aws-sdk-sagemaker 1.179.0 → 1.181.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 5f41b686302579ebb3a0e6b8175acd6d78c6656eb125cf8e85fb5315484f6e76
4
- data.tar.gz: b5cb5ebd11a722cebbb09a48933276c4e6ab3d0fbb5b9a71e84ea1b96078e669
3
+ metadata.gz: 073d62a75d1b1b08105c7aa45d6433b51aacddcf7e6d82e38449cfc830944add
4
+ data.tar.gz: 5f063777c6173ceecd31b8a7d1ab6e985eeb965d1f00fc4f673e7d1f58929447
5
5
  SHA512:
6
- metadata.gz: 65bdd9a23be09eb708f0fba08cb296a288de02d12a6625a63311f34fbb06596da008a07defb47cc691c0171d7cb4703c0e34faafa260634b9fc73066d9851d8f
7
- data.tar.gz: ba3a27abf772d6f51ee39939769e11f9ad34cc013ab6009a916515727bf5bbf50bd9575fc1391b2a0c870ab40d447200bb454ec1d6d95813affb2e5a39821b2c
6
+ metadata.gz: 8178fc8c0b99b0ab498efa45ff0392b7c8384d233f43c946a3b448eacc459cff239c8e39b2901d8a0a06b8178f21a99d99d43dac93d25a8a3ce5edc7e8a0f5b4
7
+ data.tar.gz: 3e7ba1060914d8b14b7176be23eaa55a577d36652dc8db88584094db0ff74faf1f7595ba85bbc8a043582211bfe8b5978ee39ee79e5201ffb4b7fc03d09e8429
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.181.0 (2023-05-25)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports enabling Autotune for tuning jobs which can choose tuning job configurations.
8
+
9
+ 1.180.0 (2023-05-24)
10
+ ------------------
11
+
12
+ * Feature - SageMaker now provides an instantaneous deployment recommendation through the DescribeModel API
13
+
4
14
  1.179.0 (2023-05-23)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.179.0
1
+ 1.181.0
@@ -3510,6 +3510,40 @@ module Aws::SageMaker
3510
3510
  #
3511
3511
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
3512
3512
  #
3513
+ # @option params [Types::Autotune] :autotune
3514
+ # Configures SageMaker Automatic model tuning (AMT) to automatically
3515
+ # find optimal parameters for the following fields:
3516
+ #
3517
+ # * [ParameterRanges][1]: The names and ranges of parameters that a
3518
+ # hyperparameter tuning job can optimize.
3519
+ #
3520
+ # * [ResourceLimits][2]: The maximum resources that can be used for a
3521
+ # training job. These resources include the maximum number of training
3522
+ # jobs, the maximum runtime of a tuning job, and the maximum number of
3523
+ # training jobs to run at the same time.
3524
+ #
3525
+ # * [TrainingJobEarlyStoppingType][3]: A flag that specifies whether or
3526
+ # not to use early stopping for training jobs launched by a
3527
+ # hyperparameter tuning job.
3528
+ #
3529
+ # * [RetryStrategy][4]: The number of times to retry a training job.
3530
+ #
3531
+ # * [Strategy][5]: Specifies how hyperparameter tuning chooses the
3532
+ # combinations of hyperparameter values to use for the training jobs
3533
+ # that it launches.
3534
+ #
3535
+ # * [ConvergenceDetected][6]: A flag to indicate that Automatic model
3536
+ # tuning (AMT) has detected model convergence.
3537
+ #
3538
+ #
3539
+ #
3540
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges
3541
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
3542
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType
3543
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy
3544
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
3545
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html
3546
+ #
3513
3547
  # @return [Types::CreateHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3514
3548
  #
3515
3549
  # * {Types::CreateHyperParameterTuningJobResponse#hyper_parameter_tuning_job_arn #hyper_parameter_tuning_job_arn} => String
@@ -3558,6 +3592,12 @@ module Aws::SageMaker
3558
3592
  # values: ["ParameterValue"], # required
3559
3593
  # },
3560
3594
  # ],
3595
+ # auto_parameters: [
3596
+ # {
3597
+ # name: "ParameterKey", # required
3598
+ # value_hint: "ParameterValue", # required
3599
+ # },
3600
+ # ],
3561
3601
  # },
3562
3602
  # training_job_early_stopping_type: "Off", # accepts Off, Auto
3563
3603
  # tuning_job_completion_criteria: {
@@ -3600,6 +3640,12 @@ module Aws::SageMaker
3600
3640
  # values: ["ParameterValue"], # required
3601
3641
  # },
3602
3642
  # ],
3643
+ # auto_parameters: [
3644
+ # {
3645
+ # name: "ParameterKey", # required
3646
+ # value_hint: "ParameterValue", # required
3647
+ # },
3648
+ # ],
3603
3649
  # },
3604
3650
  # static_hyper_parameters: {
3605
3651
  # "HyperParameterKey" => "HyperParameterValue",
@@ -3727,6 +3773,12 @@ module Aws::SageMaker
3727
3773
  # values: ["ParameterValue"], # required
3728
3774
  # },
3729
3775
  # ],
3776
+ # auto_parameters: [
3777
+ # {
3778
+ # name: "ParameterKey", # required
3779
+ # value_hint: "ParameterValue", # required
3780
+ # },
3781
+ # ],
3730
3782
  # },
3731
3783
  # static_hyper_parameters: {
3732
3784
  # "HyperParameterKey" => "HyperParameterValue",
@@ -3839,6 +3891,9 @@ module Aws::SageMaker
3839
3891
  # value: "TagValue", # required
3840
3892
  # },
3841
3893
  # ],
3894
+ # autotune: {
3895
+ # mode: "Enabled", # required, accepts Enabled
3896
+ # },
3842
3897
  # })
3843
3898
  #
3844
3899
  # @example Response structure
@@ -11495,7 +11550,9 @@ module Aws::SageMaker
11495
11550
  req.send_request(options)
11496
11551
  end
11497
11552
 
