aws-sdk-sagemaker 1.186.0 → 1.188.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: ed35ef022dab39f9847cb62c469eef65f275b5eeb10216a42f947f2f45737853
4
- data.tar.gz: 905ce6c70731244b0ecf7194139c243eba1eacce9a09471d19364732b1dcb44f
3
+ metadata.gz: c1cc6aa017d0a61c512a403ca520b758a79858d6ed30444a6b8fc209235a566b
4
+ data.tar.gz: 7c3ed41853cabbc93820d3ee924aae42852b605a76aae984c98b384f5c0547bb
5
5
  SHA512:
6
- metadata.gz: 2dea9e44730be15449e4080864ec2f052db761162d063e54626f6404432ba434f4e2f6ab961dfb51621f6addf26efa71a11bce864774a270ddd1ca28fe38bb72
7
- data.tar.gz: 1c503c1cf068659c13385379009b49f306f0b3576a1bd2534b5644da248b372e2b4c19781fd48a368f6bd5b985695b501880fe7a427afb7e0b3baa4da8f732b9
6
+ metadata.gz: e12d3d897ebdc29ead6763814cecb2629a79a63585eae30c743751f0eeea93b91250ed5dfc0c807e12f9105ca162b16157664aa1144caad28d2625a97fabc5a4
7
+ data.tar.gz: 2edc4ba1e484791aebb0a59b2471042c5c54aa75caa2742ea0027dc0d8ba61488e6fefcd7c4e2fcc29c0648dafe58ee7e6ba931edd5c9653370f8ffe1742a1f9
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.188.0 (2023-06-19)
5
+ ------------------
6
+
7
+ * Feature - Amazon Sagemaker Autopilot releases CreateAutoMLJobV2 and DescribeAutoMLJobV2 for Autopilot customers with ImageClassification, TextClassification and Tabular problem type config support.
8
+
9
+ 1.187.0 (2023-06-15)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
4
14
  1.186.0 (2023-06-12)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.186.0
1
+ 1.188.0
@@ -1184,18 +1184,30 @@ module Aws::SageMaker
1184
1184
  req.send_request(options)
1185
1185
  end
1186
1186
 
1187
- # Creates an Autopilot job.
1187
+ # Creates an Autopilot job also referred to as Autopilot experiment or
1188
+ # AutoML job.
1188
1189
  #
1189
- # Find the best-performing model after you run an Autopilot job by
1190
- # calling [DescribeAutoMLJob][1].
1190
+ # Find the best-performing model after you run an AutoML job by calling
1191
+ # [DescribeAutoMLJobV2][1] (recommended) or [DescribeAutoMLJob][2].
1191
1192
  #
1192
- # For information about how to use Autopilot, see [Automate Model
1193
- # Development with Amazon SageMaker Autopilot][2].
1193
+ # <note markdown="1"> `CreateAutoMLJob` only accepts tabular input data. We recommend using
1194
+ # [CreateAutoMLJobV2][3] for all problem types. `CreateAutoMLJobV2` can
1195
+ # process the same tabular data as its previous version
1196
+ # `CreateAutoMLJob`, as well as non-tabular data for problem types such
1197
+ # as image or text classification.
1194
1198
  #
1199
+ # Find guidelines about how to migrate `CreateAutoMLJob` to
1200
+ # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1201
+ # CreateAutoMLJobV2][4].
1202
+ #
1203
+ # </note>
1195
1204
  #
1196
1205
  #
1197
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1198
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1206
+ #
1207
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1208
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1209
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1210
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
1199
1211
  #
1200
1212
  # @option params [required, String] :auto_ml_job_name
1201
1213
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1229,15 +1241,13 @@ module Aws::SageMaker
1229
1241
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
1230
1242
  #
1231
1243
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1232
- # Defines the objective metric used to measure the predictive quality of
1233
- # an AutoML job. You provide an [AutoMLJobObjective$MetricName][1] and
1234
- # Autopilot infers whether to minimize or maximize it. For
1235
- # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
1244
+ # Specifies a metric to minimize or maximize as the objective of a job.
1245
+ # If not specified, the default objective metric depends on the problem
1246
+ # type. See [AutoMLJobObjective][1] for the default values.
1236
1247
  #
1237
1248
  #
1238
1249
  #
1239
1250
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
1240
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1241
1251
  #
1242
1252
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1243
1253
  # A collection of settings used to configure an AutoML job.
@@ -1350,24 +1360,32 @@ module Aws::SageMaker
1350
1360
  req.send_request(options)
1351
1361
  end
1352
1362
 
