aws-sdk-sagemaker 1.171.0 → 1.174.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -257,17 +257,18 @@ module Aws::SageMaker
257
257
  include Aws::Structure
258
258
  end
259
259
 
260
- # Specifies the training algorithm to use in a CreateTrainingJob
260
+ # Specifies the training algorithm to use in a [CreateTrainingJob][1]
261
261
  # request.
262
262
  #
263
263
  # For more information about algorithms provided by SageMaker, see
264
- # [Algorithms][1]. For information about using your own algorithms, see
265
- # [Using Your Own Algorithms with Amazon SageMaker][2].
264
+ # [Algorithms][2]. For information about using your own algorithms, see
265
+ # [Using Your Own Algorithms with Amazon SageMaker][3].
266
266
  #
267
267
  #
268
268
  #
269
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
270
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
269
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
270
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
271
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
271
272
  #
272
273
  # @!attribute [rw] training_image
273
274
  # The registry path of the Docker image that contains the training
@@ -382,11 +383,12 @@ module Aws::SageMaker
382
383
  #
383
384
  # * PyTorch (version >= 1.3)
384
385
  #
385
- # * You specify at least one MetricDefinition
386
+ # * You specify at least one [MetricDefinition][2]
386
387
  #
387
388
  #
388
389
  #
389
390
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
391
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html
390
392
  # @return [Boolean]
391
393
  #
392
394
  # @!attribute [rw] container_entrypoint
@@ -1553,11 +1555,22 @@ module Aws::SageMaker
1553
1555
  # no topic is provided, no notification is sent on failure.
1554
1556
  # @return [String]
1555
1557
  #
1558
+ # @!attribute [rw] include_inference_response_in
1559
+ # The Amazon SNS topics where you want the inference response to be
1560
+ # included.
1561
+ #
1562
+ # <note markdown="1"> The inference response is included only if the response size is less
1563
+ # than or equal to 128 KB.
1564
+ #
1565
+ # </note>
1566
+ # @return [Array<String>]
1567
+ #
1556
1568
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceNotificationConfig AWS API Documentation
1557
1569
  #
1558
1570
  class AsyncInferenceNotificationConfig < Struct.new(
1559
1571
  :success_topic,
1560
- :error_topic)
1572
+ :error_topic,
1573
+ :include_inference_response_in)
1561
1574
  SENSITIVE = []
1562
1575
  include Aws::Structure
1563
1576
  end
@@ -1580,12 +1593,17 @@ module Aws::SageMaker
1580
1593
  # for asynchronous inference.
1581
1594
  # @return [Types::AsyncInferenceNotificationConfig]
1582
1595
  #
1596
+ # @!attribute [rw] s3_failure_path
1597
+ # The Amazon S3 location to upload failure inference responses to.
1598
+ # @return [String]
1599
+ #
1583
1600
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceOutputConfig AWS API Documentation
1584
1601
  #
1585
1602
  class AsyncInferenceOutputConfig < Struct.new(
1586
1603
  :kms_key_id,
1587
1604
  :s3_output_path,
1588
- :notification_config)
1605
+ :notification_config,
1606
+ :s3_failure_path)
1589
1607
  SENSITIVE = []
1590
1608
  include Aws::Structure
1591
1609
  end
@@ -1650,7 +1668,7 @@ module Aws::SageMaker
1650
1668
  # candidates of an Autopilot job.
1651
1669
  #
1652
1670
  # <note markdown="1"> Selected algorithms must belong to the list corresponding to the
1653
- # training mode set in ` AutoMLJobConfig.Mode ` (`ENSEMBLING` or
1671
+ # training mode set in [AutoMLJobConfig.Mode][1] (`ENSEMBLING` or
1654
1672
  # `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
1655
1673
  #
1656
1674
  # </note>
@@ -1680,6 +1698,10 @@ module Aws::SageMaker
1680
1698
  # * "mlp"
1681
1699
  #
1682
1700
  # * "xgboost"
1701
+ #
1702
+ #
1703
+ #
1704
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode
1683
1705
  # @return [Array<String>]
1684
1706
  #
1685
1707
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
@@ -1822,16 +1844,17 @@ module Aws::SageMaker
1822
1844
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1823
1845
  # for the given training mode.
1824
1846
  #
1825
- # For the list of all algorithms per training mode, see `
1826
- # AutoMLAlgorithmConfig `.
1847
+ # For the list of all algorithms per training mode, see [
1848
+ # AutoMLAlgorithmConfig][2].
1827
1849
  #
1828
1850
  # For more information on each algorithm, see the [Algorithm
1829
- # support][2] section in Autopilot developer guide.
1851
+ # support][3] section in Autopilot developer guide.
1830
1852
  #
1831
1853
  #
1832
1854
  #
1833
1855
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
1834
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1856
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
1857
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1835
1858
  # @return [Array<Types::AutoMLAlgorithmConfig>]
1836
1859
  #
1837
1860
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
@@ -1872,13 +1895,19 @@ module Aws::SageMaker
1872
1895
  # A channel is a named input source that training algorithms can
1873
1896
  # consume. The validation dataset size is limited to less than 2 GB. The
1874
1897
  # training dataset size must be less than 100 GB. For more information,
1875
- # see ` Channel `.
1898
+ # see [ Channel][1].
1876
1899
  #
1877
1900
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1878
1901
  # dataset.
1879
1902
  #
1880
1903
  # </note>
1881
1904
  #
1905
+ #
1906
+ #
1907
+ #
1908
+ #
1909
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
1910
+ #
1882
1911
  # @!attribute [rw] data_source
1883
1912
  # The data source for an AutoML channel.
1884
1913
  # @return [Types::AutoMLDataSource]
@@ -1902,8 +1931,8 @@ module Aws::SageMaker
1902
1931
  # The channel type (optional) is an `enum` string. The default value
1903
1932
  # is `training`. Channels for training and validation must share the
1904
1933
  # same `ContentType` and `TargetAttributeName`. For information on
1905
- # specifying training and validation channel types, see [ `How to
1906
- # specify training and validation datasets` ][1].
1934
+ # specifying training and validation channel types, see [How to
1935
+ # specify training and validation datasets][1].
1907
1936
  #
1908
1937
  #
1909
1938
  #
@@ -1923,22 +1952,38 @@ module Aws::SageMaker
1923
1952
  end
1924
1953
 
1925
1954
  # A list of container definitions that describe the different containers
1926
- # that make up an AutoML candidate. For more information, see `
1927
- # ContainerDefinition `.
1955
+ # that make up an AutoML candidate. For more information, see [
1956
+ # ContainerDefinition][1].
1957
+ #
1958
+ #
1959
+ #
1960
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1928
1961
  #
1929
1962
  # @!attribute [rw] image
1930
1963
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1931
- # container. For more information, see ` ContainerDefinition `.
1964
+ # container. For more information, see [ ContainerDefinition][1].
1965
+ #
1966
+ #
1967
+ #
1968
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1932
1969
  # @return [String]
1933
1970
  #
1934
1971
  # @!attribute [rw] model_data_url
1935
- # The location of the model artifacts. For more information, see `
1936
- # ContainerDefinition `.
1972
+ # The location of the model artifacts. For more information, see [
1973
+ # ContainerDefinition][1].
1974
+ #
1975
+ #
1976
+ #
1977
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1937
1978
  # @return [String]
1938
1979
  #
1939
1980
  # @!attribute [rw] environment
1940
1981
  # The environment variables to set in the container. For more
1941
- # information, see ` ContainerDefinition `.
1982
+ # information, see [ ContainerDefinition][1].
1983
+ #
1984
+ #
1985
+ #
1986
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1942
1987
  # @return [Hash<String,String>]
1943
1988
  #
1944
1989
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -2011,8 +2056,13 @@ module Aws::SageMaker
2011
2056
 
2012
2057
  # A channel is a named input source that training algorithms can
2013
2058
  # consume. This channel is used for the non tabular training data of an
2014
- # AutoML job using the V2 API. For tabular training data, see `
2015
- # AutoMLChannel `. For more information, see ` Channel `.
2059
+ # AutoML job using the V2 API. For tabular training data, see [
2060
+ # AutoMLChannel][1]. For more information, see [ Channel][2].
2061
+ #
2062
+ #
2063
+ #
2064
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
2065
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
2016
2066
  #
2017
2067
  # @!attribute [rw] channel_type
2018
2068
  # The type of channel. Defines whether the data are used for training
@@ -2064,11 +2114,16 @@ module Aws::SageMaker
2064
2114
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2065
2115
  # The maximum time, in seconds, that each training job executed inside
2066
2116
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2067
- # tuning job. For more information, see the ` StoppingCondition ` used
2068
- # by the ` CreateHyperParameterTuningJob ` action.
2117
+ # tuning job. For more information, see the [StoppingCondition][1]
2118
+ # used by the [CreateHyperParameterTuningJob][2] action.
2069
2119
  #
2070
2120
  # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2071
2121
  # field controls the runtime of the job candidate.
2122
+ #
2123
+ #
2124
+ #
2125
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html
2126
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
2072
2127
  # @return [Integer]
2073
2128
  #
2074
2129
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -2972,16 +3027,21 @@ module Aws::SageMaker
2972
3027
  include Aws::Structure
2973
3028
  end
2974
3029
 
2975
- # The SageMaker Canvas app settings.
3030
+ # The SageMaker Canvas application settings.
2976
3031
  #
2977
3032
  # @!attribute [rw] time_series_forecasting_settings
2978
- # Time series forecast settings for the Canvas app.
3033
+ # Time series forecast settings for the Canvas application.
2979
3034
  # @return [Types::TimeSeriesForecastingSettings]
2980
3035
  #
3036
+ # @!attribute [rw] model_register_settings
3037
+ # The model registry settings for the SageMaker Canvas application.
3038
+ # @return [Types::ModelRegisterSettings]
3039
+ #
2981
3040
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
2982
3041
  #
2983
3042
  class CanvasAppSettings < Struct.new(
2984
- :time_series_forecasting_settings)
3043
+ :time_series_forecasting_settings,
3044
+ :model_register_settings)
2985
3045
  SENSITIVE = []
2986
3046
  include Aws::Structure
2987
3047
  end
@@ -3141,15 +3201,19 @@ module Aws::SageMaker
3141
3201
  # (Optional) The input mode to use for the data channel in a training
3142
3202
  # job. If you don't set a value for `InputMode`, SageMaker uses the
3143
3203
  # value set for `TrainingInputMode`. Use this parameter to override
3144
- # the `TrainingInputMode` setting in a AlgorithmSpecification request
3145
- # when you have a channel that needs a different input mode from the
3146
- # training job's general setting. To download the data from Amazon
3147
- # Simple Storage Service (Amazon S3) to the provisioned ML storage
3148
- # volume, and mount the directory to a Docker volume, use `File` input
3149
- # mode. To stream data directly from Amazon S3 to the container,
3150
- # choose `Pipe` input mode.
3204
+ # the `TrainingInputMode` setting in a [AlgorithmSpecification][1]
3205
+ # request when you have a channel that needs a different input mode
3206
+ # from the training job's general setting. To download the data from
3207
+ # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3208
+ # storage volume, and mount the directory to a Docker volume, use
3209
+ # `File` input mode. To stream data directly from Amazon S3 to the
3210
+ # container, choose `Pipe` input mode.
3151
3211
  #
3152
3212
  # To use a model for incremental training, choose `File` input model.
3213
+ #
3214
+ #
3215
+ #
3216
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
3153
3217
  # @return [String]
3154
3218
  #
3155
3219
  # @!attribute [rw] shuffle_config
@@ -3915,7 +3979,13 @@ module Aws::SageMaker
3915
3979
  # requirements. SageMaker supports both `registry/repository[:tag]`
3916
3980
  # and `registry/repository[@digest]` image path formats. For more
3917
3981
  # information, see [Using Your Own Algorithms with Amazon
3918
- # SageMaker][1]
3982
+ # SageMaker][1].
3983
+ #
3984
+ # <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
3985
+ # inference container in Amazon EC2 Container Registry must be in the
3986
+ # same region as the model or endpoint you are creating.
3987
+ #
3988
+ # </note>
3919
3989
  #
3920
3990
  #
3921
3991
  #
@@ -3927,7 +3997,13 @@ module Aws::SageMaker
3927
3997
  # Docker registry accessible from your Amazon Virtual Private Cloud
3928
3998
  # (VPC). For information about storing containers in a private Docker
3929
3999
  # registry, see [Use a Private Docker Registry for Real-Time Inference
3930
- # Containers][1]
4000
+ # Containers][1].
4001
+ #
4002
+ # <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
4003
+ # inference container in Amazon EC2 Container Registry must be in the
4004
+ # same region as the model or endpoint you are creating.
4005
+ #
4006
+ # </note>
3931
4007
  #
3932
4008
  #
3933
4009
  #
@@ -4489,10 +4565,15 @@ module Aws::SageMaker
4489
4565
  # @!attribute [rw] input_data_config
4490
4566
  # An array of channel objects that describes the input data and its
4491
4567
  # location. Each channel is a named input source. Similar to
4492
- # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
4493
- # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
4494
- # required for the training dataset. There is not a minimum number of
4495
- # rows required for the validation dataset.
4568
+ # `InputDataConfig` supported by
4569
+ # [HyperParameterTrainingJobDefinition][1]. Format(s) supported: CSV,
4570
+ # Parquet. A minimum of 500 rows is required for the training dataset.
4571
+ # There is not a minimum number of rows required for the validation
4572
+ # dataset.
4573
+ #
4574
+ #
4575
+ #
4576
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
4496
4577
  # @return [Array<Types::AutoMLChannel>]
4497
4578
  #
4498
4579
  # @!attribute [rw] output_data_config
@@ -4513,9 +4594,14 @@ module Aws::SageMaker
4513
4594
  #
4514
4595
  # @!attribute [rw] auto_ml_job_objective
4515
4596
  # Defines the objective metric used to measure the predictive quality
4516
- # of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
4517
- # and Autopilot infers whether to minimize or maximize it. For `
4518
- # CreateAutoMLJobV2 `, only `Accuracy` is supported.
4597
+ # of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
4598
+ # and Autopilot infers whether to minimize or maximize it. For
4599
+ # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
4600
+ #
4601
+ #
4602
+ #
4603
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4604
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4519
4605
  # @return [Types::AutoMLJobObjective]
4520
4606
  #
4521
4607
  # @!attribute [rw] auto_ml_job_config
@@ -4585,14 +4671,18 @@ module Aws::SageMaker
4585
4671
  #
4586
4672
  # @!attribute [rw] auto_ml_job_input_data_config
4587
4673
  # An array of channel objects describing the input data and their
4588
- # location. Each channel is a named input source. Similar to `
4589
- # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
4674
+ # location. Each channel is a named input source. Similar to
4675
+ # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4590
4676
  # formats depend on the problem type:
4591
4677
  #
4592
4678
  # * ImageClassification: S3Prefix, `ManifestFile`,
4593
4679
  # `AugmentedManifestFile`
4594
4680
  #
4595
4681
  # * TextClassification: S3Prefix
4682
+ #
4683
+ #
4684
+ #
4685
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
4596
4686
  # @return [Array<Types::AutoMLJobChannel>]
4597
4687
  #
4598
4688
  # @!attribute [rw] output_data_config
@@ -4627,7 +4717,11 @@ module Aws::SageMaker
4627
4717
  #
4628
4718
  # @!attribute [rw] auto_ml_job_objective
4629
4719
  # Specifies a metric to minimize or maximize as the objective of a
4630
- # job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
4720
+ # job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
4721
+ #
4722
+ #
4723
+ #
4724
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4631
4725
  # @return [Types::AutoMLJobObjective]
4632
4726
  #
4633
4727
  # @!attribute [rw] model_deploy_config
@@ -4769,14 +4863,15 @@ module Aws::SageMaker
4769
4863
  # @return [Types::OutputConfig]
4770
4864
  #
4771
4865
  # @!attribute [rw] vpc_config
4772
- # A VpcConfig object that specifies the VPC that you want your
4866
+ # A [VpcConfig][1] object that specifies the VPC that you want your
4773
4867
  # compilation job to connect to. Control access to your models by
4774
4868
  # configuring the VPC. For more information, see [Protect Compilation
4775
- # Jobs by Using an Amazon Virtual Private Cloud][1].
4869
+ # Jobs by Using an Amazon Virtual Private Cloud][2].
4776
4870
  #
4777
4871
  #
4778
4872
  #
4779
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
4873
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
4874
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
4780
4875
  # @return [Types::NeoVpcConfig]
4781
4876
  #
4782
4877
  # @!attribute [rw] stopping_condition
@@ -5228,7 +5323,11 @@ module Aws::SageMaker
5228
5323
 
