aws-sdk-sagemaker 1.187.0 → 1.188.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +122 -41
- data/lib/aws-sdk-sagemaker/client_api.rb +38 -0
- data/lib/aws-sdk-sagemaker/types.rb +360 -71
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: c1cc6aa017d0a61c512a403ca520b758a79858d6ed30444a6b8fc209235a566b
|
4
|
+
data.tar.gz: 7c3ed41853cabbc93820d3ee924aae42852b605a76aae984c98b384f5c0547bb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e12d3d897ebdc29ead6763814cecb2629a79a63585eae30c743751f0eeea93b91250ed5dfc0c807e12f9105ca162b16157664aa1144caad28d2625a97fabc5a4
|
7
|
+
data.tar.gz: 2edc4ba1e484791aebb0a59b2471042c5c54aa75caa2742ea0027dc0d8ba61488e6fefcd7c4e2fcc29c0648dafe58ee7e6ba931edd5c9653370f8ffe1742a1f9
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.188.0 (2023-06-19)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon Sagemaker Autopilot releases CreateAutoMLJobV2 and DescribeAutoMLJobV2 for Autopilot customers with ImageClassification, TextClassification and Tabular problem type config support.
|
8
|
+
|
4
9
|
1.187.0 (2023-06-15)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.188.0
|
@@ -1184,18 +1184,30 @@ module Aws::SageMaker
|
|
1184
1184
|
req.send_request(options)
|
1185
1185
|
end
|
1186
1186
|
|
1187
|
-
# Creates an Autopilot job
|
1187
|
+
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1188
|
+
# AutoML job.
|
1188
1189
|
#
|
1189
|
-
# Find the best-performing model after you run an
|
1190
|
-
#
|
1190
|
+
# Find the best-performing model after you run an AutoML job by calling
|
1191
|
+
# [DescribeAutoMLJobV2][1] (recommended) or [DescribeAutoMLJob][2].
|
1191
1192
|
#
|
1192
|
-
#
|
1193
|
-
#
|
1193
|
+
# <note markdown="1"> `CreateAutoMLJob` only accepts tabular input data. We recommend using
|
1194
|
+
# [CreateAutoMLJobV2][3] for all problem types. `CreateAutoMLJobV2` can
|
1195
|
+
# process the same tabular data as its previous version
|
1196
|
+
# `CreateAutoMLJob`, as well as non-tabular data for problem types such
|
1197
|
+
# as image or text classification.
|
1194
1198
|
#
|
1199
|
+
# Find guidelines about how to migrate `CreateAutoMLJob` to
|
1200
|
+
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1201
|
+
# CreateAutoMLJobV2][4].
|
1202
|
+
#
|
1203
|
+
# </note>
|
1195
1204
|
#
|
1196
1205
|
#
|
1197
|
-
#
|
1198
|
-
# [
|
1206
|
+
#
|
1207
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1208
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1209
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1210
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
|
1199
1211
|
#
|
1200
1212
|
# @option params [required, String] :auto_ml_job_name
|
1201
1213
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1229,15 +1241,13 @@ module Aws::SageMaker
|
|
1229
1241
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
1230
1242
|
#
|
1231
1243
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1232
|
-
#
|
1233
|
-
#
|
1234
|
-
#
|
1235
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
1244
|
+
# Specifies a metric to minimize or maximize as the objective of a job.
|
1245
|
+
# If not specified, the default objective metric depends on the problem
|
1246
|
+
# type. See [AutoMLJobObjective][1] for the default values.
|
1236
1247
|
#
|
1237
1248
|
#
|
1238
1249
|
#
|
1239
1250
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1240
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1241
1251
|
#
|
1242
1252
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1243
1253
|
# A collection of settings used to configure an AutoML job.
|
@@ -1350,24 +1360,32 @@ module Aws::SageMaker
|
|
1350
1360
|
req.send_request(options)
|
1351
1361
|
end
|
1352
1362
|
|
1353
|
-
# Creates an
|
1354
|
-
#
|
1355
|
-
# problems.
|
1363
|
+
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1364
|
+
# AutoML job V2.
|
1356
1365
|
#
|
1357
|
-
#
|
1358
|
-
#
|
1366
|
+
# We recommend using [CreateAutoMLJobV2][1] for all problem types.
|
1367
|
+
# `CreateAutoMLJobV2` can process the same tabular data as its previous
|
1368
|
+
# version `CreateAutoMLJob`, as well as non-tabular data for problem
|
1369
|
+
# types such as image or text classification.
|
1359
1370
|
#
|
1360
|
-
#
|
1371
|
+
# Find guidelines about how to migrate `CreateAutoMLJob` to
|
1372
|
+
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1373
|
+
# CreateAutoMLJobV2][2].
|
1361
1374
|
#
|
1362
|
-
#
|
1363
|
-
#
|
1375
|
+
# For the list of available problem types supported by
|
1376
|
+
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][3].
|
1364
1377
|
#
|
1365
|
-
#
|
1378
|
+
# Find the best-performing model after you run an AutoML job V2 by
|
1379
|
+
# calling [DescribeAutoMLJobV2][4]. Calling [DescribeAutoMLJob][5] on a
|
1380
|
+
# AutoML job V2 results in an error.
|
1366
1381
|
#
|
1367
1382
|
#
|
1368
1383
|
#
|
1369
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1370
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/
|
1384
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1385
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
|
1386
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
|
1387
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1388
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1371
1389
|
#
|
1372
1390
|
# @option params [required, String] :auto_ml_job_name
|
1373
1391
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1379,10 +1397,12 @@ module Aws::SageMaker