1353
- # Creates an Amazon SageMaker AutoML job that uses non-tabular data such
1354
- # as images or text for Computer Vision or Natural Language Processing
1355
- # problems.
1363
+ # Creates an Autopilot job also referred to as Autopilot experiment or
1364
+ # AutoML job V2.
1356
1365
  #
1357
- # Find the resulting model after you run an AutoML job V2 by calling
1358
- # [DescribeAutoMLJobV2][1].
1366
+ # We recommend using [CreateAutoMLJobV2][1] for all problem types.
1367
+ # `CreateAutoMLJobV2` can process the same tabular data as its previous
1368
+ # version `CreateAutoMLJob`, as well as non-tabular data for problem
1369
+ # types such as image or text classification.
1359
1370
  #
1360
- # To create an `AutoMLJob` using tabular data, see [CreateAutoMLJob][2].
1371
+ # Find guidelines about how to migrate `CreateAutoMLJob` to
1372
+ # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1373
+ # CreateAutoMLJobV2][2].
1361
1374
  #
1362
- # <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
1363
- # directly from the CLI or an SDK results in an error.
1375
+ # For the list of available problem types supported by
1376
+ # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][3].
1364
1377
  #
1365
- # </note>
1378
+ # Find the best-performing model after you run an AutoML job V2 by
1379
+ # calling [DescribeAutoMLJobV2][4]. Calling [DescribeAutoMLJob][5] on a
1380
+ # AutoML job V2 results in an error.
1366
1381
  #
1367
1382
  #
1368
1383
  #
1369
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1370
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1384
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1385
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment-api.html#autopilot-create-experiment-api-migrate-v1-v2
1386
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1387
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1388
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1371
1389
  #
1372
1390
  # @option params [required, String] :auto_ml_job_name
1373
1391
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1379,10 +1397,12 @@ module Aws::SageMaker
1379
1397
  # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
1380
1398
  # formats depend on the problem type:
1381
1399
  #
1382
- # * ImageClassification: S3Prefix, `ManifestFile`,
1383
- # `AugmentedManifestFile`
1400
+ # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
1401
+ #
1402
+ # * For ImageClassification: `S3Prefix`, `ManifestFile`,
1403
+ # `AugmentedManifestFile`.
1384
1404
  #
1385
- # * TextClassification: S3Prefix
1405
+ # * For TextClassification: `S3Prefix`.
1386
1406
  #
1387
1407
  #
1388
1408
  #
@@ -1396,6 +1416,13 @@ module Aws::SageMaker
1396
1416
  # Defines the configuration settings of one of the supported problem
1397
1417
  # types.
1398
1418
  #
1419
+ # <note markdown="1"> For tabular problem types, you must either specify the type of
1420
+ # supervised learning problem in `AutoMLProblemTypeConfig`
1421
+ # (`TabularJobConfig.ProblemType`) and provide the `AutoMLJobObjective`,
1422
+ # or none at all.
1423
+ #
1424
+ # </note>
1425
+ #
1399
1426
  # @option params [required, String] :role_arn
1400
1427
  # The ARN of the role that is used to access the data.
1401
1428
  #
@@ -1415,11 +1442,20 @@ module Aws::SageMaker
1415
1442
  #
1416
1443
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1417
1444
  # Specifies a metric to minimize or maximize as the objective of a job.
1418
- # For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
1445
+ # If not specified, the default objective metric depends on the problem
1446
+ # type. For the list of default values per problem type, see
1447
+ # [AutoMLJobObjective][1].
1448
+ #
1449
+ # <note markdown="1"> For tabular problem types, you must either provide the
1450
+ # `AutoMLJobObjective` and indicate the type of supervised learning
1451
+ # problem in `AutoMLProblemTypeConfig` (`TabularJobConfig.ProblemType`),
1452
+ # or none.
1419
1453
  #
1454
+ # </note>
1420
1455
  #
1421
1456
  #
1422
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1457
+ #
1458
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
1423
1459
  #
1424
1460
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1425
1461
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -1429,12 +1465,9 @@ module Aws::SageMaker
1429
1465
  # This structure specifies how to split the data into train and
1430
1466
  # validation datasets.
1431
1467
  #
1432
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
1433
- # API for Natural Language Processing problems (for example
1434
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
1435
- # type), the validation and training datasets must contain the same
1436
- # headers. Also, for V1 API jobs, the validation dataset must be less
1437
- # than 2 GB in size.
1468
+ # The validation and training datasets must contain the same headers.
1469
+ # For jobs created by calling `CreateAutoMLJob`, the validation dataset
1470
+ # must be less than 2 GB in size.
1438
1471
  #
1439
1472
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1440
1473
  #
@@ -1478,6 +1511,26 @@ module Aws::SageMaker
1478
1511
  # content_column: "ContentColumn",
1479
1512
  # target_label_column: "TargetLabelColumn",
1480
1513
  # },
1514
+ # tabular_job_config: {
1515
+ # candidate_generation_config: {
1516
+ # algorithms_config: [
1517
+ # {
1518
+ # auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
1519
+ # },
1520
+ # ],
1521
+ # },
1522
+ # completion_criteria: {
1523
+ # max_candidates: 1,
1524
+ # max_runtime_per_training_job_in_seconds: 1,
1525
+ # max_auto_ml_job_runtime_in_seconds: 1,
1526
+ # },
1527
+ # feature_specification_s3_uri: "S3Uri",
1528
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1529
+ # generate_candidate_definitions_only: false,
1530
+ # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1531
+ # target_attribute_name: "TargetAttributeName", # required
1532
+ # sample_weight_attribute_name: "SampleWeightAttributeName",
1533
+ # },
1481
1534
  # },
1482
1535
  # role_arn: "RoleArn", # required
1483
1536
  # tags: [
@@ -9950,7 +10003,12 @@ module Aws::SageMaker
9950
10003
  req.send_request(options)
9951
10004
  end
9952
10005
 
9953
- # Returns information about an Amazon SageMaker AutoML job.
10006
+ # Returns information about an AutoML job created by calling
10007
+ # [CreateAutoMLJob][1].
10008
+ #
10009
+ #
10010
+ #
10011
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
9954
10012
  #
9955
10013
  # @option params [required, String] :auto_ml_job_name
9956
10014
  # Requests information about an AutoML job using its unique name.
@@ -10079,15 +10137,15 @@ module Aws::SageMaker
10079
10137
  req.send_request(options)
10080
10138
  end
10081
10139
 
10082
- # Returns information about an Amazon SageMaker AutoML V2 job.
10140
+ # Returns information about an AutoML job V2 created by calling
10141
+ # [CreateAutoMLJobV2][1].
10083
10142
  #
10084
- # <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
10085
- # directly from the CLI or an SDK results in an error.
10086
10143
  #
10087
- # </note>
10144
+ #
10145
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
10088
10146
  #
10089
10147
  # @option params [required, String] :auto_ml_job_name
10090
- # Requests information about an AutoML V2 job using its unique name.
10148
+ # Requests information about an AutoML job V2 using its unique name.
10091
10149
  #
10092
10150
  # @return [Types::DescribeAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10093
10151
  #
@@ -10110,6 +10168,9 @@ module Aws::SageMaker
10110
10168
  # * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
10111
10169
  # * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
10112
10170
  # * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
10171
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
10172
+ # * {Types::DescribeAutoMLJobV2Response#resolved_attributes #resolved_attributes} => Types::AutoMLResolvedAttributes
10173
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_problem_type_config_name #auto_ml_problem_type_config_name} => String
10113
10174
  #
10114
10175
  # @example Request syntax with placeholder values
10115
10176
  #
@@ -10139,6 +10200,18 @@ module Aws::SageMaker
10139
10200
  # resp.auto_ml_problem_type_config.text_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10140
10201
  # resp.auto_ml_problem_type_config.text_classification_job_config.content_column #=> String
10141
10202
  # resp.auto_ml_problem_type_config.text_classification_job_config.target_label_column #=> String
10203
+ # resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config #=> Array
10204
+ # resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
10205
+ # resp.auto_ml_problem_type_config.tabular_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
10206
+ # resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_candidates #=> Integer
10207
+ # resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10208
+ # resp.auto_ml_problem_type_config.tabular_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10209
+ # resp.auto_ml_problem_type_config.tabular_job_config.feature_specification_s3_uri #=> String
10210
+ # resp.auto_ml_problem_type_config.tabular_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
10211
+ # resp.auto_ml_problem_type_config.tabular_job_config.generate_candidate_definitions_only #=> Boolean
10212
+ # resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10213
+ # resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
10214
+ # resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
10142
10215
  # resp.creation_time #=> Time
10143
10216
  # resp.end_time #=> Time
10144
10217
  # resp.last_modified_time #=> Time
@@ -10190,6 +10263,14 @@ module Aws::SageMaker
10190
10263
  # resp.security_config.vpc_config.security_group_ids[0] #=> String
10191
10264
  # resp.security_config.vpc_config.subnets #=> Array
10192
10265
  # resp.security_config.vpc_config.subnets[0] #=> String
10266
+ # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10267
+ # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10268
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10269
+ # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10270
+ # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10271
+ # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10272
+ # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10273
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
10193
10274
  #
10194
10275
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10195
10276
  #
@@ -23627,7 +23708,7 @@ module Aws::SageMaker
23627
23708
  params: params,
23628
23709
  config: config)
23629
23710
  context[:gem_name] = 'aws-sdk-sagemaker'
23630
- context[:gem_version] = '1.186.0'
23711
+ context[:gem_version] = '1.188.0'
23631
23712
  Seahorse::Client::Request.new(handlers, context)
23632
23713
  end
23633
23714
 