11498
- # Gets a description of a hyperparameter tuning job.
11553
+ # Returns a description of a hyperparameter tuning job, depending on the
11554
+ # fields selected. These fields can include the name, Amazon Resource
11555
+ # Name (ARN), job status of your tuning job and more.
11499
11556
  #
11500
11557
  # @option params [required, String] :hyper_parameter_tuning_job_name
11501
11558
  # The name of the tuning job.
@@ -11519,6 +11576,7 @@ module Aws::SageMaker
11519
11576
  # * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
11520
11577
  # * {Types::DescribeHyperParameterTuningJobResponse#tuning_job_completion_details #tuning_job_completion_details} => Types::HyperParameterTuningJobCompletionDetails
11521
11578
  # * {Types::DescribeHyperParameterTuningJobResponse#consumed_resources #consumed_resources} => Types::HyperParameterTuningJobConsumedResources
11579
+ # * {Types::DescribeHyperParameterTuningJobResponse#autotune #autotune} => Types::Autotune
11522
11580
  #
11523
11581
  # @example Request syntax with placeholder values
11524
11582
  #
@@ -11552,6 +11610,9 @@ module Aws::SageMaker
11552
11610
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
11553
11611
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
11554
11612
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
11613
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.auto_parameters #=> Array
11614
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.auto_parameters[0].name #=> String
11615
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.auto_parameters[0].value_hint #=> String
11555
11616
  # resp.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
11556
11617
  # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
11557
11618
  # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.best_objective_not_improving.max_number_of_training_jobs_not_improving #=> Integer
@@ -11574,6 +11635,9 @@ module Aws::SageMaker
11574
11635
  # resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
11575
11636
  # resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
11576
11637
  # resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
11638
+ # resp.training_job_definition.hyper_parameter_ranges.auto_parameters #=> Array
11639
+ # resp.training_job_definition.hyper_parameter_ranges.auto_parameters[0].name #=> String
11640
+ # resp.training_job_definition.hyper_parameter_ranges.auto_parameters[0].value_hint #=> String
11577
11641
  # resp.training_job_definition.static_hyper_parameters #=> Hash
11578
11642
  # resp.training_job_definition.static_hyper_parameters["HyperParameterKey"] #=> String
11579
11643
  # resp.training_job_definition.algorithm_specification.training_image #=> String
@@ -11653,6 +11717,9 @@ module Aws::SageMaker
11653
11717
  # resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
11654
11718
  # resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
11655
11719
  # resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
11720
+ # resp.training_job_definitions[0].hyper_parameter_ranges.auto_parameters #=> Array
11721
+ # resp.training_job_definitions[0].hyper_parameter_ranges.auto_parameters[0].name #=> String
11722
+ # resp.training_job_definitions[0].hyper_parameter_ranges.auto_parameters[0].value_hint #=> String
11656
11723
  # resp.training_job_definitions[0].static_hyper_parameters #=> Hash
11657
11724
  # resp.training_job_definitions[0].static_hyper_parameters["HyperParameterKey"] #=> String
11658
11725
  # resp.training_job_definitions[0].algorithm_specification.training_image #=> String
@@ -11763,6 +11830,7 @@ module Aws::SageMaker
11763
11830
  # resp.tuning_job_completion_details.number_of_training_jobs_objective_not_improving #=> Integer
11764