5229
5324
  # @!attribute [rw] endpoint_config_name
5230
5325
  # The name of the endpoint configuration. You specify this name in a
5231
- # CreateEndpoint request.
5326
+ # [CreateEndpoint][1] request.
5327
+ #
5328
+ #
5329
+ #
5330
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
5232
5331
  # @return [String]
5233
5332
  #
5234
5333
  # @!attribute [rw] production_variants
@@ -5352,12 +5451,20 @@ module Aws::SageMaker
5352
5451
  # The name of the endpoint.The name must be unique within an Amazon
5353
5452
  # Web Services Region in your Amazon Web Services account. The name is
5354
5453
  # case-insensitive in `CreateEndpoint`, but the case is preserved and
5355
- # must be matched in .
5454
+ # must be matched in [InvokeEndpoint][1].
5455
+ #
5456
+ #
5457
+ #
5458
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
5356
5459
  # @return [String]
5357
5460
  #
5358
5461
  # @!attribute [rw] endpoint_config_name
5359
5462
  # The name of an endpoint configuration. For more information, see
5360
- # CreateEndpointConfig.
5463
+ # [CreateEndpointConfig][1].
5464
+ #
5465
+ #
5466
+ #
5467
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
5361
5468
  # @return [String]
5362
5469
  #
5363
5470
  # @!attribute [rw] deployment_config
@@ -5415,8 +5522,12 @@ module Aws::SageMaker
5415
5522
  # @return [String]
5416
5523
  #
5417
5524
  # @!attribute [rw] tags
5418
- # A list of tags to associate with the experiment. You can use Search
5419
- # API to search on the tags.
5525
+ # A list of tags to associate with the experiment. You can use
5526
+ # [Search][1] API to search on the tags.
5527
+ #
5528
+ #
5529
+ #
5530
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
5420
5531
  # @return [Array<Types::Tag>]
5421
5532
  #
5422
5533
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateExperimentRequest AWS API Documentation
@@ -5509,11 +5620,12 @@ module Aws::SageMaker
5509
5620
  #
5510
5621
  # @!attribute [rw] online_store_config
5511
5622
  # You can turn the `OnlineStore` on or off by specifying `True` for
5512
- # the `EnableOnlineStore` flag in `OnlineStoreConfig`; the default
5513
- # value is `False`.
5623
+ # the `EnableOnlineStore` flag in `OnlineStoreConfig`.
5514
5624
  #
5515
5625
  # You can also include an Amazon Web Services KMS key ID (`KMSKeyId`)
5516
5626
  # for at-rest encryption of the `OnlineStore`.
5627
+ #
5628
+ # The default value is `False`.
5517
5629
  # @return [Types::OnlineStoreConfig]
5518
5630
  #
5519
5631
  # @!attribute [rw] offline_store_config
@@ -5535,12 +5647,13 @@ module Aws::SageMaker
5535
5647
  # * Format for the offline store table. Supported formats are Glue
5536
5648
  # (Default) and [Apache Iceberg][2].
5537
5649
  #
5538
- # To learn more about this parameter, see OfflineStoreConfig.
5650
+ # To learn more about this parameter, see [OfflineStoreConfig][3].
5539
5651
  #
5540
5652
  #
5541
5653
  #
5542
5654
  # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
5543
5655
  # [2]: https://iceberg.apache.org/
5656
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OfflineStoreConfig.html
5544
5657
  # @return [Types::OfflineStoreConfig]
5545
5658
  #
5546
5659
  # @!attribute [rw] role_arn
@@ -5745,27 +5858,36 @@ module Aws::SageMaker
5745
5858
  # @return [String]
5746
5859
  #
5747
5860
  # @!attribute [rw] hyper_parameter_tuning_job_config
5748
- # The HyperParameterTuningJobConfig object that describes the tuning
5749
- # job, including the search strategy, the objective metric used to
5750
- # evaluate training jobs, ranges of parameters to search, and resource
5751
- # limits for the tuning job. For more information, see [How
5752
- # Hyperparameter Tuning Works][1].
5861
+ # The [HyperParameterTuningJobConfig][1] object that describes the
5862
+ # tuning job, including the search strategy, the objective metric used
5863
+ # to evaluate training jobs, ranges of parameters to search, and
5864
+ # resource limits for the tuning job. For more information, see [How
5865
+ # Hyperparameter Tuning Works][2].
5753
5866
  #
5754
5867
  #
5755
5868
  #
5756
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
5869
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
5870
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
5757
5871
  # @return [Types::HyperParameterTuningJobConfig]
5758
5872
  #
5759
5873
  # @!attribute [rw] training_job_definition
5760
- # The HyperParameterTrainingJobDefinition object that describes the
5761
- # training jobs that this tuning job launches, including static
5874
+ # The [HyperParameterTrainingJobDefinition][1] object that describes
5875
+ # the training jobs that this tuning job launches, including static
5762
5876
  # hyperparameters, input data configuration, output data
5763
5877
  # configuration, resource configuration, and stopping condition.
5878
+ #
5879
+ #
5880
+ #
5881
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
5764
5882
  # @return [Types::HyperParameterTrainingJobDefinition]
5765
5883
  #
5766
5884
  # @!attribute [rw] training_job_definitions
5767
- # A list of the HyperParameterTrainingJobDefinition objects launched
5768
- # for this tuning job.
5885
+ # A list of the [HyperParameterTrainingJobDefinition][1] objects
5886
+ # launched for this tuning job.
5887
+ #
5888
+ #
5889
+ #
5890
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
5769
5891
  # @return [Array<Types::HyperParameterTrainingJobDefinition>]
5770
5892
  #
5771
5893
  # @!attribute [rw] warm_start_config
@@ -6143,7 +6265,10 @@ module Aws::SageMaker
6143
6265
  # @!attribute [rw] job_name
6144
6266
  # A name for the recommendation job. The name must be unique within
6145
6267
  # the Amazon Web Services Region and within your Amazon Web Services
6146
- # account.
6268
+ # account. The job name is passed down to the resources created by the
6269
+ # recommendation job. The names of resources (such as the model,
6270
+ # endpoint configuration, endpoint, and compilation) that are prefixed
6271
+ # with the job name are truncated at 40 characters.
6147
6272
  # @return [String]
6148
6273
  #
6149
6274
  # @!attribute [rw] job_type
@@ -6564,7 +6689,7 @@ module Aws::SageMaker
6564
6689
  #
6565
6690
  #
6566
6691
  #
6567
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-api-json-schema.html
6692
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema
6568
6693
  # @return [String]
6569
6694
  #
6570
6695
  # @!attribute [rw] model_card_status
@@ -6739,17 +6864,18 @@ module Aws::SageMaker
6739
6864
  # @return [Array<Types::Tag>]
6740
6865
  #
6741
6866
  # @!attribute [rw] vpc_config
6742
- # A VpcConfig object that specifies the VPC that you want your model
6743
- # to connect to. Control access to and from your model container by
6744
- # configuring the VPC. `VpcConfig` is used in hosting services and in
6745
- # batch transform. For more information, see [Protect Endpoints by
6746
- # Using an Amazon Virtual Private Cloud][1] and [Protect Data in Batch
6747
- # Transform Jobs by Using an Amazon Virtual Private Cloud][2].
6867
+ # A [VpcConfig][1] object that specifies the VPC that you want your
6868
+ # model to connect to. Control access to and from your model container
6869
+ # by configuring the VPC. `VpcConfig` is used in hosting services and
6870
+ # in batch transform. For more information, see [Protect Endpoints by
6871
+ # Using an Amazon Virtual Private Cloud][2] and [Protect Data in Batch
6872
+ # Transform Jobs by Using an Amazon Virtual Private Cloud][3].
6748
6873
  #
6749
6874
  #
6750
6875
  #
6751
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
6752
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html
6876
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
6877
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
6878
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html
6753
6879
  # @return [Types::VpcConfig]
6754
6880
  #
6755
6881
  # @!attribute [rw] enable_network_isolation
@@ -7553,11 +7679,17 @@ module Aws::SageMaker
7553
7679
  # Associates a SageMaker job as a trial component with an experiment
7554
7680
  # and trial. Specified when you call the following APIs:
7555
7681
  #
7556
- # * CreateProcessingJob
7682
+ # * [CreateProcessingJob][1]
7683
+ #
7684
+ # * [CreateTrainingJob][2]
7557
7685
  #
7558
- # * CreateTrainingJob
7686
+ # * [CreateTransformJob][3]
7559
7687
  #
7560
- # * CreateTransformJob
7688
+ #
7689
+ #
7690
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
7691
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
7692
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
7561
7693
  # @return [Types::ExperimentConfig]
7562
7694
  #
7563
7695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateProcessingJobRequest AWS API Documentation
@@ -7830,14 +7962,15 @@ module Aws::SageMaker
7830
7962
  # @return [Types::ResourceConfig]
7831
7963
  #
7832
7964
  # @!attribute [rw] vpc_config
7833
- # A VpcConfig object that specifies the VPC that you want your
7965
+ # A [VpcConfig][1] object that specifies the VPC that you want your
7834
7966
  # training job to connect to. Control access to and from your training
7835
7967
  # container by configuring the VPC. For more information, see [Protect
7836
- # Training Jobs by Using an Amazon Virtual Private Cloud][1].
7968
+ # Training Jobs by Using an Amazon Virtual Private Cloud][2].
7837
7969
  #
7838
7970
  #
7839
7971
  #
7840
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
7972
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
7973
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
7841
7974
  # @return [Types::VpcConfig]
7842
7975
  #
7843
7976
  # @!attribute [rw] stopping_condition
@@ -7933,11 +8066,17 @@ module Aws::SageMaker
7933
8066
  # Associates a SageMaker job as a trial component with an experiment
7934
8067
  # and trial. Specified when you call the following APIs:
7935
8068
  #
7936
- # * CreateProcessingJob
8069
+ # * [CreateProcessingJob][1]
7937
8070
  #
7938
- # * CreateTrainingJob
8071
+ # * [CreateTrainingJob][2]
7939
8072
  #
7940
- # * CreateTransformJob
8073
+ # * [CreateTransformJob][3]
8074
+ #
8075
+ #
8076
+ #
8077
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
8078
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
8079
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
7941
8080
  # @return [Types::ExperimentConfig]
7942
8081
  #
7943
8082
  # @!attribute [rw] profiler_config
@@ -8122,11 +8261,17 @@ module Aws::SageMaker
8122
8261
  # Associates a SageMaker job as a trial component with an experiment
8123
8262
  # and trial. Specified when you call the following APIs:
8124
8263
  #
8125
- # * CreateProcessingJob
8264
+ # * [CreateProcessingJob][1]
8265
+ #
8266
+ # * [CreateTrainingJob][2]
8267
+ #
8268
+ # * [CreateTransformJob][3]
8126
8269
  #
8127
- # * CreateTrainingJob
8128
8270
  #
8129
- # * CreateTransformJob
8271
+ #
8272
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
8273
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
8274
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
8130
8275
  # @return [Types::ExperimentConfig]
8131
8276
  #
8132
8277
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTransformJobRequest AWS API Documentation
@@ -8212,8 +8357,12 @@ module Aws::SageMaker
8212
8357
  # @return [Types::MetadataProperties]
8213
8358
  #
8214
8359
  # @!attribute [rw] tags
8215
- # A list of tags to associate with the component. You can use Search
8216
- # API to search on the tags.
8360
+ # A list of tags to associate with the component. You can use
8361
+ # [Search][1] API to search on the tags.
8362
+ #
8363
+ #
8364
+ #
8365
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
8217
8366
  # @return [Array<Types::Tag>]
8218
8367
  #
8219
8368
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrialComponentRequest AWS API Documentation
@@ -8265,8 +8414,12 @@ module Aws::SageMaker
8265
8414
  # @return [Types::MetadataProperties]
8266
8415
  #
8267
8416
  # @!attribute [rw] tags
8268
- # A list of tags to associate with the trial. You can use Search API
8269
- # to search on the tags.
8417
+ # A list of tags to associate with the trial. You can use [Search][1]
8418
+ # API to search on the tags.
8419
+ #
8420
+ #
8421
+ #
8422
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
8270
8423
  # @return [Array<Types::Tag>]
8271
8424
  #
8272
8425
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrialRequest AWS API Documentation
@@ -9033,11 +9186,11 @@ module Aws::SageMaker
9033
9186
  # A collection of settings that apply to spaces created in the Domain.
9034
9187
  #
9035
9188
  # @!attribute [rw] execution_role
9036
- # The execution role for the space.
9189
+ # The ARN of the execution role for the space.
9037
9190
  # @return [String]
9038
9191
  #
9039
9192
  # @!attribute [rw] security_groups
9040
- # The security groups for the Amazon Virtual Private Cloud that the
9193
+ # The security group IDs for the Amazon Virtual Private Cloud that the
9041
9194
  # space uses for communication.
9042
9195
  # @return [Array<String>]
9043
9196
  #
@@ -9855,19 +10008,20 @@ module Aws::SageMaker
9855
10008
  end
9856
10009
 
