aws-sdk-sagemaker 1.169.0 → 1.171.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -374,7 +374,7 @@ module Aws::SageMaker
374
374
  # * You use one of the SageMaker built-in algorithms
375
375
  #
376
376
  # * You use one of the following [Prebuilt SageMaker Docker
377
- # Images][1]\:
377
+ # Images][1]:
378
378
  #
379
379
  # * Tensorflow (version >= 1.15)
380
380
  #
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
1714
1714
  # @return [String]
1715
1715
  #
1716
1716
  # @!attribute [rw] inference_containers
1717
- # Information about the inference container definitions.
1717
+ # Information about the recommended inference container definitions.
1718
1718
  # @return [Array<Types::AutoMLContainerDefinition>]
1719
1719
  #
1720
1720
  # @!attribute [rw] creation_time
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
1737
1737
  # The properties of an AutoML candidate job.
1738
1738
  # @return [Types::CandidateProperties]
1739
1739
  #
1740
+ # @!attribute [rw] inference_container_definitions
1741
+ # The mapping of all supported processing unit (CPU, GPU, etc...) to
1742
+ # inference container definitions for the candidate. This field is
1743
+ # populated for the V2 API only (for example, for jobs created by
1744
+ # calling `CreateAutoMLJobV2`).
1745
+ # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1746
+ #
1740
1747
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1741
1748
  #
1742
1749
  class AutoMLCandidate < Struct.new(
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
1750
1757
  :end_time,
1751
1758
  :last_modified_time,
1752
1759
  :failure_reason,
1753
- :candidate_properties)
1760
+ :candidate_properties,
1761
+ :inference_container_definitions)
1754
1762
  SENSITIVE = []
1755
1763
  include Aws::Structure
1756
1764
  end
@@ -1814,7 +1822,8 @@ module Aws::SageMaker
1814
1822
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1815
1823
  # for the given training mode.
1816
1824
  #
1817
- # For the list of all algorithms per training mode, see .
1825
+ # For the list of all algorithms per training mode, see `
1826
+ # AutoMLAlgorithmConfig `.
1818
1827
  #
1819
1828
  # For more information on each algorithm, see the [Algorithm
1820
1829
  # support][2] section in Autopilot developer guide.
@@ -1863,7 +1872,7 @@ module Aws::SageMaker
1863
1872
  # A channel is a named input source that training algorithms can
1864
1873
  # consume. The validation dataset size is limited to less than 2 GB. The
1865
1874
  # training dataset size must be less than 100 GB. For more information,
1866
- # see .
1875
+ # see ` Channel `.
1867
1876
  #
1868
1877
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1869
1878
  # dataset.
@@ -1914,20 +1923,22 @@ module Aws::SageMaker
1914
1923
  end
1915
1924
 
1916
1925
  # A list of container definitions that describe the different containers
1917
- # that make up an AutoML candidate. For more information, see .
1926
+ # that make up an AutoML candidate. For more information, see `
1927
+ # ContainerDefinition `.
1918
1928
  #
1919
1929
  # @!attribute [rw] image
1920
1930
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1921
- # container. For more information, see .
1931
+ # container. For more information, see ` ContainerDefinition `.
1922
1932
  # @return [String]
1923
1933
  #
1924
1934
  # @!attribute [rw] model_data_url
1925
- # The location of the model artifacts. For more information, see .
1935
+ # The location of the model artifacts. For more information, see `
1936
+ # ContainerDefinition `.
1926
1937
  # @return [String]
1927
1938
  #
1928
1939
  # @!attribute [rw] environment
1929
1940
  # The environment variables to set in the container. For more
1930
- # information, see .
1941
+ # information, see ` ContainerDefinition `.
1931
1942
  # @return [Hash<String,String>]
1932
1943
  #
1933
1944
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1955,9 +1966,14 @@ module Aws::SageMaker
1955
1966
  end
1956
1967
 
1957
1968
  # This structure specifies how to split the data into train and
1958
- # validation datasets. The validation and training datasets must contain
1959
- # the same headers. The validation dataset must be less than 2 GB in
1960
- # size.
1969
+ # validation datasets.
1970
+ #
1971
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
1972
+ # API for Natural Language Processing problems (for example
1973
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
1974
+ # type), the validation and training datasets must contain the same
1975
+ # headers. Also, for V1 API jobs, the validation dataset must be less
1976
+ # than 2 GB in size.
1961
1977
  #
1962
1978
  # @!attribute [rw] validation_fraction
1963
1979
  # The validation fraction (optional) is a float that specifies the
@@ -1993,17 +2009,66 @@ module Aws::SageMaker
1993
2009
  include Aws::Structure
1994
2010
  end
1995
2011
 
2012
+ # A channel is a named input source that training algorithms can
2013
+ # consume. This channel is used for the non tabular training data of an
2014
+ # AutoML job using the V2 API. For tabular training data, see `
2015
+ # AutoMLChannel `. For more information, see ` Channel `.
2016
+ #
2017
+ # @!attribute [rw] channel_type
2018
+ # The type of channel. Defines whether the data are used for training
2019
+ # or validation. The default value is `training`. Channels for
2020
+ # `training` and `validation` must share the same `ContentType`
2021
+ # @return [String]
2022
+ #
2023
+ # @!attribute [rw] content_type
2024
+ # The content type of the data from the input source. The following
2025
+ # are the allowed content types for different problems:
2026
+ #
2027
+ # * ImageClassification: `image/png`, `image/jpeg`, `image/*`
2028
+ #
2029
+ # * TextClassification: `text/csv;header=present`
2030
+ # @return [String]
2031
+ #
2032
+ # @!attribute [rw] compression_type
2033
+ # The allowed compression types depend on the input format. We allow
2034
+ # the compression type `Gzip` for `S3Prefix` inputs only. For all
2035
+ # other inputs, the compression type should be `None`. If no
2036
+ # compression type is provided, we default to `None`.
2037
+ # @return [String]
2038
+ #
2039
+ # @!attribute [rw] data_source
2040
+ # The data source for an AutoML channel.
2041
+ # @return [Types::AutoMLDataSource]
2042
+ #
2043
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
2044
+ #
2045
+ class AutoMLJobChannel < Struct.new(
2046
+ :channel_type,
2047
+ :content_type,
2048
+ :compression_type,
2049
+ :data_source)
2050
+ SENSITIVE = []
2051
+ include Aws::Structure
2052
+ end
2053
+
1996
2054
  # How long a job is allowed to run, or how many candidates a job is
1997
2055
  # allowed to generate.
1998
2056
  #
1999
2057
  # @!attribute [rw] max_candidates
2000
2058
  # The maximum number of times a training job is allowed to run.
2059
+ #
2060
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2061
+ # supported value is 1.
2001
2062
  # @return [Integer]
2002
2063
  #
2003
2064
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2004
2065
  # The maximum time, in seconds, that each training job executed inside
2005
2066
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2006
- # tuning job. For more information, see the used by the action.
2067
+ # tuning job. For more information, see the ` StoppingCondition ` used
2068
+ # by the ` CreateHyperParameterTuningJob ` action.
2069
+ #
2070
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2071
+ # field controls the runtime of the job candidate.
2007
2072
  # @return [Integer]
2008
2073
  #
2009
2074
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -2092,6 +2157,8 @@ module Aws::SageMaker
2092
2157
  end
2093
2158
 
2094
2159
  # Specifies a metric to minimize or maximize as the objective of a job.
2160
+ # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2161
+ # support `Accuracy` only.
2095
2162
  #
2096
2163
  # @!attribute [rw] metric_name
2097
2164
  # The name of the objective metric used to measure the predictive
@@ -2270,11 +2337,11 @@ module Aws::SageMaker
2270
2337
  # If you do not specify a metric explicitly, the default behavior is
2271
2338
  # to automatically use:
2272
2339
  #
2273
- # * `MSE`\: for regression.
2340
+ # * `MSE`: for regression.
2274
2341
  #
2275
- # * `F1`\: for binary classification
2342
+ # * `F1`: for binary classification
2276
2343
  #
2277
- # * `Accuracy`\: for multiclass classification.
2344
+ # * `Accuracy`: for multiclass classification.
2278
2345
  # @return [String]
2279
2346
  #
2280
2347
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2387,30 +2454,94 @@ module Aws::SageMaker
2387
2454
  include Aws::Structure
2388
2455
  end
2389
2456
 
2390
- # The Amazon S3 data source.
2457
+ # A collection of settings specific to the problem type used to
2458
+ # configure an AutoML job using the V2 API. There must be one and only
2459
+ # one config of the following type.
2460
+ #
2461
+ # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2462
+ #
2463
+ # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2464
+ #
2465
+ # @!attribute [rw] image_classification_job_config
2466
+ # Settings used to configure an AutoML job using the V2 API for the
2467
+ # image classification problem type.
2468
+ # @return [Types::ImageClassificationJobConfig]
2469
+ #
2470
+ # @!attribute [rw] text_classification_job_config
2471
+ # Settings used to configure an AutoML job using the V2 API for the
2472
+ # text classification problem type.