11831
  # resp.tuning_job_completion_details.convergence_detected_time #=> Time
11765
11832
  # resp.consumed_resources.runtime_in_seconds #=> Integer
11833
+ # resp.autotune.mode #=> String, one of "Enabled"
11766
11834
  #
11767
11835
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
11768
11836
  #
@@ -12258,6 +12326,7 @@ module Aws::SageMaker
12258
12326
  # * {Types::DescribeModelOutput#creation_time #creation_time} => Time
12259
12327
  # * {Types::DescribeModelOutput#model_arn #model_arn} => String
12260
12328
  # * {Types::DescribeModelOutput#enable_network_isolation #enable_network_isolation} => Boolean
12329
+ # * {Types::DescribeModelOutput#deployment_recommendation #deployment_recommendation} => Types::DeploymentRecommendation
12261
12330
  #
12262
12331
  # @example Request syntax with placeholder values
12263
12332
  #
@@ -12300,6 +12369,12 @@ module Aws::SageMaker
12300
12369
  # resp.creation_time #=> Time
12301
12370
  # resp.model_arn #=> String
12302
12371
  # resp.enable_network_isolation #=> Boolean
12372
+ # resp.deployment_recommendation.recommendation_status #=> String, one of "IN_PROGRESS", "COMPLETED", "FAILED", "NOT_APPLICABLE"
12373
+ # resp.deployment_recommendation.real_time_inference_recommendations #=> Array
12374
+ # resp.deployment_recommendation.real_time_inference_recommendations[0].recommendation_id #=> String
12375
+ # resp.deployment_recommendation.real_time_inference_recommendations[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge", "ml.c6i.large", "ml.c6i.xlarge", "ml.c6i.2xlarge", "ml.c6i.4xlarge", "ml.c6i.8xlarge", "ml.c6i.12xlarge", "ml.c6i.16xlarge", "ml.c6i.24xlarge", "ml.c6i.32xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.12xlarge", "ml.g5.16xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.p4d.24xlarge", "ml.c7g.large", "ml.c7g.xlarge", "ml.c7g.2xlarge", "ml.c7g.4xlarge", "ml.c7g.8xlarge", "ml.c7g.12xlarge", "ml.c7g.16xlarge", "ml.m6g.large", "ml.m6g.xlarge", "ml.m6g.2xlarge", "ml.m6g.4xlarge", "ml.m6g.8xlarge", "ml.m6g.12xlarge", "ml.m6g.16xlarge", "ml.m6gd.large", "ml.m6gd.xlarge", "ml.m6gd.2xlarge", "ml.m6gd.4xlarge", "ml.m6gd.8xlarge", "ml.m6gd.12xlarge", "ml.m6gd.16xlarge", "ml.c6g.large", "ml.c6g.xlarge", "ml.c6g.2xlarge", "ml.c6g.4xlarge", "ml.c6g.8xlarge", "ml.c6g.12xlarge", "ml.c6g.16xlarge", "ml.c6gd.large", "ml.c6gd.xlarge", "ml.c6gd.2xlarge", "ml.c6gd.4xlarge", "ml.c6gd.8xlarge", "ml.c6gd.12xlarge", "ml.c6gd.16xlarge", "ml.c6gn.large", "ml.c6gn.xlarge", "ml.c6gn.2xlarge", "ml.c6gn.4xlarge", "ml.c6gn.8xlarge", "ml.c6gn.12xlarge", "ml.c6gn.16xlarge", "ml.r6g.large", "ml.r6g.xlarge", "ml.r6g.2xlarge", "ml.r6g.4xlarge", "ml.r6g.8xlarge", "ml.r6g.12xlarge", "ml.r6g.16xlarge", "ml.r6gd.large", "ml.r6gd.xlarge", "ml.r6gd.2xlarge", "ml.r6gd.4xlarge", "ml.r6gd.8xlarge", "ml.r6gd.12xlarge", "ml.r6gd.16xlarge", "ml.p4de.24xlarge", "ml.trn1.2xlarge", "ml.trn1.32xlarge", "ml.inf2.xlarge", "ml.inf2.8xlarge", "ml.inf2.24xlarge", "ml.inf2.48xlarge"
12376
+ # resp.deployment_recommendation.real_time_inference_recommendations[0].environment #=> Hash
12377
+ # resp.deployment_recommendation.real_time_inference_recommendations[0].environment["EnvironmentKey"] #=> String
12303
12378
  #
12304
12379
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModel AWS API Documentation
12305
12380
  #
@@ -23509,7 +23584,7 @@ module Aws::SageMaker
23509
23584
  params: params,
23510
23585
  config: config)
23511
23586
  context[:gem_name] = 'aws-sdk-sagemaker'
23512
- context[:gem_version] = '1.179.0'
23587
+ context[:gem_version] = '1.181.0'
23513
23588
  Seahorse::Client::Request.new(handlers, context)
23514
23589
  end
23515
23590
 
