aws-sdk-sagemaker 1.187.0 → 1.188.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +122 -41
- data/lib/aws-sdk-sagemaker/client_api.rb +38 -0
- data/lib/aws-sdk-sagemaker/types.rb +360 -71
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: c1cc6aa017d0a61c512a403ca520b758a79858d6ed30444a6b8fc209235a566b
|
4
|
+
data.tar.gz: 7c3ed41853cabbc93820d3ee924aae42852b605a76aae984c98b384f5c0547bb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e12d3d897ebdc29ead6763814cecb2629a79a63585eae30c743751f0eeea93b91250ed5dfc0c807e12f9105ca162b16157664aa1144caad28d2625a97fabc5a4
|
7
|
+
data.tar.gz: 2edc4ba1e484791aebb0a59b2471042c5c54aa75caa2742ea0027dc0d8ba61488e6fefcd7c4e2fcc29c0648dafe58ee7e6ba931edd5c9653370f8ffe1742a1f9
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.188.0 (2023-06-19)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon Sagemaker Autopilot releases CreateAutoMLJobV2 and DescribeAutoMLJobV2 for Autopilot customers with ImageClassification, TextClassification and Tabular problem type config support.
|
8
|
+
|
4
9
|
1.187.0 (2023-06-15)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.188.0
|
@@ -1184,18 +1184,30 @@ module Aws::SageMaker
|
|
1184
1184
|
req.send_request(options)
|
1185
1185
|
end
|
1186
1186
|
|
1187
|
-
# Creates an Autopilot job
|
1187
|
+
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1188
|
+
# AutoML job.
|
1188
1189
|
#
|
1189
|
-
# Find the best-performing model after you run an
|
1190
|
-
#
|
1190
|
+
# Find the best-performing model after you run an AutoML job by calling
|
1191
|
+
# [DescribeAutoMLJobV2][1] (recommended) or [DescribeAutoMLJob][2].
|
1191
1192
|
#
|
1192
|
-
#
|
1193
|
-
#
|
1193
|
+
# <note markdown="1"> `CreateAutoMLJob` only accepts tabular input data. We recommend using
|
1194
|
+
# [CreateAutoMLJobV2][3] for all problem types. `CreateAutoMLJobV2` can
|
1195
|
+
# process the same tabular data as its previous version
|
1196
|
+
# `CreateAutoMLJob`, as well as non-tabular data for problem types such
|
1197
|
+
# as image or text classification.
|
1194
1198
|
#
|
1199
|
+
# Find guidelines about how to migrate `CreateAutoMLJob` to
|
1200
|
+
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1201
|
+
# CreateAutoMLJobV2][4].
|
1202
|
+
#
|
1203
|
+
# </note>
|
1195
1204
|
#
|
1196
1205
|
#
|
1197
|
-
#
|
1198
|
-
# [
|
1206
|
+
#
|
1207
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1208
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1209
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1210
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
|
1199
1211
|
#
|
1200
1212
|
# @option params [required, String] :auto_ml_job_name
|
1201
1213
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1229,15 +1241,13 @@ module Aws::SageMaker
|
|
1229
1241
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
1230
1242
|
#
|
1231
1243
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1232
|
-
#
|
1233
|
-
#
|
1234
|
-
#
|
1235
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
1244
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1245
|
+
# If not specified, the default objective metric depends on the problem
|
1246
|
+
# type. See [AutoMLJobObjective][1] for the default values.
|
1236
1247
|
#
|
1237
1248
|
#
|
1238
1249
|
#
|
1239
1250
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1240
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1241
1251
|
#
|
1242
1252
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1243
1253
|
# A collection of settings used to configure an AutoML job.
|
@@ -1350,24 +1360,32 @@ module Aws::SageMaker
|
|
1350
1360
|
req.send_request(options)
|
1351
1361
|
end
|
1352
1362
|
|
1353
|
-
# Creates an
|
1354
|
-
#
|
1355
|
-
# problems.
|
1363
|
+
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1364
|
+
# AutoML job V2.
|
1356
1365
|
#
|
1357
|
-
#
|
1358
|
-
#
|
1366
|
+
# We recommend using [CreateAutoMLJobV2][1] for all problem types.
|
1367
|
+
# `CreateAutoMLJobV2` can process the same tabular data as its previous
|
1368
|
+
# version `CreateAutoMLJob`, as well as non-tabular data for problem
|
1369
|
+
# types such as image or text classification.
|
1359
1370
|
#
|
1360
|
-
#
|
1371
|
+
# Find guidelines about how to migrate `CreateAutoMLJob` to
|
1372
|
+
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1373
|
+
# CreateAutoMLJobV2][2].
|
1361
1374
|
#
|
1362
|
-
#
|
1363
|
-
#
|
1375
|
+
# For the list of available problem types supported by
|
1376
|
+
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][3].
|
1364
1377
|
#
|
1365
|
-
#
|
1378
|
+
# Find the best-performing model after you run an AutoML job V2 by
|
1379
|
+
# calling [DescribeAutoMLJobV2][4]. Calling [DescribeAutoMLJob][5] on a
|
1380
|
+
# AutoML job V2 results in an error.
|
1366
1381
|
#
|
1367
1382
|
#
|
1368
1383
|
#
|
1369
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1370
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/
|
1384
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1385
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
|
1386
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
|
1387
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1388
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1371
1389
|
#
|
1372
1390
|
# @option params [required, String] :auto_ml_job_name
|
1373
1391
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1379,10 +1397,12 @@ module Aws::SageMaker