|
|
1379
1397
|
# [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
|
1380
1398
|
# formats depend on the problem type:
|
1381
1399
|
#
|
1382
|
-
# *
|
1383
|
-
#
|
1400
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
1401
|
+
#
|
1402
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
1403
|
+
# `AugmentedManifestFile`.
|
1384
1404
|
#
|
1385
|
-
# * TextClassification: S3Prefix
|
1405
|
+
# * For TextClassification: `S3Prefix`.
|
1386
1406
|
#
|
1387
1407
|
#
|
1388
1408
|
#
|
@@ -1396,6 +1416,13 @@ module Aws::SageMaker
|
|
1396
1416
|
# Defines the configuration settings of one of the supported problem
|
1397
1417
|
# types.
|
1398
1418
|
#
|
1419
|
+
# <note markdown="1"> For tabular problem types, you must either specify the type of
|
1420
|
+
# supervised learning problem in `AutoMLProblemTypeConfig`
|
1421
|
+
# (`TabularJobConfig.ProblemType`) and provide the `AutoMLJobObjective`,
|
1422
|
+
# or none at all.
|
1423
|
+
#
|
1424
|
+
# </note>
|
1425
|
+
#
|
1399
1426
|
# @option params [required, String] :role_arn
|
1400
1427
|
# The ARN of the role that is used to access the data.
|
1401
1428
|
#
|
@@ -1415,11 +1442,20 @@ module Aws::SageMaker
|
|
1415
1442
|
#
|
1416
1443
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1417
1444
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
1418
|
-
#
|
1445
|
+
# If not specified, the default objective metric depends on the problem
|
1446
|
+
# type. For the list of default values per problem type, see
|
1447
|
+
# [AutoMLJobObjective][1].
|
1448
|
+
#
|
1449
|
+
# <note markdown="1"> For tabular problem types, you must either provide the
|
1450
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
1451
|
+
# problem in `AutoMLProblemTypeConfig` (`TabularJobConfig.ProblemType`),
|
1452
|
+
# or none.
|
1419
1453
|
#
|
1454
|
+
# </note>
|
1420
1455
|
#
|
1421
1456
|
#
|
1422
|
-
#
|
1457
|
+
#
|
1458
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1423
1459
|
#
|
1424
1460
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1425
1461
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -1429,12 +1465,9 @@ module Aws::SageMaker
|
|
1429
1465
|
# This structure specifies how to split the data into train and
|
1430
1466
|
# validation datasets.
|
1431
1467
|
#
|
1432
|
-
#
|
1433
|
-
#
|
1434
|
-
#
|
1435
|
-
# type), the validation and training datasets must contain the same
|
1436
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
1437
|
-
# than 2 GB in size.
|
1468
|
+
# The validation and training datasets must contain the same headers.
|
1469
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1470
|
+
# must be less than 2 GB in size.
|
1438
1471
|
#
|
1439
1472
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1440
1473
|
#
|
@@ -1478,6 +1511,26 @@ module Aws::SageMaker
|
|
1478
1511
|
# content_column: "ContentColumn",
|
1479
1512
|
# target_label_column: "TargetLabelColumn",
|
1480
1513
|
# },
|
1514
|
+
# tabular_job_config: {
|
1515
|
+
# candidate_generation_config: {
|
1516
|
+
# algorithms_config: [
|
1517
|
+
# {
|
1518
|
+
# auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
|
1519
|
+
# },
|
1520
|
+
# ],
|
1521
|
+
# },
|
1522
|
+
# completion_criteria: {
|
1523
|
+
# max_candidates: 1,
|
1524
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1525
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1526
|
+
# },
|
1527
|
+
# feature_specification_s3_uri: "S3Uri",
|
1528
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
1529
|
+
# generate_candidate_definitions_only: false,
|
1530
|
+
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1531
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1532
|
+
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1533
|
+
# },
|
1481
1534
|
# },
|
1482
1535
|
# role_arn: "RoleArn", # required
|
1483
1536
|
# tags: [
|
@@ -9950,7 +10003,12 @@ module Aws::SageMaker
|
|
9950
10003
|
req.send_request(options)
|
9951
10004
|
end
|
9952
10005
|
|
9953
|
-
# Returns information about an
|
10006
|
+
# Returns information about an AutoML job created by calling
|
10007
|
+
# [CreateAutoMLJob][1].
|
10008
|
+
#
|
10009
|
+
#
|
10010
|
+
#
|
10011
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
9954
10012
|
#
|
9955
10013
|
# @option params [required, String] :auto_ml_job_name
|
9956
10014
|
# Requests information about an AutoML job using its unique name.
|
@@ -10079,15 +10137,15 @@ module Aws::SageMaker
|
|
10079
10137
|
req.send_request(options)
|
10080
10138
|
end
|
10081
10139
|
|
10082
|
-
# Returns information about an
|
10140
|
+
# Returns information about an AutoML job V2 created by calling
|
10141
|
+
# [CreateAutoMLJobV2][1].
|
10083
10142
|
#
|
10084
|
-
# <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
|
10085
|
-
# directly from the CLI or an SDK results in an error.
|
10086
10143
|
#
|
10087
|
-
#
|
10144
|
+
#
|
10145
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
10088
10146
|
#
|
10089
10147
|
# @option params [required, String] :auto_ml_job_name
|
10090
|
-
# Requests information about an AutoML V2
|
10148
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10091
10149
|
#
|
10092
10150
|
# @return [Types::DescribeAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10093
10151
|
#
|
@@ -10110,6 +10168,9 @@ module Aws::SageMaker
|
|
10110
10168
|
# * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
10111
10169
|
# * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
|
10112
10170
|
# * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
|
10171
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
10172
|
+
# * {Types::DescribeAutoMLJobV2Response#resolved_attributes #resolved_attributes} => Types::AutoMLResolvedAttributes
|
10173
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_problem_type_config_name #auto_ml_problem_type_config_name} => String
|
10113
10174
|
#
|
10114
10175
|
# @example Request syntax with placeholder values
|
10115
10176
|
#
|
@@ -10139,6 +10200,18 @@ module Aws::SageMaker
|
|
10139
10200
|
# resp.auto_ml_problem_type_config.text_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10140
10201
|
# resp.auto_ml_problem_type_config.text_classification_job_config.content_column #=> String
|
10141
10202
|
# resp.auto_ml_problem_type_config.text_classification_job_config.target_label_column #=> String
|
10203
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config #=> Array
|
10204
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
|
10205
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
|
10206
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_candidates #=> Integer
|
10207
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10208
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10209
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.feature_specification_s3_uri #=> String
|
10210
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
|
10211
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.generate_candidate_definitions_only #=> Boolean
|
10212
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10213
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10214
|
+
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10142
10215
|
# resp.creation_time #=> Time
|
10143
10216
|
# resp.end_time #=> Time
|
10144
10217
|
# resp.last_modified_time #=> Time
|
@@ -10190,6 +10263,14 @@ module Aws::SageMaker
|
|
10190
10263
|
# resp.security_config.vpc_config.security_group_ids[0] #=> String
|
10191
10264
|
# resp.security_config.vpc_config.subnets #=> Array
|
10192
10265
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10266
|
+
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10267
|
+
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10268
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10269
|
+
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10270
|
+
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10271
|
+
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10272
|
+
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10273
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10193
10274
|
#
|
10194
10275
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10195
10276
|
#
|
@@ -23627,7 +23708,7 @@ module Aws::SageMaker
|
|
23627
23708
|
params: params,
|
23628
23709
|
config: config)
|
23629
23710
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23630
|
-
context[:gem_version] = '1.