9857
10010
  # Gets the Amazon EC2 Container Registry path of the docker image of the
9858
- # model that is hosted in this ProductionVariant.
10011
+ # model that is hosted in this [ProductionVariant][1].
9859
10012
  #
9860
10013
  # If you used the `registry/repository[:tag]` form to specify the image
9861
10014
  # path of the primary container when you created the model hosted in
9862
10015
  # this `ProductionVariant`, the path resolves to a path of the form
9863
10016
  # `registry/repository[@digest]`. A digest is a hash value that
9864
10017
  # identifies a specific version of an image. For information about
9865
- # Amazon ECR paths, see [Pulling an Image][1] in the *Amazon ECR User
10018
+ # Amazon ECR paths, see [Pulling an Image][2] in the *Amazon ECR User
9866
10019
  # Guide*.
9867
10020
  #
9868
10021
  #
9869
10022
  #
9870
- # [1]: https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html
10023
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html
10024
+ # [2]: https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html
9871
10025
  #
9872
10026
  # @!attribute [rw] specified_image
9873
10027
  # The image path you specified when you created the model.
@@ -10718,10 +10872,10 @@ module Aws::SageMaker
10718
10872
  # instances.
10719
10873
  #
10720
10874
  # You are billed for the time between this timestamp and the timestamp
10721
- # in the DescribeCompilationJobResponse$CompilationEndTime field. In
10722
- # Amazon CloudWatch Logs, the start time might be later than this
10723
- # time. That's because it takes time to download the compilation job,
10724
- # which depends on the size of the compilation job container.
10875
+ # in the `CompilationEndTime` field. In Amazon CloudWatch Logs, the
10876
+ # start time might be later than this time. That's because it takes
10877
+ # time to download the compilation job, which depends on the size of
10878
+ # the compilation job container.
10725
10879
  # @return [Time]
10726
10880
  #
10727
10881
  # @!attribute [rw] compilation_end_time
@@ -10787,14 +10941,15 @@ module Aws::SageMaker
10787
10941
  # @return [Types::OutputConfig]
10788
10942
  #
10789
10943
  # @!attribute [rw] vpc_config
10790
- # A VpcConfig object that specifies the VPC that you want your
10944
+ # A [VpcConfig][1] object that specifies the VPC that you want your
10791
10945
  # compilation job to connect to. Control access to your models by
10792
10946
  # configuring the VPC. For more information, see [Protect Compilation
10793
- # Jobs by Using an Amazon Virtual Private Cloud][1].
10947
+ # Jobs by Using an Amazon Virtual Private Cloud][2].
10794
10948
  #
10795
10949
  #
10796
10950
  #
10797
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
10951
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
10952
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
10798
10953
  # @return [Types::NeoVpcConfig]
10799
10954
  #
10800
10955
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJobResponse AWS API Documentation
@@ -11549,8 +11704,12 @@ module Aws::SageMaker
11549
11704
  # @return [String]
11550
11705
  #
11551
11706
  # @!attribute [rw] production_variants
11552
- # An array of ProductionVariantSummary objects, one for each model
11553
- # hosted behind this endpoint.
11707
+ # An array of [ProductionVariantSummary][1] objects, one for each
11708
+ # model hosted behind this endpoint.
11709
+ #
11710
+ #
11711
+ #
11712
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariantSummary.html
11554
11713
  # @return [Array<Types::ProductionVariantSummary>]
11555
11714
  #
11556
11715
  # @!attribute [rw] data_capture_config
@@ -11564,10 +11723,10 @@ module Aws::SageMaker
11564
11723
  # * `OutOfService`: Endpoint is not available to take incoming
11565
11724
  # requests.
11566
11725
  #
11567
- # * `Creating`: CreateEndpoint is executing.
11726
+ # * `Creating`: [CreateEndpoint][1] is executing.
11568
11727
  #
11569
- # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11570
- # is executing.
11728
+ # * `Updating`: [UpdateEndpoint][2] or
11729
+ # [UpdateEndpointWeightsAndCapacities][3] is executing.
11571
11730
  #
11572
11731
  # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
11573
11732
  # updated or deleted or re-scaled until it has completed. This
@@ -11581,17 +11740,26 @@ module Aws::SageMaker
11581
11740
  # returns to an `InService` status. This transitional status only
11582
11741
  # applies to an endpoint that has autoscaling enabled and is
11583
11742
  # undergoing variant weight or capacity changes as part of an
11584
- # UpdateEndpointWeightsAndCapacities call or when the
11585
- # UpdateEndpointWeightsAndCapacities operation is called explicitly.
11743
+ # [UpdateEndpointWeightsAndCapacities][3] call or when the
11744
+ # [UpdateEndpointWeightsAndCapacities][3] operation is called
11745
+ # explicitly.
11586
11746
  #
11587
11747
  # * `InService`: Endpoint is available to process incoming requests.
11588
11748
  #
11589
- # * `Deleting`: DeleteEndpoint is executing.
11749
+ # * `Deleting`: [DeleteEndpoint][4] is executing.
11590
11750
  #
11591
11751
  # * `Failed`: Endpoint could not be created, updated, or re-scaled.
11592
- # Use DescribeEndpointOutput$FailureReason for information about the
11593
- # failure. DeleteEndpoint is the only operation that can be
11594
- # performed on a failed endpoint.
11752
+ # Use the `FailureReason` value returned by [DescribeEndpoint][5]
11753
+ # for information about the failure. [DeleteEndpoint][4] is the only
11754
+ # operation that can be performed on a failed endpoint.
11755
+ #
11756
+ #
11757
+ #
11758
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
11759
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
11760
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
11761
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
11762
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
11595
11763
  # @return [String]
11596
11764
  #
11597
11765
  # @!attribute [rw] failure_reason
@@ -11630,10 +11798,14 @@ module Aws::SageMaker
11630
11798
  # @return [Types::ExplainerConfig]
11631
11799
  #
11632
11800
  # @!attribute [rw] shadow_production_variants
11633
- # An array of ProductionVariantSummary objects, one for each model
11634
- # that you want to host at this endpoint in shadow mode with
11801
+ # An array of [ProductionVariantSummary][1] objects, one for each
11802
+ # model that you want to host at this endpoint in shadow mode with
11635
11803
  # production traffic replicated from the model specified on
11636
11804
  # `ProductionVariants`.
11805
+ #
11806
+ #
11807
+ #
11808
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariantSummary.html
11637
11809
  # @return [Array<Types::ProductionVariantSummary>]
11638
11810
  #
11639
11811
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointOutput AWS API Documentation
@@ -12259,18 +12431,30 @@ module Aws::SageMaker
12259
12431
  # @return [String]
12260
12432
  #
12261
12433
  # @!attribute [rw] hyper_parameter_tuning_job_config
12262
- # The HyperParameterTuningJobConfig object that specifies the
12434
+ # The [HyperParameterTuningJobConfig][1] object that specifies the
12263
12435
  # configuration of the tuning job.
12436
+ #
12437
+ #
12438
+ #
12439
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
12264
12440
  # @return [Types::HyperParameterTuningJobConfig]
12265
12441
  #
12266
12442
  # @!attribute [rw] training_job_definition
12267
- # The HyperParameterTrainingJobDefinition object that specifies the
12268
- # definition of the training jobs that this tuning job launches.
12443
+ # The [HyperParameterTrainingJobDefinition][1] object that specifies
12444
+ # the definition of the training jobs that this tuning job launches.
12445
+ #
12446
+ #
12447
+ #
12448
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
12269
12449
  # @return [Types::HyperParameterTrainingJobDefinition]
12270
12450
  #
12271
12451
  # @!attribute [rw] training_job_definitions
12272
- # A list of the HyperParameterTrainingJobDefinition objects launched
12273
- # for this tuning job.
12452
+ # A list of the [HyperParameterTrainingJobDefinition][1] objects
12453
+ # launched for this tuning job.
12454
+ #
12455
+ #
12456
+ #
12457
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
12274
12458
  # @return [Array<Types::HyperParameterTrainingJobDefinition>]
12275
12459
  #
12276
12460
  # @!attribute [rw] hyper_parameter_tuning_job_status
@@ -12291,27 +12475,46 @@ module Aws::SageMaker
12291
12475
  # @return [Time]
12292
12476
  #
12293
12477
  # @!attribute [rw] training_job_status_counters
12294
- # The TrainingJobStatusCounters object that specifies the number of
12295
- # training jobs, categorized by status, that this tuning job launched.
12478
+ # The [TrainingJobStatusCounters][1] object that specifies the number
12479
+ # of training jobs, categorized by status, that this tuning job
12480
+ # launched.
12481
+ #
12482
+ #
12483
+ #
12484
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobStatusCounters.html
12296
12485
  # @return [Types::TrainingJobStatusCounters]
12297
12486
  #
12298
12487
  # @!attribute [rw] objective_status_counters
12299
- # The ObjectiveStatusCounters object that specifies the number of
12488
+ # The [ObjectiveStatusCounters][1] object that specifies the number of
12300
12489
  # training jobs, categorized by the status of their final objective
12301
12490
  # metric, that this tuning job launched.
12491
+ #
12492
+ #
12493
+ #
12494
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ObjectiveStatusCounters.html
12302
12495
  # @return [Types::ObjectiveStatusCounters]
12303
12496
  #
12304
12497
  # @!attribute [rw] best_training_job
12305
- # A TrainingJobSummary object that describes the training job that
12306
- # completed with the best current HyperParameterTuningJobObjective.
12498
+ # A [TrainingJobSummary][1] object that describes the training job
12499
+ # that completed with the best current
12500
+ # [HyperParameterTuningJobObjective][2].
12501
+ #
12502
+ #
12503
+ #
12504
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html
12505
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html
12307
12506
  # @return [Types::HyperParameterTrainingJobSummary]
12308
12507
  #
12309
12508
  # @!attribute [rw] overall_best_training_job
12310
12509
  # If the hyperparameter tuning job is an warm start tuning job with a
12311
12510
  # `WarmStartType` of `IDENTICAL_DATA_AND_ALGORITHM`, this is the
12312
- # TrainingJobSummary for the training job with the best objective
12511
+ # [TrainingJobSummary][1] for the training job with the best objective
12313
12512
  # metric value of all training jobs launched by this tuning job and
12314
12513
  # all parent jobs specified for the warm start tuning job.
12514
+ #
12515
+ #
12516
+ #
12517
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html
12315
12518
  # @return [Types::HyperParameterTrainingJobSummary]
12316
12519
  #
12317
12520
  # @!attribute [rw] warm_start_config
@@ -12614,14 +12817,22 @@ module Aws::SageMaker
12614
12817
  # * `Completed` - Your experiment has completed.
12615
12818
  #
12616
12819
  # * `Cancelled` - When you conclude your experiment early using the
12617
- # StopInferenceExperiment API, or if any operation fails with an
12618
- # unexpected error, it shows as cancelled.
12820
+ # [StopInferenceExperiment][1] API, or if any operation fails with
12821
+ # an unexpected error, it shows as cancelled.
12822
+ #
12823
+ #
12824
+ #
12825
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopInferenceExperiment.html
12619
12826
  # @return [String]
12620
12827
  #
12621
12828
  # @!attribute [rw] status_reason
12622
12829
  # The error message or client-specified `Reason` from the
12623
- # StopInferenceExperiment API, that explains the status of the
12830
+ # [StopInferenceExperiment][1] API, that explains the status of the
12624
12831
  # inference experiment.
12832
+ #
12833
+ #
12834
+ #
12835
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopInferenceExperiment.html
12625
12836
  # @return [String]
12626
12837
  #
12627
12838
  # @!attribute [rw] description
@@ -12675,7 +12886,11 @@ module Aws::SageMaker
12675
12886
  # The Amazon Web Services Key Management Service (Amazon Web Services
12676
12887
  # KMS) key that Amazon SageMaker uses to encrypt data on the storage
12677
12888
  # volume attached to the ML compute instance that hosts the endpoint.
12678
- # For more information, see CreateInferenceExperimentRequest$KmsKey.
12889
+ # For more information, see [CreateInferenceExperiment][1].
12890
+ #
12891
+ #
12892
+ #
12893
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceExperiment.html
12679
12894
  # @return [String]
12680
12895
  #
12681
12896
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeInferenceExperimentResponse AWS API Documentation
@@ -13411,13 +13626,14 @@ module Aws::SageMaker
13411
13626
  # @return [String]
13412
13627
  #
13413
13628
  # @!attribute [rw] vpc_config
13414
- # A VpcConfig object that specifies the VPC that this model has access
13415
- # to. For more information, see [Protect Endpoints by Using an Amazon
13416
- # Virtual Private Cloud][1]
13629
+ # A [VpcConfig][1] object that specifies the VPC that this model has
13630
+ # access to. For more information, see [Protect Endpoints by Using an
13631
+ # Amazon Virtual Private Cloud][2]
13417
13632
  #
13418
13633
  #
13419
13634
  #
13420
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
13635
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
13636
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html
13421
13637
  # @return [Types::VpcConfig]
13422
13638
  #
13423
13639
  # @!attribute [rw] creation_time
@@ -14696,7 +14912,7 @@ module Aws::SageMaker
14696
14912
  # @!attribute [rw] secondary_status
14697
14913
  # Provides detailed information about the state of the training job.
14698
14914
  # For detailed information on the secondary status of the training
14699
- # job, see `StatusMessage` under SecondaryStatusTransition.
14915
+ # job, see `StatusMessage` under [SecondaryStatusTransition][1].
14700
14916
  #
14701
14917
  # SageMaker provides primary statuses and secondary statuses that
14702
14918
  # apply to each of them:
@@ -14751,6 +14967,10 @@ module Aws::SageMaker
14751
14967
  # * `PreparingTraining`
14752
14968
  #
14753
14969
  # * `DownloadingTrainingImage`
14970
+ #
14971
+ #
14972
+ #
14973
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html
14754
14974
  # @return [String]
14755
14975
  #
14756
14976
  # @!attribute [rw] failure_reason
@@ -14788,13 +15008,14 @@ module Aws::SageMaker
14788
15008
  # @return [Types::ResourceConfig]
14789
15009
  #
14790
15010
  # @!attribute [rw] vpc_config
14791
- # A VpcConfig object that specifies the VPC that this training job has
14792
- # access to. For more information, see [Protect Training Jobs by Using
14793
- # an Amazon Virtual Private Cloud][1].
15011
+ # A [VpcConfig][1] object that specifies the VPC that this training
15012
+ # job has access to. For more information, see [Protect Training Jobs
15013
+ # by Using an Amazon Virtual Private Cloud][2].
14794
15014
  #
14795
15015
  #
14796
15016
  #
14797
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
15017
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
15018
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
14798
15019
  # @return [Types::VpcConfig]
14799
15020
  #
14800
15021
  # @!attribute [rw] stopping_condition
@@ -14909,11 +15130,17 @@ module Aws::SageMaker
14909
15130
  # Associates a SageMaker job as a trial component with an experiment
14910
15131
  # and trial. Specified when you call the following APIs:
14911
15132
  #
14912
- # * CreateProcessingJob
15133
+ # * [CreateProcessingJob][1]
15134
+ #
15135
+ # * [CreateTrainingJob][2]
15136
+ #
15137
+ # * [CreateTransformJob][3]
15138
+ #
14913
15139
  #
14914
- # * CreateTrainingJob
14915
15140
  #
14916
- # * CreateTransformJob
15141
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
15142
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
15143
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
14917
15144
  # @return [Types::ExperimentConfig]
14918
15145
  #
14919
15146
  # @!attribute [rw] debug_rule_configurations
@@ -15144,11 +15371,17 @@ module Aws::SageMaker
15144
15371
  # Associates a SageMaker job as a trial component with an experiment
15145
15372
  # and trial. Specified when you call the following APIs:
15146
15373
  #
15147
- # * CreateProcessingJob
15374
+ # * [CreateProcessingJob][1]
15148
15375
  #
15149
- # * CreateTrainingJob
15376
+ # * [CreateTrainingJob][2]
15150
15377
  #
15151
- # * CreateTransformJob
15378
+ # * [CreateTransformJob][3]
15379
+ #
15380
+ #
15381
+ #
15382
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
15383
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
15384
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
15152
15385
  # @return [Types::ExperimentConfig]
15153
15386
  #
15154
15387
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
@@ -16703,7 +16936,11 @@ module Aws::SageMaker
16703
16936
  #
16704
16937
  # @!attribute [rw] endpoint_status
16705
16938
  # The status of the endpoint. For possible values of the status of an
16706
- # endpoint, see EndpointSummary$EndpointStatus.
16939
+ # endpoint, see [EndpointSummary][1].
16940
+ #
16941
+ #
16942
+ #
16943
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_EndpointSummary.html
16707
16944
  # @return [String]
16708
16945
  #
16709
16946
  # @!attribute [rw] failure_reason
@@ -16800,10 +17037,10 @@ module Aws::SageMaker
16800
17037
  # * `OutOfService`: Endpoint is not available to take incoming
16801
17038
  # requests.
16802
17039
  #
16803
- # * `Creating`: CreateEndpoint is executing.
17040
+ # * `Creating`: [CreateEndpoint][1] is executing.
16804
17041
  #
16805
- # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16806
- # is executing.
17042
+ # * `Updating`: [UpdateEndpoint][2] or
17043
+ # [UpdateEndpointWeightsAndCapacities][3] is executing.
16807
17044
  #
16808
17045
  # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
16809
17046
  # updated or deleted or re-scaled until it has completed. This
@@ -16817,20 +17054,29 @@ module Aws::SageMaker
16817
17054
  # returns to an `InService` status. This transitional status only
16818
17055
  # applies to an endpoint that has autoscaling enabled and is
16819
17056
  # undergoing variant weight or capacity changes as part of an
16820
- # UpdateEndpointWeightsAndCapacities call or when the
16821
- # UpdateEndpointWeightsAndCapacities operation is called explicitly.
17057
+ # [UpdateEndpointWeightsAndCapacities][3] call or when the
17058
+ # [UpdateEndpointWeightsAndCapacities][3] operation is called
17059
+ # explicitly.
16822
17060
  #
16823
17061
  # * `InService`: Endpoint is available to process incoming requests.
16824
17062
  #
16825
- # * `Deleting`: DeleteEndpoint is executing.
17063
+ # * `Deleting`: [DeleteEndpoint][4] is executing.
16826
17064
  #
16827
17065
  # * `Failed`: Endpoint could not be created, updated, or re-scaled.
16828
- # Use DescribeEndpointOutput$FailureReason for information about the
16829
- # failure. DeleteEndpoint is the only operation that can be
17066
+ # Use `DescribeEndpointOutput$FailureReason` for information about
17067
+ # the failure. [DeleteEndpoint][4] is the only operation that can be
16830
17068
  # performed on a failed endpoint.
16831
17069
  #
16832
17070
  # To get a list of endpoints with a specified status, use the
16833
- # ListEndpointsInput$StatusEquals filter.
17071
+ # `StatusEquals` filter with a call to [ListEndpoints][5].
17072
+ #
17073
+ #
17074
+ #
17075
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
17076
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
17077
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
17078
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
17079
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html
16834
17080
  # @return [String]
16835
17081
  #
16836
17082
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointSummary AWS API Documentation
@@ -16886,7 +17132,11 @@ module Aws::SageMaker
16886
17132
  include Aws::Structure
16887
17133
  end
16888
17134
 