|
|
1379
1397
|
# [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
|
1380
1398
|
# formats depend on the problem type:
|
1381
1399
|
#
|
1382
|
-
# *
|
1383
|
-
#
|
1400
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
1401
|
+
#
|
1402
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
1403
|
+
# `AugmentedManifestFile`.
|
1384
1404
|
#
|
1385
|
-
# * TextClassification: S3Prefix
|
1405
|
+
# * For TextClassification: `S3Prefix`.
|
1386
1406
|
#
|
1387
1407
|
#
|
1388
1408
|
#
|
@@ -1396,6 +1416,13 @@ module Aws::SageMaker
|
|
1396
1416
|
# Defines the configuration settings of one of the supported problem
|
1397
1417
|
# types.
|
1398
1418
|
#
|
1419
|
+
# <note markdown="1"> For tabular problem types, you must either specify the type of
|
1420
|
+
# supervised learning problem in `AutoMLProblemTypeConfig`
|
1421
|
+
# (`TabularJobConfig.ProblemType`) and provide the `AutoMLJobObjective`,
|
1422
|
+
# or none at all.
|
1423
|
+
#
|
1424
|
+
# </note>
|
1425
|
+
#
|
1399
1426
|
# @option params [required, String] :role_arn
|
1400
1427
|
# The ARN of the role that is used to access the data.
|
1401
1428
|
#
|
@@ -1415,11 +1442,20 @@ module Aws::SageMaker
|
|
1415
1442
|
#
|
1416
1443
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1417
1444
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
1418
|
-
#
|
1445
|
+
# If not specified, the default objective metric depends on the problem
|
1446
|
+
# type. For the list of default values per problem type, see
|
1447
|
+
# [AutoMLJobObjective][1].
|
1448
|
+
#
|
1449
|
+
# <note markdown="1"> For tabular problem types, you must either provide the
|
1450
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
1451
|
+
# problem in `AutoMLProblemTypeConfig` (`TabularJobConfig.ProblemType`),
|
1452
|
+
# or none.
|
1419
1453
|
#
|
1454
|
+
# </note>
|
1420
1455
|
#
|
1421
1456
|
#
|
1422
|
-
#
|
1457
|
+
#
|
1458
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1423
1459
|
#
|
1424
1460
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1425
1461
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -1429,12 +1465,9 @@ module Aws::SageMaker
|
|
1429
1465
|
# This structure specifies how to split the data into train and
|
1430
1466
|
# validation datasets.
|
1431
1467
|
#
|
1432
|
-
#
|
1433
|
-
#
|
1434
|
-
#
|
1435
|
-
# type), the validation and training datasets must contain the same
|
1436
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
1437
|
-
# than 2 GB in size.
|
1468
|
+
# The validation and training datasets must contain the same headers.
|
1469
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1470
|
+
# must be less than 2 GB in size.
|
1438
1471
|
#
|
1439
1472
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1440
1473
|
#
|
@@ -1478,6 +1511,26 @@ module Aws::SageMaker
|
|
1478
1511
|
# content_column: "ContentColumn",
|
1479
1512
|
# target_label_column: "TargetLabelColumn",
|
1480
1513
|
# },
|
1514
|
+
# tabular_job_config: {
|
1515
|
+
# candidate_generation_config: {
|
1516
|
+
# algorithms_config: [
|
1517
|
+
# {
|
1518
|
+
# auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
|
1519
|
+
# },
|
1520
|
+
# ],
|
1521
|
+
# },
|
1522
|
+
# completion_criteria: {
|
1523
|
+
# max_candidates: 1,
|
1524
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1525
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1526
|
+
# },
|
1527
|
+
# feature_specification_s3_uri: "S3Uri",
|
1528
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
1529
|
+
# generate_candidate_definitions_only: false,
|
1530
|
+
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1531
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1532
|
+
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1533
|
+
# },
|
1481
1534
|
# },
|
1482
1535
|
# role_arn: "RoleArn", # required
|
1483
1536
|
# tags: [
|
@@ -9950,7 +10003,12 @@ module Aws::SageMaker
|
|
9950
10003
|
req.send_request(options)
|
9951
10004
|
end
|
9952
10005
|
|
9953
|
-
# Returns information about an
|
10006
|
+
# Returns information about an AutoML job created by calling
|
10007
|
+
# [CreateAutoMLJob][1].
|
10008
|
+
#
|
10009
|
+
#
|
10010
|
+
#
|
10011
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
9954
10012
|
#
|
9955
10013
|
# @option params [required, String] :auto_ml_job_name
|
9956
10014
|
# Requests information about an AutoML job using its unique name.
|
@@ -10079,15 +10137,15 @@ module Aws::SageMaker
|
|
10079
10137
|
req.send_request(options)
|
10080
10138
|
end
|
10081
10139
|
|
10082
|
-
# Returns information about an
|
10140
|
+
# Returns information about an AutoML job V2 created by calling
|
10141
|
+
# [CreateAutoMLJobV2][1].
|
10083
10142
|
#
|
10084
|
-
# <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
|
10085
|
-
# directly from the CLI or an SDK results in an error.
|
10086
10143
|
#
|
10087
|
-
#
|
10144
|
+
#
|
10145
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
10088
10146
|
#
|
10089
10147
|
# @option params [required, String] :auto_ml_job_name
|
10090
|
-
# Requests information about an AutoML V2
|
10148
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10091
10149
|
#
|
10092
10150
|
# @return [Types::DescribeAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10093
10151
|
#
|
@@ -10110,6 +10168,9 @@ module Aws::SageMaker
|
|
10110
10168
|
# * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
10111
10169
|
# * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
|
10112
10170
|
# * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
|
10171
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
10172
|
+
# * {Types::DescribeAutoMLJobV2Response#resolved_attributes #resolved_attributes} => Types::AutoMLResolvedAttributes
|
10173
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_problem_type_config_name #auto_ml_problem_type_config_name} => String
|
10113
10174
|
#
|
10114
10175
|
# @example Request syntax with placeholder values
|
10115
10176
|
#
|
@@ -10139,6 +10200,18 @@ module Aws::SageMaker
|
|
10139
10200
|
# resp.auto_ml_problem_type_config.text_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10140
10201
|
# resp.auto_ml_problem_type_config.text_classification_job_config.content_column #=> String
|
10141
10202
|
# resp.auto_ml_problem_type_config.text_classification_job_config.target_label_column #=> String
|
10203
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config #=> Array
|
10204
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
|
10205
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
|
10206
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_candidates #=> Integer
|
10207
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10208
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10209
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.feature_specification_s3_uri #=> String
|
10210
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
|
10211
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.generate_candidate_definitions_only #=> Boolean
|
10212
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10213
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10214
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10142
10215
|
# resp.creation_time #=> Time
|
10143
10216
|
# resp.end_time #=> Time
|
10144
10217
|
# resp.last_modified_time #=> Time
|
@@ -10190,6 +10263,14 @@ module Aws::SageMaker
|
|
10190
10263
|
# resp.security_config.vpc_config.security_group_ids[0] #=> String
|
10191
10264
|
# resp.security_config.vpc_config.subnets #=> Array
|
10192
10265
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10266
|
+
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10267
|
+
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10268
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10269
|
+
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10270
|
+
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10271
|
+
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10272
|
+
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10273
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10193
10274
|
#
|
10194
10275
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10195
10276
|
#
|
@@ -23627,7 +23708,7 @@ module Aws::SageMaker
|
|
23627
23708
|
params: params,
|
23628
23709
|
config: config)
|
23629
23710
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23630
|
-
context[:gem_version] = '1.