|
23711
|
+
context[:gem_version] = '1.188.0'
|
23631
23712
|
Seahorse::Client::Request.new(handlers, context)
|
23632
23713
|
end
|
23633
23714
|
|
@@ -137,7 +137,10 @@ module Aws::SageMaker
|
|
137
137
|
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
138
138
|
AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
|
139
139
|
AutoMLProblemTypeConfig = Shapes::UnionShape.new(name: 'AutoMLProblemTypeConfig')
|
140
|
+
AutoMLProblemTypeConfigName = Shapes::StringShape.new(name: 'AutoMLProblemTypeConfigName')
|
141
|
+
AutoMLProblemTypeResolvedAttributes = Shapes::UnionShape.new(name: 'AutoMLProblemTypeResolvedAttributes')
|
140
142
|
AutoMLProcessingUnit = Shapes::StringShape.new(name: 'AutoMLProcessingUnit')
|
143
|
+
AutoMLResolvedAttributes = Shapes::StructureShape.new(name: 'AutoMLResolvedAttributes')
|
141
144
|
AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
|
142
145
|
AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
|
143
146
|
AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
|
@@ -171,6 +174,7 @@ module Aws::SageMaker
|
|
171
174
|
CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
|
172
175
|
CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
|
173
176
|
CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
|
177
|
+
CandidateGenerationConfig = Shapes::StructureShape.new(name: 'CandidateGenerationConfig')
|
174
178
|
CandidateName = Shapes::StringShape.new(name: 'CandidateName')
|
175
179
|
CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
|
176
180
|
CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
|
@@ -1786,6 +1790,8 @@ module Aws::SageMaker
|
|
1786
1790
|
SuggestionQuery = Shapes::StructureShape.new(name: 'SuggestionQuery')
|
1787
1791
|
TableFormat = Shapes::StringShape.new(name: 'TableFormat')
|
1788
1792
|
TableName = Shapes::StringShape.new(name: 'TableName')
|
1793
|
+
TabularJobConfig = Shapes::StructureShape.new(name: 'TabularJobConfig')
|
1794
|
+
TabularResolvedAttributes = Shapes::StructureShape.new(name: 'TabularResolvedAttributes')
|
1789
1795
|
Tag = Shapes::StructureShape.new(name: 'Tag')
|
1790
1796
|
TagKey = Shapes::StringShape.new(name: 'TagKey')
|
1791
1797
|
TagKeyList = Shapes::ListShape.new(name: 'TagKeyList')
|
@@ -2327,12 +2333,25 @@ module Aws::SageMaker
|
|
2327
2333
|
|
2328
2334
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2329
2335
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2336
|
+
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2330
2337
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2331
2338
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2332
2339
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2340
|
+
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2333
2341
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2334
2342
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2335
2343
|
|
2344
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
|
2345
|
+
AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2346
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
|
2347
|
+
AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
|
2348
|
+
AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
|
2349
|
+
|
2350
|
+
AutoMLResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
2351
|
+
AutoMLResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
2352
|
+
AutoMLResolvedAttributes.add_member(:auto_ml_problem_type_resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLProblemTypeResolvedAttributes, location_name: "AutoMLProblemTypeResolvedAttributes"))
|
2353
|
+
AutoMLResolvedAttributes.struct_class = Types::AutoMLResolvedAttributes
|
2354
|
+
|
2336
2355
|
AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
|
2337
2356
|
AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
2338
2357
|
AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
|
@@ -2421,6 +2440,9 @@ module Aws::SageMaker
|
|
2421
2440
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2422
2441
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2423
2442
|
|
2443
|
+
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
2444
|
+
CandidateGenerationConfig.struct_class = Types::CandidateGenerationConfig
|
2445
|
+
|
2424
2446
|
CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
|
2425
2447
|
CandidateProperties.add_member(:candidate_metrics, Shapes::ShapeRef.new(shape: MetricDataList, location_name: "CandidateMetrics"))
|
2426
2448
|
CandidateProperties.struct_class = Types::CandidateProperties
|
@@ -3764,6 +3786,9 @@ module Aws::SageMaker
|
|
3764
3786
|
DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
3765
3787
|
DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
3766
3788
|
DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
3789
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
3790
|
+
DescribeAutoMLJobV2Response.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLResolvedAttributes, location_name: "ResolvedAttributes"))
|
3791
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_problem_type_config_name, Shapes::ShapeRef.new(shape: AutoMLProblemTypeConfigName, location_name: "AutoMLProblemTypeConfigName"))
|
3767
3792
|
DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
|
3768
3793
|
|
3769
3794
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -8200,6 +8225,19 @@ module Aws::SageMaker
|
|
8200
8225
|
SuggestionQuery.add_member(:property_name_query, Shapes::ShapeRef.new(shape: PropertyNameQuery, location_name: "PropertyNameQuery"))
|
8201
8226
|
SuggestionQuery.struct_class = Types::SuggestionQuery
|
8202
8227
|
|
8228
|
+
TabularJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: CandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
|
8229
|
+
TabularJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8230
|
+
TabularJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8231
|
+
TabularJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
|
8232
|
+
TabularJobConfig.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
8233
|
+
TabularJobConfig.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
|
8234
|
+
TabularJobConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8235
|
+
TabularJobConfig.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
8236
|
+
TabularJobConfig.struct_class = Types::TabularJobConfig
|
8237
|
+
|
8238
|
+
TabularResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
|
8239
|
+
TabularResolvedAttributes.struct_class = Types::TabularResolvedAttributes
|
8240
|
+
|
8203
8241
|
Tag.add_member(:key, Shapes::ShapeRef.new(shape: TagKey, required: true, location_name: "Key"))
|
8204
8242
|
Tag.add_member(:value, Shapes::ShapeRef.new(shape: TagValue, required: true, location_name: "Value"))