@@ -137,7 +137,10 @@ module Aws::SageMaker
137
137
  AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
138
138
  AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
139
139
  AutoMLProblemTypeConfig = Shapes::UnionShape.new(name: 'AutoMLProblemTypeConfig')
140
+ AutoMLProblemTypeConfigName = Shapes::StringShape.new(name: 'AutoMLProblemTypeConfigName')
141
+ AutoMLProblemTypeResolvedAttributes = Shapes::UnionShape.new(name: 'AutoMLProblemTypeResolvedAttributes')
140
142
  AutoMLProcessingUnit = Shapes::StringShape.new(name: 'AutoMLProcessingUnit')
143
+ AutoMLResolvedAttributes = Shapes::StructureShape.new(name: 'AutoMLResolvedAttributes')
141
144
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
142
145
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
143
146
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -171,6 +174,7 @@ module Aws::SageMaker
171
174
  CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
172
175
  CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
173
176
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
177
+ CandidateGenerationConfig = Shapes::StructureShape.new(name: 'CandidateGenerationConfig')
174
178
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
175
179
  CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
176
180
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
@@ -1786,6 +1790,8 @@ module Aws::SageMaker
1786
1790
  SuggestionQuery = Shapes::StructureShape.new(name: 'SuggestionQuery')
1787
1791
  TableFormat = Shapes::StringShape.new(name: 'TableFormat')
1788
1792
  TableName = Shapes::StringShape.new(name: 'TableName')
1793
+ TabularJobConfig = Shapes::StructureShape.new(name: 'TabularJobConfig')
1794
+ TabularResolvedAttributes = Shapes::StructureShape.new(name: 'TabularResolvedAttributes')
1789
1795
  Tag = Shapes::StructureShape.new(name: 'Tag')
1790
1796
  TagKey = Shapes::StringShape.new(name: 'TagKey')
1791
1797
  TagKeyList = Shapes::ListShape.new(name: 'TagKeyList')
@@ -2327,12 +2333,25 @@ module Aws::SageMaker
2327
2333
 
2328
2334
  AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
2329
2335
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2336
+ AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2330
2337
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2331
2338
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2332
2339
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2340
+ AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2333
2341
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2334
2342
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2335
2343
 
2344
+ AutoMLProblemTypeResolvedAttributes.add_member(:tabular_resolved_attributes, Shapes::ShapeRef.new(shape: TabularResolvedAttributes, location_name: "TabularResolvedAttributes"))
2345
+ AutoMLProblemTypeResolvedAttributes.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2346
+ AutoMLProblemTypeResolvedAttributes.add_member_subclass(:tabular_resolved_attributes, Types::AutoMLProblemTypeResolvedAttributes::TabularResolvedAttributes)
2347
+ AutoMLProblemTypeResolvedAttributes.add_member_subclass(:unknown, Types::AutoMLProblemTypeResolvedAttributes::Unknown)
2348
+ AutoMLProblemTypeResolvedAttributes.struct_class = Types::AutoMLProblemTypeResolvedAttributes
2349
+
2350
+ AutoMLResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
2351
+ AutoMLResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
2352
+ AutoMLResolvedAttributes.add_member(:auto_ml_problem_type_resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLProblemTypeResolvedAttributes, location_name: "AutoMLProblemTypeResolvedAttributes"))
2353
+ AutoMLResolvedAttributes.struct_class = Types::AutoMLResolvedAttributes
2354
+
2336
2355
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
2337
2356
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
2338
2357
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -2421,6 +2440,9 @@ module Aws::SageMaker
2421
2440
  CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
2422
2441
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
2423
2442
 
2443
+ CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
2444
+ CandidateGenerationConfig.struct_class = Types::CandidateGenerationConfig
2445
+
2424
2446
  CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
2425
2447
  CandidateProperties.add_member(:candidate_metrics, Shapes::ShapeRef.new(shape: MetricDataList, location_name: "CandidateMetrics"))
2426
2448
  CandidateProperties.struct_class = Types::CandidateProperties
@@ -3764,6 +3786,9 @@ module Aws::SageMaker
3764
3786
  DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
3765
3787
  DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
3766
3788
  DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
3789
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
3790
+ DescribeAutoMLJobV2Response.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: AutoMLResolvedAttributes, location_name: "ResolvedAttributes"))
3791
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_problem_type_config_name, Shapes::ShapeRef.new(shape: AutoMLProblemTypeConfigName, location_name: "AutoMLProblemTypeConfigName"))
3767
3792
  DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
3768
3793
 
3769
3794
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -8200,6 +8225,19 @@ module Aws::SageMaker
8200
8225
  SuggestionQuery.add_member(:property_name_query, Shapes::ShapeRef.new(shape: PropertyNameQuery, location_name: "PropertyNameQuery"))
8201
8226
  SuggestionQuery.struct_class = Types::SuggestionQuery
8202
8227
 