2473
+ # @return [Types::TextClassificationJobConfig]
2474
+ #
2475
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2476
+ #
2477
+ class AutoMLProblemTypeConfig < Struct.new(
2478
+ :image_classification_job_config,
2479
+ :text_classification_job_config,
2480
+ :unknown)
2481
+ SENSITIVE = []
2482
+ include Aws::Structure
2483
+ include Aws::Structure::Union
2484
+
2485
+ class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2486
+ class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2487
+ class Unknown < AutoMLProblemTypeConfig; end
2488
+ end
2489
+
2490
+ # Describes the Amazon S3 data source.
2391
2491
  #
2392
2492
  # @!attribute [rw] s3_data_type
2393
2493
  # The data type.
2394
2494
  #
2395
- # A ManifestFile should have the format shown below:
2495
+ # * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2496
+ # SageMaker uses all objects that match the specified key name
2497
+ # prefix for model training.
2498
+ #
2499
+ # The `S3Prefix` should have the following format:
2500
+ #
2501
+ # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2502
+ #
2503
+ # * If you choose `ManifestFile`, `S3Uri` identifies an object that is
2504
+ # a manifest file containing a list of object keys that you want
2505
+ # SageMaker to use for model training.
2506
+ #
2507
+ # A `ManifestFile` should have the format shown below:
2508
+ #
2509
+ # `[ \{"prefix":
2510
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2511
+ # `
2512
+ #
2513
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2514
+ #
2515
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2396
2516
  #
2397
- # `[ \{"prefix":
2398
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2399
- # `
2517
+ # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2400
2518
  #
2401
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2519
+ # * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
2520
+ # object that is an augmented manifest file in JSON lines format.
2521
+ # This file contains the data you want to use for model training.
2522
+ # `AugmentedManifestFile` is available for V2 API jobs only (for
2523
+ # example, for jobs created by calling `CreateAutoMLJobV2`).
2402
2524
  #
2403
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2525
+ # Here is a minimal, single-record example of an
2526
+ # `AugmentedManifestFile`:
2404
2527
  #
2405
- # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2528
+ # `\{"source-ref":
2529
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2406
2530
  #
2407
- # An S3Prefix should have the following format:
2531
+ # `"label-metadata": \{"class-name": "cat"` \\}
2408
2532
  #
2409
- # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2533
+ # For more information on `AugmentedManifestFile`, see [Provide
2534
+ # Dataset Metadata to Training Jobs with an Augmented Manifest
2535
+ # File][1].
2536
+ #
2537
+ #
2538
+ #
2539
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
2410
2540
  # @return [String]
2411
2541
  #
2412
2542
  # @!attribute [rw] s3_uri
2413
- # The URL to the Amazon S3 data source.
2543
+ # The URL to the Amazon S3 data source. The Uri refers to the Amazon
2544
+ # S3 prefix or ManifestFile depending on the data type.
2414
2545
  # @return [String]
2415
2546
  #
2416
2547
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
@@ -2860,10 +2991,10 @@ module Aws::SageMaker
2860
2991
  # @!attribute [rw] type
2861
2992
  # Specifies the endpoint capacity type.
2862
2993
  #
2863
- # * `INSTANCE_COUNT`\: The endpoint activates based on the number of
2994
+ # * `INSTANCE_COUNT`: The endpoint activates based on the number of
2864
2995
  # instances.
2865
2996
  #
2866
- # * `CAPACITY_PERCENT`\: The endpoint activates based on the specified
2997
+ # * `CAPACITY_PERCENT`: The endpoint activates based on the specified
2867
2998
  # percentage of capacity.
2868
2999
  # @return [String]
2869
3000
  #
@@ -3293,7 +3424,7 @@ module Aws::SageMaker
3293
3424
  # from the model container output if the model container is in JSON
3294
3425
  # Lines format.
3295
3426
  #
3296
- # **Example**\: If the model container output of a single request is
3427
+ # **Example**: If the model container output of a single request is
3297
3428
  # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3298
3429
  # `ProbabilityAttribute` to `'probability'`.
3299
3430
  # @return [String]
@@ -3302,7 +3433,7 @@ module Aws::SageMaker
3302
3433
  # A JMESPath expression used to locate the list of label headers in
3303
3434
  # the model container output.
3304
3435
  #
3305
- # **Example**\: If the model container output of a batch request is
3436
+ # **Example**: If the model container output of a batch request is
3306
3437
  # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3307
3438
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3308
3439
  # headers `["cat","dog","fish"]`
@@ -4358,9 +4489,10 @@ module Aws::SageMaker
4358
4489
  # @!attribute [rw] input_data_config
4359
4490
  # An array of channel objects that describes the input data and its
4360
4491
  # location. Each channel is a named input source. Similar to
4361
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4362
- # A minimum of 500 rows is required for the training dataset. There is
4363
- # not a minimum number of rows required for the validation dataset.
4492
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
4493
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
4494
+ # required for the training dataset. There is not a minimum number of
4495
+ # rows required for the validation dataset.
4364
4496
  # @return [Array<Types::AutoMLChannel>]
4365
4497
  #
4366
4498
  # @!attribute [rw] output_data_config
@@ -4370,19 +4502,20 @@ module Aws::SageMaker
4370
4502
  # @return [Types::AutoMLOutputDataConfig]
4371
4503
  #
4372
4504
  # @!attribute [rw] problem_type
4373
- # Defines the type of supervised learning available for the
4505
+ # Defines the type of supervised learning problem available for the
4374
4506
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4375
- # problem types and algorithm support][1].
4507
+ # problem types][1].
4376
4508
  #
4377
4509
  #
4378
4510
  #
4379
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
4511
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
4380
4512
  # @return [String]
4381
4513
  #
4382
4514
  # @!attribute [rw] auto_ml_job_objective
4383
4515
  # Defines the objective metric used to measure the predictive quality
4384
- # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4385
- # Autopilot infers whether to minimize or maximize it.
4516
+ # of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
4517
+ # and Autopilot infers whether to minimize or maximize it. For `
4518
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
4386
4519
  # @return [Types::AutoMLJobObjective]
4387
4520
  #
4388
4521
  # @!attribute [rw] auto_ml_job_config
@@ -4400,8 +4533,15 @@ module Aws::SageMaker
4400
4533
  # @return [Boolean]
4401
4534
  #
4402
4535
  # @!attribute [rw] tags
4403
- # Each tag consists of a key and an optional value. Tag keys must be
4404
- # unique per resource.
4536
+ # An array of key-value pairs. You can use tags to categorize your
4537
+ # Amazon Web Services resources in different ways, for example, by
4538
+ # purpose, owner, or environment. For more information, see [Tagging
4539
+ # Amazon Web ServicesResources][1]. Tag keys must be unique per
4540
+ # resource.
4541
+ #
4542
+ #
4543
+ #
4544
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4405
4545
  # @return [Array<Types::Tag>]
4406
4546
  #
4407
4547
  # @!attribute [rw] model_deploy_config
@@ -4438,6 +4578,104 @@ module Aws::SageMaker
4438
4578
  include Aws::Structure
4439
4579
  end
4440
4580
 
4581
+ # @!attribute [rw] auto_ml_job_name
4582
+ # Identifies an Autopilot job. The name must be unique to your account
4583
+ # and is case insensitive.
4584
+ # @return [String]
4585
+ #
4586
+ # @!attribute [rw] auto_ml_job_input_data_config
4587
+ # An array of channel objects describing the input data and their
4588
+ # location. Each channel is a named input source. Similar to `
4589
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
4590
+ # formats depend on the problem type:
4591
+ #
4592
+ # * ImageClassification: S3Prefix, `ManifestFile`,
4593
+ # `AugmentedManifestFile`
4594
+ #
4595
+ # * TextClassification: S3Prefix
4596
+ # @return [Array<Types::AutoMLJobChannel>]
4597
+ #
4598
+ # @!attribute [rw] output_data_config
4599
+ # Provides information about encryption and the Amazon S3 output path
4600
+ # needed to store artifacts from an AutoML job.
4601
+ # @return [Types::AutoMLOutputDataConfig]
4602
+ #
4603
+ # @!attribute [rw] auto_ml_problem_type_config
4604
+ # Defines the configuration settings of one of the supported problem
4605
+ # types.
4606
+ # @return [Types::AutoMLProblemTypeConfig]
4607
+ #
4608
+ # @!attribute [rw] role_arn
4609
+ # The ARN of the role that is used to access the data.
4610
+ # @return [String]
4611
+ #
4612
+ # @!attribute [rw] tags
4613
+ # An array of key-value pairs. You can use tags to categorize your
4614
+ # Amazon Web Services resources in different ways, such as by purpose,
4615
+ # owner, or environment. For more information, see [Tagging Amazon Web
4616
+ # ServicesResources][1]. Tag keys must be unique per resource.
4617
+ #
4618
+ #
4619
+ #
4620
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4621
+ # @return [Array<Types::Tag>]
4622
+ #
4623
+ # @!attribute [rw] security_config
4624
+ # The security configuration for traffic encryption or Amazon VPC
4625
+ # settings.
4626
+ # @return [Types::AutoMLSecurityConfig]
4627
+ #
4628
+ # @!attribute [rw] auto_ml_job_objective
4629
+ # Specifies a metric to minimize or maximize as the objective of a
4630
+ # job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
4631
+ # @return [Types::AutoMLJobObjective]
4632
+ #
4633
+ # @!attribute [rw] model_deploy_config
4634
+ # Specifies how to generate the endpoint name for an automatic
4635
+ # one-click Autopilot model deployment.