@@ -143,7 +143,11 @@ module Aws::SageMaker
143
143
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
144
144
  AutoMLSortBy = Shapes::StringShape.new(name: 'AutoMLSortBy')
145
145
  AutoMLSortOrder = Shapes::StringShape.new(name: 'AutoMLSortOrder')
146
+ AutoParameter = Shapes::StructureShape.new(name: 'AutoParameter')
147
+ AutoParameters = Shapes::ListShape.new(name: 'AutoParameters')
146
148
  AutoRollbackConfig = Shapes::StructureShape.new(name: 'AutoRollbackConfig')
149
+ Autotune = Shapes::StructureShape.new(name: 'Autotune')
150
+ AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
147
151
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
148
152
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
149
153
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
@@ -485,6 +489,7 @@ module Aws::SageMaker
485
489
  DeployedImage = Shapes::StructureShape.new(name: 'DeployedImage')
486
490
  DeployedImages = Shapes::ListShape.new(name: 'DeployedImages')
487
491
  DeploymentConfig = Shapes::StructureShape.new(name: 'DeploymentConfig')
492
+ DeploymentRecommendation = Shapes::StructureShape.new(name: 'DeploymentRecommendation')
488
493
  DeploymentStage = Shapes::StructureShape.new(name: 'DeploymentStage')
489
494
  DeploymentStageMaxResults = Shapes::IntegerShape.new(name: 'DeploymentStageMaxResults')
490
495
  DeploymentStageStatusSummaries = Shapes::ListShape.new(name: 'DeploymentStageStatusSummaries')
@@ -1570,6 +1575,8 @@ module Aws::SageMaker
1570
1575
  RStudioServerProUserGroup = Shapes::StringShape.new(name: 'RStudioServerProUserGroup')
1571
1576
  RandomSeed = Shapes::IntegerShape.new(name: 'RandomSeed')
1572
1577
  RealTimeInferenceConfig = Shapes::StructureShape.new(name: 'RealTimeInferenceConfig')
1578
+ RealTimeInferenceRecommendation = Shapes::StructureShape.new(name: 'RealTimeInferenceRecommendation')
1579
+ RealTimeInferenceRecommendations = Shapes::ListShape.new(name: 'RealTimeInferenceRecommendations')
1573
1580
  RealtimeInferenceInstanceTypes = Shapes::ListShape.new(name: 'RealtimeInferenceInstanceTypes')
1574
1581
  RecommendationFailureReason = Shapes::StringShape.new(name: 'RecommendationFailureReason')
1575
1582
  RecommendationJobArn = Shapes::StringShape.new(name: 'RecommendationJobArn')
@@ -1595,6 +1602,7 @@ module Aws::SageMaker
1595
1602
  RecommendationJobVpcSubnetId = Shapes::StringShape.new(name: 'RecommendationJobVpcSubnetId')
1596
1603
  RecommendationJobVpcSubnets = Shapes::ListShape.new(name: 'RecommendationJobVpcSubnets')
1597
1604
  RecommendationMetrics = Shapes::StructureShape.new(name: 'RecommendationMetrics')
1605
+ RecommendationStatus = Shapes::StringShape.new(name: 'RecommendationStatus')
1598
1606
  RecommendationStepType = Shapes::StringShape.new(name: 'RecommendationStepType')
1599
1607
  RecordWrapper = Shapes::StringShape.new(name: 'RecordWrapper')
1600
1608
  RedshiftClusterId = Shapes::StringShape.new(name: 'RedshiftClusterId')
@@ -2330,9 +2338,18 @@ module Aws::SageMaker
2330
2338
  AutoMLSecurityConfig.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
2331
2339
  AutoMLSecurityConfig.struct_class = Types::AutoMLSecurityConfig
2332
2340
 