16889
- # The properties of an experiment as returned by the Search API.
17135
+ # The properties of an experiment as returned by the [Search][1] API.
17136
+ #
17137
+ #
17138
+ #
17139
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
16890
17140
  #
16891
17141
  # @!attribute [rw] experiment_name
16892
17142
  # The name of the experiment.
@@ -16928,7 +17178,11 @@ module Aws::SageMaker
16928
17178
  #
16929
17179
  # @!attribute [rw] tags
16930
17180
  # The list of tags that are associated with the experiment. You can
16931
- # use Search API to search on the tags.
17181
+ # use [Search][1] API to search on the tags.
17182
+ #
17183
+ #
17184
+ #
17185
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
16932
17186
  # @return [Array<Types::Tag>]
16933
17187
  #
16934
17188
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Experiment AWS API Documentation
@@ -16951,11 +17205,17 @@ module Aws::SageMaker
16951
17205
  # Associates a SageMaker job as a trial component with an experiment and
16952
17206
  # trial. Specified when you call the following APIs:
16953
17207
  #
16954
- # * CreateProcessingJob
17208
+ # * [CreateProcessingJob][1]
17209
+ #
17210
+ # * [CreateTrainingJob][2]
17211
+ #
17212
+ # * [CreateTransformJob][3]
16955
17213
  #
16956
- # * CreateTrainingJob
16957
17214
  #
16958
- # * CreateTransformJob
17215
+ #
17216
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
17217
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
17218
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
16959
17219
  #
16960
17220
  # @!attribute [rw] experiment_name
16961
17221
  # The name of an existing experiment to associate with the trial
@@ -17008,9 +17268,13 @@ module Aws::SageMaker
17008
17268
  end
17009
17269
 
17010
17270
  # A summary of the properties of an experiment. To get the complete set
17011
- # of properties, call the DescribeExperiment API and provide the
17271
+ # of properties, call the [DescribeExperiment][1] API and provide the
17012
17272
  # `ExperimentName`.
17013
17273
  #
17274
+ #
17275
+ #
17276
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html
17277
+ #
17014
17278
  # @!attribute [rw] experiment_arn
17015
17279
  # The Amazon Resource Name (ARN) of the experiment.
17016
17280
  # @return [String]
@@ -17170,7 +17434,9 @@ module Aws::SageMaker
17170
17434
  # Use this to specify the Amazon Web Services Key Management Service
17171
17435
  # (KMS) Key ID, or `KMSKeyId`, for at rest data encryption. You can
17172
17436
  # turn `OnlineStore` on or off by specifying the `EnableOnlineStore`
17173
- # flag at General Assembly; the default value is `False`.
17437
+ # flag at General Assembly.
17438
+ #
17439
+ # The default value is `False`.
17174
17440
  # @return [Types::OnlineStoreConfig]
17175
17441
  #
17176
17442
  # @!attribute [rw] offline_store_config
@@ -17437,7 +17703,8 @@ module Aws::SageMaker
17437
17703
 