4636
+ # @return [Types::ModelDeployConfig]
4637
+ #
4638
+ # @!attribute [rw] data_split_config
4639
+ # This structure specifies how to split the data into train and
4640
+ # validation datasets.
4641
+ #
4642
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4643
+ # V2 API for Natural Language Processing problems (for example
4644
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4645
+ # type), the validation and training datasets must contain the same
4646
+ # headers. Also, for V1 API jobs, the validation dataset must be less
4647
+ # than 2 GB in size.
4648
+ # @return [Types::AutoMLDataSplitConfig]
4649
+ #
4650
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
4651
+ #
4652
+ class CreateAutoMLJobV2Request < Struct.new(
4653
+ :auto_ml_job_name,
4654
+ :auto_ml_job_input_data_config,
4655
+ :output_data_config,
4656
+ :auto_ml_problem_type_config,
4657
+ :role_arn,
4658
+ :tags,
4659
+ :security_config,
4660
+ :auto_ml_job_objective,
4661
+ :model_deploy_config,
4662
+ :data_split_config)
4663
+ SENSITIVE = []
4664
+ include Aws::Structure
4665
+ end
4666
+
4667
+ # @!attribute [rw] auto_ml_job_arn
4668
+ # The unique ARN assigned to the AutoMLJob when it is created.
4669
+ # @return [String]
4670
+ #
4671
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
4672
+ #
4673
+ class CreateAutoMLJobV2Response < Struct.new(
4674
+ :auto_ml_job_arn)
4675
+ SENSITIVE = []
4676
+ include Aws::Structure
4677
+ end
4678
+
4441
4679
  # @!attribute [rw] code_repository_name
4442
4680
  # The name of the Git repository. The name must have 1 to 63
4443
4681
  # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
@@ -4578,7 +4816,7 @@ module Aws::SageMaker
4578
4816
  # response. Amazon SageMaker returns the following data in JSON
4579
4817
  # format:
4580
4818
  #
4581
- # * `CompilationJobArn`\: The Amazon Resource Name (ARN) of the
4819
+ # * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
4582
4820
  # compiled job.
4583
4821
  #
4584
4822
  # ^
@@ -5244,11 +5482,11 @@ module Aws::SageMaker
5244
5482
  #
5245
5483
  # An `EventTime` can be a `String` or `Fractional`.
5246
5484
  #
5247
- # * `Fractional`\: `EventTime` feature values must be a Unix timestamp
5485
+ # * `Fractional`: `EventTime` feature values must be a Unix timestamp
5248
5486
  # in seconds.
5249
5487
  #
5250
- # * `String`\: `EventTime` feature values must be an ISO-8601 string
5251
- # in the format. The following formats are supported
5488
+ # * `String`: `EventTime` feature values must be an ISO-8601 string in
5489
+ # the format. The following formats are supported
5252
5490
  # `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
5253
5491
  # `yyyy`, `MM`, and `dd` represent the year, month, and day
5254
5492
  # respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
@@ -5668,29 +5906,29 @@ module Aws::SageMaker
5668
5906
  # @!attribute [rw] vendor_guidance
5669
5907
  # The stability of the image version, specified by the maintainer.
5670
5908
  #
5671
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5672
- # image version stability.
5909
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
5910
+ # version stability.
5673
5911
  #
5674
- # * `STABLE`\: The image version is stable.
5912
+ # * `STABLE`: The image version is stable.
5675
5913
  #
5676
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5914
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
5677
5915
  # image versions that are set to be archived are automatically
5678
5916
  # archived after three months.
5679
5917
  #
5680
- # * `ARCHIVED`\: The image version is archived. Archived image
5681
- # versions are not searchable and are no longer actively supported.
5918
+ # * `ARCHIVED`: The image version is archived. Archived image versions
5919
+ # are not searchable and are no longer actively supported.
5682
5920
  # @return [String]
5683
5921
  #
5684
5922
  # @!attribute [rw] job_type
5685
5923
  # Indicates SageMaker job type compatibility.
5686
5924
  #
5687
- # * `TRAINING`\: The image version is compatible with SageMaker
5925
+ # * `TRAINING`: The image version is compatible with SageMaker
5688
5926
  # training jobs.
5689
5927
  #
5690
- # * `INFERENCE`\: The image version is compatible with SageMaker
5928
+ # * `INFERENCE`: The image version is compatible with SageMaker
5691
5929
  # inference jobs.
5692
5930
  #
5693
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5931
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
5694
5932
  # notebook kernels.
5695
5933
  # @return [String]
5696
5934
  #
@@ -5705,9 +5943,9 @@ module Aws::SageMaker
5705
5943
  # @!attribute [rw] processor
5706
5944
  # Indicates CPU or GPU compatibility.
5707
5945
  #
5708
- # * `CPU`\: The image version is compatible with CPU.
5946
+ # * `CPU`: The image version is compatible with CPU.
5709
5947
  #
5710
- # * `GPU`\: The image version is compatible with GPU.
5948
+ # * `GPU`: The image version is compatible with GPU.
5711
5949
  # @return [String]
5712
5950
  #
5713
5951
  # @!attribute [rw] horovod
@@ -5756,7 +5994,7 @@ module Aws::SageMaker
5756
5994
  # The type of the inference experiment that you want to run. The
5757
5995
  # following types of experiments are possible:
5758
5996
  #
5759
- # * `ShadowMode`\: You can use this type to validate a shadow variant.
5997
+ # * `ShadowMode`: You can use this type to validate a shadow variant.
5760
5998
  # For more information, see [Shadow tests][1].
5761
5999
  #
5762
6000
  # ^
@@ -6334,13 +6572,13 @@ module Aws::SageMaker
6334
6572
  # Different organizations might have different criteria for model card
6335
6573
  # review and approval.
6336
6574
  #
6337
- # * `Draft`\: The model card is a work in progress.
6575
+ # * `Draft`: The model card is a work in progress.
6338
6576
  #
6339
- # * `PendingReview`\: The model card is pending review.
6577
+ # * `PendingReview`: The model card is pending review.
6340
6578
  #
6341
- # * `Approved`\: The model card is approved.
6579
+ # * `Approved`: The model card is approved.
6342
6580
  #
6343
- # * `Archived`\: The model card is archived. No more updates should be
6581
+ # * `Archived`: The model card is archived. No more updates should be
6344
6582
  # made to the model card, but it can still be exported.
6345
6583
  # @return [String]
6346
6584
  #
@@ -10279,6 +10517,130 @@ module Aws::SageMaker
10279
10517
  include Aws::Structure
10280
10518
  end
10281
10519
 
10520
+ # @!attribute [rw] auto_ml_job_name
10521
+ # Requests information about an AutoML V2 job using its unique name.
10522
+ # @return [String]
10523
+ #
10524
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
10525
+ #
10526
+ class DescribeAutoMLJobV2Request < Struct.new(
10527
+ :auto_ml_job_name)
10528
+ SENSITIVE = []
10529
+ include Aws::Structure
10530
+ end
10531
+
10532
+ # @!attribute [rw] auto_ml_job_name
10533
+ # Returns the name of the AutoML V2 job.
10534
+ # @return [String]
10535
+ #
10536
+ # @!attribute [rw] auto_ml_job_arn
10537
+ # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10538
+ # @return [String]
10539
+ #
10540
+ # @!attribute [rw] auto_ml_job_input_data_config
10541
+ # Returns an array of channel objects describing the input data and
10542
+ # their location.
10543
+ # @return [Array<Types::AutoMLJobChannel>]
10544
+ #
10545
+ # @!attribute [rw] output_data_config
10546
+ # Returns the job's output data config.
10547
+ # @return [Types::AutoMLOutputDataConfig]
10548
+ #
10549
+ # @!attribute [rw] role_arn
10550
+ # The ARN of the Identity and Access Management role that has read
10551
+ # permission to the input data location and write permission to the
10552
+ # output data location in Amazon S3.
10553
+ # @return [String]
10554
+ #
10555
+ # @!attribute [rw] auto_ml_job_objective
10556
+ # Returns the job's objective.
10557
+ # @return [Types::AutoMLJobObjective]
10558
+ #
10559
+ # @!attribute [rw] auto_ml_problem_type_config
10560
+ # Returns the configuration settings of the problem type set for the
10561
+ # AutoML V2 job.
10562
+ # @return [Types::AutoMLProblemTypeConfig]
10563
+ #
10564
+ # @!attribute [rw] creation_time
10565
+ # Returns the creation time of the AutoML V2 job.
10566
+ # @return [Time]
10567
+ #
10568
+ # @!attribute [rw] end_time
10569
+ # Returns the end time of the AutoML V2 job.
10570
+ # @return [Time]
10571
+ #
10572
+ # @!attribute [rw] last_modified_time
10573
+ # Returns the job's last modified time.
10574
+ # @return [Time]
10575
+ #
10576
+ # @!attribute [rw] failure_reason
10577
+ # Returns the reason for the failure of the AutoML V2 job, when
10578
+ # applicable.
10579
+ # @return [String]
10580
+ #
10581
+ # @!attribute [rw] partial_failure_reasons
10582
+ # Returns a list of reasons for partial failures within an AutoML V2
10583
+ # job.