|
8205
8243
|
Tag.struct_class = Types::Tag
|
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
|
|
1762
1762
|
# @!attribute [rw] inference_container_definitions
|
1763
1763
|
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1764
1764
|
# inference container definitions for the candidate. This field is
|
1765
|
-
# populated for the
|
1766
|
-
# calling `CreateAutoMLJobV2`)
|
1765
|
+
# populated for the AutoML jobs V2 (for example, for jobs created by
|
1766
|
+
# calling `CreateAutoMLJobV2`) related to image or text classification
|
1767
|
+
# problem types only.
|
1767
1768
|
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1768
1769
|
#
|
1769
1770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
|
|
2035
2036
|
# This structure specifies how to split the data into train and
|
2036
2037
|
# validation datasets.
|
2037
2038
|
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
# type), the validation and training datasets must contain the same
|
2042
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
2043
|
-
# than 2 GB in size.
|
2039
|
+
# The validation and training datasets must contain the same headers.
|
2040
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
2041
|
+
# must be less than 2 GB in size.
|
2044
2042
|
#
|
2045
2043
|
# @!attribute [rw] validation_fraction
|
2046
2044
|
# The validation fraction (optional) is a float that specifies the
|
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
|
|
2077
2075
|
end
|
2078
2076
|
|
2079
2077
|
# A channel is a named input source that training algorithms can
|
2080
|
-
# consume. This channel is used for
|
2081
|
-
#
|
2082
|
-
# AutoMLChannel][1]. For more information, see [ Channel][2].
|
2078
|
+
# consume. This channel is used for AutoML jobs V2 (jobs created by
|
2079
|
+
# calling [CreateAutoMLJobV2][1]).
|
2083
2080
|
#
|
2084
2081
|
#
|
2085
2082
|
#
|
2086
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
2087
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
2083
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
2088
2084
|
#
|
2089
2085
|
# @!attribute [rw] channel_type
|
2090
2086
|
# The type of channel. Defines whether the data are used for training
|
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
|
|
2096
2092
|
# The content type of the data from the input source. The following
|
2097
2093
|
# are the allowed content types for different problems:
|
2098
2094
|
#
|
2099
|
-
# *
|
2100
|
-
# default value is
|
2095
|
+
# * For Tabular problem types: `text/csv;header=present` or
|
2096
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
|
+
# `text/csv;header=present`.
|
2101
2098
|
#
|
2102
|
-
# *
|
2099
|
+
# * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
|
+
# The default value is `image/*`.
|
2101
|
+
#
|
2102
|
+
# * For TextClassification: `text/csv;header=present` or
|
2103
2103
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2104
|
# `text/csv;header=present`.
|
2105
2105
|
# @return [String]
|
2106
2106
|
#
|
2107
2107
|
# @!attribute [rw] compression_type
|
2108
|
-
# The allowed compression types depend on the input format
|
2109
|
-
# the compression type `Gzip` for `S3Prefix` inputs
|
2110
|
-
# other inputs, the compression type should
|
2111
|
-
# compression type is provided, we default to `None`.
|
2108
|
+
# The allowed compression types depend on the input format and problem
|
2109
|
+
# type. We allow the compression type `Gzip` for `S3Prefix` inputs on
|
2110
|
+
# tabular data only. For all other inputs, the compression type should
|
2111
|
+
# be `None`. If no compression type is provided, we default to `None`.
|
2112
2112
|
# @return [String]
|
2113
2113
|
#
|
2114
2114
|
# @!attribute [rw] data_source
|
2115
|
-
# The data source for an AutoML channel.
|
2115
|
+
# The data source for an AutoML channel (Required).
|
2116
2116
|
# @return [Types::AutoMLDataSource]
|
2117
2117
|
#
|
2118
2118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
|
|
2132
2132
|
# @!attribute [rw] max_candidates
|
2133
2133
|
# The maximum number of times a training job is allowed to run.
|
2134
2134
|
#
|
2135
|
-
# For
|
2135
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
|
2136
2136
|
# supported value is 1.
|
2137
2137
|
# @return [Integer]
|
2138
2138
|
#
|
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
|
|
2142
2142
|
# tuning job. For more information, see the [StoppingCondition][1]
|
2143
2143
|
# used by the [CreateHyperParameterTuningJob][2] action.
|
2144
2144
|
#
|
2145
|
-
# For
|
2145
|
+
# For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
|
2146
2146
|
# field controls the runtime of the job candidate.
|
2147
2147
|
#
|
2148
2148
|
#
|
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
|
|
2221
2221
|
#
|
2222
2222
|
#
|
2223
2223
|
#
|
2224
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-
|
2224
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
2225
2225
|
# @return [String]
|
2226
2226
|
#
|
2227
2227
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
|
|
2237
2237
|
end
|
2238
2238
|
|
2239
2239
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2240
|
-
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2241
|
-
# support `Accuracy` only.
|
2242
2240
|
#
|
2243
2241
|
# @!attribute [rw] metric_name
|
2244
2242
|
# The name of the objective metric used to measure the predictive
|
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
|
|
2253
2251
|
# If you do not specify a metric explicitly, the default behavior is
|
2254
2252
|
# to automatically use:
|
2255
2253
|
#
|
2256
|
-
# *
|
2254
|
+
# * For tabular problem types:
|
2257
2255
|
#
|
2258
|
-
#
|
2256
|
+
# * Regression: `MSE`.
|
2259
2257
|
#
|
2260
|
-
#
|
2258
|
+
# * Binary classification: `F1`.
|
2259
|
+
#
|
2260
|
+
# * Multiclass classification: `Accuracy`.
|
2261
|
+
#
|
2262
|
+
# * For image or text classification problem types: `Accuracy`
|
2261
2263
|
#
|
2262
2264
|
#
|
2263
2265
|
#
|
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
|
|
2375
2377
|
end
|
2376
2378
|
|
2377
2379
|
# A collection of settings specific to the problem type used to
|
2378
|
-
# configure an AutoML job
|
2379
|
-
#
|
2380
|
+
# configure an AutoML job V2. There must be one and only one config of
|
2381
|
+
# the following type.
|
2380
2382
|
#
|
2381
2383
|
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2382
2384
|
#
|
2383
2385
|
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2384
2386
|
#
|
2385
2387
|
# @!attribute [rw] image_classification_job_config
|
2386
|
-