|
23711
|
+
context[:gem_version] = '1.188.0'
|
23631
23712
|
Seahorse::Client::Request.new(handlers, context)
|
23632
23713
|
end
|
23633
23714
|
|
@@ -137,7 +137,10 @@ module Aws::SageMaker
|
|
137
137
|
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
138
138
|
AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
|
139
139
|
AutoMLProblemTypeConfig = Shapes::UnionShape.new(name: 'AutoMLProblemTypeConfig')
|
140
|
+
AutoMLProblemTypeConfigName = Shapes::StringShape.new(name: 'AutoMLProblemTypeConfigName')
|
141
|
+
AutoMLProblemTypeResolvedAttributes = Shapes::UnionShape.new(name: 'AutoMLProblemTypeResolvedAttributes')
|
140
142
|
AutoMLProcessingUnit = Shapes::StringShape.new(name: 'AutoMLProcessingUnit')
|
143
|
+
AutoMLResolvedAttributes = Shapes::StructureShape.new(name: 'AutoMLResolvedAttributes')
|
141
144
|
AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
|
142
145
|
AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
|
143
146
|
AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
|
@@ -171,6 +174,7 @@ module Aws::SageMaker
|
|
171
174
|
CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
|
172
175
|
CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
|
173
176
|
CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
|
177
|
+
CandidateGenerationConfig = Shapes::StructureShape.new(name: 'CandidateGenerationConfig')
|
174
178
|
CandidateName = Shapes::StringShape.new(name: 'CandidateName')
|
175
179
|
CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
|
176
180
|
CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
|
@@ -1786,6 +1790,8 @@ module Aws::SageMaker
|
|
1786
1790
|
SuggestionQuery = Shapes::StructureShape.new(name: 'SuggestionQuery')
|
1787
1791
|
TableFormat = Shapes::StringShape.new(name: 'TableFormat')
|
1788
1792
|
TableName = Shapes::StringShape.new(name: 'TableName')
|
1793
|
+
TabularJobConfig = Shapes::StructureShape.new(name: 'TabularJobConfig')
|
1794
|
+
TabularResolvedAttributes = Shapes::StructureShape.new(name: 'TabularResolvedAttributes')
|
1789
1795
|
Tag = Shapes::StructureShape.new(name: 'Tag')
|
1790
1796
|
TagKey = Shapes::StringShape.new(name: 'TagKey')
|
1791
1797
|
TagKeyList = Shapes::ListShape.new(name: 'TagKeyList')
|
@@ -2327,12 +2333,25 @@ module Aws::SageMaker
|
|
2327
2333
|
|
2328
2334
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2329
2335
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2336
|
+
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2330
2337
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2331
2338
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2332
2339
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2340
|
+
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2333
2341
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2334
2342
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2335
2343
|
|
2344
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
|
2345
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2346
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
|
2347
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
|
2348
|
+
AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
|
2349
|
+
|
2350
|
+
AutoMLResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
2351
|
+
AutoMLResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
2352
|
+
AutoMLResolvedAttributes.add_member(:auto_ml_problem_type_resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLProblemTypeResolvedAttributes, location_name: "AutoMLProblemTypeResolvedAttributes"))
|
2353
|
+
AutoMLResolvedAttributes.struct_class = Types::AutoMLResolvedAttributes
|
2354
|
+
|
2336
2355
|
AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
|
2337
2356
|
AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
2338
2357
|
AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
|
@@ -2421,6 +2440,9 @@ module Aws::SageMaker
|
|
2421
2440
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2422
2441
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2423
2442
|
|
2443
|
+
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
2444
|
+
CandidateGenerationConfig.struct_class = Types::CandidateGenerationConfig
|
2445
|
+
|
2424
2446
|
CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
|
2425
2447
|
CandidateProperties.add_member(:candidate_metrics, Shapes::ShapeRef.new(shape: MetricDataList, location_name: "CandidateMetrics"))
|
2426
2448
|
CandidateProperties.struct_class = Types::CandidateProperties
|
@@ -3764,6 +3786,9 @@ module Aws::SageMaker
|
|
3764
3786
|
DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
3765
3787
|
DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
3766
3788
|
DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
3789
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
3790
|
+
DescribeAutoMLJobV2Response.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLResolvedAttributes, location_name: "ResolvedAttributes"))
|
3791
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_problem_type_config_name, Shapes::ShapeRef.new(shape: AutoMLProblemTypeConfigName, location_name: "AutoMLProblemTypeConfigName"))
|
3767
3792
|
DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
|
3768
3793
|
|
3769
3794
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -8200,6 +8225,19 @@ module Aws::SageMaker
|
|
8200
8225
|
SuggestionQuery.add_member(:property_name_query, Shapes::ShapeRef.new(shape: PropertyNameQuery, location_name: "PropertyNameQuery"))
|
8201
8226
|
SuggestionQuery.struct_class = Types::SuggestionQuery
|
8202
8227
|
|
8228
|
+
TabularJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: CandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
|
8229
|
+
TabularJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8230
|
+
TabularJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8231
|
+
TabularJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
|
8232
|
+
TabularJobConfig.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
8233
|
+
TabularJobConfig.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
|
8234
|
+
TabularJobConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8235
|
+
TabularJobConfig.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
8236
|
+
TabularJobConfig.struct_class = Types::TabularJobConfig
|
8237
|
+
|
8238
|
+
TabularResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
|
8239
|
+
TabularResolvedAttributes.struct_class = Types::TabularResolvedAttributes
|
8240
|
+
|
8203
8241
|
Tag.add_member(:key, Shapes::ShapeRef.new(shape: TagKey, required: true, location_name: "Key"))
|
8204
8242
|
Tag.add_member(:value, Shapes::ShapeRef.new(shape: TagValue, required: true, location_name: "Value"))