10584
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10585
+ #
10586
+ # @!attribute [rw] best_candidate
10587
+ # Information about the candidate produced by an AutoML training job
10588
+ # V2, including its status, steps, and other properties.
10589
+ # @return [Types::AutoMLCandidate]
10590
+ #
10591
+ # @!attribute [rw] auto_ml_job_status
10592
+ # Returns the status of the AutoML V2 job.
10593
+ # @return [String]
10594
+ #
10595
+ # @!attribute [rw] auto_ml_job_secondary_status
10596
+ # Returns the secondary status of the AutoML V2 job.
10597
+ # @return [String]
10598
+ #
10599
+ # @!attribute [rw] model_deploy_config
10600
+ # Indicates whether the model was deployed automatically to an
10601
+ # endpoint and the name of that endpoint if deployed automatically.
10602
+ # @return [Types::ModelDeployConfig]
10603
+ #
10604
+ # @!attribute [rw] model_deploy_result
10605
+ # Provides information about endpoint for the model deployment.
10606
+ # @return [Types::ModelDeployResult]
10607
+ #
10608
+ # @!attribute [rw] data_split_config
10609
+ # Returns the configuration settings of how the data are split into
10610
+ # train and validation datasets.
10611
+ # @return [Types::AutoMLDataSplitConfig]
10612
+ #
10613
+ # @!attribute [rw] security_config
10614
+ # Returns the security configuration for traffic encryption or Amazon
10615
+ # VPC settings.
10616
+ # @return [Types::AutoMLSecurityConfig]
10617
+ #
10618
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10619
+ #
10620
+ class DescribeAutoMLJobV2Response < Struct.new(
10621
+ :auto_ml_job_name,
10622
+ :auto_ml_job_arn,
10623
+ :auto_ml_job_input_data_config,
10624
+ :output_data_config,
10625
+ :role_arn,
10626
+ :auto_ml_job_objective,
10627
+ :auto_ml_problem_type_config,
10628
+ :creation_time,
10629
+ :end_time,
10630
+ :last_modified_time,
10631
+ :failure_reason,
10632
+ :partial_failure_reasons,
10633
+ :best_candidate,
10634
+ :auto_ml_job_status,
10635
+ :auto_ml_job_secondary_status,
10636
+ :model_deploy_config,
10637
+ :model_deploy_result,
10638
+ :data_split_config,
10639
+ :security_config)
10640
+ SENSITIVE = []
10641
+ include Aws::Structure
10642
+ end
10643
+
10282
10644
  # @!attribute [rw] code_repository_name
10283
10645
  # The name of the Git repository to describe.
10284
10646
  # @return [String]
@@ -11199,21 +11561,21 @@ module Aws::SageMaker
11199
11561
  # @!attribute [rw] endpoint_status
11200
11562
  # The status of the endpoint.
11201
11563
  #
11202
- # * `OutOfService`\: Endpoint is not available to take incoming
11564
+ # * `OutOfService`: Endpoint is not available to take incoming
11203
11565
  # requests.
11204
11566
  #
11205
- # * `Creating`\: CreateEndpoint is executing.
11567
+ # * `Creating`: CreateEndpoint is executing.
11206
11568
  #
11207
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11569
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11208
11570
  # is executing.
11209
11571
  #
11210
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
11211
- # be updated or deleted or re-scaled until it has completed. This
11572
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
11573
+ # updated or deleted or re-scaled until it has completed. This
11212
11574
  # maintenance operation does not change any customer-specified
11213
11575
  # values such as VPC config, KMS encryption, model, instance type,
11214
11576
  # or instance count.
11215
11577
  #
11216
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
11578
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
11217
11579
  # variant weight and is in the process of rolling back to its
11218
11580
  # previous configuration. Once the rollback completes, endpoint
11219
11581
  # returns to an `InService` status. This transitional status only
@@ -11222,11 +11584,11 @@ module Aws::SageMaker
11222
11584
  # UpdateEndpointWeightsAndCapacities call or when the
11223
11585
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
11224
11586
  #
11225
- # * `InService`\: Endpoint is available to process incoming requests.
11587
+ # * `InService`: Endpoint is available to process incoming requests.
11226
11588
  #
11227
- # * `Deleting`\: DeleteEndpoint is executing.
11589
+ # * `Deleting`: DeleteEndpoint is executing.
11228
11590
  #
11229
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
11591
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
11230
11592
  # Use DescribeEndpointOutput$FailureReason for information about the
11231
11593
  # failure. DeleteEndpoint is the only operation that can be
11232
11594
  # performed on a failed endpoint.
@@ -12130,29 +12492,29 @@ module Aws::SageMaker
12130
12492
  # @!attribute [rw] vendor_guidance
12131
12493
  # The stability of the image version specified by the maintainer.
12132
12494
  #
12133
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
12134
- # image version stability.
12495
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
12496
+ # version stability.
12135
12497
  #
12136
- # * `STABLE`\: The image version is stable.
12498
+ # * `STABLE`: The image version is stable.
12137
12499
  #
12138
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
12500
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
12139
12501
  # image versions that are set to be archived are automatically
12140
12502
  # archived after three months.
12141
12503
  #
12142
- # * `ARCHIVED`\: The image version is archived. Archived image
12143
- # versions are not searchable and are no longer actively supported.
12504
+ # * `ARCHIVED`: The image version is archived. Archived image versions
12505
+ # are not searchable and are no longer actively supported.
12144
12506
  # @return [String]
12145
12507
  #
12146
12508
  # @!attribute [rw] job_type
12147
12509
  # Indicates SageMaker job type compatibility.
12148
12510
  #
12149
- # * `TRAINING`\: The image version is compatible with SageMaker
12511
+ # * `TRAINING`: The image version is compatible with SageMaker
12150
12512
  # training jobs.
12151
12513
  #
12152
- # * `INFERENCE`\: The image version is compatible with SageMaker
12514
+ # * `INFERENCE`: The image version is compatible with SageMaker
12153
12515
  # inference jobs.
12154
12516
  #
12155
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12517
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
12156
12518
  # notebook kernels.
12157
12519
  # @return [String]
12158
12520
  #
@@ -12167,9 +12529,9 @@ module Aws::SageMaker
12167
12529
  # @!attribute [rw] processor
12168
12530
  # Indicates CPU or GPU compatibility.
12169
12531
  #
12170
- # * `CPU`\: The image version is compatible with CPU.
12532
+ # * `CPU`: The image version is compatible with CPU.
12171
12533
  #
12172
- # * `GPU`\: The image version is compatible with GPU.
12534
+ # * `GPU`: The image version is compatible with GPU.
12173
12535
  # @return [String]
12174
12536
  #
12175
12537
  # @!attribute [rw] horovod
@@ -12767,11 +13129,11 @@ module Aws::SageMaker
12767
13129
  # @!attribute [rw] status
12768
13130
  # The completion status of the model card export job.
12769
13131
  #
12770
- # * `InProgress`\: The model card export job is in progress.
13132
+ # * `InProgress`: The model card export job is in progress.
12771
13133
  #
12772
- # * `Completed`\: The model card export job is complete.
13134
+ # * `Completed`: The model card export job is complete.
12773
13135
  #
12774
- # * `Failed`\: The model card export job failed. To see the reason for
13136
+ # * `Failed`: The model card export job failed. To see the reason for
12775
13137
  # the failure, see the `FailureReason` field in the response to a
12776
13138
  # `DescribeModelCardExportJob` call.
12777
13139
  # @return [String]
@@ -12860,13 +13222,13 @@ module Aws::SageMaker
12860
13222
  # Different organizations might have different criteria for model card
12861
13223
  # review and approval.
12862
13224
  #
12863
- # * `Draft`\: The model card is a work in progress.
13225
+ # * `Draft`: The model card is a work in progress.
12864
13226
  #
12865
- # * `PendingReview`\: The model card is pending review.
13227
+ # * `PendingReview`: The model card is pending review.
12866
13228
  #
12867
- # * `Approved`\: The model card is approved.
13229
+ # * `Approved`: The model card is approved.
12868
13230
  #
12869
- # * `Archived`\: The model card is archived. No more updates should be
13231
+ # * `Archived`: The model card is archived. No more updates should be
12870
13232
  # made to the model card, but it can still be exported.
12871
13233
  # @return [String]
12872
13234
  #
@@ -12897,18 +13259,18 @@ module Aws::SageMaker
12897
13259
  # `ModelCardProcessingStatus` updates throughout the different
12898
13260
  # deletion steps.
12899
13261
  #
12900
- # * `DeletePending`\: Model card deletion request received.
13262
+ # * `DeletePending`: Model card deletion request received.
12901
13263
  #
12902
- # * `DeleteInProgress`\: Model card deletion is in progress.
13264
+ # * `DeleteInProgress`: Model card deletion is in progress.
12903
13265
  #
12904
- # * `ContentDeleted`\: Deleted model card content.
13266
+ # * `ContentDeleted`: Deleted model card content.
12905
13267
  #
12906
- # * `ExportJobsDeleted`\: Deleted all export jobs associated with the
13268
+ # * `ExportJobsDeleted`: Deleted all export jobs associated with the
12907
13269
  # model card.
12908
13270
  #
12909
- # * `DeleteCompleted`\: Successfully deleted the model card.