17438
17704
  # A conditional statement for a search expression that includes a
17439
17705
  # resource property, a Boolean operator, and a value. Resources that
17440
- # match the statement are returned in the results from the Search API.
17706
+ # match the statement are returned in the results from the [Search][1]
17707
+ # API.
17441
17708
  #
17442
17709
  # If you specify a `Value`, but not an `Operator`, SageMaker uses the
17443
17710
  # equals operator.
@@ -17485,10 +17752,18 @@ module Aws::SageMaker
17485
17752
  #
17486
17753
  # : To define a tag filter, enter a value with the form `Tags.<key>`.
17487
17754
  #
17755
+ #
17756
+ #
17757
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
17758
+ #
17488
17759
  # @!attribute [rw] name
17489
17760
  # A resource property name. For example, `TrainingJobName`. For valid
17490
- # property names, see SearchRecord. You must specify a valid property
17491
- # for the resource.
17761
+ # property names, see [SearchRecord][1]. You must specify a valid
17762
+ # property for the resource.
17763
+ #
17764
+ #
17765
+ #
17766
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html
17492
17767
  # @return [String]
17493
17768
  #
17494
17769
  # @!attribute [rw] operator
@@ -17599,8 +17874,12 @@ module Aws::SageMaker
17599
17874
  #
17600
17875
  # @!attribute [rw] metric_name
17601
17876
  # The name of the metric with the best result. For a description of
17602
- # the possible objective metrics, see ` AutoMLJobObjective$MetricName
17603
- # `.
17877
+ # the possible objective metrics, see
17878
+ # [AutoMLJobObjective$MetricName][1].
17879
+ #
17880
+ #
17881
+ #
17882
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
17604
17883
  # @return [String]
17605
17884
  #
17606
17885
  # @!attribute [rw] value
@@ -17630,7 +17909,11 @@ module Aws::SageMaker
17630
17909
  # Shows the latest objective metric emitted by a training job that was
17631
17910
  # launched by a hyperparameter tuning job. You define the objective
17632
17911
  # metric in the `HyperParameterTuningJobObjective` parameter of
17633
- # HyperParameterTuningJobConfig.
17912
+ # [HyperParameterTuningJobConfig][1].
17913
+ #
17914
+ #
17915
+ #
17916
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
17634
17917
  #
17635
17918
  # @!attribute [rw] type
17636
17919
  # Select if you want to minimize or maximize the objective metric
@@ -18082,7 +18365,14 @@ module Aws::SageMaker
18082
18365
  end
18083
18366
 
18084
18367
  # Defines under what conditions SageMaker creates a human loop. Used
18085
- # within . See for the required format of activation conditions.
18368
+ # within [CreateFlowDefinition][1]. See
18369
+ # [HumanLoopActivationConditionsConfig][2] for the required format of
18370
+ # activation conditions.
18371
+ #
18372
+ #
18373
+ #
18374
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
18375
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopActivationConditionsConfig.html
18086
18376
  #
18087
18377
  # @!attribute [rw] human_loop_activation_conditions
18088
18378
  # JSON expressing use-case specific conditions declaratively. If any
@@ -19280,8 +19570,12 @@ module Aws::SageMaker
19280
19570
  # @return [String]
19281
19571
  #
19282
19572
  # @!attribute [rw] metric_definitions
19283
- # An array of MetricDefinition objects that specify the metrics that
19284
- # the algorithm emits.
19573
+ # An array of [MetricDefinition][1] objects that specify the metrics
19574
+ # that the algorithm emits.
19575
+ #
19576
+ #
19577
+ #
19578
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html
19285
19579
  # @return [Array<Types::MetricDefinition>]
19286
19580
  #
19287
19581
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterAlgorithmSpecification AWS API Documentation
@@ -19379,9 +19673,13 @@ module Aws::SageMaker
19379
19673
  # @return [Hash<String,String>]
19380
19674
  #
19381
19675
  # @!attribute [rw] algorithm_specification
19382
- # The HyperParameterAlgorithmSpecification object that specifies the
19383
- # resource algorithm to use for the training jobs that the tuning job
19384
- # launches.
19676
+ # The [HyperParameterAlgorithmSpecification][1] object that specifies
19677
+ # the resource algorithm to use for the training jobs that the tuning
19678
+ # job launches.
19679
+ #
19680
+ #
19681
+ #
19682
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html
19385
19683
  # @return [Types::HyperParameterAlgorithmSpecification]
19386
19684
  #
19387
19685
  # @!attribute [rw] role_arn
@@ -19390,20 +19688,25 @@ module Aws::SageMaker
19390
19688
  # @return [String]
19391
19689
  #
19392
19690
  # @!attribute [rw] input_data_config
19393
- # An array of Channel objects that specify the input for the training
19394
- # jobs that the tuning job launches.
19691
+ # An array of [Channel][1] objects that specify the input for the
19692
+ # training jobs that the tuning job launches.
19693
+ #
19694
+ #
19695
+ #
19696
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
19395
19697
  # @return [Array<Types::Channel>]
19396
19698
  #
19397
19699
  # @!attribute [rw] vpc_config
19398
- # The VpcConfig object that specifies the VPC that you want the
19700
+ # The [VpcConfig][1] object that specifies the VPC that you want the
19399
19701
  # training jobs that this hyperparameter tuning job launches to
19400
19702
  # connect to. Control access to and from your training container by
19401
19703
  # configuring the VPC. For more information, see [Protect Training
19402
- # Jobs by Using an Amazon Virtual Private Cloud][1].
19704
+ # Jobs by Using an Amazon Virtual Private Cloud][2].
19403
19705
  #
19404
19706
  #
19405
19707
  #
19406
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
19708
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
19709
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
19407
19710
  # @return [Types::VpcConfig]
19408
19711
  #
19409
19712
  # @!attribute [rw] output_data_config
@@ -19572,9 +19875,13 @@ module Aws::SageMaker
19572
19875
  # @return [String]
19573
19876
  #
19574
19877
  # @!attribute [rw] final_hyper_parameter_tuning_job_objective_metric
19575
- # The FinalHyperParameterTuningJobObjectiveMetric object that
19878
+ # The [FinalHyperParameterTuningJobObjectiveMetric][1] object that
19576
19879
  # specifies the value of the objective metric of the tuning job that
19577
19880
  # launched this training job.
19881
+ #
19882
+ #
19883
+ #
19884
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FinalHyperParameterTuningJobObjectiveMetric.html
19578
19885
  # @return [Types::FinalHyperParameterTuningJobObjectiveMetric]
19579
19886
  #
19580
19887
  # @!attribute [rw] objective_status
@@ -19709,22 +20016,34 @@ module Aws::SageMaker
19709
20016
  # @return [Types::HyperParameterTuningJobStrategyConfig]
19710
20017
  #
19711
20018
  # @!attribute [rw] hyper_parameter_tuning_job_objective
19712
- # The HyperParameterTuningJobObjective specifies the objective metric
19713
- # used to evaluate the performance of training jobs launched by this
19714
- # tuning job.
20019
+ # The [HyperParameterTuningJobObjective][1] specifies the objective
20020
+ # metric used to evaluate the performance of training jobs launched by
20021
+ # this tuning job.
20022
+ #
20023
+ #
20024
+ #
20025
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html
19715
20026
  # @return [Types::HyperParameterTuningJobObjective]
19716
20027
  #
19717
20028
  # @!attribute [rw] resource_limits
19718
- # The ResourceLimits object that specifies the maximum number of
20029
+ # The [ResourceLimits][1] object that specifies the maximum number of
19719
20030
  # training and parallel training jobs that can be used for this
19720
20031
  # hyperparameter tuning job.
20032
+ #
20033
+ #
20034
+ #
20035
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
19721
20036
  # @return [Types::ResourceLimits]
19722
20037
  #
19723
20038
  # @!attribute [rw] parameter_ranges
19724
- # The ParameterRanges object that specifies the ranges of
20039
+ # The [ParameterRanges][1] object that specifies the ranges of
19725
20040
  # hyperparameters that this tuning job searches over to find the
19726
20041
  # optimal configuration for the highest model performance against your
19727
20042
  # chosen objective metric.
20043
+ #
20044
+ #
20045
+ #
20046
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html
19728
20047
  # @return [Types::ParameterRanges]
19729
20048
  #
19730
20049
  # @!attribute [rw] training_job_early_stopping_type
@@ -20007,20 +20326,33 @@ module Aws::SageMaker
20007
20326
  # @return [Time]
20008
20327
  #
20009
20328
  # @!attribute [rw] training_job_status_counters
20010
- # The TrainingJobStatusCounters object that specifies the numbers of
20011
- # training jobs, categorized by status, that this tuning job launched.
20329
+ # The [TrainingJobStatusCounters][1] object that specifies the numbers
20330
+ # of training jobs, categorized by status, that this tuning job
20331
+ # launched.
20332
+ #
20333
+ #
20334
+ #
20335
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobStatusCounters.html
20012
20336
  # @return [Types::TrainingJobStatusCounters]
20013
20337
  #
20014
20338
  # @!attribute [rw] objective_status_counters
20015
- # The ObjectiveStatusCounters object that specifies the numbers of
20016
- # training jobs, categorized by objective metric status, that this
20339
+ # The [ObjectiveStatusCounters][1] object that specifies the numbers
20340
+ # of training jobs, categorized by objective metric status, that this
20017
20341
  # tuning job launched.
20342
+ #
20343
+ #
20344
+ #
20345
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ObjectiveStatusCounters.html
20018
20346
  # @return [Types::ObjectiveStatusCounters]
20019
20347
  #
20020
20348
  # @!attribute [rw] resource_limits
20021
- # The ResourceLimits object that specifies the maximum number of
20349
+ # The [ResourceLimits][1] object that specifies the maximum number of
20022
20350
  # training jobs and parallel training jobs allowed for this tuning
20023
20351
  # job.
20352
+ #
20353
+ #
20354
+ #
20355
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
20024
20356
  # @return [Types::ResourceLimits]
20025
20357
  #
20026
20358
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSummary AWS API Documentation
@@ -20254,8 +20586,8 @@ module Aws::SageMaker
20254
20586
  # reaches the `MaxResource` value, it is stopped. If a value for
20255
20587
  # `MaxResource` is not provided, and `Hyperband` is selected as the
20256
20588
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
20257
- # infer `MaxResource` from the following keys (if present) in `
20258
- # StaticsHyperParameters `:
20589
+ # infer `MaxResource` from the following keys (if present) in
20590
+ # [StaticsHyperParameters][1]:
20259
20591
  #
20260
20592
  # * `epochs`
20261
20593
  #
@@ -20270,8 +20602,8 @@ module Aws::SageMaker
20270
20602
  # If `HyperbandStrategyConfig` is unable to infer a value for
20271
20603
  # `MaxResource`, it generates a validation error. The maximum value is
20272
20604
  # 20,000 epochs. All metrics that correspond to an objective metric
20273
- # are used to derive [early stopping decisions][1]. For
20274
- # [distributive][2] training jobs, ensure that duplicate metrics are
20605
+ # are used to derive [early stopping decisions][2]. For
20606
+ # [distributive][3] training jobs, ensure that duplicate metrics are
20275
20607
  # not printed in the logs across the individual nodes in a training
20276
20608
  # job. If multiple nodes are publishing duplicate or incorrect
20277
20609
  # metrics, training jobs may make an incorrect stopping decision and
@@ -20279,8 +20611,9 @@ module Aws::SageMaker
20279
20611
  #
20280
20612
  #
20281
20613
  #
20282
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20283
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20614
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
20615
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20616
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20284
20617
  # @return [Integer]
20285
20618
  #
20286
20619
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
@@ -20884,7 +21217,7 @@ module Aws::SageMaker
20884
21217
  # @!attribute [rw] data_input_config
20885
21218
  # Specifies the name and shape of the expected data inputs for your
20886
21219
  # trained model with a JSON dictionary form. The data inputs are
20887
- # InputConfig$Framework specific.
21220
+ # `Framework` specific.
20888
21221
  #
20889
21222
  # * `TensorFlow`: You must specify the name and shape (NHWC format) of
20890
21223
  # the expected data inputs using a dictionary format for your
@@ -20974,7 +21307,7 @@ module Aws::SageMaker
20974
21307
  # * `XGBOOST`: input data name and shape are not needed.
20975
21308
  #
20976
21309
  # `DataInputConfig` supports the following parameters for `CoreML`
20977
- # OutputConfig$TargetDevice (ML Model format):
21310
+ # `TargetDevice` (ML Model format):
20978
21311
  #
20979
21312
  # * `shape`: Input shape, for example `\{"input_1": \{"shape":
20980
21313
  # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
@@ -21008,8 +21341,8 @@ module Aws::SageMaker
21008
21341
  # scale factor.
21009
21342
  #
21010
21343
  # CoreML `ClassifierConfig` parameters can be specified using
21011
- # OutputConfig$CompilerOptions. CoreML converter supports Tensorflow
21012
- # and PyTorch models. CoreML conversion examples:
21344
+ # [OutputConfig][1] `CompilerOptions`. CoreML converter supports
21345
+ # Tensorflow and PyTorch models. CoreML conversion examples:
21013
21346
  #
21014
21347
  # * Tensor type input:
21015
21348
  #
@@ -21044,12 +21377,12 @@ module Aws::SageMaker
21044
21377
  # "imagenet_labels_1000.txt"\}`
21045
21378
  #
21046
21379
  # Depending on the model format, `DataInputConfig` requires the
21047
- # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
21380
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][2].
21048
21381
  #
21049
21382
  # * For TensorFlow models saved in the SavedModel format, specify the
21050
21383
  # input names from `signature_def_key` and the input model shapes
21051
21384
  # for `DataInputConfig`. Specify the `signature_def_key` in [
21052
- # `OutputConfig:CompilerOptions` ][2] if the model does not use
21385
+ # `OutputConfig:CompilerOptions` ][3] if the model does not use
21053
21386
  # TensorFlow's default signature def key. For example:
21054
21387
  #
21055
21388
  # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
@@ -21058,7 +21391,7 @@ module Aws::SageMaker
21058
21391
  #
21059
21392
  # * For TensorFlow models saved as a frozen graph, specify the input
21060
21393
  # tensor names and shapes in `DataInputConfig` and the output tensor
21061
- # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
21394
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][3].
21062
21395
  # For example:
21063
21396
  #
21064
21397
  # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
@@ -21067,8 +21400,9 @@ module Aws::SageMaker
21067
21400
  #
21068
21401
  #
21069
21402
  #
21070
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
21071
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
21403
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html
21404
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
21405
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
21072
21406
  # @return [String]
21073
21407
  #
21074
21408
  # @!attribute [rw] framework
@@ -22684,7 +23018,7 @@ module Aws::SageMaker
22684
23018
  #
22685
23019
  # @!attribute [rw] status_equals
22686
23020
  # A filter that retrieves model compilation jobs with a specific
22687
- # DescribeCompilationJobResponse$CompilationJobStatus status.
23021
+ # `CompilationJobStatus` status.
22688
23022
  # @return [String]
22689
23023
  #
22690
23024
  # @!attribute [rw] sort_by
@@ -22713,8 +23047,12 @@ module Aws::SageMaker
22713
23047
  end
22714
23048
 