|
8205
8243
|
Tag.struct_class = Types::Tag
|
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
|
|
1762
1762
|
# @!attribute [rw] inference_container_definitions
|
1763
1763
|
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1764
1764
|
# inference container definitions for the candidate. This field is
|
1765
|
-
# populated for the
|
1766
|
-
# calling `CreateAutoMLJobV2`)
|
1765
|
+
# populated for the AutoML jobs V2 (for example, for jobs created by
|
1766
|
+
# calling `CreateAutoMLJobV2`) related to image or text classification
|
1767
|
+
# problem types only.
|
1767
1768
|
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1768
1769
|
#
|
1769
1770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
|
|
2035
2036
|
# This structure specifies how to split the data into train and
|
2036
2037
|
# validation datasets.
|
2037
2038
|
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
# type), the validation and training datasets must contain the same
|
2042
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
2043
|
-
# than 2 GB in size.
|
2039
|
+
# The validation and training datasets must contain the same headers.
|
2040
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
2041
|
+
# must be less than 2 GB in size.
|
2044
2042
|
#
|
2045
2043
|
# @!attribute [rw] validation_fraction
|
2046
2044
|
# The validation fraction (optional) is a float that specifies the
|
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
|
|
2077
2075
|
end
|
2078
2076
|
|
2079
2077
|
# A channel is a named input source that training algorithms can
|
2080
|
-
# consume. This channel is used for
|
2081
|
-
#
|
2082
|
-
# AutoMLChannel][1]. For more information, see [ Channel][2].
|
2078
|
+
# consume. This channel is used for AutoML jobs V2 (jobs created by
|
2079
|
+
# calling [CreateAutoMLJobV2][1]).
|
2083
2080
|
#
|
2084
2081
|
#
|
2085
2082
|
#
|
2086
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
2087
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
2083
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
2088
2084
|
#
|
2089
2085
|
# @!attribute [rw] channel_type
|
2090
2086
|
# The type of channel. Defines whether the data are used for training
|
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
|
|
2096
2092
|
# The content type of the data from the input source. The following
|
2097
2093
|
# are the allowed content types for different problems:
|
2098
2094
|
#
|
2099
|
-
# *
|
2100
|
-
# default value is
|
2095
|
+
# * For Tabular problem types: `text/csv;header=present` or
|
2096
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
|
+
# `text/csv;header=present`.
|
2101
2098
|
#
|
2102
|
-
# *
|
2099
|
+
# * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
|
+
# The default value is `image/*`.
|
2101
|
+
#
|
2102
|
+
# * For TextClassification: `text/csv;header=present` or
|
2103
2103
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2104
|
# `text/csv;header=present`.
|
2105
2105
|
# @return [String]
|
2106
2106
|
#
|
2107
2107
|
# @!attribute [rw] compression_type
|
2108
|
-
# The allowed compression types depend on the input format
|
2109
|
-
# the compression type `Gzip` for `S3Prefix` inputs
|
2110
|
-
# other inputs, the compression type should
|
2111
|
-
# compression type is provided, we default to `None`.
|
2108
|
+
# The allowed compression types depend on the input format and problem
|
2109
|
+
# type. We allow the compression type `Gzip` for `S3Prefix` inputs on
|
2110
|
+
# tabular data only. For all other inputs, the compression type should
|
2111
|
+
# be `None`. If no compression type is provided, we default to `None`.
|
2112
2112
|
# @return [String]
|
2113
2113
|
#
|
2114
2114
|
# @!attribute [rw] data_source
|
2115
|
-
# The data source for an AutoML channel.
|
2115
|
+
# The data source for an AutoML channel (Required).
|
2116
2116
|
# @return [Types::AutoMLDataSource]
|
2117
2117
|
#
|
2118
2118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
|
|
2132
2132
|
# @!attribute [rw] max_candidates
|
2133
2133
|
# The maximum number of times a training job is allowed to run.
|
2134
2134
|
#
|
2135
|
-
# For
|
2135
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
|
2136
2136
|
# supported value is 1.
|
2137
2137
|
# @return [Integer]
|
2138
2138
|
#
|
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
|
|
2142
2142
|
# tuning job. For more information, see the [StoppingCondition][1]
|
2143
2143
|
# used by the [CreateHyperParameterTuningJob][2] action.
|
2144
2144
|
#
|
2145
|
-
# For
|
2145
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
|
2146
2146
|
# field controls the runtime of the job candidate.
|
2147
2147
|
#
|
2148
2148
|
#
|
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
|
|
2221
2221
|
#
|
2222
2222
|
#
|
2223
2223
|
#
|
2224
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-
|
2224
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
2225
2225
|
# @return [String]
|
2226
2226
|
#
|
2227
2227
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
|
|
2237
2237
|
end
|
2238
2238
|
|
2239
2239
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2240
|
-
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2241
|
-
# support `Accuracy` only.
|
2242
2240
|
#
|
2243
2241
|
# @!attribute [rw] metric_name
|
2244
2242
|
# The name of the objective metric used to measure the predictive
|
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
|
|
2253
2251
|
# If you do not specify a metric explicitly, the default behavior is
|
2254
2252
|
# to automatically use:
|
2255
2253
|
#
|
2256
|
-
# *
|
2254
|
+
# * For tabular problem types:
|
2257
2255
|
#
|
2258
|
-
#
|
2256
|
+
# * Regression: `MSE`.
|
2259
2257
|
#
|
2260
|
-
#
|
2258
|
+
# * Binary classification: `F1`.
|
2259
|
+
#
|
2260
|
+
# * Multiclass classification: `Accuracy`.
|
2261
|
+
#
|
2262
|
+
# * For image or text classification problem types: `Accuracy`
|
2261
2263
|
#
|
2262
2264
|
#
|
2263
2265
|
#
|
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
|
|
2375
2377
|
end
|
2376
2378
|
|
2377
2379
|
# A collection of settings specific to the problem type used to
|
2378
|
-
# configure an AutoML job
|
2379
|
-
#
|
2380
|
+
# configure an AutoML job V2. There must be one and only one config of
|
2381
|
+
# the following type.
|
2380
2382
|
#
|
2381
2383
|
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2382
2384
|
#
|
2383
2385
|
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2384
2386
|
#
|
2385
2387
|
# @!attribute [rw] image_classification_job_config
|