13271
+ # * `DeleteCompleted`: Successfully deleted the model card.
12910
13272
  #
12911
- # * `DeleteFailed`\: The model card failed to delete.
13273
+ # * `DeleteFailed`: The model card failed to delete.
12912
13274
  # @return [String]
12913
13275
  #
12914
13276
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
@@ -16435,21 +16797,21 @@ module Aws::SageMaker
16435
16797
  # @!attribute [rw] endpoint_status
16436
16798
  # The status of the endpoint.
16437
16799
  #
16438
- # * `OutOfService`\: Endpoint is not available to take incoming
16800
+ # * `OutOfService`: Endpoint is not available to take incoming
16439
16801
  # requests.
16440
16802
  #
16441
- # * `Creating`\: CreateEndpoint is executing.
16803
+ # * `Creating`: CreateEndpoint is executing.
16442
16804
  #
16443
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16805
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16444
16806
  # is executing.
16445
16807
  #
16446
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
16447
- # be updated or deleted or re-scaled until it has completed. This
16808
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
16809
+ # updated or deleted or re-scaled until it has completed. This
16448
16810
  # maintenance operation does not change any customer-specified
16449
16811
  # values such as VPC config, KMS encryption, model, instance type,
16450
16812
  # or instance count.
16451
16813
  #
16452
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
16814
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
16453
16815
  # variant weight and is in the process of rolling back to its
16454
16816
  # previous configuration. Once the rollback completes, endpoint
16455
16817
  # returns to an `InService` status. This transitional status only
@@ -16458,11 +16820,11 @@ module Aws::SageMaker
16458
16820
  # UpdateEndpointWeightsAndCapacities call or when the
16459
16821
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
16460
16822
  #
16461
- # * `InService`\: Endpoint is available to process incoming requests.
16823
+ # * `InService`: Endpoint is available to process incoming requests.
16462
16824
  #
16463
- # * `Deleting`\: DeleteEndpoint is executing.
16825
+ # * `Deleting`: DeleteEndpoint is executing.
16464
16826
  #
16465
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
16827
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
16466
16828
  # Use DescribeEndpointOutput$FailureReason for information about the
16467
16829
  # failure. DeleteEndpoint is the only operation that can be
16468
16830
  # performed on a failed endpoint.
@@ -17087,7 +17449,7 @@ module Aws::SageMaker
17087
17449
  # : To define a metric filter, enter a value using the form
17088
17450
  # `"Metrics.<name>"`, where `<name>` is a metric name. For example,
17089
17451
  # the following filter searches for training jobs with an `"accuracy"`
17090
- # metric greater than `"0.9"`\:
17452
+ # metric greater than `"0.9"`:
17091
17453
  #
17092
17454
  # `\{`
17093
17455
  #
@@ -17107,7 +17469,7 @@ module Aws::SageMaker
17107
17469
  # also a decimal value. If the specified `Value` is an integer, the
17108
17470
  # decimal hyperparameter values are treated as integers. For example,
17109
17471
  # the following filter is satisfied by training jobs with a
17110
- # `"learning_rate"` hyperparameter that is less than `"0.5"`\:
17472
+ # `"learning_rate"` hyperparameter that is less than `"0.5"`:
17111
17473
  #
17112
17474
  # ` \{`
17113
17475
  #
@@ -17237,7 +17599,8 @@ module Aws::SageMaker
17237
17599
  #
17238
17600
  # @!attribute [rw] metric_name
17239
17601
  # The name of the metric with the best result. For a description of
17240
- # the possible objective metrics, see AutoMLJobObjective$MetricName.
17602
+ # the possible objective metrics, see ` AutoMLJobObjective$MetricName
17603
+ # `.
17241
17604
  # @return [String]
17242
17605
  #
17243
17606
  # @!attribute [rw] value
@@ -19133,7 +19496,7 @@ module Aws::SageMaker
19133
19496
  #
19134
19497
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
19135
19498
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
19136
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
19499
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
19137
19500
  # @return [Hash<String,String>]
19138
19501
  #
19139
19502
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
@@ -19891,8 +20254,8 @@ module Aws::SageMaker
19891
20254
  # reaches the `MaxResource` value, it is stopped. If a value for
19892
20255
  # `MaxResource` is not provided, and `Hyperband` is selected as the
19893
20256
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
19894
- # infer `MaxResource` from the following keys (if present) in
19895
- # [StaticsHyperParameters][1]\:
20257
+ # infer `MaxResource` from the following keys (if present) in `
20258
+ # StaticsHyperParameters `:
19896
20259
  #
19897
20260
  # * `epochs`
19898
20261
  #
@@ -19907,8 +20270,8 @@ module Aws::SageMaker
19907
20270
  # If `HyperbandStrategyConfig` is unable to infer a value for
19908
20271
  # `MaxResource`, it generates a validation error. The maximum value is
19909
20272
  # 20,000 epochs. All metrics that correspond to an objective metric
19910
- # are used to derive [early stopping decisions][2]. For
19911
- # [distributive][3] training jobs, ensure that duplicate metrics are
20273
+ # are used to derive [early stopping decisions][1]. For
20274
+ # [distributive][2] training jobs, ensure that duplicate metrics are
19912
20275
  # not printed in the logs across the individual nodes in a training
19913
20276
  # job. If multiple nodes are publishing duplicate or incorrect
19914
20277
  # metrics, training jobs may make an incorrect stopping decision and
@@ -19916,9 +20279,8 @@ module Aws::SageMaker
19916
20279
  #
19917
20280
  #
19918
20281
  #
19919
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
19920
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
19921
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20282
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20283
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
19922
20284
  # @return [Integer]
19923
20285
  #
19924
20286
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
@@ -20008,6 +20370,22 @@ module Aws::SageMaker
20008
20370
  include Aws::Structure
20009
20371
  end
20010
20372
 
20373
+ # Stores the configuration information for the image classification
20374
+ # problem of an AutoML job using the V2 API.
20375
+ #
20376
+ # @!attribute [rw] completion_criteria
20377
+ # How long a job is allowed to run, or how many candidates a job is
20378
+ # allowed to generate.
20379
+ # @return [Types::AutoMLJobCompletionCriteria]
20380
+ #
20381
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
20382
+ #
20383
+ class ImageClassificationJobConfig < Struct.new(
20384
+ :completion_criteria)
20385
+ SENSITIVE = []
20386
+ include Aws::Structure
20387
+ end
20388
+
20011
20389
  # Specifies whether the model container is in Amazon ECR or a private
20012
20390
  # Docker registry accessible from your Amazon Virtual Private Cloud
20013
20391
  # (VPC).
@@ -20422,7 +20800,7 @@ module Aws::SageMaker
20422
20800
  # @!attribute [rw] step_type
20423
20801
  # The type of the subtask.
20424
20802
  #
20425
- # `BENCHMARK`\: Evaluate the performance of your model on different
20803
+ # `BENCHMARK`: Evaluate the performance of your model on different
20426
20804
  # instance types.
20427
20805
  # @return [String]
20428
20806
  #
@@ -20508,8 +20886,8 @@ module Aws::SageMaker
20508
20886
  # trained model with a JSON dictionary form. The data inputs are
20509
20887
  # InputConfig$Framework specific.
20510
20888
  #
20511
- # * `TensorFlow`\: You must specify the name and shape (NHWC format)
20512
- # of the expected data inputs using a dictionary format for your
20889
+ # * `TensorFlow`: You must specify the name and shape (NHWC format) of
20890
+ # the expected data inputs using a dictionary format for your
20513
20891
  # trained model. The dictionary formats required for the console and
20514
20892
  # CLI are different.
20515
20893
  #
@@ -20527,7 +20905,7 @@ module Aws::SageMaker
20527
20905
  # * If using the CLI, `\{"data1": [1,28,28,1],
20528
20906
  # "data2":[1,28,28,1]\}`
20529
20907
  #
20530
- # * `KERAS`\: You must specify the name and shape (NCHW format) of
20908
+ # * `KERAS`: You must specify the name and shape (NCHW format) of
20531
20909
  # expected data inputs using a dictionary format for your trained
20532
20910
  # model. Note that while Keras model artifacts should be uploaded in
20533
20911
  # NHWC (channel-last) format, `DataInputConfig` should be specified
@@ -20548,7 +20926,7 @@ module Aws::SageMaker
20548
20926
  # * If using the CLI, `\{"input_1": [1,3,224,224],
20549
20927
  # "input_2":[1,3,224,224]\}`
20550
20928
  #
20551
- # * `MXNET/ONNX/DARKNET`\: You must specify the name and shape (NCHW
20929
+ # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
20552
20930
  # format) of the expected data inputs in order using a dictionary
20553
20931
  # format for your trained model. The dictionary formats required for
20554
20932
  # the console and CLI are different.
@@ -20567,12 +20945,12 @@ module Aws::SageMaker
20567
20945
  # * If using the CLI, `\{"var1": [1,1,28,28],
20568
20946
  # "var2":[1,1,28,28]\}`
20569
20947
  #
20570
- # * `PyTorch`\: You can either specify the name and shape (NCHW
20571
- # format) of expected data inputs in order using a dictionary format
20572
- # for your trained model or you can specify the shape only using a
20573
- # list format. The dictionary formats required for the console and
20574
- # CLI are different. The list formats for the console and CLI are
20575
- # the same.