8228
+ TabularJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: CandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
8229
+ TabularJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8230
+ TabularJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
8231
+ TabularJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
8232
+ TabularJobConfig.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
8233
+ TabularJobConfig.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
8234
+ TabularJobConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8235
+ TabularJobConfig.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
8236
+ TabularJobConfig.struct_class = Types::TabularJobConfig
8237
+
8238
+ TabularResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
8239
+ TabularResolvedAttributes.struct_class = Types::TabularResolvedAttributes
8240
+
8203
8241
  Tag.add_member(:key, Shapes::ShapeRef.new(shape: TagKey, required: true, location_name: "Key"))
8204
8242
  Tag.add_member(:value, Shapes::ShapeRef.new(shape: TagValue, required: true, location_name: "Value"))
8205
8243
  Tag.struct_class = Types::Tag
@@ -9,6 +9,7 @@
9
9
 
10
10
 
11
11
  module Aws::SageMaker
12
+ # @api private
12
13
  module Endpoints
13
14
 
14
15
  class AddAssociation
@@ -1762,8 +1762,9 @@ module Aws::SageMaker
1762
1762
  # @!attribute [rw] inference_container_definitions
1763
1763
  # The mapping of all supported processing unit (CPU, GPU, etc...) to
1764
1764
  # inference container definitions for the candidate. This field is
1765
- # populated for the V2 API only (for example, for jobs created by
1766
- # calling `CreateAutoMLJobV2`).
1765
+ # populated for the AutoML jobs V2 (for example, for jobs created by
1766
+ # calling `CreateAutoMLJobV2`) related to image or text classification
1767
+ # problem types only.
1767
1768
  # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1768
1769
  #
1769
1770
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
@@ -2035,12 +2036,9 @@ module Aws::SageMaker
2035
2036
  # This structure specifies how to split the data into train and
2036
2037
  # validation datasets.
2037
2038
  #
2038
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
2039
- # API for Natural Language Processing problems (for example
2040
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
2041
- # type), the validation and training datasets must contain the same
2042
- # headers. Also, for V1 API jobs, the validation dataset must be less
2043
- # than 2 GB in size.
2039
+ # The validation and training datasets must contain the same headers.
2040
+ # For jobs created by calling `CreateAutoMLJob`, the validation dataset
2041
+ # must be less than 2 GB in size.
2044
2042
  #
2045
2043
  # @!attribute [rw] validation_fraction
2046
2044
  # The validation fraction (optional) is a float that specifies the
@@ -2077,14 +2075,12 @@ module Aws::SageMaker
2077
2075
  end
2078
2076
 
2079
2077
  # A channel is a named input source that training algorithms can
2080
- # consume. This channel is used for the non tabular training data of an
2081
- # AutoML job using the V2 API. For tabular training data, see [
2082
- # AutoMLChannel][1]. For more information, see [ Channel][2].
2078
+ # consume. This channel is used for AutoML jobs V2 (jobs created by
2079
+ # calling [CreateAutoMLJobV2][1]).
2083
2080
  #
2084
2081
  #
2085
2082
  #
2086
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
2087
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
2083
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
2088
2084
  #
2089
2085
  # @!attribute [rw] channel_type
2090
2086
  # The type of channel. Defines whether the data are used for training
@@ -2096,23 +2092,27 @@ module Aws::SageMaker
2096
2092
  # The content type of the data from the input source. The following
2097
2093
  # are the allowed content types for different problems:
2098
2094
  #
2099
- # * ImageClassification: `image/png`, `image/jpeg`, or `image/*`. The
2100
- # default value is `image/*`.
2095
+ # * For Tabular problem types: `text/csv;header=present` or
2096
+ # `x-application/vnd.amazon+parquet`. The default value is
2097
+ # `text/csv;header=present`.
2101
2098
  #
2102
- # * TextClassification: `text/csv;header=present` or
2099
+ # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2100
+ # The default value is `image/*`.
2101
+ #
2102
+ # * For TextClassification: `text/csv;header=present` or
2103
2103
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2104
  # `text/csv;header=present`.
2105
2105
  # @return [String]
2106
2106
  #
2107
2107
  # @!attribute [rw] compression_type
2108
- # The allowed compression types depend on the input format. We allow
2109
- # the compression type `Gzip` for `S3Prefix` inputs only. For all
2110
- # other inputs, the compression type should be `None`. If no
2111
- # compression type is provided, we default to `None`.
2108
+ # The allowed compression types depend on the input format and problem
2109
+ # type. We allow the compression type `Gzip` for `S3Prefix` inputs on
2110
+ # tabular data only. For all other inputs, the compression type should
2111
+ # be `None`. If no compression type is provided, we default to `None`.
2112
2112
  # @return [String]
2113
2113
  #
2114
2114
  # @!attribute [rw] data_source
2115
- # The data source for an AutoML channel.
2115
+ # The data source for an AutoML channel (Required).
2116
2116
  # @return [Types::AutoMLDataSource]
2117
2117
  #
2118
2118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
@@ -2132,7 +2132,7 @@ module Aws::SageMaker
2132
2132
  # @!attribute [rw] max_candidates
2133
2133
  # The maximum number of times a training job is allowed to run.
2134
2134
  #
2135
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2135
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
2136
  # supported value is 1.
2137
2137
  # @return [Integer]
2138
2138
  #
@@ -2142,7 +2142,7 @@ module Aws::SageMaker
2142
2142
  # tuning job. For more information, see the [StoppingCondition][1]
2143
2143
  # used by the [CreateHyperParameterTuningJob][2] action.
2144
2144
  #
2145
- # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2145
+ # For job V2s (jobs created by calling `CreateAutoMLJobV2`), this
2146
2146
  # field controls the runtime of the job candidate.
2147
2147
  #
2148
2148
  #
@@ -2221,7 +2221,7 @@ module Aws::SageMaker
2221
2221
  #
2222
2222
  #
2223
2223
  #
2224
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2224
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
2225
2225
  # @return [String]
2226
2226
  #
2227
2227
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
@@ -2237,8 +2237,6 @@ module Aws::SageMaker
2237
2237
  end
2238
2238
 
2239
2239
  # Specifies a metric to minimize or maximize as the objective of a job.
2240
- # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2241
- # support `Accuracy` only.
2242
2240
  #
2243
2241
  # @!attribute [rw] metric_name
2244
2242
  # The name of the objective metric used to measure the predictive
@@ -2253,11 +2251,15 @@ module Aws::SageMaker
2253
2251
  # If you do not specify a metric explicitly, the default behavior is
2254
2252
  # to automatically use:
2255
2253
  #
2256
- # * `MSE`: for regression.
2254
+ # * For tabular problem types:
2257
2255
  #
2258
- # * `F1`: for binary classification
2256
+ # * Regression: `MSE`.
2259
2257
  #
2260
- # * `Accuracy`: for multiclass classification.
2258
+ # * Binary classification: `F1`.
2259
+ #
2260
+ # * Multiclass classification: `Accuracy`.
2261
+ #
2262
+ # * For image or text classification problem types: `Accuracy`
2261
2263
  #
2262
2264
  #
2263
2265
  #
@@ -2375,28 +2377,34 @@ module Aws::SageMaker
2375
2377
  end
2376
2378
 