2386
|
-
# Settings used to configure an AutoML job
|
2387
|
-
#
|
2388
|
+
# Settings used to configure an AutoML job V2 for the image
|
2389
|
+
# classification problem type.
|
2388
2390
|
# @return [Types::ImageClassificationJobConfig]
|
2389
2391
|
#
|
2390
2392
|
# @!attribute [rw] text_classification_job_config
|
2391
|
-
# Settings used to configure an AutoML job
|
2392
|
-
#
|
2393
|
+
# Settings used to configure an AutoML job V2 for the text
|
2394
|
+
# classification problem type.
|
2393
2395
|
# @return [Types::TextClassificationJobConfig]
|
2394
2396
|
#
|
2397
|
+
# @!attribute [rw] tabular_job_config
|
2398
|
+
# Settings used to configure an AutoML job V2 for a tabular problem
|
2399
|
+
# type (regression, classification).
|
2400
|
+
# @return [Types::TabularJobConfig]
|
2401
|
+
#
|
2395
2402
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2396
2403
|
#
|
2397
2404
|
class AutoMLProblemTypeConfig < Struct.new(
|
2398
2405
|
:image_classification_job_config,
|
2399
2406
|
:text_classification_job_config,
|
2407
|
+
:tabular_job_config,
|
2400
2408
|
:unknown)
|
2401
2409
|
SENSITIVE = []
|
2402
2410
|
include Aws::Structure
|
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
|
|
2404
2412
|
|
2405
2413
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2406
2414
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
|
+
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2407
2416
|
class Unknown < AutoMLProblemTypeConfig; end
|
2408
2417
|
end
|
2409
2418
|
|
2419
|
+
# The resolved attributes specific to the problem type of an AutoML job
|
2420
|
+
# V2.
|
2421
|
+
#
|
2422
|
+
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2423
|
+
#
|
2424
|
+
# @!attribute [rw] tabular_resolved_attributes
|
2425
|
+
# Defines the resolved attributes for the `TABULAR` problem type.
|
2426
|
+
# @return [Types::TabularResolvedAttributes]
|
2427
|
+
#
|
2428
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2429
|
+
#
|
2430
|
+
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2431
|
+
:tabular_resolved_attributes,
|
2432
|
+
:unknown)
|
2433
|
+
SENSITIVE = []
|
2434
|
+
include Aws::Structure
|
2435
|
+
include Aws::Structure::Union
|
2436
|
+
|
2437
|
+
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2438
|
+
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2439
|
+
end
|
2440
|
+
|
2441
|
+
# The resolved attributes used to configure an AutoML job V2.
|
2442
|
+
#
|
2443
|
+
# @!attribute [rw] auto_ml_job_objective
|
2444
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
2445
|
+
# job.
|
2446
|
+
# @return [Types::AutoMLJobObjective]
|
2447
|
+
#
|
2448
|
+
# @!attribute [rw] completion_criteria
|
2449
|
+
# How long a job is allowed to run, or how many candidates a job is
|
2450
|
+
# allowed to generate.
|
2451
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
2452
|
+
#
|
2453
|
+
# @!attribute [rw] auto_ml_problem_type_resolved_attributes
|
2454
|
+
# Defines the resolved attributes specific to a problem type.
|
2455
|
+
# @return [Types::AutoMLProblemTypeResolvedAttributes]
|
2456
|
+
#
|
2457
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
|
2458
|
+
#
|
2459
|
+
class AutoMLResolvedAttributes < Struct.new(
|
2460
|
+
:auto_ml_job_objective,
|
2461
|
+
:completion_criteria,
|
2462
|
+
:auto_ml_problem_type_resolved_attributes)
|
2463
|
+
SENSITIVE = []
|
2464
|
+
include Aws::Structure
|
2465
|
+
end
|
2466
|
+
|
2410
2467
|
# Describes the Amazon S3 data source.
|
2411
2468
|
#
|
2412
2469
|
# @!attribute [rw] s3_data_type
|
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
|
|
2939
2996
|
include Aws::Structure
|
2940
2997
|
end
|
2941
2998
|
|
2999
|
+
# Stores the configuration information for how model candidates are
|
3000
|
+
# generated using an AutoML job V2.
|
3001
|
+
#
|
3002
|
+
# @!attribute [rw] algorithms_config
|
3003
|
+
# Stores the configuration information for the selection of algorithms
|
3004
|
+
# used to train model candidates on tabular data.
|
3005
|
+
#
|
3006
|
+
# The list of available algorithms to choose from depends on the
|
3007
|
+
# training mode set in [ `TabularJobConfig.Mode` ][1].
|
3008
|
+
#
|
3009
|
+
# * `AlgorithmsConfig` should not be set in `AUTO` training mode.
|
3010
|
+
#
|
3011
|
+
# * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
|
3012
|
+
# attribute must be set and one only.
|
3013
|
+
#
|
3014
|
+
# If the list of algorithms provided as values for
|
3015
|
+
# `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
|
3016
|
+
# full set of algorithms for the given training mode.
|
3017
|
+
#
|
3018
|
+
# * When `AlgorithmsConfig` is not provided,
|
3019
|
+
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3020
|
+
# the given training mode.
|
3021
|
+
#
|
3022
|
+
# For the list of all algorithms per problem type and training mode,
|
3023
|
+
# see [ AutoMLAlgorithmConfig][2].
|
3024
|
+
#
|
3025
|
+
# For more information on each algorithm, see the [Algorithm
|
3026
|
+
# support][3] section in Autopilot developer guide.
|
3027
|
+
#
|
3028
|
+
#
|
3029
|
+
#
|
3030
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
|
3031
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
3032
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
3033
|
+
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
3034
|
+
#
|
3035
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
|
3036
|
+
#
|
3037
|
+
class CandidateGenerationConfig < Struct.new(
|
3038
|
+
:algorithms_config)
|
3039
|
+
SENSITIVE = []
|
3040
|
+
include Aws::Structure
|
3041
|
+
end
|
3042
|
+
|
2942
3043
|
# The properties of an AutoML candidate job.
|
2943
3044
|
#
|
2944
3045
|
# @!attribute [rw] candidate_artifact_locations
|
@@ -4525,15 +4626,13 @@ module Aws::SageMaker
|
|
4525
4626
|
# @return [String]
|
4526
4627
|
#
|
4527
4628
|
# @!attribute [rw] auto_ml_job_objective
|
4528
|
-
#
|
4529
|
-
#
|
4530
|
-
#
|
4531
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
4629
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4630
|
+
# job. If not specified, the default objective metric depends on the
|
4631
|
+
# problem type. See [AutoMLJobObjective][1] for the default values.
|
4532
4632
|
#
|
4533
4633
|
#
|
4534
4634
|
#
|
4535
4635
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4536
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4537
4636
|
# @return [Types::AutoMLJobObjective]
|
4538
4637
|
#
|
4539
4638
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4607,10 +4706,12 @@ module Aws::SageMaker