2341
+ AutoParameter.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
2342
+ AutoParameter.add_member(:value_hint, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "ValueHint"))
2343
+ AutoParameter.struct_class = Types::AutoParameter
2344
+
2345
+ AutoParameters.member = Shapes::ShapeRef.new(shape: AutoParameter)
2346
+
2333
2347
  AutoRollbackConfig.add_member(:alarms, Shapes::ShapeRef.new(shape: AlarmList, location_name: "Alarms"))
2334
2348
  AutoRollbackConfig.struct_class = Types::AutoRollbackConfig
2335
2349
 
2350
+ Autotune.add_member(:mode, Shapes::ShapeRef.new(shape: AutotuneMode, required: true, location_name: "Mode"))
2351
+ Autotune.struct_class = Types::Autotune
2352
+
2336
2353
  BatchDataCaptureConfig.add_member(:destination_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "DestinationS3Uri"))
2337
2354
  BatchDataCaptureConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2338
2355
  BatchDataCaptureConfig.add_member(:generate_inference_id, Shapes::ShapeRef.new(shape: Boolean, location_name: "GenerateInferenceId"))
@@ -2886,6 +2903,7 @@ module Aws::SageMaker
2886
2903
  CreateHyperParameterTuningJobRequest.add_member(:training_job_definitions, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinitions, location_name: "TrainingJobDefinitions"))
2887
2904
  CreateHyperParameterTuningJobRequest.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
2888
2905
  CreateHyperParameterTuningJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
2906
+ CreateHyperParameterTuningJobRequest.add_member(:autotune, Shapes::ShapeRef.new(shape: Autotune, location_name: "Autotune"))
2889
2907
  CreateHyperParameterTuningJobRequest.struct_class = Types::CreateHyperParameterTuningJobRequest
2890
2908
 
2891
2909
  CreateHyperParameterTuningJobResponse.add_member(:hyper_parameter_tuning_job_arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, required: true, location_name: "HyperParameterTuningJobArn"))
@@ -3590,6 +3608,10 @@ module Aws::SageMaker
3590
3608
  DeploymentConfig.add_member(:auto_rollback_configuration, Shapes::ShapeRef.new(shape: AutoRollbackConfig, location_name: "AutoRollbackConfiguration"))
3591
3609
  DeploymentConfig.struct_class = Types::DeploymentConfig
3592
3610
 
3611
+ DeploymentRecommendation.add_member(:recommendation_status, Shapes::ShapeRef.new(shape: RecommendationStatus, required: true, location_name: "RecommendationStatus"))
3612
+ DeploymentRecommendation.add_member(:real_time_inference_recommendations, Shapes::ShapeRef.new(shape: RealTimeInferenceRecommendations, location_name: "RealTimeInferenceRecommendations"))
3613
+ DeploymentRecommendation.struct_class = Types::DeploymentRecommendation
3614
+
3593
3615
  DeploymentStage.add_member(:stage_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "StageName"))
3594
3616
  DeploymentStage.add_member(:device_selection_config, Shapes::ShapeRef.new(shape: DeviceSelectionConfig, required: true, location_name: "DeviceSelectionConfig"))
3595
3617
  DeploymentStage.add_member(:deployment_config, Shapes::ShapeRef.new(shape: EdgeDeploymentConfig, location_name: "DeploymentConfig"))
@@ -4067,6 +4089,7 @@ module Aws::SageMaker
4067
4089
  DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
4068
4090
  DescribeHyperParameterTuningJobResponse.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
4069
4091
  DescribeHyperParameterTuningJobResponse.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
4092
+ DescribeHyperParameterTuningJobResponse.add_member(:autotune, Shapes::ShapeRef.new(shape: Autotune, location_name: "Autotune"))
4070
4093
  DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
4071
4094
 
4072
4095
  DescribeImageRequest.add_member(:image_name, Shapes::ShapeRef.new(shape: ImageName, required: true, location_name: "ImageName"))
@@ -4258,6 +4281,7 @@ module Aws::SageMaker
4258
4281
  DescribeModelOutput.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
4259
4282
  DescribeModelOutput.add_member(:model_arn, Shapes::ShapeRef.new(shape: ModelArn, required: true, location_name: "ModelArn"))
4260
4283
  DescribeModelOutput.add_member(:enable_network_isolation, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableNetworkIsolation"))
4284
+ DescribeModelOutput.add_member(:deployment_recommendation, Shapes::ShapeRef.new(shape: DeploymentRecommendation, location_name: "DeploymentRecommendation"))
4261
4285
  DescribeModelOutput.struct_class = Types::DescribeModelOutput
4262
4286
 
4263
4287
  DescribeModelPackageGroupInput.add_member(:model_package_group_name, Shapes::ShapeRef.new(shape: ArnOrName, required: true, location_name: "ModelPackageGroupName"))
@@ -6664,6 +6688,7 @@ module Aws::SageMaker
6664
6688
  Model.add_member(:model_arn, Shapes::ShapeRef.new(shape: ModelArn, location_name: "ModelArn"))
6665
6689
  Model.add_member(:enable_network_isolation, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableNetworkIsolation"))
6666
6690
  Model.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
6691
+ Model.add_member(:deployment_recommendation, Shapes::ShapeRef.new(shape: DeploymentRecommendation, location_name: "DeploymentRecommendation"))
6667
6692
  Model.struct_class = Types::Model
6668
6693
 
6669
6694
  ModelArtifacts.add_member(:s3_model_artifacts, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3ModelArtifacts"))
@@ -7306,6 +7331,7 @@ module Aws::SageMaker
7306
7331
  ParameterRanges.add_member(:integer_parameter_ranges, Shapes::ShapeRef.new(shape: IntegerParameterRanges, location_name: "IntegerParameterRanges"))
7307
7332
  ParameterRanges.add_member(:continuous_parameter_ranges, Shapes::ShapeRef.new(shape: ContinuousParameterRanges, location_name: "ContinuousParameterRanges"))
7308
7333
  ParameterRanges.add_member(:categorical_parameter_ranges, Shapes::ShapeRef.new(shape: CategoricalParameterRanges, location_name: "CategoricalParameterRanges"))
7334
+ ParameterRanges.add_member(:auto_parameters, Shapes::ShapeRef.new(shape: AutoParameters, location_name: "AutoParameters"))
7309
7335
  ParameterRanges.struct_class = Types::ParameterRanges
7310
7336
 