22715
23049
  # @!attribute [rw] compilation_job_summaries
22716
- # An array of CompilationJobSummary objects, each describing a model
22717
- # compilation job.
23050
+ # An array of [CompilationJobSummary][1] objects, each describing a
23051
+ # model compilation job.
23052
+ #
23053
+ #
23054
+ #
23055
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CompilationJobSummary.html
22718
23056
  # @return [Array<Types::CompilationJobSummary>]
22719
23057
  #
22720
23058
  # @!attribute [rw] next_token
@@ -23891,9 +24229,13 @@ module Aws::SageMaker
23891
24229
  end
23892
24230
 
23893
24231
  # @!attribute [rw] hyper_parameter_tuning_job_summaries
23894
- # A list of HyperParameterTuningJobSummary objects that describe the
23895
- # tuning jobs that the `ListHyperParameterTuningJobs` request
24232
+ # A list of [HyperParameterTuningJobSummary][1] objects that describe
24233
+ # the tuning jobs that the `ListHyperParameterTuningJobs` request
23896
24234
  # returned.
24235
+ #
24236
+ #
24237
+ #
24238
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobSummary.html
23897
24239
  # @return [Array<Types::HyperParameterTuningJobSummary>]
23898
24240
  #
23899
24241
  # @!attribute [rw] next_token
@@ -24071,12 +24413,20 @@ module Aws::SageMaker
24071
24413
  #
24072
24414
  # @!attribute [rw] type
24073
24415
  # Selects inference experiments of this type. For the possible types
24074
- # of inference experiments, see CreateInferenceExperimentRequest$Type.
24416
+ # of inference experiments, see [CreateInferenceExperiment][1].
24417
+ #
24418
+ #
24419
+ #
24420
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceExperiment.html
24075
24421
  # @return [String]
24076
24422
  #
24077
24423
  # @!attribute [rw] status_equals
24078
24424
  # Selects inference experiments which are in this status. For the
24079
- # possible statuses, see DescribeInferenceExperimentResponse$Status.
24425
+ # possible statuses, see [DescribeInferenceExperiment][1].
24426
+ #
24427
+ #
24428
+ #
24429
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeInferenceExperiment.html
24080
24430
  # @return [String]
24081
24431
  #
24082
24432
  # @!attribute [rw] creation_time_after
@@ -26462,9 +26812,13 @@ module Aws::SageMaker
26462
26812
  end
26463
26813
 
26464
26814
  # @!attribute [rw] training_job_summaries
26465
- # A list of TrainingJobSummary objects that describe the training jobs
26466
- # that the `ListTrainingJobsForHyperParameterTuningJob` request
26815
+ # A list of [TrainingJobSummary][1] objects that describe the training
26816
+ # jobs that the `ListTrainingJobsForHyperParameterTuningJob` request
26467
26817
  # returned.
26818
+ #
26819
+ #
26820
+ #
26821
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html
26468
26822
  # @return [Array<Types::HyperParameterTrainingJobSummary>]
26469
26823
  #
26470
26824
  # @!attribute [rw] next_token
@@ -27148,7 +27502,11 @@ module Aws::SageMaker
27148
27502
  include Aws::Structure
27149
27503
  end
27150
27504
 
27151
- # The properties of a model as returned by the Search API.
27505
+ # The properties of a model as returned by the [Search][1] API.
27506
+ #
27507
+ #
27508
+ #
27509
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
27152
27510
  #
27153
27511
  # @!attribute [rw] model_name
27154
27512
  # The name of the model.
@@ -27338,7 +27696,7 @@ module Aws::SageMaker
27338
27696
  #
27339
27697
  #
27340
27698
  #
27341
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-api-json-schema.html
27699
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema
27342
27700
  # @return [String]
27343
27701
  #
27344
27702
  # @!attribute [rw] model_card_status
@@ -28832,6 +29190,29 @@ module Aws::SageMaker
28832
29190
  include Aws::Structure
28833
29191
  end
28834
29192
 
29193
+ # The model registry settings for the SageMaker Canvas application.
29194
+ #
29195
+ # @!attribute [rw] status
29196
+ # Describes whether the integration to the model registry is enabled
29197
+ # or disabled in the Canvas application.
29198
+ # @return [String]
29199
+ #
29200
+ # @!attribute [rw] cross_account_model_register_role_arn
29201
+ # The Amazon Resource Name (ARN) of the SageMaker model registry
29202
+ # account. Required only to register model versions created by a
29203
+ # different SageMaker Canvas AWS account than the AWS account in which
29204
+ # SageMaker model registry is set up.
29205
+ # @return [String]
29206
+ #
29207
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelRegisterSettings AWS API Documentation
29208
+ #
29209
+ class ModelRegisterSettings < Struct.new(
29210
+ :status,
29211
+ :cross_account_model_register_role_arn)
29212
+ SENSITIVE = []
29213
+ include Aws::Structure
29214
+ end
29215
+
28835
29216
  # Metadata for Model steps.
28836
29217
  #
28837
29218
  # @!attribute [rw] arn
@@ -29737,15 +30118,16 @@ module Aws::SageMaker
29737
30118
  include Aws::Structure
29738
30119
  end
29739
30120
 
29740
- # The VpcConfig configuration object that specifies the VPC that you
29741
- # want the compilation jobs to connect to. For more information on
30121
+ # The [VpcConfig][1] configuration object that specifies the VPC that
30122
+ # you want the compilation jobs to connect to. For more information on
29742
30123
  # controlling access to your Amazon S3 buckets used for compilation job,
29743
30124
  # see [Give Amazon SageMaker Compilation Jobs Access to Resources in
29744
- # Your Amazon VPC][1].
30125
+ # Your Amazon VPC][2].
29745
30126
  #
29746
30127
  #
29747
30128
  #
29748
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
30129
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
30130
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html
29749
30131
  #
29750
30132
  # @!attribute [rw] security_group_ids
29751
30133
  # The VPC security group IDs. IDs have the form of `sg-xxxxxxxx`.
@@ -29767,9 +30149,9 @@ module Aws::SageMaker
29767
30149
  include Aws::Structure
29768
30150
  end
29769
30151
 
29770
- # A list of nested Filter objects. A resource must satisfy the
30152
+ # A list of nested [Filter][1] objects. A resource must satisfy the
29771
30153
  # conditions of all filters to be included in the results returned from
29772
- # the Search API.
30154
+ # the [Search][2] API.
29773
30155
  #
29774
30156
  # For example, to filter on a training job's `InputDataConfig` property
29775
30157
  # with a specific channel name and `S3Uri` prefix, define the following
@@ -29781,6 +30163,11 @@ module Aws::SageMaker
29781
30163
  # * `'\{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
29782
30164
  # "Operator":"Contains", "Value":"mybucket/catdata"\}'`
29783
30165
  #
30166
+ #
30167
+ #
30168
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Filter.html
30169
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
30170
+ #
29784
30171
  # @!attribute [rw] nested_property_name
29785
30172
  # The name of the property to use in the nested filters. The value
29786
30173
  # must match a listed property name, such as `InputDataConfig`.
@@ -30065,7 +30452,15 @@ module Aws::SageMaker
30065
30452
  #
30066
30453
  # @!attribute [rw] disable_glue_table_creation
30067
30454
  # Set to `True` to disable the automatic creation of an Amazon Web
30068
- # Services Glue table when configuring an `OfflineStore`.
30455
+ # Services Glue table when configuring an `OfflineStore`. If set to
30456
+ # `False`, Feature Store will name the `OfflineStore` Glue table
30457
+ # following [Athena's naming recommendations][1].
30458
+ #
30459
+ # The default value is `False`.
30460
+ #
30461
+ #
30462
+ #
30463
+ # [1]: https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html
30069
30464
  # @return [Boolean]
30070
30465
  #
30071
30466
  # @!attribute [rw] data_catalog_config
@@ -30240,7 +30635,9 @@ module Aws::SageMaker
30240
30635
  # Use this to specify the Amazon Web Services Key Management Service
30241
30636
  # (KMS) Key ID, or `KMSKeyId`, for at rest data encryption. You can turn
30242
30637
  # `OnlineStore` on or off by specifying the `EnableOnlineStore` flag at
30243
- # General Assembly; the default value is `False`.
30638
+ # General Assembly.
30639
+ #
30640
+ # The default value is `False`.
30244
30641
  #
30245
30642
  # @!attribute [rw] security_config
30246
30643
  # Use to specify KMS Key ID (`KMSKeyId`) for at-rest encryption of
@@ -30332,8 +30729,12 @@ module Aws::SageMaker
30332
30729
  # Identifies the target device or the machine learning instance that
30333
30730
  # you want to run your model on after the compilation has completed.
30334
30731
  # Alternatively, you can specify OS, architecture, and accelerator
30335
- # using TargetPlatform fields. It can be used instead of
30732
+ # using [TargetPlatform][1] fields. It can be used instead of
30336
30733
  # `TargetPlatform`.
30734
+ #
30735
+ #
30736
+ #
30737
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html
30337
30738
  # @return [String]
30338
30739
  #
30339
30740
  # @!attribute [rw] target_platform
@@ -30448,8 +30849,8 @@ module Aws::SageMaker
30448
30849
  # For information about supported compiler options, see [ Neuron
30449
30850
  # Compiler CLI][1].
30450
30851
  #
30451
- # * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
30452
- # supports the following compiler options:
30852
+ # * `CoreML`: Compilation for the CoreML [OutputConfig][2]
30853
+ # `TargetDevice` supports the following compiler options:
30453
30854
  #
30454
30855
  # * `class_labels`: Specifies the classification labels file name
30455
30856
  # inside input tar.gz file. For example, `\{"class_labels":
@@ -30478,6 +30879,7 @@ module Aws::SageMaker
30478
30879
  #
30479
30880
  #
30480
30881
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
30882
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html
30481
30883
  # @return [String]
30482
30884
  #
30483
30885
  # @!attribute [rw] kms_key_id
@@ -30679,20 +31081,33 @@ module Aws::SageMaker
30679
31081
  # </note>
30680
31082
  #
30681
31083
  # @!attribute [rw] integer_parameter_ranges
30682
- # The array of IntegerParameterRange objects that specify ranges of
30683
- # integer hyperparameters that a hyperparameter tuning job searches.
31084
+ # The array of [IntegerParameterRange][1] objects that specify ranges
31085
+ # of integer hyperparameters that a hyperparameter tuning job
31086
+ # searches.
31087
+ #
31088
+ #
31089
+ #
31090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_IntegerParameterRange.html
30684
31091
  # @return [Array<Types::IntegerParameterRange>]
30685
31092
  #
30686
31093
  # @!attribute [rw] continuous_parameter_ranges
30687
- # The array of ContinuousParameterRange objects that specify ranges of
30688
- # continuous hyperparameters that a hyperparameter tuning job
30689
- # searches.
31094
+ # The array of [ContinuousParameterRange][1] objects that specify
31095
+ # ranges of continuous hyperparameters that a hyperparameter tuning
31096
+ # job searches.
31097
+ #
31098
+ #
31099
+ #
31100
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContinuousParameterRange.html
30690
31101
  # @return [Array<Types::ContinuousParameterRange>]
30691
31102
  #
30692
31103
  # @!attribute [rw] categorical_parameter_ranges
30693
- # The array of CategoricalParameterRange objects that specify ranges
30694
- # of categorical hyperparameters that a hyperparameter tuning job
30695
- # searches.
31104
+ # The array of [CategoricalParameterRange][1] objects that specify
31105
+ # ranges of categorical hyperparameters that a hyperparameter tuning
31106
+ # job searches.
31107
+ #
31108
+ #
31109
+ #
31110
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CategoricalParameterRange.html
30696
31111
  # @return [Array<Types::CategoricalParameterRange>]
30697
31112
  #
30698
31113
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ParameterRanges AWS API Documentation
@@ -30750,8 +31165,13 @@ module Aws::SageMaker
30750
31165
  # @return [String]
30751
31166
  #
30752
31167
  # @!attribute [rw] production_variants
30753
- # An array of PendingProductionVariantSummary objects, one for each
30754
- # model hosted behind this endpoint for the in-progress deployment.
31168
+ # An array of [PendingProductionVariantSummary][1] objects, one for
31169
+ # each model hosted behind this endpoint for the in-progress
31170
+ # deployment.
31171
+ #
31172
+ #
31173
+ #
31174
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html
30755
31175
  # @return [Array<Types::PendingProductionVariantSummary>]
30756
31176
  #
30757
31177
  # @!attribute [rw] start_time
@@ -30759,10 +31179,14 @@ module Aws::SageMaker
30759
31179
  # @return [Time]
30760
31180
  #
30761
31181
  # @!attribute [rw] shadow_production_variants
30762
- # An array of PendingProductionVariantSummary objects, one for each
30763
- # model hosted behind this endpoint in shadow mode with production
30764
- # traffic replicated from the model specified on `ProductionVariants`
30765
- # for the in-progress deployment.
31182
+ # An array of [PendingProductionVariantSummary][1] objects, one for
31183
+ # each model hosted behind this endpoint in shadow mode with
31184
+ # production traffic replicated from the model specified on
31185
+ # `ProductionVariants` for the in-progress deployment.
31186
+ #
31187
+ #
31188
+ #
31189
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html
30766
31190
  # @return [Array<Types::PendingProductionVariantSummary>]
30767
31191
  #
30768
31192
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingDeploymentSummary AWS API Documentation
@@ -30777,9 +31201,14 @@ module Aws::SageMaker
30777
31201
  end
30778
31202
 