|
|
4607
4706
|
# [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
|
4608
4707
|
# formats depend on the problem type:
|
4609
4708
|
#
|
4610
|
-
# *
|
4611
|
-
# `AugmentedManifestFile`
|
4709
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
4612
4710
|
#
|
4613
|
-
# *
|
4711
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
4712
|
+
# `AugmentedManifestFile`.
|
4713
|
+
#
|
4714
|
+
# * For TextClassification: `S3Prefix`.
|
4614
4715
|
#
|
4615
4716
|
#
|
4616
4717
|
#
|
@@ -4625,6 +4726,13 @@ module Aws::SageMaker
|
|
4625
4726
|
# @!attribute [rw] auto_ml_problem_type_config
|
4626
4727
|
# Defines the configuration settings of one of the supported problem
|
4627
4728
|
# types.
|
4729
|
+
#
|
4730
|
+
# <note markdown="1"> For tabular problem types, you must either specify the type of
|
4731
|
+
# supervised learning problem in `AutoMLProblemTypeConfig`
|
4732
|
+
# (`TabularJobConfig.ProblemType`) and provide the
|
4733
|
+
# `AutoMLJobObjective`, or none at all.
|
4734
|
+
#
|
4735
|
+
# </note>
|
4628
4736
|
# @return [Types::AutoMLProblemTypeConfig]
|
4629
4737
|
#
|
4630
4738
|
# @!attribute [rw] role_arn
|
@@ -4649,11 +4757,20 @@ module Aws::SageMaker
|
|
4649
4757
|
#
|
4650
4758
|
# @!attribute [rw] auto_ml_job_objective
|
4651
4759
|
# Specifies a metric to minimize or maximize as the objective of a
|
4652
|
-
# job.
|
4760
|
+
# job. If not specified, the default objective metric depends on the
|
4761
|
+
# problem type. For the list of default values per problem type, see
|
4762
|
+
# [AutoMLJobObjective][1].
|
4763
|
+
#
|
4764
|
+
# <note markdown="1"> For tabular problem types, you must either provide the
|
4765
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4766
|
+
# problem in `AutoMLProblemTypeConfig`
|
4767
|
+
# (`TabularJobConfig.ProblemType`), or none.
|
4768
|
+
#
|
4769
|
+
# </note>
|
4653
4770
|
#
|
4654
4771
|
#
|
4655
4772
|
#
|
4656
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
4773
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4657
4774
|
# @return [Types::AutoMLJobObjective]
|
4658
4775
|
#
|
4659
4776
|
# @!attribute [rw] model_deploy_config
|
@@ -4665,12 +4782,9 @@ module Aws::SageMaker
|
|
4665
4782
|
# This structure specifies how to split the data into train and
|
4666
4783
|
# validation datasets.
|
4667
4784
|
#
|
4668
|
-
#
|
4669
|
-
#
|
4670
|
-
#
|
4671
|
-
# type), the validation and training datasets must contain the same
|
4672
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4673
|
-
# than 2 GB in size.
|
4785
|
+
# The validation and training datasets must contain the same headers.
|
4786
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4787
|
+
# dataset must be less than 2 GB in size.
|
4674
4788
|
# @return [Types::AutoMLDataSplitConfig]
|
4675
4789
|
#
|
4676
4790
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10636,8 +10750,7 @@ module Aws::SageMaker
|
|
10636
10750
|
# @!attribute [rw] resolved_attributes
|
10637
10751
|
# Contains `ProblemType`, `AutoMLJobObjective`, and
|
10638
10752
|
# `CompletionCriteria`. If you do not provide these values, they are
|
10639
|
-
#
|
10640
|
-
# you provide.
|
10753
|
+
# inferred.
|
10641
10754
|
# @return [Types::ResolvedAttributes]
|
10642
10755
|
#
|
10643
10756
|
# @!attribute [rw] model_deploy_config
|
@@ -10678,7 +10791,7 @@ module Aws::SageMaker
|
|
10678
10791
|
end
|
10679
10792
|
|
10680
10793
|
# @!attribute [rw] auto_ml_job_name
|
10681
|
-
# Requests information about an AutoML V2
|
10794
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10682
10795
|
# @return [String]
|
10683
10796
|
#
|
10684
10797
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
@@ -10690,11 +10803,11 @@ module Aws::SageMaker
|
|
10690
10803
|
end
|
10691
10804
|
|
10692
10805
|
# @!attribute [rw] auto_ml_job_name
|
10693
|
-
# Returns the name of the AutoML V2
|
10806
|
+
# Returns the name of the AutoML job V2.
|
10694
10807
|
# @return [String]
|
10695
10808
|
#
|
10696
10809
|
# @!attribute [rw] auto_ml_job_arn
|
10697
|
-
# Returns the Amazon Resource Name (ARN) of the AutoML V2
|
10810
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML job V2.