# Settings used to configure an AutoML job
|
2387
|
-
#
|
2388
|
+
# Settings used to configure an AutoML job V2 for the image
|
2389
|
+
# classification problem type.
|
2388
2390
|
# @return [Types::ImageClassificationJobConfig]
|
2389
2391
|
#
|
2390
2392
|
# @!attribute [rw] text_classification_job_config
|
2391
|
-
# Settings used to configure an AutoML job
|
2392
|
-
#
|
2393
|
+
# Settings used to configure an AutoML job V2 for the text
|
2394
|
+
# classification problem type.
|
2393
2395
|
# @return [Types::TextClassificationJobConfig]
|
2394
2396
|
#
|
2397
|
+
# @!attribute [rw] tabular_job_config
|
2398
|
+
# Settings used to configure an AutoML job V2 for a tabular problem
|
2399
|
+
# type (regression, classification).
|
2400
|
+
# @return [Types::TabularJobConfig]
|
2401
|
+
#
|
2395
2402
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2396
2403
|
#
|
2397
2404
|
class AutoMLProblemTypeConfig < Struct.new(
|
2398
2405
|
:image_classification_job_config,
|
2399
2406
|
:text_classification_job_config,
|
2407
|
+
:tabular_job_config,
|
2400
2408
|
:unknown)
|
2401
2409
|
SENSITIVE = []
|
2402
2410
|
include Aws::Structure
|
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
|
|
2404
2412
|
|
2405
2413
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2406
2414
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
|
+
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2407
2416
|
class Unknown < AutoMLProblemTypeConfig; end
|
2408
2417
|
end
|
2409
2418
|
|
2419
|
+
# The resolved attributes specific to the problem type of an AutoML job
|
2420
|
+
# V2.
|
2421
|
+
#
|
2422
|
+
# @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
|
2423
|
+
#
|
2424
|
+
# @!attribute [rw] tabular_resolved_attributes
|
2425
|
+
# Defines the resolved attributes for the `TABULAR` problem type.
|
2426
|
+
# @return [Types::TabularResolvedAttributes]
|
2427
|
+
#
|
2428
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
|
2429
|
+
#
|
2430
|
+
class AutoMLProblemTypeResolvedAttributes < Struct.new(
|
2431
|
+
:tabular_resolved_attributes,
|
2432
|
+
:unknown)
|
2433
|
+
SENSITIVE = []
|
2434
|
+
include Aws::Structure
|
2435
|
+
include Aws::Structure::Union
|
2436
|
+
|
2437
|
+
class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
|
2438
|
+
class Unknown < AutoMLProblemTypeResolvedAttributes; end
|
2439
|
+
end
|
2440
|
+
|
2441
|
+
# The resolved attributes used to configure an AutoML job V2.
|
2442
|
+
#
|
2443
|
+
# @!attribute [rw] auto_ml_job_objective
|
2444
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
2445
|
+
# job.
|
2446
|
+
# @return [Types::AutoMLJobObjective]
|
2447
|
+
#
|
2448
|
+
# @!attribute [rw] completion_criteria
|
2449
|
+
# How long a job is allowed to run, or how many candidates a job is
|
2450
|
+
# allowed to generate.
|
2451
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
2452
|
+
#
|
2453
|
+
# @!attribute [rw] auto_ml_problem_type_resolved_attributes
|
2454
|
+
# Defines the resolved attributes specific to a problem type.
|
2455
|
+
# @return [Types::AutoMLProblemTypeResolvedAttributes]
|
2456
|
+
#
|
2457
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
|
2458
|
+
#
|
2459
|
+
class AutoMLResolvedAttributes < Struct.new(
|
2460
|
+
:auto_ml_job_objective,
|
2461
|
+
:completion_criteria,
|
2462
|
+
:auto_ml_problem_type_resolved_attributes)
|
2463
|
+
SENSITIVE = []
|
2464
|
+
include Aws::Structure
|
2465
|
+
end
|
2466
|
+
|
2410
2467
|
# Describes the Amazon S3 data source.
|
2411
2468
|
#
|
2412
2469
|
# @!attribute [rw] s3_data_type
|
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
|
|
2939
2996
|
include Aws::Structure
|
2940
2997
|
end
|
2941
2998
|
|
2999
|
+
# Stores the configuration information for how model candidates are
|
3000
|
+
# generated using an AutoML job V2.
|
3001
|
+
#
|
3002
|
+
# @!attribute [rw] algorithms_config
|
3003
|
+
# Stores the configuration information for the selection of algorithms
|
3004
|
+
# used to train model candidates on tabular data.
|
3005
|
+
#
|
3006
|
+
# The list of available algorithms to choose from depends on the
|
3007
|
+
# training mode set in [ `TabularJobConfig.Mode` ][1].
|
3008
|
+
#
|
3009
|
+
# * `AlgorithmsConfig` should not be set in `AUTO` training mode.
|
3010
|
+
#
|
3011
|
+
# * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
|
3012
|
+
# attribute must be set and one only.
|
3013
|
+
#
|
3014
|
+
# If the list of algorithms provided as values for
|
3015
|
+
# `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
|
3016
|
+
# full set of algorithms for the given training mode.
|
3017
|
+
#
|
3018
|
+
# * When `AlgorithmsConfig` is not provided,
|
3019
|
+
# `CandidateGenerationConfig` uses the full set of algorithms for
|
3020
|
+
# the given training mode.
|
3021
|
+
#
|
3022
|
+
# For the list of all algorithms per problem type and training mode,
|
3023
|
+
# see [ AutoMLAlgorithmConfig][2].
|
3024
|
+
#
|
3025
|
+
# For more information on each algorithm, see the [Algorithm
|
3026
|
+
# support][3] section in Autopilot developer guide.
|
3027
|
+
#
|
3028
|
+
#
|
3029
|
+
#
|
3030
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
|
3031
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
3032
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
3033
|
+
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
3034
|
+
#
|
3035
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
|
3036
|
+
#
|
3037
|
+
class CandidateGenerationConfig < Struct.new(
|
3038
|
+
:algorithms_config)
|
3039
|
+
SENSITIVE = []
|
3040
|
+
include Aws::Structure
|
3041
|
+
end
|
3042
|
+
|
2942
3043
|
# The properties of an AutoML candidate job.
|
2943
3044
|
#
|
2944
3045
|
# @!attribute [rw] candidate_artifact_locations
|
@@ -4525,15 +4626,13 @@ module Aws::SageMaker
|
|
4525
4626
|
# @return [String]
|
4526
4627
|
#
|
4527
4628
|
# @!attribute [rw] auto_ml_job_objective
|
4528
|
-
#
|
4529
|
-
#
|
4530
|
-
#
|
4531
|
-
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
4629
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4630
|
+
# job. If not specified, the default objective metric depends on the
|
4631
|
+
# problem type. See [AutoMLJobObjective][1] for the default values.
|
4532
4632
|
#
|
4533
4633
|
#
|
4534
4634
|
#
|
4535
4635
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4536
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4537
4636
|
# @return [Types::AutoMLJobObjective]
|
4538
4637
|
#
|
4539
4638
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4607,10 +4706,12 @@ module Aws::SageMaker