20948
+ # * `PyTorch`: You can either specify the name and shape (NCHW format)
20949
+ # of expected data inputs in order using a dictionary format for
20950
+ # your trained model or you can specify the shape only using a list
20951
+ # format. The dictionary formats required for the console and CLI
20952
+ # are different. The list formats for the console and CLI are the
20953
+ # same.
20576
20954
  #
20577
20955
  # * Examples for one input in dictionary format:
20578
20956
  #
@@ -20593,12 +20971,12 @@ module Aws::SageMaker
20593
20971
  # * Example for two inputs in list format: `[[1,3,224,224],
20594
20972
  # [1,3,224,224]]`
20595
20973
  #
20596
- # * `XGBOOST`\: input data name and shape are not needed.
20974
+ # * `XGBOOST`: input data name and shape are not needed.
20597
20975
  #
20598
20976
  # `DataInputConfig` supports the following parameters for `CoreML`
20599
20977
  # OutputConfig$TargetDevice (ML Model format):
20600
20978
  #
20601
- # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
20979
+ # * `shape`: Input shape, for example `\{"input_1": \{"shape":
20602
20980
  # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
20603
20981
  # converter supports Flexible input shapes:
20604
20982
  #
@@ -20612,21 +20990,21 @@ module Aws::SageMaker
20612
20990
  # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
20613
20991
  # 224, 3], [1, 160, 160, 3]]\}\}`
20614
20992
  #
20615
- # * `default_shape`\: Default input shape. You can set a default shape
20993
+ # * `default_shape`: Default input shape. You can set a default shape
20616
20994
  # during conversion for both Range Dimension and Enumerated Shapes.
20617
20995
  # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
20618
20996
  # "default_shape": [1, 224, 224, 3]\}\}`
20619
20997
  #
20620
- # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
20998
+ # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
20621
20999
  # default, the converter generates an ML Model with inputs of type
20622
21000
  # Tensor (MultiArray). User can set input type to be Image. Image
20623
21001
  # input type requires additional input parameters such as `bias` and
20624
21002
  # `scale`.
20625
21003
  #
20626
- # * `bias`\: If the input type is an Image, you need to provide the
21004
+ # * `bias`: If the input type is an Image, you need to provide the
20627
21005
  # bias vector.
20628
21006
  #
20629
- # * `scale`\: If the input type is an Image, you need to provide a
21007
+ # * `scale`: If the input type is an Image, you need to provide a
20630
21008
  # scale factor.
20631
21009
  #
20632
21010
  # CoreML `ClassifierConfig` parameters can be specified using
@@ -21325,11 +21703,11 @@ module Aws::SageMaker
21325
21703
  # one of the following keys: `source-ref` or `source`. The value of
21326
21704
  # the keys are interpreted as follows:
21327
21705
  #
21328
- # * `source-ref`\: The source of the object is the Amazon S3 object
21706
+ # * `source-ref`: The source of the object is the Amazon S3 object
21329
21707
  # specified in the value. Use this value when the object is a binary
21330
21708
  # object, such as an image.
21331
21709
  #
21332
- # * `source`\: The source of the object is the value. Use this value
21710
+ # * `source`: The source of the object is the value. Use this value
21333
21711
  # when the object is a text value.
21334
21712
  #
21335
21713
  # If you are a new user of Ground Truth, it is recommended you review
@@ -23785,7 +24163,7 @@ module Aws::SageMaker
23785
24163
  # @!attribute [rw] step_type
23786
24164
  # A filter to return details about the specified type of subtask.
23787
24165
  #
23788
- # `BENCHMARK`\: Evaluate the performance of your model on different
24166
+ # `BENCHMARK`: Evaluate the performance of your model on different
23789
24167
  # instance types.
23790
24168
  # @return [String]
23791
24169
  #
@@ -26710,9 +27088,17 @@ module Aws::SageMaker
26710
27088
  end
26711
27089
 
26712
27090
  # Specifies a metric that the training algorithm writes to `stderr` or
26713
- # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
26714
- # You specify one metric that a hyperparameter tuning job uses as its
26715
- # objective metric to choose the best training job.
27091
+ # `stdout`. You can view these logs to understand how your training job
27092
+ # performs and check for any errors encountered during training.
27093
+ # SageMaker hyperparameter tuning captures all defined metrics. Specify
27094
+ # one of the defined metrics to use as an objective metric using the
27095
+ # [TuningObjective][1] parameter in the
27096
+ # `HyperParameterTrainingJobDefinition` API to evaluate job performance
27097
+ # during hyperparameter tuning.
27098
+ #
27099
+ #
27100
+ #
27101
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
26716
27102
  #
26717
27103
  # @!attribute [rw] name
26718
27104
  # The name of the metric.
@@ -26721,12 +27107,12 @@ module Aws::SageMaker
26721
27107
  # @!attribute [rw] regex
26722
27108
  # A regular expression that searches the output of a training job and
26723
27109
  # gets the value of the metric. For more information about using
26724
- # regular expressions to define metrics, see [Defining Objective
26725
- # Metrics][1].
27110
+ # regular expressions to define metrics, see [Defining metrics and
27111
+ # environment variables][1].
26726
27112
  #
26727
27113
  #
26728
27114
  #
26729
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
27115
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
26730
27116
  # @return [String]
26731
27117
  #
26732
27118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -26960,13 +27346,13 @@ module Aws::SageMaker
26960
27346
  # Different organizations might have different criteria for model card
26961
27347
  # review and approval.
26962
27348
  #
26963
- # * `Draft`\: The model card is a work in progress.
27349
+ # * `Draft`: The model card is a work in progress.
26964
27350
  #
26965
- # * `PendingReview`\: The model card is pending review.
27351
+ # * `PendingReview`: The model card is pending review.
26966
27352
  #
26967
- # * `Approved`\: The model card is approved.
27353
+ # * `Approved`: The model card is approved.
26968
27354
  #
26969
- # * `Archived`\: The model card is archived. No more updates should be
27355
+ # * `Archived`: The model card is archived. No more updates should be
26970
27356
  # made to the model card, but it can still be exported.
26971
27357
  # @return [String]
26972
27358
  #
@@ -27137,13 +27523,13 @@ module Aws::SageMaker
27137
27523
  # Different organizations might have different criteria for model card
27138
27524
  # review and approval.
27139
27525
  #
27140
- # * `Draft`\: The model card is a work in progress.
27526
+ # * `Draft`: The model card is a work in progress.
27141
27527
  #
27142
- # * `PendingReview`\: The model card is pending review.
27528
+ # * `PendingReview`: The model card is pending review.
27143
27529
  #
27144
- # * `Approved`\: The model card is approved.
27530
+ # * `Approved`: The model card is approved.
27145
27531
  #
27146
- # * `Archived`\: The model card is archived. No more updates should be
27532
+ # * `Archived`: The model card is archived. No more updates should be
27147
27533
  # made to the model card, but it can still be exported.
27148
27534
  # @return [String]
27149
27535
  #
@@ -27182,13 +27568,13 @@ module Aws::SageMaker
27182
27568
  # organization. Different organizations might have different criteria
27183
27569
  # for model card review and approval.
27184
27570
  #
27185
- # * `Draft`\: The model card is a work in progress.
27571
+ # * `Draft`: The model card is a work in progress.
27186
27572
  #
27187
- # * `PendingReview`\: The model card is pending review.
27573
+ # * `PendingReview`: The model card is pending review.
27188
27574
  #
27189
- # * `Approved`\: The model card is approved.
27575
+ # * `Approved`: The model card is approved.
27190
27576
  #
27191
- # * `Archived`\: The model card is archived. No more updates should be
27577
+ # * `Archived`: The model card is archived. No more updates should be
27192
27578
  # made to the model card, but it can still be exported.
27193
27579
  # @return [String]
27194
27580
  #
@@ -27659,7 +28045,7 @@ module Aws::SageMaker
27659
28045
  # The inference option to which to deploy your model. Possible values
27660
28046
  # are the following:
27661
28047
  #
27662
- # * `RealTime`\: Deploy to real-time inference.
28048
+ # * `RealTime`: Deploy to real-time inference.
27663
28049
  #
27664
28050
  # ^
27665
28051
  # @return [String]
@@ -29885,8 +30271,8 @@ module Aws::SageMaker
29885
30271
  # SageMaker Feature Store uses to encrypt the Amazon S3 objects at
29886
30272
  # rest using Amazon S3 server-side encryption.
29887
30273
  #
29888
- # The caller (either IAM user or IAM role) of `CreateFeatureGroup`
29889
- # must have below permissions to the `OnlineStore` `KmsKeyId`\:
30274
+ # The caller (either user or IAM role) of `CreateFeatureGroup` must
30275
+ # have below permissions to the `OnlineStore` `KmsKeyId`:
29890
30276
  #
29891
30277
  # * `"kms:Encrypt"`
29892
30278
  #
@@ -29912,7 +30298,7 @@ module Aws::SageMaker
29912
30298
  #
29913
30299
  # The caller (either user or IAM role) to all DataPlane operations
29914
30300
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29915
- # permissions to the `KmsKeyId`\:
30301
+ # permissions to the `KmsKeyId`:
29916
30302
  #
29917
30303
  # * `"kms:Decrypt"`
29918
30304
  #
@@ -30004,11 +30390,10 @@ module Aws::SageMaker
30004
30390
  # for NVIDIA accelerators and highly recommended for CPU compilations.
30005
30391
  # For any other cases, it is optional to specify `CompilerOptions.`
30006
30392
  #
30007
- # * `DTYPE`\: Specifies the data type for the input. When compiling
30008
- # for `ml_*` (except for `ml_inf`) instances using PyTorch
30009
- # framework, provide the data type (dtype) of the model's input.