|
10698
10811
|
# @return [String]
|
10699
10812
|
#
|
10700
10813
|
# @!attribute [rw] auto_ml_job_input_data_config
|
@@ -10718,15 +10831,15 @@ module Aws::SageMaker
|
|
10718
10831
|
#
|
10719
10832
|
# @!attribute [rw] auto_ml_problem_type_config
|
10720
10833
|
# Returns the configuration settings of the problem type set for the
|
10721
|
-
# AutoML V2
|
10834
|
+
# AutoML job V2.
|
10722
10835
|
# @return [Types::AutoMLProblemTypeConfig]
|
10723
10836
|
#
|
10724
10837
|
# @!attribute [rw] creation_time
|
10725
|
-
# Returns the creation time of the AutoML V2
|
10838
|
+
# Returns the creation time of the AutoML job V2.
|
10726
10839
|
# @return [Time]
|
10727
10840
|
#
|
10728
10841
|
# @!attribute [rw] end_time
|
10729
|
-
# Returns the end time of the AutoML V2
|
10842
|
+
# Returns the end time of the AutoML job V2.
|
10730
10843
|
# @return [Time]
|
10731
10844
|
#
|
10732
10845
|
# @!attribute [rw] last_modified_time
|
@@ -10734,13 +10847,13 @@ module Aws::SageMaker
|
|
10734
10847
|
# @return [Time]
|
10735
10848
|
#
|
10736
10849
|
# @!attribute [rw] failure_reason
|
10737
|
-
# Returns the reason for the failure of the AutoML V2
|
10850
|
+
# Returns the reason for the failure of the AutoML job V2, when
|
10738
10851
|
# applicable.
|
10739
10852
|
# @return [String]
|
10740
10853
|
#
|
10741
10854
|
# @!attribute [rw] partial_failure_reasons
|
10742
|
-
# Returns a list of reasons for partial failures within an AutoML
|
10743
|
-
#
|
10855
|
+
# Returns a list of reasons for partial failures within an AutoML job
|
10856
|
+
# V2.
|
10744
10857
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10745
10858
|
#
|
10746
10859
|
# @!attribute [rw] best_candidate
|
@@ -10749,11 +10862,11 @@ module Aws::SageMaker
|
|
10749
10862
|
# @return [Types::AutoMLCandidate]
|
10750
10863
|
#
|
10751
10864
|
# @!attribute [rw] auto_ml_job_status
|
10752
|
-
# Returns the status of the AutoML V2
|
10865
|
+
# Returns the status of the AutoML job V2.
|
10753
10866
|
# @return [String]
|
10754
10867
|
#
|
10755
10868
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10756
|
-
# Returns the secondary status of the AutoML V2
|
10869
|
+
# Returns the secondary status of the AutoML job V2.
|
10757
10870
|
# @return [String]
|
10758
10871
|
#
|
10759
10872
|
# @!attribute [rw] model_deploy_config
|
@@ -10775,6 +10888,19 @@ module Aws::SageMaker
|
|
10775
10888
|
# VPC settings.
|
10776
10889
|
# @return [Types::AutoMLSecurityConfig]
|
10777
10890
|
#
|
10891
|
+
# @!attribute [rw] auto_ml_job_artifacts
|
10892
|
+
# The artifacts that are generated during an AutoML job.
|
10893
|
+
# @return [Types::AutoMLJobArtifacts]
|
10894
|
+
#
|
10895
|
+
# @!attribute [rw] resolved_attributes
|
10896
|
+
# Returns the resolved attributes used by the AutoML job V2.
|
10897
|
+
# @return [Types::AutoMLResolvedAttributes]
|
10898
|
+
#
|
10899
|
+
# @!attribute [rw] auto_ml_problem_type_config_name
|
10900
|
+
# Returns the name of the problem type configuration set for the
|
10901
|
+
# AutoML job V2.
|
10902
|
+
# @return [String]
|
10903
|
+
#
|
10778
10904
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10779
10905
|
#
|
10780
10906
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -10796,7 +10922,10 @@ module Aws::SageMaker
|
|
10796
10922
|
:model_deploy_config,
|
10797
10923
|
:model_deploy_result,
|
10798
10924
|
:data_split_config,
|
10799
|
-
:security_config
|
10925
|
+
:security_config,
|
10926
|
+
:auto_ml_job_artifacts,
|
10927
|
+
:resolved_attributes,
|
10928
|
+
:auto_ml_problem_type_config_name)
|
10800
10929
|
SENSITIVE = []
|
10801
10930
|
include Aws::Structure
|
10802
10931
|
end
|
@@ -20733,7 +20862,7 @@ module Aws::SageMaker
|
|
20733
20862
|
end
|
20734
20863
|
|
20735
20864
|
# Stores the configuration information for the image classification
|
20736
|
-
# problem of an AutoML job
|
20865
|
+
# problem of an AutoML job V2.
|
20737
20866
|
#
|
20738
20867
|
# @!attribute [rw] completion_criteria
|
20739
20868
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -30828,6 +30957,11 @@ module Aws::SageMaker