|
|
4607
4706
|
# [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
|
4608
4707
|
# formats depend on the problem type:
|
4609
4708
|
#
|
4610
|
-
# *
|
4611
|
-
# `AugmentedManifestFile`
|
4709
|
+
# * For Tabular problem types: `S3Prefix`, `ManifestFile`.
|
4612
4710
|
#
|
4613
|
-
# *
|
4711
|
+
# * For ImageClassification: `S3Prefix`, `ManifestFile`,
|
4712
|
+
# `AugmentedManifestFile`.
|
4713
|
+
#
|
4714
|
+
# * For TextClassification: `S3Prefix`.
|
4614
4715
|
#
|
4615
4716
|
#
|
4616
4717
|
#
|
@@ -4625,6 +4726,13 @@ module Aws::SageMaker
|
|
4625
4726
|
# @!attribute [rw] auto_ml_problem_type_config
|
4626
4727
|
# Defines the configuration settings of one of the supported problem
|
4627
4728
|
# types.
|
4729
|
+
#
|
4730
|
+
# <note markdown="1"> For tabular problem types, you must either specify the type of
|
4731
|
+
# supervised learning problem in `AutoMLProblemTypeConfig`
|
4732
|
+
# (`TabularJobConfig.ProblemType`) and provide the
|
4733
|
+
# `AutoMLJobObjective`, or none at all.
|
4734
|
+
#
|
4735
|
+
# </note>
|
4628
4736
|
# @return [Types::AutoMLProblemTypeConfig]
|
4629
4737
|
#
|
4630
4738
|
# @!attribute [rw] role_arn
|
@@ -4649,11 +4757,20 @@ module Aws::SageMaker
|
|
4649
4757
|
#
|
4650
4758
|
# @!attribute [rw] auto_ml_job_objective
|
4651
4759
|
# Specifies a metric to minimize or maximize as the objective of a
|
4652
|
-
# job.
|
4760
|
+
# job. If not specified, the default objective metric depends on the
|
4761
|
+
# problem type. For the list of default values per problem type, see
|
4762
|
+
# [AutoMLJobObjective][1].
|
4763
|
+
#
|
4764
|
+
# <note markdown="1"> For tabular problem types, you must either provide the
|
4765
|
+
# `AutoMLJobObjective` and indicate the type of supervised learning
|
4766
|
+
# problem in `AutoMLProblemTypeConfig`
|
4767
|
+
# (`TabularJobConfig.ProblemType`), or none.
|
4768
|
+
#
|
4769
|
+
# </note>
|
4653
4770
|
#
|
4654
4771
|
#
|
4655
4772
|
#
|
4656
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
4773
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4657
4774
|
# @return [Types::AutoMLJobObjective]
|
4658
4775
|
#
|
4659
4776
|
# @!attribute [rw] model_deploy_config
|
@@ -4665,12 +4782,9 @@ module Aws::SageMaker
|
|
4665
4782
|
# This structure specifies how to split the data into train and
|
4666
4783
|
# validation datasets.
|
4667
4784
|
#
|
4668
|
-
#
|
4669
|
-
#
|
4670
|
-
#
|
4671
|
-
# type), the validation and training datasets must contain the same
|
4672
|
-
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4673
|
-
# than 2 GB in size.
|
4785
|
+
# The validation and training datasets must contain the same headers.
|
4786
|
+
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4787
|
+
# dataset must be less than 2 GB in size.
|
4674
4788
|
# @return [Types::AutoMLDataSplitConfig]
|
4675
4789
|
#
|
4676
4790
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10636,8 +10750,7 @@ module Aws::SageMaker
|
|
10636
10750
|
# @!attribute [rw] resolved_attributes
|
10637
10751
|
# Contains `ProblemType`, `AutoMLJobObjective`, and
|
10638
10752
|
# `CompletionCriteria`. If you do not provide these values, they are
|
10639
|
-
#
|
10640
|
-
# you provide.
|
10753
|
+
# inferred.
|
10641
10754
|
# @return [Types::ResolvedAttributes]
|
10642
10755
|
#
|
10643
10756
|
# @!attribute [rw] model_deploy_config
|
@@ -10678,7 +10791,7 @@ module Aws::SageMaker
|
|
10678
10791
|
end
|
10679
10792
|
|
10680
10793
|
# @!attribute [rw] auto_ml_job_name
|
10681
|
-
# Requests information about an AutoML V2
|
10794
|
+
# Requests information about an AutoML job V2 using its unique name.
|
10682
10795
|
# @return [String]
|
10683
10796
|
#
|
10684
10797
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
@@ -10690,11 +10803,11 @@ module Aws::SageMaker
|
|
10690
10803
|
end
|
10691
10804
|
|
10692
10805
|
# @!attribute [rw] auto_ml_job_name
|
10693
|
-
# Returns the name of the AutoML V2
|
10806
|
+
# Returns the name of the AutoML job V2.
|
10694
10807
|
# @return [String]
|
10695
10808
|
#
|
10696
10809
|
# @!attribute [rw] auto_ml_job_arn
|
10697
|
-
# Returns the Amazon Resource Name (ARN) of the AutoML V2
|
10810
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML job V2.