2377
2379
  # A collection of settings specific to the problem type used to
2378
- # configure an AutoML job using the V2 API. There must be one and only
2379
- # one config of the following type.
2380
+ # configure an AutoML job V2. There must be one and only one config of
2381
+ # the following type.
2380
2382
  #
2381
2383
  # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2382
2384
  #
2383
2385
  # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2384
2386
  #
2385
2387
  # @!attribute [rw] image_classification_job_config
2386
- # Settings used to configure an AutoML job using the V2 API for the
2387
- # image classification problem type.
2388
+ # Settings used to configure an AutoML job V2 for the image
2389
+ # classification problem type.
2388
2390
  # @return [Types::ImageClassificationJobConfig]
2389
2391
  #
2390
2392
  # @!attribute [rw] text_classification_job_config
2391
- # Settings used to configure an AutoML job using the V2 API for the
2392
- # text classification problem type.
2393
+ # Settings used to configure an AutoML job V2 for the text
2394
+ # classification problem type.
2393
2395
  # @return [Types::TextClassificationJobConfig]
2394
2396
  #
2397
+ # @!attribute [rw] tabular_job_config
2398
+ # Settings used to configure an AutoML job V2 for a tabular problem
2399
+ # type (regression, classification).
2400
+ # @return [Types::TabularJobConfig]
2401
+ #
2395
2402
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2396
2403
  #
2397
2404
  class AutoMLProblemTypeConfig < Struct.new(
2398
2405
  :image_classification_job_config,
2399
2406
  :text_classification_job_config,
2407
+ :tabular_job_config,
2400
2408
  :unknown)
2401
2409
  SENSITIVE = []
2402
2410
  include Aws::Structure
@@ -2404,9 +2412,58 @@ module Aws::SageMaker
2404
2412
 
2405
2413
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2406
2414
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
+ class TabularJobConfig < AutoMLProblemTypeConfig; end
2407
2416
  class Unknown < AutoMLProblemTypeConfig; end
2408
2417
  end
2409
2418
 
2419
+ # The resolved attributes specific to the problem type of an AutoML job
2420
+ # V2.
2421
+ #
2422
+ # @note AutoMLProblemTypeResolvedAttributes is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeResolvedAttributes corresponding to the set member.
2423
+ #
2424
+ # @!attribute [rw] tabular_resolved_attributes
2425
+ # Defines the resolved attributes for the `TABULAR` problem type.
2426
+ # @return [Types::TabularResolvedAttributes]
2427
+ #
2428
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeResolvedAttributes AWS API Documentation
2429
+ #
2430
+ class AutoMLProblemTypeResolvedAttributes < Struct.new(
2431
+ :tabular_resolved_attributes,
2432
+ :unknown)
2433
+ SENSITIVE = []
2434
+ include Aws::Structure
2435
+ include Aws::Structure::Union
2436
+
2437
+ class TabularResolvedAttributes < AutoMLProblemTypeResolvedAttributes; end
2438
+ class Unknown < AutoMLProblemTypeResolvedAttributes; end
2439
+ end
2440
+
2441
+ # The resolved attributes used to configure an AutoML job V2.
2442
+ #
2443
+ # @!attribute [rw] auto_ml_job_objective
2444
+ # Specifies a metric to minimize or maximize as the objective of a
2445
+ # job.
2446
+ # @return [Types::AutoMLJobObjective]
2447
+ #
2448
+ # @!attribute [rw] completion_criteria
2449
+ # How long a job is allowed to run, or how many candidates a job is
2450
+ # allowed to generate.
2451
+ # @return [Types::AutoMLJobCompletionCriteria]
2452
+ #
2453
+ # @!attribute [rw] auto_ml_problem_type_resolved_attributes
2454
+ # Defines the resolved attributes specific to a problem type.
2455
+ # @return [Types::AutoMLProblemTypeResolvedAttributes]
2456
+ #
2457
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLResolvedAttributes AWS API Documentation
2458
+ #
2459
+ class AutoMLResolvedAttributes < Struct.new(
2460
+ :auto_ml_job_objective,
2461
+ :completion_criteria,
2462
+ :auto_ml_problem_type_resolved_attributes)
2463
+ SENSITIVE = []
2464
+ include Aws::Structure
2465
+ end
2466
+
2410
2467
  # Describes the Amazon S3 data source.
2411
2468
  #
2412
2469
  # @!attribute [rw] s3_data_type
@@ -2939,6 +2996,50 @@ module Aws::SageMaker
2939
2996
  include Aws::Structure
2940
2997
  end
2941
2998
 