30010
- # `"float32"` is used if `"DTYPE"` is not specified. Options for
30011
- # data type are:
30393
+ # * `DTYPE`: Specifies the data type for the input. When compiling for
30394
+ # `ml_*` (except for `ml_inf`) instances using PyTorch framework,
30395
+ # provide the data type (dtype) of the model's input. `"float32"`
30396
+ # is used if `"DTYPE"` is not specified. Options for data type are:
30012
30397
  #
30013
30398
  # * float32: Use either `"float"` or `"float32"`.
30014
30399
  #
@@ -30016,75 +30401,74 @@ module Aws::SageMaker
30016
30401
  #
30017
30402
  # For example, `\{"dtype" : "float32"\}`.
30018
30403
  #
30019
- # * `CPU`\: Compilation for CPU supports the following compiler
30404
+ # * `CPU`: Compilation for CPU supports the following compiler
30020
30405
  # options.
30021
30406
  #
30022
- # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
30407
+ # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
30023
30408
  # 'skylake-avx512'\}`
30024
30409
  #
30025
- # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
30410
+ # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
30026
30411
  # '+vfpv4']\}`
30027
30412
  #
30028
- # * `ARM`\: Details of ARM CPU compilations.
30413
+ # * `ARM`: Details of ARM CPU compilations.
30029
30414
  #
30030
- # * `NEON`\: NEON is an implementation of the Advanced SIMD
30031
- # extension used in ARMv7 processors.
30415
+ # * `NEON`: NEON is an implementation of the Advanced SIMD extension
30416
+ # used in ARMv7 processors.
30032
30417
  #
30033
30418
  # For example, add `\{'mattr': ['+neon']\}` to the compiler
30034
30419
  # options if compiling for ARM 32-bit platform with the NEON
30035
30420
  # support.
30036
30421
  #
30037
- # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
30422
+ # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
30038
30423
  # compiler options.
30039
30424
  #
30040
- # * `gpu_code`\: Specifies the targeted architecture.
30425
+ # * `gpu_code`: Specifies the targeted architecture.
30041
30426
  #
30042
- # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
30427
+ # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
30043
30428
  #
30044
- # * `cuda-ver`\: Specifies the CUDA version in x.y format.
30429
+ # * `cuda-ver`: Specifies the CUDA version in x.y format.
30045
30430
  #
30046
30431
  # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
30047
30432
  # 'cuda-ver': '10.1'\}`
30048
30433
  #
30049
- # * `ANDROID`\: Compilation for the Android OS supports the following
30434
+ # * `ANDROID`: Compilation for the Android OS supports the following
30050
30435
  # compiler options:
30051
30436
  #
30052
- # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
30437
+ # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
30053
30438
  # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
30054
30439
  # 28\}`.
30055
30440
  #
30056
- # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
30441
+ # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
30057
30442
  # compiling for ARM 32-bit platform with NEON support.
30058
30443
  #
30059
- # * `INFERENTIA`\: Compilation for target ml\_inf1 uses compiler
30444
+ # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
30060
30445
  # options passed in as a JSON string. For example,
30061
30446
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
30062
30447
  #
30063
30448
  # For information about supported compiler options, see [ Neuron
30064
30449
  # Compiler CLI][1].
30065
30450
  #
30066
- # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
30451
+ # * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
30067
30452
  # supports the following compiler options:
30068
30453
  #
30069
- # * `class_labels`\: Specifies the classification labels file name
30454
+ # * `class_labels`: Specifies the classification labels file name
30070
30455
  # inside input tar.gz file. For example, `\{"class_labels":
30071
30456
  # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
30072
30457
  # be separated by newlines.
30073
30458
  #
30074
30459
  # ^
30075
30460
  #
30076
- # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
30461
+ # * `EIA`: Compilation for the Elastic Inference Accelerator supports
30077
30462
  # the following compiler options:
30078
30463
  #
30079
- # * `precision_mode`\: Specifies the precision of compiled
30080
- # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
30081
- # is `"FP32"`.
30464
+ # * `precision_mode`: Specifies the precision of compiled artifacts.
30465
+ # Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
30082
30466
  #
30083
- # * `signature_def_key`\: Specifies the signature to use for models
30467
+ # * `signature_def_key`: Specifies the signature to use for models
30084
30468
  # in SavedModel format. Defaults is TensorFlow's default
30085
30469
  # signature def key.
30086
30470
  #
30087
- # * `output_names`\: Specifies a list of output tensor names for
30471
+ # * `output_names`: Specifies a list of output tensor names for
30088
30472
  # models in FrozenGraph format. Set at most one API field, either:
30089
30473
  # `signature_def_key` or `output_names`.
30090
30474
  #
@@ -31589,7 +31973,7 @@ module Aws::SageMaker
31589
31973
  # You can use this parameter to turn on native Amazon Web Services
31590
31974
  # Systems Manager (SSM) access for a production variant behind an
31591
31975
  # endpoint. By default, SSM access is disabled for all production
31592
- # variants behind an endpoints. You can turn on or turn off SSM access
31976
+ # variants behind an endpoint. You can turn on or turn off SSM access
31593
31977
  # for a production variant behind an existing endpoint by creating a
31594
31978
  # new endpoint configuration and calling `UpdateEndpoint`.
31595
31979
  # @return [Boolean]
@@ -31702,18 +32086,18 @@ module Aws::SageMaker
31702
32086
  # The endpoint variant status which describes the current deployment
31703
32087
  # stage status or operational status.
31704
32088
  #
31705
- # * `Creating`\: Creating inference resources for the production
32089
+ # * `Creating`: Creating inference resources for the production
31706
32090
  # variant.
31707
32091
  #
31708
- # * `Deleting`\: Terminating inference resources for the production
32092
+ # * `Deleting`: Terminating inference resources for the production
31709
32093
  # variant.
31710
32094
  #
31711
- # * `Updating`\: Updating capacity for the production variant.
32095
+ # * `Updating`: Updating capacity for the production variant.
31712
32096
  #
31713
- # * `ActivatingTraffic`\: Turning on traffic for the production
32097
+ # * `ActivatingTraffic`: Turning on traffic for the production
31714
32098
  # variant.
31715
32099
  #
31716
- # * `Baking`\: Waiting period to monitor the CloudWatch alarms in the
32100
+ # * `Baking`: Waiting period to monitor the CloudWatch alarms in the
31717
32101
  # automatic rollback configuration.
31718
32102
  # @return [String]
31719
32103
  #
@@ -33395,7 +33779,8 @@ module Aws::SageMaker
33395
33779
  #
33396
33780
  # @!attribute [rw] auto_ml_job_objective
33397
33781
  # Specifies a metric to minimize or maximize as the objective of a
33398
- # job.
33782
+ # job. V2 API jobs (for example jobs created by calling
33783
+ # `CreateAutoMLJobV2`), support `Accuracy` only.
33399
33784
  # @return [Types::AutoMLJobObjective]
33400
33785
  #
33401
33786
  # @!attribute [rw] problem_type
@@ -33877,7 +34262,7 @@ module Aws::SageMaker
33877
34262
  # location.
33878
34263
  #
33879
34264
  # The IAM `roleARN` that is passed as a parameter to
33880
- # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`\:
34265
+ # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
33881
34266
  #
33882
34267
  # * `"kms:GenerateDataKey"`
33883
34268
  #
@@ -34916,9 +35301,9 @@ module Aws::SageMaker
34916
35301
  # The desired state of the experiment after stopping. The possible
34917
35302
  # states are the following:
34918
35303
  #
34919
- # * `Completed`\: The experiment completed successfully
35304
+ # * `Completed`: The experiment completed successfully
34920
35305
  #
34921
- # * `Cancelled`\: The experiment was canceled
35306
+ # * `Cancelled`: The experiment was canceled
34922
35307
  # @return [String]
34923
35308
  #
34924
35309
  # @!attribute [rw] reason
@@ -35263,9 +35648,9 @@ module Aws::SageMaker
35263
35648
  # @!attribute [rw] os
35264
35649
  # Specifies a target platform OS.
35265
35650
  #
35266
- # * `LINUX`\: Linux-based operating systems.
35651
+ # * `LINUX`: Linux-based operating systems.
35267
35652
  #
35268
- # * `ANDROID`\: Android operating systems. Android API level can be
35653
+ # * `ANDROID`: Android operating systems. Android API level can be
35269
35654
  # specified using the `ANDROID_PLATFORM` compiler option. For
35270
35655
  # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
35271
35656
  # @return [String]
@@ -35273,27 +35658,27 @@ module Aws::SageMaker
35273
35658
  # @!attribute [rw] arch
35274
35659
  # Specifies a target platform architecture.
35275
35660
  #
35276
- # * `X86_64`\: 64-bit version of the x86 instruction set.