|
10698
10811
|
# @return [String]
|
10699
10812
|
#
|
10700
10813
|
# @!attribute [rw] auto_ml_job_input_data_config
|
@@ -10718,15 +10831,15 @@ module Aws::SageMaker
|
|
10718
10831
|
#
|
10719
10832
|
# @!attribute [rw] auto_ml_problem_type_config
|
10720
10833
|
# Returns the configuration settings of the problem type set for the
|
10721
|
-
# AutoML V2
|
10834
|
+
# AutoML job V2.
|
10722
10835
|
# @return [Types::AutoMLProblemTypeConfig]
|
10723
10836
|
#
|
10724
10837
|
# @!attribute [rw] creation_time
|
10725
|
-
# Returns the creation time of the AutoML V2
|
10838
|
+
# Returns the creation time of the AutoML job V2.
|
10726
10839
|
# @return [Time]
|
10727
10840
|
#
|
10728
10841
|
# @!attribute [rw] end_time
|
10729
|
-
# Returns the end time of the AutoML V2
|
10842
|
+
# Returns the end time of the AutoML job V2.
|
10730
10843
|
# @return [Time]
|
10731
10844
|
#
|
10732
10845
|
# @!attribute [rw] last_modified_time
|
@@ -10734,13 +10847,13 @@ module Aws::SageMaker
|
|
10734
10847
|
# @return [Time]
|
10735
10848
|
#
|
10736
10849
|
# @!attribute [rw] failure_reason
|
10737
|
-
# Returns the reason for the failure of the AutoML V2
|
10850
|
+
# Returns the reason for the failure of the AutoML job V2, when
|
10738
10851
|
# applicable.
|
10739
10852
|
# @return [String]
|
10740
10853
|
#
|
10741
10854
|
# @!attribute [rw] partial_failure_reasons
|
10742
|
-
# Returns a list of reasons for partial failures within an AutoML
|
10743
|
-
#
|
10855
|
+
# Returns a list of reasons for partial failures within an AutoML job
|
10856
|
+
# V2.
|
10744
10857
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10745
10858
|
#
|
10746
10859
|
# @!attribute [rw] best_candidate
|
@@ -10749,11 +10862,11 @@ module Aws::SageMaker
|
|
10749
10862
|
# @return [Types::AutoMLCandidate]
|
10750
10863
|
#
|
10751
10864
|
# @!attribute [rw] auto_ml_job_status
|
10752
|
-
# Returns the status of the AutoML V2
|
10865
|
+
# Returns the status of the AutoML job V2.
|
10753
10866
|
# @return [String]
|
10754
10867
|
#
|
10755
10868
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10756
|
-
# Returns the secondary status of the AutoML V2
|
10869
|
+
# Returns the secondary status of the AutoML job V2.
|
10757
10870
|
# @return [String]
|
10758
10871
|
#
|
10759
10872
|
# @!attribute [rw] model_deploy_config
|
@@ -10775,6 +10888,19 @@ module Aws::SageMaker
|
|
10775
10888
|
# VPC settings.
|
10776
10889
|
# @return [Types::AutoMLSecurityConfig]
|
10777
10890
|
#
|
10891
|
+
# @!attribute [rw] auto_ml_job_artifacts
|
10892
|
+
# The artifacts that are generated during an AutoML job.
|
10893
|
+
# @return [Types::AutoMLJobArtifacts]
|
10894
|
+
#
|
10895
|
+
# @!attribute [rw] resolved_attributes
|
10896
|
+
# Returns the resolved attributes used by the AutoML job V2.
|
10897
|
+
# @return [Types::AutoMLResolvedAttributes]
|
10898
|
+
#
|
10899
|
+
# @!attribute [rw] auto_ml_problem_type_config_name
|
10900
|
+
# Returns the name of the problem type configuration set for the
|
10901
|
+
# AutoML job V2.
|
10902
|
+
# @return [String]
|
10903
|
+
#
|
10778
10904
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10779
10905
|
#
|
10780
10906
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -10796,7 +10922,10 @@ module Aws::SageMaker
|
|
10796
10922
|
:model_deploy_config,
|
10797
10923
|
:model_deploy_result,
|
10798
10924
|
:data_split_config,
|
10799
|
-
:security_config
|
10925
|
+
:security_config,
|
10926
|
+
:auto_ml_job_artifacts,
|
10927
|
+
:resolved_attributes,
|
10928
|
+
:auto_ml_problem_type_config_name)
|
10800
10929
|
SENSITIVE = []
|
10801
10930
|
include Aws::Structure
|
10802
10931
|
end
|
@@ -20733,7 +20862,7 @@ module Aws::SageMaker
|
|
20733
20862
|
end
|
20734
20863
|
|
20735
20864
|
# Stores the configuration information for the image classification
|
20736
|
-
# problem of an AutoML job
|
20865
|
+
# problem of an AutoML job V2.
|
20737
20866
|
#
|
20738
20867
|
# @!attribute [rw] completion_criteria
|
20739
20868
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -30828,6 +30957,11 @@ module Aws::SageMaker
