
+ # @!attribute [rw] s3_data_source
28494
+ # Specifies the S3 location of ML model data to deploy.
28495
+ # @return [Types::S3ModelDataSource]
28496
+ #
28497
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDataSource AWS API Documentation
28498
+ #
28499
+ class ModelDataSource < Struct.new(
28500
+ :s3_data_source)
28501
+ SENSITIVE = []
28502
+ include Aws::Structure
28503
+ end
28504
+
28357
28505
  # Specifies how to generate the endpoint name for an automatic one-click
28358
28506
  # Autopilot model deployment.
28359
28507
  #
@@ -30828,6 +30976,11 @@ module Aws::SageMaker
30828
30976
  # using [TargetPlatform][1] fields. It can be used instead of
30829
30977
  # `TargetPlatform`.
30830
30978
  #
30979
+ # <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
30980
+ # Region, and `ml_inf2` is available only in US East (Ohio) Region.
30981
+ #
30982
+ # </note>
30983
+ #
30831
30984
  #
30832
30985
  #
30833
30986
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
@@ -31069,11 +31222,18 @@ module Aws::SageMaker
31069
31222
  # artifacts. For example, `s3://bucket-name/key-name-prefix`.
31070
31223
  # @return [String]
31071
31224
  #
31225
+ # @!attribute [rw] compression_type
31226
+ # The model output compression type. Select `None` to output an
31227
+ # uncompressed model, recommended for large model outputs. Defaults to
31228
+ # gzip.
31229
+ # @return [String]
31230
+ #
31072
31231
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
31073
31232
  #
31074
31233
  class OutputDataConfig < Struct.new(
31075
31234
  :kms_key_id,
31076
- :s3_output_path)
31235
+ :s3_output_path,
31236
+ :compression_type)
31077
31237
  SENSITIVE = []
31078
31238
  include Aws::Structure
31079
31239
  end
@@ -34402,8 +34562,7 @@ module Aws::SageMaker
34402
34562
  #
34403
34563
  # @!attribute [rw] auto_ml_job_objective
34404
34564
  # Specifies a metric to minimize or maximize as the objective of a
34405
- # job. V2 API jobs (for example jobs created by calling
34406
- # `CreateAutoMLJobV2`), support `Accuracy` only.
34565
+ # job.
34407
34566
  # @return [Types::AutoMLJobObjective]
34408
34567
  #
34409
34568
  # @!attribute [rw] problem_type
@@ -34875,6 +35034,101 @@ module Aws::SageMaker
34875
35034
  include Aws::Structure
34876
35035
  end
34877
35036
 
35037
+ # Specifies the S3 location of ML model data to deploy.
35038
+ #
35039
+ # @!attribute [rw] s3_uri
35040
+ # Specifies the S3 path of ML model data to deploy.
35041
+ # @return [String]
35042
+ #
35043
+ # @!attribute [rw] s3_data_type
35044
+ # Specifies the type of ML model data to deploy.
35045
+ #
35046
+ # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
35047
+ # SageMaker uses all objects that match the specified key name prefix
35048
+ # as part of the ML model data to deploy. A valid key name prefix
35049
+ # identified by `S3Uri` always ends with a forward slash (/).
35050
+ #
35051
+ # If you choose S3Object, S3Uri identifies an object that is the ML
35052
+ # model data to deploy.
35053
+ # @return [String]
35054
+ #
35055
+ # @!attribute [rw] compression_type
35056
+ # Specifies how the ML model data is prepared.
35057
+ #
35058
+ # If you choose `Gzip` and choose `S3Object` as the value of
35059
+ # `S3DataType`, `S3Uri` identifies an object that is a gzip-compressed
35060
+ # TAR archive. SageMaker will attempt to decompress and untar the
35061
+ # object during model deployment.
35062
+ #
35063
+ # If you choose `None` and chooose `S3Object` as the value of
35064
+ # `S3DataType`, `S3Uri` identifies an object that represents an
35065
+ # uncompressed ML model to deploy.
35066
+ #
35067
+ # If you choose None and choose `S3Prefix` as the value of
35068
+ # `S3DataType`, `S3Uri` identifies a key name prefix, under which all
35069
+ # objects represents the uncompressed ML model to deploy.
35070
+ #
35071
+ # If you choose None, then SageMaker will follow rules below when
35072
+ # creating model data files under /opt/ml/model directory for use by
35073
+ # your inference code:
35074
+ #
35075
+ # * If you choose `S3Object` as the value of `S3DataType`, then
35076
+ # SageMaker will split the key of the S3 object referenced by
35077
+ # `S3Uri` by slash (/), and use the last part as the filename of the
35078
+ # file holding the content of the S3 object.
35079
+ #
35080
+ # * If you choose `S3Prefix` as the value of `S3DataType`, then for
35081
+ # each S3 object under the key name pefix referenced by `S3Uri`,
35082
+ # SageMaker will trim its key by the prefix, and use the remainder
35083
+ # as the path (relative to `/opt/ml/model`) of the file holding the
35084
+ # content of the S3 object. SageMaker will split the remainder by
35085
+ # slash (/), using intermediate parts as directory names and the
35086
+ # last part as filename of the file holding the content of the S3
35087
+ # object.