2999
+ # Stores the configuration information for how model candidates are
3000
+ # generated using an AutoML job V2.
3001
+ #
3002
+ # @!attribute [rw] algorithms_config
3003
+ # Stores the configuration information for the selection of algorithms
3004
+ # used to train model candidates on tabular data.
3005
+ #
3006
+ # The list of available algorithms to choose from depends on the
3007
+ # training mode set in [ `TabularJobConfig.Mode` ][1].
3008
+ #
3009
+ # * `AlgorithmsConfig` should not be set in `AUTO` training mode.
3010
+ #
3011
+ # * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
3012
+ # attribute must be set and one only.
3013
+ #
3014
+ # If the list of algorithms provided as values for
3015
+ # `AutoMLAlgorithms` is empty, `CandidateGenerationConfig` uses the
3016
+ # full set of algorithms for the given training mode.
3017
+ #
3018
+ # * When `AlgorithmsConfig` is not provided,
3019
+ # `CandidateGenerationConfig` uses the full set of algorithms for
3020
+ # the given training mode.
3021
+ #
3022
+ # For the list of all algorithms per problem type and training mode,
3023
+ # see [ AutoMLAlgorithmConfig][2].
3024
+ #
3025
+ # For more information on each algorithm, see the [Algorithm
3026
+ # support][3] section in Autopilot developer guide.
3027
+ #
3028
+ #
3029
+ #
3030
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
3031
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
3032
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
3033
+ # @return [Array<Types::AutoMLAlgorithmConfig>]
3034
+ #
3035
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateGenerationConfig AWS API Documentation
3036
+ #
3037
+ class CandidateGenerationConfig < Struct.new(
3038
+ :algorithms_config)
3039
+ SENSITIVE = []
3040
+ include Aws::Structure
3041
+ end
3042
+
2942
3043
  # The properties of an AutoML candidate job.
2943
3044
  #
2944
3045
  # @!attribute [rw] candidate_artifact_locations
@@ -4525,15 +4626,13 @@ module Aws::SageMaker
4525
4626
  # @return [String]
4526
4627
  #
4527
4628
  # @!attribute [rw] auto_ml_job_objective
4528
- # Defines the objective metric used to measure the predictive quality
4529
- # of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
4530
- # and Autopilot infers whether to minimize or maximize it. For
4531
- # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
4629
+ # Specifies a metric to minimize or maximize as the objective of a
4630
+ # job. If not specified, the default objective metric depends on the
4631
+ # problem type. See [AutoMLJobObjective][1] for the default values.
4532
4632
  #
4533
4633
  #
4534
4634
  #
4535
4635
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4536
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4537
4636
  # @return [Types::AutoMLJobObjective]
4538
4637
  #
4539
4638
  # @!attribute [rw] auto_ml_job_config
@@ -4607,10 +4706,12 @@ module Aws::SageMaker
4607
4706
  # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4608
4707
  # formats depend on the problem type:
4609
4708
  #
4610
- # * ImageClassification: S3Prefix, `ManifestFile`,
4611
- # `AugmentedManifestFile`
4709
+ # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4612
4710
  #
4613
- # * TextClassification: S3Prefix
4711
+ # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4712
+ # `AugmentedManifestFile`.
4713
+ #
4714
+ # * For TextClassification: `S3Prefix`.
4614
4715
  #
4615
4716
  #
4616
4717
  #
@@ -4625,6 +4726,13 @@ module Aws::SageMaker
4625
4726
  # @!attribute [rw] auto_ml_problem_type_config
4626
4727
  # Defines the configuration settings of one of the supported problem
4627
4728
  # types.
4729
+ #
4730
+ # <note markdown="1"> For tabular problem types, you must either specify the type of
4731
+ # supervised learning problem in `AutoMLProblemTypeConfig`
4732
+ # (`TabularJobConfig.ProblemType`) and provide the
4733
+ # `AutoMLJobObjective`, or none at all.
4734
+ #
4735
+ # </note>
4628
4736
  # @return [Types::AutoMLProblemTypeConfig]
4629
4737
  #
4630
4738
  # @!attribute [rw] role_arn
@@ -4649,11 +4757,20 @@ module Aws::SageMaker
4649
4757
  #
4650
4758
  # @!attribute [rw] auto_ml_job_objective
4651
4759
  # Specifies a metric to minimize or maximize as the objective of a
4652
- # job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
4760
+ # job. If not specified, the default objective metric depends on the
4761
+ # problem type. For the list of default values per problem type, see
4762
+ # [AutoMLJobObjective][1].
4763
+ #
4764
+ # <note markdown="1"> For tabular problem types, you must either provide the
4765
+ # `AutoMLJobObjective` and indicate the type of supervised learning
4766
+ # problem in `AutoMLProblemTypeConfig`
4767
+ # (`TabularJobConfig.ProblemType`), or none.
4768
+ #
4769
+ # </note>
4653
4770
  #
4654
4771
  #
4655
4772
  #
4656
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4773
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4657
4774
  # @return [Types::AutoMLJobObjective]
4658
4775
  #
4659
4776
  # @!attribute [rw] model_deploy_config
@@ -4665,12 +4782,9 @@ module Aws::SageMaker
4665
4782
  # This structure specifies how to split the data into train and
4666
4783
  # validation datasets.
4667
4784
  #
4668
- # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4669
- # V2 API for Natural Language Processing problems (for example
4670
- # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4671
- # type), the validation and training datasets must contain the same
4672
- # headers. Also, for V1 API jobs, the validation dataset must be less
4673
- # than 2 GB in size.
4785
+ # The validation and training datasets must contain the same headers.
4786
+ # For jobs created by calling `CreateAutoMLJob`, the validation
4787
+ # dataset must be less than 2 GB in size.
4674
4788
  # @return [Types::AutoMLDataSplitConfig]
4675
4789
  #
4676
4790
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -10636,8 +10750,7 @@ module Aws::SageMaker
10636
10750
  # @!attribute [rw] resolved_attributes
10637
10751
  # Contains `ProblemType`, `AutoMLJobObjective`, and
10638
10752
  # `CompletionCriteria`. If you do not provide these values, they are
10639
- # auto-inferred. If you do provide them, the values used are the ones
10640
- # you provide.
10753
+ # inferred.
10641
10754
  # @return [Types::ResolvedAttributes]
10642
10755
  #
10643
10756
  # @!attribute [rw] model_deploy_config
@@ -10678,7 +10791,7 @@ module Aws::SageMaker
10678
10791
  end
10679
10792
 
10680
10793
  # @!attribute [rw] auto_ml_job_name
10681
- # Requests information about an AutoML V2 job using its unique name.
10794
+ # Requests information about an AutoML job V2 using its unique name.
10682
10795
  # @return [String]
10683
10796
  #
10684
10797
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
@@ -10690,11 +10803,11 @@ module Aws::SageMaker
10690
10803
  end
10691
10804
 