|
|
30828
30957
|
# using [TargetPlatform][1] fields. It can be used instead of
|
30829
30958
|
# `TargetPlatform`.
|
30830
30959
|
#
|
30960
|
+
# <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
|
30961
|
+
# Region, and `ml_inf2` is available only in US East (Ohio) Region.
|
30962
|
+
#
|
30963
|
+
# </note>
|
30964
|
+
#
|
30831
30965
|
#
|
30832
30966
|
#
|
30833
30967
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
|
@@ -34402,8 +34536,7 @@ module Aws::SageMaker
|
|
34402
34536
|
#
|
34403
34537
|
# @!attribute [rw] auto_ml_job_objective
|
34404
34538
|
# Specifies a metric to minimize or maximize as the objective of a
|
34405
|
-
# job.
|
34406
|
-
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
34539
|
+
# job.
|
34407
34540
|
# @return [Types::AutoMLJobObjective]
|
34408
34541
|
#
|
34409
34542
|
# @!attribute [rw] problem_type
|
@@ -36307,6 +36440,161 @@ module Aws::SageMaker
|
|
36307
36440
|
include Aws::Structure
|
36308
36441
|
end
|
36309
36442
|
|
36443
|
+
# The collection of settings used by an AutoML job V2 for the `TABULAR`
|
36444
|
+
# problem type.
|
36445
|
+
#
|
36446
|
+
# @!attribute [rw] candidate_generation_config
|
36447
|
+
# The configuration information of how model candidates are generated.
|
36448
|
+
# @return [Types::CandidateGenerationConfig]
|
36449
|
+
#
|
36450
|
+
# @!attribute [rw] completion_criteria
|
36451
|
+
# How long a job is allowed to run, or how many candidates a job is
|
36452
|
+
# allowed to generate.
|
36453
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
36454
|
+
#
|
36455
|
+
# @!attribute [rw] feature_specification_s3_uri
|
36456
|
+
# A URL to the Amazon S3 data source containing selected features from
|
36457
|
+
# the input data source to run an Autopilot job V2. You can input
|
36458
|
+
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
36459
|
+
#
|
36460
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
36461
|
+
#
|
36462
|
+
# You can also specify the data type of the feature (optional) in the
|
36463
|
+
# format shown below:
|
36464
|
+
#
|
36465
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
36466
|
+
# \} \}`
|
36467
|
+
#
|
36468
|
+
# <note markdown="1"> These column keys may not include the target column.
|
36469
|
+
#
|
36470
|
+
# </note>
|
36471
|
+
#
|
36472
|
+
# In ensembling mode, Autopilot only supports the following data
|
36473
|
+
# types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
|
36474
|
+
# mode, Autopilot can support `numeric`, `categorical`, `text`,
|
36475
|
+
# `datetime`, and `sequence`.
|
36476
|
+
#
|
36477
|
+
# If only `FeatureDataTypes` is provided, the column keys (`col1`,
|
36478
|
+
# `col2`,..) should be a subset of the column names in the input data.
|
36479
|
+
#
|
36480
|
+
# If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
|
36481
|
+
# then the column keys should be a subset of the column names provided
|
36482
|
+
# in `FeatureAttributeNames`.
|
36483
|
+
#
|
36484
|
+
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
36485
|
+
# `["col1", "col2", ...]` are case sensitive and should be a list of
|
36486
|
+
# strings containing unique values that are a subset of the column
|
36487
|
+
# names in the input data. The list of columns provided must not
|
36488
|
+
# include the target column.
|
36489
|
+
# @return [String]
|
36490
|
+
#
|
36491
|
+
# @!attribute [rw] mode
|
36492
|
+
# The method that Autopilot uses to train the data. You can either
|
36493
|
+
# specify the mode manually or let Autopilot choose for you based on
|
36494
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
36495
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
36496
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
36497
|
+
#
|
36498
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
36499
|
+
# classification and regression tasks directly from your dataset. This
|
36500
|
+
# machine learning mode combines several base models to produce an
|
36501
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
36502
|
+
# combine predictions from contributing members. A multi-stack
|
36503
|
+
# ensemble model can provide better performance over a single model by
|
36504
|
+
# combining the predictive capabilities of multiple models. See
|
36505
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36506
|
+
# by `ENSEMBLING` mode.
|
36507
|
+
#
|
36508
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
36509
|
+
# to train the best version of a model. HPO automatically selects an
|
36510
|
+
# algorithm for the type of problem you want to solve. Then HPO finds
|
36511
|
+
# the best hyperparameters according to your objective metric. See
|
36512
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36513
|
+
# by `HYPERPARAMETER_TUNING` mode.
|
36514
|
+
#
|
36515
|
+
#
|
36516
|
+
#
|
36517
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
36518
|
+
# @return [String]
|
36519
|
+
#
|
36520
|
+
# @!attribute [rw] generate_candidate_definitions_only
|
36521
|
+
# Generates possible candidates without training the models. A model
|
36522
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
36523
|
+
# algorithm parameter settings.
|
36524
|
+
# @return [Boolean]
|
36525
|
+
#
|
36526
|
+
# @!attribute [rw] problem_type
|
36527
|
+
# The type of supervised learning problem available for the model
|
36528
|
+
# candidates of the AutoML job V2. For more information, see [ Amazon
|
36529
|
+
# SageMaker Autopilot problem types][1].
|
36530
|
+
#
|
36531
|
+
#
|
36532
|
+
#
|
36533
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36534
|
+
# @return [String]
|
36535
|
+
#
|
36536
|
+
# @!attribute [rw] target_attribute_name
|
36537
|
+
# The name of the target variable in supervised learning, usually
|
36538
|
+
# represented by 'y'.
|
36539
|
+
# @return [String]
|
36540
|
+
#
|
36541
|
+
# @!attribute [rw] sample_weight_attribute_name
|
36542
|
+
# If specified, this column name indicates which column of the dataset
|
36543
|
+
# should be treated as sample weights for use by the objective metric
|
36544
|
+
# during the training, evaluation, and the selection of the best
|
36545
|
+
# model. This column is not considered as a predictive feature. For
|
36546
|
+
# more information on Autopilot metrics, see [Metrics and
|
36547
|
+
# validation][1].
|
36548
|
+
#
|
36549
|
+
# Sample weights should be numeric, non-negative, with larger values
|
36550
|
+
# indicating which rows are more important than others. Data points
|
36551
|
+
# that have invalid or no weight value are excluded.
|
36552
|
+
#
|
36553
|
+
# Support for sample weights is available in [Ensembling][2] mode
|
36554
|
+
# only.
|
36555
|
+
#
|
36556
|
+
#
|
36557
|
+
#
|
36558
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
36559
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
36560
|
+
# @return [String]
|
36561
|
+
#
|
36562
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
|
36563
|
+
#
|
36564
|
+
class TabularJobConfig < Struct.new(
|
36565
|
+
:candidate_generation_config,
|
36566
|
+
:completion_criteria,
|
36567
|
+
:feature_specification_s3_uri,
|
36568
|
+
:mode,
|
36569
|
+
:generate_candidate_definitions_only,
|
36570
|
+
:problem_type,
|
36571
|
+
:target_attribute_name,
|
36572
|
+
:sample_weight_attribute_name)
|
36573
|
+
SENSITIVE = []
|
36574
|
+
include Aws::Structure
|
36575
|
+
end
|
36576
|
+
|
36577
|
+
# The resolved attributes specific to the `TABULAR` problem type.
|
36578
|
+
#
|
36579
|
+
# @!attribute [rw] problem_type
|
36580
|
+
# The type of supervised learning problem available for the model
|
36581
|
+
# candidates of the AutoML job V2 (Binary Classification, Multiclass
|
36582
|
+
# Classification, Regression). For more information, see [ Amazon
|
36583
|
+
# SageMaker Autopilot problem types][1].
|
36584
|
+
#
|
36585
|
+
#
|
36586
|
+
#
|
36587
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36588
|
+
# @return [String]
|
36589
|
+
#
|
36590
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
|
36591
|
+
#
|
36592
|
+
class TabularResolvedAttributes < Struct.new(
|
36593
|
+
:problem_type)
|
36594
|
+
SENSITIVE = []
|
36595
|
+
include Aws::Structure
|
36596
|
+
end
|
36597
|
+
|
36310
36598
|
# A tag object that consists of a key and an optional value, used to
|
36311
36599
|
# manage metadata for SageMaker Amazon Web Services resources.
|
36312
36600
|
#
|
@@ -36432,7 +36720,7 @@ module Aws::SageMaker
|
|
36432
36720
|
end
|
36433
36721
|
|
36434
36722
|
# Stores the configuration information for the text classification
|
36435
|
-
# problem of an AutoML job
|
36723
|
+
# problem of an AutoML job V2.
|
36436
36724
|
#
|
36437
36725
|
# @!attribute [rw] completion_criteria
|
36438
36726
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -36441,12 +36729,13 @@ module Aws::SageMaker
|
|
36441
36729
|
#
|
36442
36730
|
# @!attribute [rw] content_column
|
36443
36731
|
# The name of the column used to provide the sentences to be
|
36444
|
-
# classified. It should not be the same as the target column
|
36732
|
+
# classified. It should not be the same as the target column
|
36733
|
+
# (Required).
|
36445
36734
|
# @return [String]
|
36446
36735
|
#
|
36447
36736
|
# @!attribute [rw] target_label_column
|
36448
36737
|
# The name of the column used to provide the class labels. It should
|
36449
|
-
# not be same as the content column.
|
36738
|
+
# not be same as the content column (Required).
|
36450
36739
|
# @return [String]
|
36451
36740
|
#
|
36452
36741
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.188.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|