7311
7337
  ParameterValues.member = Shapes::ShapeRef.new(shape: ParameterValue)
@@ -7732,6 +7758,13 @@ module Aws::SageMaker
7732
7758
  RealTimeInferenceConfig.add_member(:instance_count, Shapes::ShapeRef.new(shape: TaskCount, required: true, location_name: "InstanceCount"))
7733
7759
  RealTimeInferenceConfig.struct_class = Types::RealTimeInferenceConfig
7734
7760
 
7761
+ RealTimeInferenceRecommendation.add_member(:recommendation_id, Shapes::ShapeRef.new(shape: String, required: true, location_name: "RecommendationId"))
7762
+ RealTimeInferenceRecommendation.add_member(:instance_type, Shapes::ShapeRef.new(shape: ProductionVariantInstanceType, required: true, location_name: "InstanceType"))
7763
+ RealTimeInferenceRecommendation.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
7764
+ RealTimeInferenceRecommendation.struct_class = Types::RealTimeInferenceRecommendation
7765
+
7766
+ RealTimeInferenceRecommendations.member = Shapes::ShapeRef.new(shape: RealTimeInferenceRecommendation)
7767
+
7735
7768
  RealtimeInferenceInstanceTypes.member = Shapes::ShapeRef.new(shape: ProductionVariantInstanceType)
7736
7769
 
7737
7770
  RecommendationJobCompiledOutputConfig.add_member(:s3_output_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "S3OutputUri"))
@@ -2494,6 +2494,28 @@ module Aws::SageMaker
2494
2494
  include Aws::Structure
2495
2495
  end
2496
2496
 
2497
+ # The name and an example value of the hyperparameter that you want to
2498
+ # use in Autotune. If Automatic model tuning (AMT) determines that your
2499
+ # hyperparameter is eligible for Autotune, an optimal hyperparameter
2500
+ # range is selected for you.
2501
+ #
2502
+ # @!attribute [rw] name
2503
+ # The name of the hyperparameter to optimize using Autotune.
2504
+ # @return [String]
2505
+ #
2506
+ # @!attribute [rw] value_hint
2507
+ # An example value of the hyperparameter to optimize using Autotune.
2508
+ # @return [String]
2509
+ #
2510
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoParameter AWS API Documentation
2511
+ #
2512
+ class AutoParameter < Struct.new(
2513
+ :name,
2514
+ :value_hint)
2515
+ SENSITIVE = []
2516
+ include Aws::Structure
2517
+ end
2518
+
2497
2519
  # Automatic rollback configuration for handling endpoint deployment
2498
2520
  # failures and recovery.
2499
2521
  #
@@ -2511,6 +2533,51 @@ module Aws::SageMaker
2511
2533
  include Aws::Structure
2512
2534
  end
2513
2535
 