10692
10805
  # @!attribute [rw] auto_ml_job_name
10693
- # Returns the name of the AutoML V2 job.
10806
+ # Returns the name of the AutoML job V2.
10694
10807
  # @return [String]
10695
10808
  #
10696
10809
  # @!attribute [rw] auto_ml_job_arn
10697
- # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10810
+ # Returns the Amazon Resource Name (ARN) of the AutoML job V2.
10698
10811
  # @return [String]
10699
10812
  #
10700
10813
  # @!attribute [rw] auto_ml_job_input_data_config
@@ -10718,15 +10831,15 @@ module Aws::SageMaker
10718
10831
  #
10719
10832
  # @!attribute [rw] auto_ml_problem_type_config
10720
10833
  # Returns the configuration settings of the problem type set for the
10721
- # AutoML V2 job.
10834
+ # AutoML job V2.
10722
10835
  # @return [Types::AutoMLProblemTypeConfig]
10723
10836
  #
10724
10837
  # @!attribute [rw] creation_time
10725
- # Returns the creation time of the AutoML V2 job.
10838
+ # Returns the creation time of the AutoML job V2.
10726
10839
  # @return [Time]
10727
10840
  #
10728
10841
  # @!attribute [rw] end_time
10729
- # Returns the end time of the AutoML V2 job.
10842
+ # Returns the end time of the AutoML job V2.
10730
10843
  # @return [Time]
10731
10844
  #
10732
10845
  # @!attribute [rw] last_modified_time
@@ -10734,13 +10847,13 @@ module Aws::SageMaker
10734
10847
  # @return [Time]
10735
10848
  #
10736
10849
  # @!attribute [rw] failure_reason
10737
- # Returns the reason for the failure of the AutoML V2 job, when
10850
+ # Returns the reason for the failure of the AutoML job V2, when
10738
10851
  # applicable.
10739
10852
  # @return [String]
10740
10853
  #
10741
10854
  # @!attribute [rw] partial_failure_reasons
10742
- # Returns a list of reasons for partial failures within an AutoML V2
10743
- # job.
10855
+ # Returns a list of reasons for partial failures within an AutoML job
10856
+ # V2.
10744
10857
  # @return [Array<Types::AutoMLPartialFailureReason>]
10745
10858
  #
10746
10859
  # @!attribute [rw] best_candidate
@@ -10749,11 +10862,11 @@ module Aws::SageMaker
10749
10862
  # @return [Types::AutoMLCandidate]
10750
10863
  #
10751
10864
  # @!attribute [rw] auto_ml_job_status
10752
- # Returns the status of the AutoML V2 job.
10865
+ # Returns the status of the AutoML job V2.
10753
10866
  # @return [String]
10754
10867
  #
10755
10868
  # @!attribute [rw] auto_ml_job_secondary_status
10756
- # Returns the secondary status of the AutoML V2 job.
10869
+ # Returns the secondary status of the AutoML job V2.
10757
10870
  # @return [String]
10758
10871
  #
10759
10872
  # @!attribute [rw] model_deploy_config
@@ -10775,6 +10888,19 @@ module Aws::SageMaker
10775
10888
  # VPC settings.
10776
10889
  # @return [Types::AutoMLSecurityConfig]
10777
10890
  #
10891
+ # @!attribute [rw] auto_ml_job_artifacts
10892
+ # The artifacts that are generated during an AutoML job.
10893
+ # @return [Types::AutoMLJobArtifacts]
10894
+ #
10895
+ # @!attribute [rw] resolved_attributes
10896
+ # Returns the resolved attributes used by the AutoML job V2.
10897
+ # @return [Types::AutoMLResolvedAttributes]
10898
+ #
10899
+ # @!attribute [rw] auto_ml_problem_type_config_name
10900
+ # Returns the name of the problem type configuration set for the
10901
+ # AutoML job V2.
10902
+ # @return [String]
10903
+ #
10778
10904
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10779
10905
  #
10780
10906
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -10796,7 +10922,10 @@ module Aws::SageMaker
10796
10922
  :model_deploy_config,
10797
10923
  :model_deploy_result,
10798
10924
  :data_split_config,
10799
- :security_config)
10925
+ :security_config,
10926
+ :auto_ml_job_artifacts,
10927
+ :resolved_attributes,
10928
+ :auto_ml_problem_type_config_name)
10800
10929
  SENSITIVE = []
10801
10930
  include Aws::Structure
10802
10931
  end
@@ -20733,7 +20862,7 @@ module Aws::SageMaker
20733
20862
  end
20734
20863
 
20735
20864
  # Stores the configuration information for the image classification
20736
- # problem of an AutoML job using the V2 API.
20865
+ # problem of an AutoML job V2.
20737
20866
  #
20738
20867
  # @!attribute [rw] completion_criteria
20739
20868
  # How long a job is allowed to run, or how many candidates a job is
@@ -30828,6 +30957,11 @@ module Aws::SageMaker
30828
30957
  # using [TargetPlatform][1] fields. It can be used instead of
30829
30958
  # `TargetPlatform`.
30830
30959
  #
30960
+ # <note markdown="1"> Currently `ml_trn1` is available only in US East (N. Virginia)
30961
+ # Region, and `ml_inf2` is available only in US East (Ohio) Region.
30962
+ #
30963
+ # </note>
30964
+ #
30831
30965
  #
30832
30966
  #
30833
30967
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
@@ -34402,8 +34536,7 @@ module Aws::SageMaker
34402
34536
  #
34403
34537
  # @!attribute [rw] auto_ml_job_objective
34404
34538
  # Specifies a metric to minimize or maximize as the objective of a
34405
- # job. V2 API jobs (for example jobs created by calling
34406
- # `CreateAutoMLJobV2`), support `Accuracy` only.
34539
+ # job.
34407
34540
  # @return [Types::AutoMLJobObjective]
34408
34541
  #
34409
34542
  # @!attribute [rw] problem_type
@@ -36307,6 +36440,161 @@ module Aws::SageMaker
36307
36440
  include Aws::Structure
36308
36441
  end
36309
36442
 