|
|
30828
30957
|
# using [TargetPlatform][1] fields. It can be used instead of
|
30829
30958
|
# `TargetPlatform`.
|
30830
30959
|
#
|
30960
|
+
# <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
|
30961
|
+
# Region, and `ml_inf2` is available only in US East (Ohio) Region.
|
30962
|
+
#
|
30963
|
+
# </note>
|
30964
|
+
#
|
30831
30965
|
#
|
30832
30966
|
#
|
30833
30967
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
|
@@ -34402,8 +34536,7 @@ module Aws::SageMaker
|
|
34402
34536
|
#
|
34403
34537
|
# @!attribute [rw] auto_ml_job_objective
|
34404
34538
|
# Specifies a metric to minimize or maximize as the objective of a
|
34405
|
-
# job.
|
34406
|
-
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
34539
|
+
# job.
|
34407
34540
|
# @return [Types::AutoMLJobObjective]
|
34408
34541
|
#
|
34409
34542
|
# @!attribute [rw] problem_type
|
@@ -36307,6 +36440,161 @@ module Aws::SageMaker
|
|
36307
36440
|
include Aws::Structure
|
36308
36441
|
end
|
36309
36442
|
|
36443
|
+
# The collection of settings used by an AutoML job V2 for the `TABULAR`
|
36444
|
+
# problem type.
|
36445
|
+
#
|
36446
|
+
# @!attribute [rw] candidate_generation_config
|
36447
|
+
# The configuration information of how model candidates are generated.
|
36448
|
+
# @return [Types::CandidateGenerationConfig]
|
36449
|
+
#
|
36450
|
+
# @!attribute [rw] completion_criteria
|
36451
|
+
# How long a job is allowed to run, or how many candidates a job is
|
36452
|
+
# allowed to generate.
|
36453
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
36454
|
+
#
|
36455
|
+
# @!attribute [rw] feature_specification_s3_uri
|
36456
|
+
# A URL to the Amazon S3 data source containing selected features from
|
36457
|
+
# the input data source to run an Autopilot job V2. You can input
|
36458
|
+
# `FeatureAttributeNames` (optional) in JSON format as shown below:
|
36459
|
+
#
|
36460
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
36461
|
+
#
|
36462
|
+
# You can also specify the data type of the feature (optional) in the
|
36463
|
+
# format shown below:
|
36464
|
+
#
|
36465
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
36466
|
+
# \} \}`
|
36467
|
+
#
|
36468
|
+
# <note markdown="1"> These column keys may not include the target column.
|
36469
|
+
#
|
36470
|
+
# </note>
|
36471
|
+
#
|
36472
|
+
# In ensembling mode, Autopilot only supports the following data
|
36473
|
+
# types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
|
36474
|
+
# mode, Autopilot can support `numeric`, `categorical`, `text`,
|
36475
|
+
# `datetime`, and `sequence`.
|
36476
|
+
#
|
36477
|
+
# If only `FeatureDataTypes` is provided, the column keys (`col1`,
|
36478
|
+
# `col2`,..) should be a subset of the column names in the input data.
|
36479
|
+
#
|
36480
|
+
# If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
|
36481
|
+
# then the column keys should be a subset of the column names provided
|
36482
|
+
# in `FeatureAttributeNames`.
|
36483
|
+
#
|
36484
|
+
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
36485
|
+
# `["col1", "col2", ...]` are case sensitive and should be a list of
|
36486
|
+
# strings containing unique values that are a subset of the column
|
36487
|
+
# names in the input data. The list of columns provided must not
|
36488
|
+
# include the target column.
|
36489
|
+
# @return [String]
|
36490
|
+
#
|
36491
|
+
# @!attribute [rw] mode
|
36492
|
+
# The method that Autopilot uses to train the data. You can either
|
36493
|
+
# specify the mode manually or let Autopilot choose for you based on
|
36494
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
36495
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
36496
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
36497
|
+
#
|
36498
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
36499
|
+
# classification and regression tasks directly from your dataset. This
|
36500
|
+
# machine learning mode combines several base models to produce an
|
36501
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
36502
|
+
# combine predictions from contributing members. A multi-stack
|
36503
|
+
# ensemble model can provide better performance over a single model by
|
36504
|
+
# combining the predictive capabilities of multiple models. See
|
36505
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36506
|
+
# by `ENSEMBLING` mode.
|
36507
|
+
#
|
36508
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
36509
|
+
# to train the best version of a model. HPO automatically selects an
|
36510
|
+
# algorithm for the type of problem you want to solve. Then HPO finds
|
36511
|
+
# the best hyperparameters according to your objective metric. See
|
36512
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
36513
|
+
# by `HYPERPARAMETER_TUNING` mode.
|
36514
|
+
#
|
36515
|
+
#
|
36516
|
+
#
|
36517
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
36518
|
+
# @return [String]
|
36519
|
+
#
|
36520
|
+
# @!attribute [rw] generate_candidate_definitions_only
|
36521
|
+
# Generates possible candidates without training the models. A model
|
36522
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
36523
|
+
# algorithm parameter settings.
|
36524
|
+
# @return [Boolean]
|
36525
|
+
#
|
36526
|
+
# @!attribute [rw] problem_type
|
36527
|
+
# The type of supervised learning problem available for the model
|
36528
|
+
# candidates of the AutoML job V2. For more information, see [ Amazon
|
36529
|
+
# SageMaker Autopilot problem types][1].
|
36530
|
+
#
|
36531
|
+
#
|
36532
|
+
#
|
36533
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36534
|
+
# @return [String]
|
36535
|
+
#
|
36536
|
+
# @!attribute [rw] target_attribute_name
|
36537
|
+
# The name of the target variable in supervised learning, usually
|
36538
|
+
# represented by 'y'.
|
36539
|
+
# @return [String]
|
36540
|
+
#
|
36541
|
+
# @!attribute [rw] sample_weight_attribute_name
|
36542
|
+
# If specified, this column name indicates which column of the dataset
|
36543
|
+
# should be treated as sample weights for use by the objective metric
|
36544
|
+
# during the training, evaluation, and the selection of the best
|
36545
|
+
# model. This column is not considered as a predictive feature. For
|
36546
|
+
# more information on Autopilot metrics, see [Metrics and
|
36547
|
+
# validation][1].
|
36548
|
+
#
|
36549
|
+
# Sample weights should be numeric, non-negative, with larger values
|
36550
|
+
# indicating which rows are more important than others. Data points
|
36551
|
+
# that have invalid or no weight value are excluded.
|
36552
|
+
#
|
36553
|
+
# Support for sample weights is available in [Ensembling][2] mode
|
36554
|
+
# only.
|
36555
|
+
#
|
36556
|
+
#
|
36557
|
+
#
|
36558
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
36559
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
36560
|
+
# @return [String]
|
36561
|
+
#
|
36562
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
|
36563
|
+
#
|
36564
|
+
class TabularJobConfig < Struct.new(
|
36565
|
+
:candidate_generation_config,
|
36566
|
+
:completion_criteria,
|
36567
|
+
:feature_specification_s3_uri,
|
36568
|
+
:mode,
|
36569
|
+
:generate_candidate_definitions_only,
|
36570
|
+
:problem_type,
|
36571
|
+
:target_attribute_name,
|
36572
|
+
:sample_weight_attribute_name)
|
36573
|
+
SENSITIVE = []
|
36574
|
+
include Aws::Structure
|
36575
|
+
end
|
36576
|
+
|
36577
|
+
# The resolved attributes specific to the `TABULAR` problem type.
|
36578
|
+
#
|
36579
|
+
# @!attribute [rw] problem_type
|
36580
|
+
# The type of supervised learning problem available for the model
|
36581
|
+
# candidates of the AutoML job V2 (Binary Classification, Multiclass
|
36582
|
+
# Classification, Regression). For more information, see [ Amazon
|
36583
|
+
# SageMaker Autopilot problem types][1].
|
36584
|
+
#
|
36585
|
+
#
|
36586
|
+
#
|
36587
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
36588
|
+
# @return [String]
|
36589
|
+
#
|
36590
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
|
36591
|
+
#
|
36592
|
+
class TabularResolvedAttributes < Struct.new(
|
36593
|
+
:problem_type)
|
36594
|
+
SENSITIVE = []
|
36595
|
+
include Aws::Structure
|
36596
|
+
end
|
36597
|
+
|
36310
36598
|
# A tag object that consists of a key and an optional value, used to
|
36311
36599
|
# manage metadata for SageMaker Amazon Web Services resources.
|
36312
36600
|
#
|
@@ -36432,7 +36720,7 @@ module Aws::SageMaker
|
|
36432
36720
|
end
|
36433
36721
|
|
36434
36722
|
# Stores the configuration information for the text classification
|
36435
|
-
# problem of an AutoML job
|
36723
|
+
# problem of an AutoML job V2.
|
36436
36724
|
#
|
36437
36725
|
# @!attribute [rw] completion_criteria
|
36438
36726
|
# How long a job is allowed to run, or how many candidates a job is
|
@@ -36441,12 +36729,13 @@ module Aws::SageMaker
|
|
36441
36729
|
#
|
36442
36730
|
# @!attribute [rw] content_column
|
36443
36731
|
# The name of the column used to provide the sentences to be
|
36444
|
-
# classified. It should not be the same as the target column
|
36732
|
+
# classified. It should not be the same as the target column
|
36733
|
+
# (Required).
|
36445
36734
|
# @return [String]
|
36446
36735
|
#
|
36447
36736
|
# @!attribute [rw] target_label_column
|
36448
36737
|
# The name of the column used to provide the class labels. It should
|
36449
|
-
# not be same as the content column.
|
36738
|
+
# not be same as the content column (Required).
|
36450
36739
|
# @return [String]
|
36451
36740
|
#
|
36452
36741
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.188.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-19 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|