2536
+ # A flag to indicate if you want to use Autotune to automatically find
2537
+ # optimal values for the following fields:
2538
+ #
2539
+ # * [ParameterRanges][1]: The names and ranges of parameters that a
2540
+ # hyperparameter tuning job can optimize.
2541
+ #
2542
+ # * [ResourceLimits][2]: The maximum resources that can be used for a
2543
+ # training job. These resources include the maximum number of training
2544
+ # jobs, the maximum runtime of a tuning job, and the maximum number of
2545
+ # training jobs to run at the same time.
2546
+ #
2547
+ # * [TrainingJobEarlyStoppingType][3]: A flag that specifies whether or
2548
+ # not to use early stopping for training jobs launched by a
2549
+ # hyperparameter tuning job.
2550
+ #
2551
+ # * [RetryStrategy][4]: The number of times to retry a training job.
2552
+ #
2553
+ # * [Strategy][5]: Specifies how hyperparameter tuning chooses the
2554
+ # combinations of hyperparameter values to use for the training jobs
2555
+ # that it launches.
2556
+ #
2557
+ # * [ConvergenceDetected][6]: A flag to indicate that Automatic model
2558
+ # tuning (AMT) has detected model convergence.
2559
+ #
2560
+ #
2561
+ #
2562
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges
2563
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
2564
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType
2565
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy
2566
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
2567
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html
2568
+ #
2569
+ # @!attribute [rw] mode
2570
+ # Set `Mode` to `Enabled` if you want to use Autotune.
2571
+ # @return [String]
2572
+ #
2573
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Autotune AWS API Documentation
2574
+ #
2575
+ class Autotune < Struct.new(
2576
+ :mode)
2577
+ SENSITIVE = []
2578
+ include Aws::Structure
2579
+ end
2580
+
2514
2581
  # Configuration to control how SageMaker captures inference data for
2515
2582
  # batch transform jobs.
2516
2583
  #
@@ -5790,6 +5857,41 @@ module Aws::SageMaker
5790
5857
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
5791
5858
  # @return [Array<Types::Tag>]
5792
5859
  #
5860
+ # @!attribute [rw] autotune
5861
+ # Configures SageMaker Automatic model tuning (AMT) to automatically
5862
+ # find optimal parameters for the following fields:
5863
+ #
5864
+ # * [ParameterRanges][1]: The names and ranges of parameters that a
5865
+ # hyperparameter tuning job can optimize.
5866
+ #
5867
+ # * [ResourceLimits][2]: The maximum resources that can be used for a
5868
+ # training job. These resources include the maximum number of
5869
+ # training jobs, the maximum runtime of a tuning job, and the
5870
+ # maximum number of training jobs to run at the same time.
5871
+ #
5872
+ # * [TrainingJobEarlyStoppingType][3]: A flag that specifies whether
5873
+ # or not to use early stopping for training jobs launched by a
5874
+ # hyperparameter tuning job.
5875
+ #
5876
+ # * [RetryStrategy][4]: The number of times to retry a training job.
5877
+ #
5878
+ # * [Strategy][5]: Specifies how hyperparameter tuning chooses the
5879
+ # combinations of hyperparameter values to use for the training jobs
5880
+ # that it launches.
5881
+ #
5882
+ # * [ConvergenceDetected][6]: A flag to indicate that Automatic model
5883
+ # tuning (AMT) has detected model convergence.
5884
+ #
5885
+ #
5886
+ #
5887
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges
5888
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
5889
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType
5890
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy
5891
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
5892
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html
5893
+ # @return [Types::Autotune]
5894
+ #
5793
5895
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobRequest AWS API Documentation
5794
5896
  #
5795
5897
  class CreateHyperParameterTuningJobRequest < Struct.new(
@@ -5798,7 +5900,8 @@ module Aws::SageMaker
5798
5900
  :training_job_definition,
5799
5901
  :training_job_definitions,
5800
5902
  :warm_start_config,
5801
- :tags)
5903
+ :tags,
5904
+ :autotune)
5802
5905
  SENSITIVE = []
5803
5906
  include Aws::Structure
5804
5907
  end
@@ -9940,6 +10043,31 @@ module Aws::SageMaker
9940
10043
  include Aws::Structure
9941
10044
  end
9942
10045
 
10046
+ # A set of recommended deployment configurations for the model.
10047
+ #
10048
+ # @!attribute [rw] recommendation_status
10049
+ # Status of the deployment recommendation. `NOT_APPLICABLE` means that
10050
+ # SageMaker is unable to provide a default recommendation for the
10051
+ # model using the information provided.
10052
+ # @return [String]
10053
+ #
10054
+ # @!attribute [rw] real_time_inference_recommendations
10055
+ # A list of [RealTimeInferenceRecommendation][1] items.
10056
+ #
10057
+ #
10058
+ #
10059
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RealTimeInferenceRecommendation.html
10060
+ # @return [Array<Types::RealTimeInferenceRecommendation>]
10061
+ #
10062
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeploymentRecommendation AWS API Documentation
10063
+ #
10064
+ class DeploymentRecommendation < Struct.new(
10065
+ :recommendation_status,
10066
+ :real_time_inference_recommendations)
10067
+ SENSITIVE = []
10068
+ include Aws::Structure
10069
+ end
10070
+
9943
10071
  # Contains information about a stage in an edge deployment plan.
9944
10072
  #
9945
10073
  # @!attribute [rw] stage_name
@@ -12289,7 +12417,7 @@ module Aws::SageMaker
12289
12417
  end
12290
12418
 