30779
31203
  # The production variant summary for a deployment when an endpoint is
30780
- # creating or updating with the ` CreateEndpoint ` or ` UpdateEndpoint `
30781
- # operations. Describes the `VariantStatus `, weight and capacity for a
30782
- # production variant associated with an endpoint.
31204
+ # creating or updating with the [CreateEndpoint][1] or
31205
+ # [UpdateEndpoint][2] operations. Describes the `VariantStatus `, weight
31206
+ # and capacity for a production variant associated with an endpoint.
31207
+ #
31208
+ #
31209
+ #
31210
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
31211
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
30783
31212
  #
30784
31213
  # @!attribute [rw] variant_name
30785
31214
  # The name of the variant.
@@ -30798,7 +31227,12 @@ module Aws::SageMaker
30798
31227
  # @!attribute [rw] desired_weight
30799
31228
  # The requested weight for the variant in this deployment, as
30800
31229
  # specified in the endpoint configuration for the endpoint. The value
30801
- # is taken from the request to the ` CreateEndpointConfig ` operation.
31230
+ # is taken from the request to the [CreateEndpointConfig][1]
31231
+ # operation.
31232
+ #
31233
+ #
31234
+ #
31235
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
30802
31236
  # @return [Float]
30803
31237
  #
30804
31238
  # @!attribute [rw] current_instance_count
@@ -30808,7 +31242,11 @@ module Aws::SageMaker
30808
31242
  # @!attribute [rw] desired_instance_count
30809
31243
  # The number of instances requested in this deployment, as specified
30810
31244
  # in the endpoint configuration for the endpoint. The value is taken
30811
- # from the request to the ` CreateEndpointConfig ` operation.
31245
+ # from the request to the [CreateEndpointConfig][1] operation.
31246
+ #
31247
+ #
31248
+ #
31249
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
30812
31250
  # @return [Integer]
30813
31251
  #
30814
31252
  # @!attribute [rw] instance_type
@@ -31544,11 +31982,17 @@ module Aws::SageMaker
31544
31982
  # Associates a SageMaker job as a trial component with an experiment
31545
31983
  # and trial. Specified when you call the following APIs:
31546
31984
  #
31547
- # * CreateProcessingJob
31985
+ # * [CreateProcessingJob][1]
31986
+ #
31987
+ # * [CreateTrainingJob][2]
31988
+ #
31989
+ # * [CreateTransformJob][3]
31548
31990
  #
31549
- # * CreateTrainingJob
31550
31991
  #
31551
- # * CreateTransformJob
31992
+ #
31993
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
31994
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
31995
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
31552
31996
  # @return [Types::ExperimentConfig]
31553
31997
  #
31554
31998
  # @!attribute [rw] processing_job_arn
@@ -33677,7 +34121,11 @@ module Aws::SageMaker
33677
34121
  # parameter.
33678
34122
  #
33679
34123
  # See a list of available Human Ui Amazon Resource Names (ARNs) in
33680
- # UiConfig.
34124
+ # [UiConfig][1].
34125
+ #
34126
+ #
34127
+ #
34128
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html
33681
34129
  # @return [String]
33682
34130
  #
33683
34131
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RenderUiTemplateRequest AWS API Documentation
@@ -34389,7 +34837,11 @@ module Aws::SageMaker
34389
34837
  include Aws::Structure
34390
34838
  end
34391
34839
 
34392
- # A single resource returned as part of the Search API response.
34840
+ # A single resource returned as part of the [Search][1] API response.
34841
+ #
34842
+ #
34843
+ #
34844
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
34393
34845
  #
34394
34846
  # @!attribute [rw] training_job
34395
34847
  # The properties of a training job.
@@ -34543,15 +34995,21 @@ module Aws::SageMaker
34543
34995
  include Aws::Structure
34544
34996
  end
34545
34997
 
34546
- # An array element of
34547
- # DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides
34548
- # additional details about a status that the training job has
34549
- # transitioned through. A training job can be in one of several states,
34550
- # for example, starting, downloading, training, or uploading. Within
34551
- # each state, there are a number of intermediate states. For example,
34552
- # within the starting state, SageMaker could be starting the training
34553
- # job or launching the ML instances. These transitional states are
34554
- # referred to as the job's secondary status.
34998
+ # An array element of `SecondaryStatusTransitions` for
34999
+ # [DescribeTrainingJob][1]. It provides additional details about a
35000
+ # status that the training job has transitioned through. A training job
35001
+ # can be in one of several states, for example, starting, downloading,
35002
+ # training, or uploading. Within each state, there are a number of
35003
+ # intermediate states. For example, within the starting state, SageMaker
35004
+ # could be starting the training job or launching the ML instances.
35005
+ # These transitional states are referred to as the job's secondary
35006
+ # status.
35007
+ #
35008
+ #
35009
+ #
35010
+ #
35011
+ #
35012
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
34555
35013
  #
34556
35014
  # @!attribute [rw] status
34557
35015
  # Contains a secondary status information from a training job.
@@ -34641,15 +35099,19 @@ module Aws::SageMaker
34641
35099
  # examples, don't use status messages in if statements.
34642
35100
  #
34643
35101
  # To have an overview of your training job's progress, view
34644
- # `TrainingJobStatus` and `SecondaryStatus` in DescribeTrainingJob,
34645
- # and `StatusMessage` together. For example, at the start of a
34646
- # training job, you might see the following:
35102
+ # `TrainingJobStatus` and `SecondaryStatus` in
35103
+ # [DescribeTrainingJob][1], and `StatusMessage` together. For example,
35104
+ # at the start of a training job, you might see the following:
34647
35105
  #
34648
35106
  # * `TrainingJobStatus` - InProgress
34649
35107
  #
34650
35108
  # * `SecondaryStatus` - Training
34651
35109
  #
34652
35110
  # * `StatusMessage` - Downloading the training image
35111
+ #
35112
+ #
35113
+ #
35114
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
34653
35115
  # @return [String]
34654
35116
  #
34655
35117
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SecondaryStatusTransition AWS API Documentation
@@ -35588,8 +36050,12 @@ module Aws::SageMaker
35588
36050
  include Aws::Structure
35589
36051
  end
35590
36052
 
35591
- # Specified in the GetSearchSuggestions request. Limits the property
35592
- # names that are included in the response.
36053
+ # Specified in the [GetSearchSuggestions][1] request. Limits the
36054
+ # property names that are included in the response.
36055
+ #
36056
+ #
36057
+ #
36058
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetSearchSuggestions.html
35593
36059
  #
35594
36060
  # @!attribute [rw] property_name_query
35595
36061
  # Defines a property name hint. Only property names that begin with
@@ -35610,19 +36076,20 @@ module Aws::SageMaker
35610
36076
  # You can add tags to notebook instances, training jobs, hyperparameter
35611
36077
  # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
35612
36078
  # endpoint configurations, and endpoints. For more information on adding
35613
- # tags to SageMaker resources, see AddTags.
36079
+ # tags to SageMaker resources, see [AddTags][1].
35614
36080
  #
35615
36081
  # For more information on adding metadata to your Amazon Web Services
35616
36082
  # resources with tagging, see [Tagging Amazon Web Services
35617
- # resources][1]. For advice on best practices for managing Amazon Web
36083
+ # resources][2]. For advice on best practices for managing Amazon Web
35618
36084
  # Services resources with tagging, see [Tagging Best Practices:
35619
36085
  # Implement an Effective Amazon Web Services Resource Tagging
35620
- # Strategy][2].
36086
+ # Strategy][3].
35621
36087
  #
35622
36088
  #
35623
36089
  #
35624
- # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
35625
- # [2]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
36090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html
36091
+ # [2]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
36092
+ # [3]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
35626
36093
  #
35627
36094
  # @!attribute [rw] key
35628
36095
  # The tag key. Tag keys must be unique per resource.
@@ -35755,23 +36222,23 @@ module Aws::SageMaker
35755
36222
  include Aws::Structure
35756
36223
  end
35757
36224
 