35661
+ # * `X86_64`: 64-bit version of the x86 instruction set.
35277
35662
  #
35278
- # * `X86`\: 32-bit version of the x86 instruction set.
35663
+ # * `X86`: 32-bit version of the x86 instruction set.
35279
35664
  #
35280
- # * `ARM64`\: ARMv8 64-bit CPU.
35665
+ # * `ARM64`: ARMv8 64-bit CPU.
35281
35666
  #
35282
- # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
35667
+ # * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
35283
35668
  #
35284
- # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35669
+ # * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35285
35670
  # platform.
35286
35671
  # @return [String]
35287
35672
  #
35288
35673
  # @!attribute [rw] accelerator
35289
35674
  # Specifies a target platform accelerator (optional).
35290
35675
  #
35291
- # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
35676
+ # * `NVIDIA`: Nvidia graphics processing unit. It also requires
35292
35677
  # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
35293
35678
  #
35294
- # * `MALI`\: ARM Mali graphics processor
35679
+ # * `MALI`: ARM Mali graphics processor
35295
35680
  #
35296
- # * `INTEL_GRAPHICS`\: Integrated Intel graphics
35681
+ # * `INTEL_GRAPHICS`: Integrated Intel graphics
35297
35682
  # @return [String]
35298
35683
  #
35299
35684
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
@@ -35342,6 +35727,34 @@ module Aws::SageMaker
35342
35727
  include Aws::Structure
35343
35728
  end
35344
35729
 
35730
+ # Stores the configuration information for the text classification
35731
+ # problem of an AutoML job using the V2 API.
35732
+ #
35733
+ # @!attribute [rw] completion_criteria
35734
+ # How long a job is allowed to run, or how many candidates a job is
35735
+ # allowed to generate.
35736
+ # @return [Types::AutoMLJobCompletionCriteria]
35737
+ #
35738
+ # @!attribute [rw] content_column
35739
+ # The name of the column used to provide the sentences to be
35740
+ # classified. It should not be the same as the target column.
35741
+ # @return [String]
35742
+ #
35743
+ # @!attribute [rw] target_label_column
35744
+ # The name of the column used to provide the class labels. It should
35745
+ # not be same as the content column.
35746
+ # @return [String]
35747
+ #
35748
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
35749
+ #
35750
+ class TextClassificationJobConfig < Struct.new(
35751
+ :completion_criteria,
35752
+ :content_column,
35753
+ :target_label_column)
35754
+ SENSITIVE = []
35755
+ include Aws::Structure
35756
+ end
35757
+
35345
35758
  # Time series forecast settings for the SageMaker Canvas app.
35346
35759
  #
35347
35760
  # @!attribute [rw] status
@@ -35399,15 +35812,15 @@ module Aws::SageMaker
35399
35812
  # @!attribute [rw] type
35400
35813
  # Traffic routing strategy type.
35401
35814
  #
35402
- # * `ALL_AT_ONCE`\: Endpoint traffic shifts to the new fleet in a
35815
+ # * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
35403
35816
  # single step.
35404
35817
  #
35405
- # * `CANARY`\: Endpoint traffic shifts to the new fleet in two steps.
35818
+ # * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
35406
35819
  # The first step is the canary, which is a small portion of the
35407
35820
  # traffic. The second step is the remainder of the traffic.
35408
35821
  #
35409
- # * `LINEAR`\: Endpoint traffic shifts to the new fleet in n steps of
35410
- # a configurable size.
35822
+ # * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
35823
+ # configurable size.
35411
35824
  # @return [String]
35412
35825
  #
35413
35826
  # @!attribute [rw] wait_interval_in_seconds
@@ -36639,7 +37052,7 @@ module Aws::SageMaker
36639
37052
  #
36640
37053
  # `]`
36641
37054
  #
36642
- # The preceding JSON matches the following `S3Uris`\:
37055
+ # The preceding JSON matches the following `S3Uris`:
36643
37056
  #
36644
37057
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
36645
37058
  #
@@ -37997,29 +38410,29 @@ module Aws::SageMaker
37997
38410
  # @!attribute [rw] vendor_guidance
37998
38411
  # The availability of the image version specified by the maintainer.
37999
38412
  #
38000
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
38001
- # image version stability.
38413
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
38414
+ # version stability.
38002
38415
  #
38003
- # * `STABLE`\: The image version is stable.
38416
+ # * `STABLE`: The image version is stable.
38004
38417
  #
38005
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
38418
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
38006
38419
  # image versions that are set to be archived are automatically
38007
38420
  # archived after three months.
38008
38421
  #
38009
- # * `ARCHIVED`\: The image version is archived. Archived image
38010
- # versions are not searchable and are no longer actively supported.
38422
+ # * `ARCHIVED`: The image version is archived. Archived image versions
38423
+ # are not searchable and are no longer actively supported.
38011
38424
  # @return [String]
38012
38425
  #
38013
38426
  # @!attribute [rw] job_type
38014
38427
  # Indicates SageMaker job type compatibility.
38015
38428
  #
38016
- # * `TRAINING`\: The image version is compatible with SageMaker
38429
+ # * `TRAINING`: The image version is compatible with SageMaker
38017
38430
  # training jobs.
38018
38431
  #
38019
- # * `INFERENCE`\: The image version is compatible with SageMaker
38432
+ # * `INFERENCE`: The image version is compatible with SageMaker
38020
38433
  # inference jobs.
38021
38434
  #
38022
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
38435
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
38023
38436
  # notebook kernels.
38024
38437
  # @return [String]
38025
38438
  #
@@ -38034,9 +38447,9 @@ module Aws::SageMaker
38034
38447
  # @!attribute [rw] processor
38035
38448
  # Indicates CPU or GPU compatibility.
38036
38449
  #
38037
- # * `CPU`\: The image version is compatible with CPU.
38450
+ # * `CPU`: The image version is compatible with CPU.
38038
38451
  #
38039
- # * `GPU`\: The image version is compatible with GPU.
38452
+ # * `GPU`: The image version is compatible with GPU.
38040
38453
  # @return [String]
38041
38454
  #
38042
38455
  # @!attribute [rw] horovod
@@ -38158,13 +38571,13 @@ module Aws::SageMaker
38158
38571
  # Different organizations might have different criteria for model card
38159
38572
  # review and approval.
38160
38573
  #
38161
- # * `Draft`\: The model card is a work in progress.
38574
+ # * `Draft`: The model card is a work in progress.
38162
38575
  #
38163
- # * `PendingReview`\: The model card is pending review.
38576
+ # * `PendingReview`: The model card is pending review.
38164
38577
  #
38165
- # * `Approved`\: The model card is approved.
38578
+ # * `Approved`: The model card is approved.
38166
38579
  #
38167
- # * `Archived`\: The model card is archived. No more updates should be
38580
+ # * `Archived`: The model card is archived. No more updates should be
38168
38581
  # made to the model card, but it can still be exported.
38169
38582
  # @return [String]
38170
38583
  #
@@ -39162,15 +39575,15 @@ module Aws::SageMaker
39162
39575
  # @!attribute [rw] variant_property_type
39163
39576
  # The type of variant property. The supported values are:
39164
39577
  #
39165
- # * `DesiredInstanceCount`\: Overrides the existing variant instance
39578
+ # * `DesiredInstanceCount`: Overrides the existing variant instance
39166
39579
  # counts using the ProductionVariant$InitialInstanceCount values in
39167
39580
  # the CreateEndpointConfigInput$ProductionVariants.
39168
39581
  #
39169
- # * `DesiredWeight`\: Overrides the existing variant weights using the
39582
+ # * `DesiredWeight`: Overrides the existing variant weights using the
39170
39583
  # ProductionVariant$InitialVariantWeight values in the
39171
39584
  # CreateEndpointConfigInput$ProductionVariants.
39172
39585
  #
39173
- # * `DataCaptureConfig`\: (Not currently supported.)
39586
+ # * `DataCaptureConfig`: (Not currently supported.)
39174
39587
  # @return [String]
39175
39588
  #
39176
39589
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
@@ -39248,16 +39661,16 @@ module Aws::SageMaker
39248
39661
  # @!attribute [rw] status
39249
39662
  # The status of the warm pool.
39250
39663
  #
39251
- # * `InUse`\: The warm pool is in use for the training job.
39664
+ # * `InUse`: The warm pool is in use for the training job.
39252
39665
  #
39253
- # * `Available`\: The warm pool is available to reuse for a matching
39666
+ # * `Available`: The warm pool is available to reuse for a matching
39254
39667
  # training job.
39255
39668
  #
39256
- # * `Reused`\: The warm pool moved to a matching training job for
39669
+ # * `Reused`: The warm pool moved to a matching training job for
39257
39670
  # reuse.
39258
39671
  #
39259
- # * `Terminated`\: The warm pool is no longer available. Warm pools
39260
- # are unavailable if they are terminated by a user, terminated for a
39672
+ # * `Terminated`: The warm pool is no longer available. Warm pools are
39673
+ # unavailable if they are terminated by a user, terminated for a
39261
39674
  # patch update, or terminated for exceeding the specified
39262
39675
  # `KeepAlivePeriodInSeconds`.
39263
39676
  # @return [String]