35088
+ #
35089
+ # * Do not use any of the following as file names or directory names:
35090
+ #
35091
+ # * An empty or blank string
35092
+ #
35093
+ # * A string which contains null bytes
35094
+ #
35095
+ # * A string longer than 255 bytes
35096
+ #
35097
+ # * A single dot (`.`)
35098
+ #
35099
+ # * A double dot (`..`)
35100
+ #
35101
+ # * Ambiguous file names will result in model deployment failure. For
35102
+ # example, if your uncompressed ML model consists of two S3 objects
35103
+ # `s3://mybucket/model/weights` and
35104
+ # `s3://mybucket/model/weights/part1` and you specify
35105
+ # `s3://mybucket/model/` as the value of `S3Uri` and `S3Prefix` as
35106
+ # the value of S3DataType, then it will result in name clash between
35107
+ # `/opt/ml/model/weights` (a regular file) and
35108
+ # `/opt/ml/model/weights/` (a directory).
35109
+ #
35110
+ # * Do not organize the model artifacts in [S3 console using
35111
+ # folders][1]. When you create a folder in S3 console, S3 creates a
35112
+ # 0-byte object with a key set to the folder name you provide. They
35113
+ # key of the 0-byte object ends with a slash (/) which violates
35114
+ # SageMaker restrictions on model artifact file names, leading to
35115
+ # model deployment failure.
35116
+ #
35117
+ #
35118
+ #
35119
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html
35120
+ # @return [String]
35121
+ #
35122
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3ModelDataSource AWS API Documentation
35123
+ #
35124
+ class S3ModelDataSource < Struct.new(
35125
+ :s3_uri,
35126
+ :s3_data_type,
35127
+ :compression_type)
35128
+ SENSITIVE = []
35129
+ include Aws::Structure
35130
+ end
35131
+
34878
35132
  # The Amazon Simple Storage (Amazon S3) location and and security
34879
35133
  # configuration for `OfflineStore`.
34880
35134
  #
@@ -36307,6 +36561,168 @@ module Aws::SageMaker
36307
36561
  include Aws::Structure
36308
36562
  end
36309
36563
 
36564
+ # The collection of settings used by an AutoML job V2 for the `TABULAR`
36565
+ # problem type.
36566
+ #
36567
+ # @!attribute [rw] candidate_generation_config
36568
+ # The configuration information of how model candidates are generated.
36569
+ # @return [Types::CandidateGenerationConfig]
36570
+ #
36571
+ # @!attribute [rw] completion_criteria
36572
+ # How long a job is allowed to run, or how many candidates a job is
36573
+ # allowed to generate.
36574
+ # @return [Types::AutoMLJobCompletionCriteria]
36575
+ #
36576
+ # @!attribute [rw] feature_specification_s3_uri
36577
+ # A URL to the Amazon S3 data source containing selected features from
36578
+ # the input data source to run an Autopilot job V2. You can input
36579
+ # `FeatureAttributeNames` (optional) in JSON format as shown below:
36580
+ #
36581
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
36582
+ #
36583
+ # You can also specify the data type of the feature (optional) in the
36584
+ # format shown below:
36585
+ #
36586
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
36587
+ # \} \}`
36588
+ #
36589
+ # <note markdown="1"> These column keys may not include the target column.
36590
+ #
36591
+ # </note>
36592
+ #
36593
+ # In ensembling mode, Autopilot only supports the following data
36594
+ # types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
36595
+ # mode, Autopilot can support `numeric`, `categorical`, `text`,
36596
+ # `datetime`, and `sequence`.
36597
+ #
36598
+ # If only `FeatureDataTypes` is provided, the column keys (`col1`,
36599
+ # `col2`,..) should be a subset of the column names in the input data.
36600
+ #
36601
+ # If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
36602
+ # then the column keys should be a subset of the column names provided
36603
+ # in `FeatureAttributeNames`.
36604
+ #
36605
+ # The key name `FeatureAttributeNames` is fixed. The values listed in
36606
+ # `["col1", "col2", ...]` are case sensitive and should be a list of
36607
+ # strings containing unique values that are a subset of the column
36608
+ # names in the input data. The list of columns provided must not
36609
+ # include the target column.
36610
+ # @return [String]
36611
+ #
36612
+ # @!attribute [rw] mode
36613
+ # The method that Autopilot uses to train the data. You can either
36614
+ # specify the mode manually or let Autopilot choose for you based on
36615
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
36616
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
36617
+ # `HYPERPARAMETER_TUNING` for larger ones.
36618
+ #
36619
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
36620
+ # classification and regression tasks directly from your dataset. This
36621
+ # machine learning mode combines several base models to produce an
36622
+ # optimal predictive model. It then uses a stacking ensemble method to
36623
+ # combine predictions from contributing members. A multi-stack
36624
+ # ensemble model can provide better performance over a single model by
36625
+ # combining the predictive capabilities of multiple models. See
36626
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36627
+ # by `ENSEMBLING` mode.