35758
- # Time series forecast settings for the SageMaker Canvas app.
36225
+ # Time series forecast settings for the SageMaker Canvas application.
35759
36226
  #
35760
36227
  # @!attribute [rw] status
35761
36228
  # Describes whether time series forecasting is enabled or disabled in
35762
- # the Canvas app.
36229
+ # the Canvas application.
35763
36230
  # @return [String]
35764
36231
  #
35765
36232
  # @!attribute [rw] amazon_forecast_role_arn
35766
36233
  # The IAM role that Canvas passes to Amazon Forecast for time series
35767
36234
  # forecasting. By default, Canvas uses the execution role specified in
35768
- # the `UserProfile` that launches the Canvas app. If an execution role
35769
- # is not specified in the `UserProfile`, Canvas uses the execution
35770
- # role specified in the Domain that owns the `UserProfile`. To allow
35771
- # time series forecasting, this IAM role should have the [
35772
- # AmazonSageMakerCanvasForecastAccess][1] policy attached and
35773
- # `forecast.amazonaws.com` added in the trust relationship as a
35774
- # service principal.
36235
+ # the `UserProfile` that launches the Canvas application. If an
36236
+ # execution role is not specified in the `UserProfile`, Canvas uses
36237
+ # the execution role specified in the Domain that owns the
36238
+ # `UserProfile`. To allow time series forecasting, this IAM role
36239
+ # should have the [ AmazonSageMakerCanvasForecastAccess][1] policy
36240
+ # attached and `forecast.amazonaws.com` added in the trust
36241
+ # relationship as a service principal.
35775
36242
  #
35776
36243
  #
35777
36244
  #
@@ -35926,7 +36393,7 @@ module Aws::SageMaker
35926
36393
  # @!attribute [rw] secondary_status
35927
36394
  # Provides detailed information about the state of the training job.
35928
36395
  # For detailed information about the secondary status of the training
35929
- # job, see `StatusMessage` under SecondaryStatusTransition.
36396
+ # job, see `StatusMessage` under [SecondaryStatusTransition][1].
35930
36397
  #
35931
36398
  # SageMaker provides primary statuses and secondary statuses that
35932
36399
  # apply to each of them:
@@ -35975,6 +36442,10 @@ module Aws::SageMaker
35975
36442
  # * `PreparingTrainingStack`
35976
36443
  #
35977
36444
  # * `DownloadingTrainingImage`
36445
+ #
36446
+ #
36447
+ #
36448
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html
35978
36449
  # @return [String]
35979
36450
  #
35980
36451
  # @!attribute [rw] failure_reason
@@ -36012,13 +36483,14 @@ module Aws::SageMaker
36012
36483
  # @return [Types::ResourceConfig]
36013
36484
  #
36014
36485
  # @!attribute [rw] vpc_config
36015
- # A VpcConfig object that specifies the VPC that this training job has
36016
- # access to. For more information, see [Protect Training Jobs by Using
36017
- # an Amazon Virtual Private Cloud][1].
36486
+ # A [VpcConfig][1] object that specifies the VPC that this training
36487
+ # job has access to. For more information, see [Protect Training Jobs
36488
+ # by Using an Amazon Virtual Private Cloud][2].
36018
36489
  #
36019
36490
  #
36020
36491
  #
36021
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
36492
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html
36493
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
36022
36494
  # @return [Types::VpcConfig]
36023
36495
  #
36024
36496
  # @!attribute [rw] stopping_condition
@@ -36124,11 +36596,17 @@ module Aws::SageMaker
36124
36596
  # Associates a SageMaker job as a trial component with an experiment
36125
36597
  # and trial. Specified when you call the following APIs:
36126
36598
  #
36127
- # * CreateProcessingJob
36599
+ # * [CreateProcessingJob][1]
36600
+ #
36601
+ # * [CreateTrainingJob][2]
36602
+ #
36603
+ # * [CreateTransformJob][3]
36604
+ #
36128
36605
  #
36129
- # * CreateTrainingJob
36130
36606
  #
36131
- # * CreateTransformJob
36607
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
36608
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
36609
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
36132
36610
  # @return [Types::ExperimentConfig]
36133
36611
  #
36134
36612
  # @!attribute [rw] debug_rule_configurations
@@ -36710,11 +37188,17 @@ module Aws::SageMaker
36710
37188
  # Associates a SageMaker job as a trial component with an experiment
36711
37189
  # and trial. Specified when you call the following APIs:
36712
37190
  #
36713
- # * CreateProcessingJob
37191
+ # * [CreateProcessingJob][1]
36714
37192
  #
36715
- # * CreateTrainingJob
37193
+ # * [CreateTrainingJob][2]
36716
37194
  #
36717
- # * CreateTransformJob
37195
+ # * [CreateTransformJob][3]
37196
+ #
37197
+ #
37198
+ #
37199
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
37200
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
37201
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
36718
37202
  # @return [Types::ExperimentConfig]
36719
37203
  #
36720
37204
  # @!attribute [rw] tags
@@ -36821,7 +37305,11 @@ module Aws::SageMaker
36821
37305
 
36822
37306
  # Provides a summary of a transform job. Multiple `TransformJobSummary`
36823
37307
  # objects are returned as a list after in response to a
36824
- # ListTransformJobs call.
37308
+ # [ListTransformJobs][1] call.
37309
+ #
37310
+ #
37311
+ #
37312
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html
36825
37313
  #
36826
37314
  # @!attribute [rw] transform_job_name
36827
37315
  # The name of the transform job.
@@ -37077,7 +37565,11 @@ module Aws::SageMaker
37077
37565
  include Aws::Structure
37078
37566
  end
37079
37567
 
37080
- # The properties of a trial as returned by the Search API.
37568
+ # The properties of a trial as returned by the [Search][1] API.
37569
+ #
37570
+ #
37571
+ #
37572
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
37081
37573
  #
37082
37574
  # @!attribute [rw] trial_name
37083
37575
  # The name of the trial.
@@ -37124,7 +37616,11 @@ module Aws::SageMaker
37124
37616
  #
37125
37617
  # @!attribute [rw] tags
37126
37618
  # The list of tags that are associated with the trial. You can use
37127
- # Search API to search on the tags.
37619
+ # [Search][1] API to search on the tags.
37620
+ #
37621
+ #
37622
+ #
37623
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
37128
37624
  # @return [Array<Types::Tag>]
37129
37625
  #
37130
37626
  # @!attribute [rw] trial_component_summaries
@@ -37151,7 +37647,12 @@ module Aws::SageMaker
37151
37647
  include Aws::Structure
37152
37648
  end
37153
37649
 
37154
- # The properties of a trial component as returned by the Search API.
37650
+ # The properties of a trial component as returned by the [Search][1]
37651
+ # API.
37652
+ #
37653
+ #
37654
+ #
37655
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
37155
37656
  #
37156
37657
  # @!attribute [rw] trial_component_name
37157
37658
  # The name of the trial component.
@@ -37231,7 +37732,11 @@ module Aws::SageMaker
37231
37732
  #
37232
37733
  # @!attribute [rw] tags
37233
37734
  # The list of tags that are associated with the component. You can use
37234
- # Search API to search on the tags.
37735
+ # [Search][1] API to search on the tags.
37736
+ #
37737
+ #
37738
+ #
37739
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
37235
37740
  # @return [Array<Types::Tag>]
37236
37741
  #
37237
37742
  # @!attribute [rw] parents
@@ -37274,12 +37779,16 @@ module Aws::SageMaker
37274
37779
 
37275
37780
  # Represents an input or output artifact of a trial component. You
37276
37781
  # specify `TrialComponentArtifact` as part of the `InputArtifacts` and
37277
- # `OutputArtifacts` parameters in the CreateTrialComponent request.
37782
+ # `OutputArtifacts` parameters in the [CreateTrialComponent][1] request.
37278
37783
  #
37279
37784
  # Examples of input artifacts are datasets, algorithms, hyperparameters,
37280
37785
  # source code, and instance types. Examples of output artifacts are
37281
37786
  # metrics, snapshots, logs, and images.
37282
37787
  #
37788
+ #
37789
+ #
37790
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html
37791
+ #
37283
37792
  # @!attribute [rw] media_type
37284
37793
  # The media type of the artifact, which indicates the type of data in
37285
37794
  # the artifact file. The media type consists of a *type* and a
@@ -37358,7 +37867,11 @@ module Aws::SageMaker
37358
37867
  # The value of a hyperparameter. Only one of `NumberValue` or
37359
37868
  # `StringValue` can be specified.
37360
37869
  #
37361
- # This object is specified in the CreateTrialComponent request.
37870
+ # This object is specified in the [CreateTrialComponent][1] request.
37871
+ #
37872
+ #
37873
+ #
37874
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html
37362
37875
  #
37363
37876
  # @!attribute [rw] string_value
37364
37877
  # The string value of a categorical hyperparameter. If you specify a
@@ -37490,9 +38003,13 @@ module Aws::SageMaker
37490
38003
  end
37491
38004
 
37492
38005
  # A summary of the properties of a trial component. To get all the
37493
- # properties, call the DescribeTrialComponent API and provide the
38006
+ # properties, call the [DescribeTrialComponent][1] API and provide the
37494
38007
  # `TrialComponentName`.
37495
38008
  #
38009
+ #
38010
+ #
38011
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrialComponent.html
38012
+ #
37496
38013
  # @!attribute [rw] trial_component_name
37497
38014
  # The name of the trial component.
37498
38015
  # @return [String]
@@ -37583,7 +38100,12 @@ module Aws::SageMaker
37583
38100
  end
37584
38101
 
37585
38102
  # A summary of the properties of a trial. To get the complete set of
37586
- # properties, call the DescribeTrial API and provide the `TrialName`.
38103
+ # properties, call the [DescribeTrial][1] API and provide the
38104
+ # `TrialName`.
38105
+ #
38106
+ #
38107
+ #
38108
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html
37587
38109
  #
37588
38110
  # @!attribute [rw] trial_arn
37589
38111
  # The Amazon Resource Name (ARN) of the trial.
@@ -38125,12 +38647,16 @@ module Aws::SageMaker
38125
38647
  #
38126
38648
  # @!attribute [rw] exclude_retained_variant_properties
38127
38649
  # When you are updating endpoint resources with
38128
- # UpdateEndpointInput$RetainAllVariantProperties, whose value is set
38129
- # to `true`, `ExcludeRetainedVariantProperties` specifies the list of
38130
- # type VariantProperty to override with the values provided by
38650
+ # `RetainAllVariantProperties`, whose value is set to `true`,
38651
+ # `ExcludeRetainedVariantProperties` specifies the list of type
38652
+ # [VariantProperty][1] to override with the values provided by
38131
38653
  # `EndpointConfig`. If you don't specify a value for
38132
38654
  # `ExcludeRetainedVariantProperties`, no variant properties are
38133
38655
  # overridden.
38656
+ #
38657
+ #
38658
+ #
38659
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VariantProperty.html
38134
38660
  # @return [Array<Types::VariantProperty>]
38135
38661
  #
38136
38662
  # @!attribute [rw] deployment_config
@@ -38563,7 +39089,7 @@ module Aws::SageMaker
38563
39089
  #
38564
39090
  #
38565
39091
  #
38566
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-api-json-schema.html
39092
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema
38567
39093
  # @return [String]
38568
39094
  #
38569
39095
  # @!attribute [rw] model_card_status
@@ -39302,7 +39828,11 @@ module Aws::SageMaker
39302
39828
 
39303
39829
  # @!attribute [rw] workforce_name
39304
39830
  # The name of the private workforce that you want to update. You can
39305
- # find your workforce name by using the operation.
39831
+ # find your workforce name by using the [ListWorkforces][1] operation.
39832
+ #
39833
+ #
39834
+ #
39835
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkforces.html
39306
39836
  # @return [String]
39307
39837
  #
39308
39838
  # @!attribute [rw] source_ip_config
@@ -39512,7 +40042,8 @@ module Aws::SageMaker
39512
40042
  # set to `PublicInternetOnly`.
39513
40043
  #
39514
40044
  # Required when the `CreateDomain.AppNetworkAccessType` parameter is
39515
- # set to `VpcOnly`.
40045
+ # set to `VpcOnly`, unless specified as part of the
40046
+ # `DefaultUserSettings` for the domain.
39516
40047
  #
39517
40048
  # Amazon SageMaker adds a security group to allow NFS traffic from
39518
40049
  # SageMaker Studio. Therefore, the number of security groups that you
@@ -39566,24 +40097,33 @@ module Aws::SageMaker
39566
40097
 
39567
40098
  # Specifies a production variant property type for an Endpoint.
39568
40099
  #
39569
- # If you are updating an endpoint with the
39570
- # UpdateEndpointInput$RetainAllVariantProperties option set to `true`,
39571
- # the `VariantProperty` objects listed in
39572
- # UpdateEndpointInput$ExcludeRetainedVariantProperties override the
39573
- # existing variant properties of the endpoint.
40100
+ # If you are updating an endpoint with the `RetainAllVariantProperties`
40101
+ # option of [UpdateEndpointInput][1] set to `true`, the
40102
+ # `VariantProperty` objects listed in the
40103
+ # `ExcludeRetainedVariantProperties` parameter of
40104
+ # [UpdateEndpointInput][1] override the existing variant properties of
40105
+ # the endpoint.
40106
+ #
40107
+ #
40108
+ #
40109
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
39574
40110
  #
39575
40111
  # @!attribute [rw] variant_property_type
39576
40112
  # The type of variant property. The supported values are:
39577
40113
  #
39578
40114
  # * `DesiredInstanceCount`: Overrides the existing variant instance
39579
- # counts using the ProductionVariant$InitialInstanceCount values in
39580
- # the CreateEndpointConfigInput$ProductionVariants.
40115
+ # counts using the `InitialInstanceCount` values in the
40116
+ # `ProductionVariants` of [CreateEndpointConfig][1].
39581
40117
  #
39582
40118
  # * `DesiredWeight`: Overrides the existing variant weights using the
39583
- # ProductionVariant$InitialVariantWeight values in the
39584
- # CreateEndpointConfigInput$ProductionVariants.
40119
+ # `InitialVariantWeight` values in the `ProductionVariants` of
40120
+ # [CreateEndpointConfig][1].
39585
40121
  #
39586
40122
  # * `DataCaptureConfig`: (Not currently supported.)
40123
+ #
40124
+ #
40125
+ #
40126
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
39587
40127
  # @return [String]
39588
40128
  #
39589
40129
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
@@ -39720,12 +40260,14 @@ module Aws::SageMaker
39720
40260
  # @return [String]
39721
40261
  #
39722
40262
  # @!attribute [rw] last_updated_date
39723
- # The most recent date that was used to successfully add one or more
39724
- # IP address ranges ([CIDRs][1]) to a private workforce's allow list.
40263
+ # The most recent date that [UpdateWorkforce][1] was used to
40264
+ # successfully add one or more IP address ranges ([CIDRs][2]) to a
40265
+ # private workforce's allow list.
39725
40266
  #
39726
40267
  #
39727
40268
  #
39728
- # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
40269
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html
40270
+ # [2]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
39729
40271
  # @return [Time]
39730
40272
  #
39731
40273
  # @!attribute [rw] source_ip_config