36443
+ # The collection of settings used by an AutoML job V2 for the `TABULAR`
36444
+ # problem type.
36445
+ #
36446
+ # @!attribute [rw] candidate_generation_config
36447
+ # The configuration information of how model candidates are generated.
36448
+ # @return [Types::CandidateGenerationConfig]
36449
+ #
36450
+ # @!attribute [rw] completion_criteria
36451
+ # How long a job is allowed to run, or how many candidates a job is
36452
+ # allowed to generate.
36453
+ # @return [Types::AutoMLJobCompletionCriteria]
36454
+ #
36455
+ # @!attribute [rw] feature_specification_s3_uri
36456
+ # A URL to the Amazon S3 data source containing selected features from
36457
+ # the input data source to run an Autopilot job V2. You can input
36458
+ # `FeatureAttributeNames` (optional) in JSON format as shown below:
36459
+ #
36460
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
36461
+ #
36462
+ # You can also specify the data type of the feature (optional) in the
36463
+ # format shown below:
36464
+ #
36465
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
36466
+ # \} \}`
36467
+ #
36468
+ # <note markdown="1"> These column keys may not include the target column.
36469
+ #
36470
+ # </note>
36471
+ #
36472
+ # In ensembling mode, Autopilot only supports the following data
36473
+ # types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
36474
+ # mode, Autopilot can support `numeric`, `categorical`, `text`,
36475
+ # `datetime`, and `sequence`.
36476
+ #
36477
+ # If only `FeatureDataTypes` is provided, the column keys (`col1`,
36478
+ # `col2`,..) should be a subset of the column names in the input data.
36479
+ #
36480
+ # If both `FeatureDataTypes` and `FeatureAttributeNames` are provided,
36481
+ # then the column keys should be a subset of the column names provided
36482
+ # in `FeatureAttributeNames`.
36483
+ #
36484
+ # The key name `FeatureAttributeNames` is fixed. The values listed in
36485
+ # `["col1", "col2", ...]` are case sensitive and should be a list of
36486
+ # strings containing unique values that are a subset of the column
36487
+ # names in the input data. The list of columns provided must not
36488
+ # include the target column.
36489
+ # @return [String]
36490
+ #
36491
+ # @!attribute [rw] mode
36492
+ # The method that Autopilot uses to train the data. You can either
36493
+ # specify the mode manually or let Autopilot choose for you based on
36494
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
36495
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
36496
+ # `HYPERPARAMETER_TUNING` for larger ones.
36497
+ #
36498
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
36499
+ # classification and regression tasks directly from your dataset. This
36500
+ # machine learning mode combines several base models to produce an
36501
+ # optimal predictive model. It then uses a stacking ensemble method to
36502
+ # combine predictions from contributing members. A multi-stack
36503
+ # ensemble model can provide better performance over a single model by
36504
+ # combining the predictive capabilities of multiple models. See
36505
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36506
+ # by `ENSEMBLING` mode.
36507
+ #
36508
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
36509
+ # to train the best version of a model. HPO automatically selects an
36510
+ # algorithm for the type of problem you want to solve. Then HPO finds
36511
+ # the best hyperparameters according to your objective metric. See
36512
+ # [Autopilot algorithm support][1] for a list of algorithms supported
36513
+ # by `HYPERPARAMETER_TUNING` mode.
36514
+ #
36515
+ #
36516
+ #
36517
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
36518
+ # @return [String]
36519
+ #
36520
+ # @!attribute [rw] generate_candidate_definitions_only
36521
+ # Generates possible candidates without training the models. A model
36522
+ # candidate is a combination of data preprocessors, algorithms, and
36523
+ # algorithm parameter settings.
36524
+ # @return [Boolean]
36525
+ #
36526
+ # @!attribute [rw] problem_type
36527
+ # The type of supervised learning problem available for the model
36528
+ # candidates of the AutoML job V2. For more information, see [ Amazon
36529
+ # SageMaker Autopilot problem types][1].
36530
+ #
36531
+ #
36532
+ #
36533
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36534
+ # @return [String]
36535
+ #
36536
+ # @!attribute [rw] target_attribute_name
36537
+ # The name of the target variable in supervised learning, usually
36538
+ # represented by 'y'.
36539
+ # @return [String]
36540
+ #
36541
+ # @!attribute [rw] sample_weight_attribute_name
36542
+ # If specified, this column name indicates which column of the dataset
36543
+ # should be treated as sample weights for use by the objective metric
36544
+ # during the training, evaluation, and the selection of the best
36545
+ # model. This column is not considered as a predictive feature. For
36546
+ # more information on Autopilot metrics, see [Metrics and
36547
+ # validation][1].
36548
+ #
36549
+ # Sample weights should be numeric, non-negative, with larger values
36550
+ # indicating which rows are more important than others. Data points
36551
+ # that have invalid or no weight value are excluded.
36552
+ #
36553
+ # Support for sample weights is available in [Ensembling][2] mode
36554
+ # only.
36555
+ #
36556
+ #
36557
+ #
36558
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
36559
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
36560
+ # @return [String]
36561
+ #
36562
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularJobConfig AWS API Documentation
36563
+ #
36564
+ class TabularJobConfig < Struct.new(
36565
+ :candidate_generation_config,
36566
+ :completion_criteria,
36567
+ :feature_specification_s3_uri,
36568
+ :mode,
36569
+ :generate_candidate_definitions_only,
36570
+ :problem_type,
36571
+ :target_attribute_name,
36572
+ :sample_weight_attribute_name)
36573
+ SENSITIVE = []
36574
+ include Aws::Structure
36575
+ end
36576
+
36577
+ # The resolved attributes specific to the `TABULAR` problem type.
36578
+ #
36579
+ # @!attribute [rw] problem_type
36580
+ # The type of supervised learning problem available for the model
36581
+ # candidates of the AutoML job V2 (Binary Classification, Multiclass
36582
+ # Classification, Regression). For more information, see [ Amazon
36583
+ # SageMaker Autopilot problem types][1].
36584
+ #
36585
+ #
36586
+ #
36587
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
36588
+ # @return [String]
36589
+ #
36590
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TabularResolvedAttributes AWS API Documentation
36591
+ #
36592
+ class TabularResolvedAttributes < Struct.new(
36593
+ :problem_type)
36594
+ SENSITIVE = []
36595
+ include Aws::Structure
36596
+ end
36597
+
36310
36598
  # A tag object that consists of a key and an optional value, used to
36311
36599
  # manage metadata for SageMaker Amazon Web Services resources.
36312
36600
  #
@@ -36432,7 +36720,7 @@ module Aws::SageMaker
36432
36720
  end
36433
36721
 
36434
36722
  # Stores the configuration information for the text classification
36435
- # problem of an AutoML job using the V2 API.
36723
+ # problem of an AutoML job V2.
36436
36724
  #
36437
36725
  # @!attribute [rw] completion_criteria
36438
36726
  # How long a job is allowed to run, or how many candidates a job is
@@ -36441,12 +36729,13 @@ module Aws::SageMaker
36441
36729
  #
36442
36730
  # @!attribute [rw] content_column
36443
36731
  # The name of the column used to provide the sentences to be
36444
- # classified. It should not be the same as the target column.
36732
+ # classified. It should not be the same as the target column
36733
+ # (Required).
36445
36734
  # @return [String]
36446
36735
  #
36447
36736
  # @!attribute [rw] target_label_column
36448
36737
  # The name of the column used to provide the class labels. It should
36449
- # not be same as the content column.
36738
+ # not be same as the content column (Required).
36450
36739
  # @return [String]
36451
36740
  #
36452
36741
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.186.0'
56
+ GEM_VERSION = '1.188.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.186.0
4
+ version: 1.188.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-12 00:00:00.000000000 Z
11
+ date: 2023-06-19 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core