12291
12419
  # @!attribute [rw] hyper_parameter_tuning_job_name
12292
- # The name of the tuning job.
12420
+ # The name of the hyperparameter tuning job.
12293
12421
  # @return [String]
12294
12422
  #
12295
12423
  # @!attribute [rw] hyper_parameter_tuning_job_arn
@@ -12407,6 +12535,11 @@ module Aws::SageMaker
12407
12535
  # The total resources consumed by your hyperparameter tuning job.
12408
12536
  # @return [Types::HyperParameterTuningJobConsumedResources]
12409
12537
  #
12538
+ # @!attribute [rw] autotune
12539
+ # A flag to indicate if autotune is enabled for the hyperparameter
12540
+ # tuning job.
12541
+ # @return [Types::Autotune]
12542
+ #
12410
12543
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobResponse AWS API Documentation
12411
12544
  #
12412
12545
  class DescribeHyperParameterTuningJobResponse < Struct.new(
@@ -12426,7 +12559,8 @@ module Aws::SageMaker
12426
12559
  :warm_start_config,
12427
12560
  :failure_reason,
12428
12561
  :tuning_job_completion_details,
12429
- :consumed_resources)
12562
+ :consumed_resources,
12563
+ :autotune)
12430
12564
  SENSITIVE = []
12431
12565
  include Aws::Structure
12432
12566
  end
@@ -13515,6 +13649,10 @@ module Aws::SageMaker
13515
13649
  # from the model container.
13516
13650
  # @return [Boolean]
13517
13651
  #
13652
+ # @!attribute [rw] deployment_recommendation
13653
+ # A set of recommended deployment configurations for the model.
13654
+ # @return [Types::DeploymentRecommendation]
13655
+ #
13518
13656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelOutput AWS API Documentation
13519
13657
  #
13520
13658
  class DescribeModelOutput < Struct.new(
@@ -13526,7 +13664,8 @@ module Aws::SageMaker
13526
13664
  :vpc_config,
13527
13665
  :creation_time,
13528
13666
  :model_arn,
13529
- :enable_network_isolation)
13667
+ :enable_network_isolation,
13668
+ :deployment_recommendation)
13530
13669
  SENSITIVE = []
13531
13670
  include Aws::Structure
13532
13671
  end
@@ -27477,6 +27616,10 @@ module Aws::SageMaker
27477
27616
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
27478
27617
  # @return [Array<Types::Tag>]
27479
27618
  #
27619
+ # @!attribute [rw] deployment_recommendation
27620
+ # A set of recommended deployment configurations for the model.
27621
+ # @return [Types::DeploymentRecommendation]
27622
+ #
27480
27623
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Model AWS API Documentation
27481
27624
  #
27482
27625
  class Model < Struct.new(
@@ -27489,7 +27632,8 @@ module Aws::SageMaker
27489
27632
  :creation_time,
27490
27633
  :model_arn,
27491
27634
  :enable_network_isolation,
27492
- :tags)
27635
+ :tags,
27636
+ :deployment_recommendation)
27493
27637
  SENSITIVE = []
27494
27638
  include Aws::Structure
27495
27639
  end
@@ -31022,12 +31166,18 @@ module Aws::SageMaker
31022
31166
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CategoricalParameterRange.html
31023
31167
  # @return [Array<Types::CategoricalParameterRange>]
31024
31168
  #
31169
+ # @!attribute [rw] auto_parameters
31170
+ # A list containing hyperparameter names and example values to be used
31171
+ # by Autotune to determine optimal ranges for your tuning job.
31172
+ # @return [Array<Types::AutoParameter>]
31173
+ #
31025
31174
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ParameterRanges AWS API Documentation
31026
31175
  #
31027
31176
  class ParameterRanges < Struct.new(
31028
31177
  :integer_parameter_ranges,
31029
31178
  :continuous_parameter_ranges,
31030
- :categorical_parameter_ranges)
31179
+ :categorical_parameter_ranges,
31180
+ :auto_parameters)
31031
31181
  SENSITIVE = []
31032
31182
  include Aws::Structure
31033
31183
  end
@@ -33526,6 +33676,31 @@ module Aws::SageMaker
33526
33676
  include Aws::Structure
33527
33677
  end
33528
33678
 
33679
+ # The recommended configuration to use for Real-Time Inference.
33680
+ #
33681
+ # @!attribute [rw] recommendation_id
33682
+ # The recommendation ID which uniquely identifies each recommendation.
33683
+ # @return [String]
33684
+ #
33685
+ # @!attribute [rw] instance_type
33686
+ # The recommended instance type for Real-Time Inference.
33687
+ # @return [String]
33688
+ #
33689
+ # @!attribute [rw] environment
33690
+ # The recommended environment variables to set in the model container
33691
+ # for Real-Time Inference.
33692
+ # @return [Hash<String,String>]
33693
+ #
33694
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RealTimeInferenceRecommendation AWS API Documentation
33695
+ #
33696
+ class RealTimeInferenceRecommendation < Struct.new(
33697
+ :recommendation_id,
33698
+ :instance_type,
33699
+ :environment)
33700
+ SENSITIVE = []
33701
+ include Aws::Structure
33702
+ end
33703
+
33529
33704
  # Provides information about the output configuration for the compiled
33530
33705
  # model.
33531
33706
  #
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.179.0'
56
+ GEM_VERSION = '1.181.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.179.0
4
+ version: 1.181.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-05-23 00:00:00.000000000 Z
11
+ date: 2023-05-25 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core