36628
+ #
36629
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
36630
+ # to train the best version of a model. HPO automatically selects an
36631
+ # algorithm for the type of problem you want to solve. Then HPO finds
36632
+ # the best hyperparameters according to your objective metric. See
36633
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36634
+ # by `HYPERPARAMETER_TUNING` mode.
36635
+ #
36636
+ #
36637
+ #
36638
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
36639
+ # @return [String]
36640
+ #
36641
+ # @!attribute [rw] generate_candidate_definitions_only
36642
+ # Generates possible candidates without training the models. A model
36643
+ # candidate is a combination of data preprocessors, algorithms, and
36644
+ # algorithm parameter settings.
36645
+ # @return [Boolean]
36646
+ #
36647
+ # @!attribute [rw] problem_type
36648
+ # The type of supervised learning problem available for the model
36649
+ # candidates of the AutoML job V2. For more information, see [ Amazon
36650
+ # SageMaker Autopilot problem types][1].
36651
+ #
36652
+ # <note markdown="1"> You must either specify the type of supervised learning problem in
36653
+ # `ProblemType` and provide the [AutoMLJobObjective][2] metric, or
36654
+ # none at all.
36655
+ #
36656
+ # </note>
36657
+ #
36658
+ #
36659
+ #
36660
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36661
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective
36662
+ # @return [String]
36663
+ #
36664
+ # @!attribute [rw] target_attribute_name
36665
+ # The name of the target variable in supervised learning, usually
36666
+ # represented by 'y'.
36667
+ # @return [String]
36668
+ #
36669
+ # @!attribute [rw] sample_weight_attribute_name
36670
+ # If specified, this column name indicates which column of the dataset
36671
+ # should be treated as sample weights for use by the objective metric
36672
+ # during the training, evaluation, and the selection of the best
36673
+ # model. This column is not considered as a predictive feature. For
36674
+ # more information on Autopilot metrics, see [Metrics and
36675
+ # validation][1].
36676
+ #
36677
+ # Sample weights should be numeric, non-negative, with larger values
36678
+ # indicating which rows are more important than others. Data points
36679
+ # that have invalid or no weight value are excluded.
36680
+ #
36681
+ # Support for sample weights is available in [Ensembling][2] mode
36682
+ # only.
36683
+ #
36684
+ #
36685
+ #
36686
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
36687
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
36688
+ # @return [String]
36689
+ #
36690
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
36691
+ #
36692
+ class TabularJobConfig < Struct.new(
36693
+ :candidate_generation_config,
36694
+ :completion_criteria,
36695
+ :feature_specification_s3_uri,
36696
+ :mode,
36697
+ :generate_candidate_definitions_only,
36698
+ :problem_type,
36699
+ :target_attribute_name,
36700
+ :sample_weight_attribute_name)
36701
+ SENSITIVE = []
36702
+ include Aws::Structure
36703
+ end
36704
+
36705
+ # The resolved attributes specific to the `TABULAR` problem type.
36706
+ #
36707
+ # @!attribute [rw] problem_type
36708
+ # The type of supervised learning problem available for the model
36709
+ # candidates of the AutoML job V2 (Binary Classification, Multiclass
36710
+ # Classification, Regression). For more information, see [ Amazon
36711
+ # SageMaker Autopilot problem types][1].
36712
+ #
36713
+ #
36714
+ #
36715
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36716
+ # @return [String]
36717
+ #
36718
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
36719
+ #
36720
+ class TabularResolvedAttributes < Struct.new(
36721
+ :problem_type)
36722
+ SENSITIVE = []
36723
+ include Aws::Structure
36724
+ end
36725
+
36310
36726
  # A tag object that consists of a key and an optional value, used to
36311
36727
  # manage metadata for SageMaker Amazon Web Services resources.
36312
36728
  #
@@ -36432,7 +36848,7 @@ module Aws::SageMaker
36432
36848
  end
36433
36849
 
36434
36850
  # Stores the configuration information for the text classification
36435
- # problem of an AutoML job using the V2 API.
36851
+ # problem of an AutoML job V2.
36436
36852
  #
36437
36853
  # @!attribute [rw] completion_criteria
36438
36854
  # How long a job is allowed to run, or how many candidates a job is
@@ -36441,12 +36857,13 @@ module Aws::SageMaker
36441
36857
  #
36442
36858
  # @!attribute [rw] content_column
36443
36859
  # The name of the column used to provide the sentences to be
36444
- # classified. It should not be the same as the target column.
36860
+ # classified. It should not be the same as the target column
36861
+ # (Required).
36445
36862
  # @return [String]
36446
36863
  #
36447
36864
  # @!attribute [rw] target_label_column
36448
36865
  # The name of the column used to provide the class labels. It should
36449
- # not be same as the content column.
36866
+ # not be same as the content column (Required).
36450
36867
  # @return [String]
36451
36868
  #
36452
36869
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation