aws-sdk-sagemaker 1.169.0 → 1.171.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +389 -91
- data/lib/aws-sdk-sagemaker/client_api.rb +99 -0
- data/lib/aws-sdk-sagemaker/endpoints.rb +28 -0
- data/lib/aws-sdk-sagemaker/plugins/endpoints.rb +4 -0
- data/lib/aws-sdk-sagemaker/types.rb +644 -231
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -374,7 +374,7 @@ module Aws::SageMaker
|
|
374
374
|
# * You use one of the SageMaker built-in algorithms
|
375
375
|
#
|
376
376
|
# * You use one of the following [Prebuilt SageMaker Docker
|
377
|
-
# Images][1]
|
377
|
+
# Images][1]:
|
378
378
|
#
|
379
379
|
# * Tensorflow (version >= 1.15)
|
380
380
|
#
|
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
|
|
1714
1714
|
# @return [String]
|
1715
1715
|
#
|
1716
1716
|
# @!attribute [rw] inference_containers
|
1717
|
-
# Information about the inference container definitions.
|
1717
|
+
# Information about the recommended inference container definitions.
|
1718
1718
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1719
1719
|
#
|
1720
1720
|
# @!attribute [rw] creation_time
|
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
|
|
1737
1737
|
# The properties of an AutoML candidate job.
|
1738
1738
|
# @return [Types::CandidateProperties]
|
1739
1739
|
#
|
1740
|
+
# @!attribute [rw] inference_container_definitions
|
1741
|
+
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1742
|
+
# inference container definitions for the candidate. This field is
|
1743
|
+
# populated for the V2 API only (for example, for jobs created by
|
1744
|
+
# calling `CreateAutoMLJobV2`).
|
1745
|
+
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1746
|
+
#
|
1740
1747
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
1741
1748
|
#
|
1742
1749
|
class AutoMLCandidate < Struct.new(
|
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
|
|
1750
1757
|
:end_time,
|
1751
1758
|
:last_modified_time,
|
1752
1759
|
:failure_reason,
|
1753
|
-
:candidate_properties
|
1760
|
+
:candidate_properties,
|
1761
|
+
:inference_container_definitions)
|
1754
1762
|
SENSITIVE = []
|
1755
1763
|
include Aws::Structure
|
1756
1764
|
end
|
@@ -1814,7 +1822,8 @@ module Aws::SageMaker
|
|
1814
1822
|
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1815
1823
|
# for the given training mode.
|
1816
1824
|
#
|
1817
|
-
# For the list of all algorithms per training mode, see
|
1825
|
+
# For the list of all algorithms per training mode, see `
|
1826
|
+
# AutoMLAlgorithmConfig `.
|
1818
1827
|
#
|
1819
1828
|
# For more information on each algorithm, see the [Algorithm
|
1820
1829
|
# support][2] section in Autopilot developer guide.
|
@@ -1863,7 +1872,7 @@ module Aws::SageMaker
|
|
1863
1872
|
# A channel is a named input source that training algorithms can
|
1864
1873
|
# consume. The validation dataset size is limited to less than 2 GB. The
|
1865
1874
|
# training dataset size must be less than 100 GB. For more information,
|
1866
|
-
# see
|
1875
|
+
# see ` Channel `.
|
1867
1876
|
#
|
1868
1877
|
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
1869
1878
|
# dataset.
|
@@ -1914,20 +1923,22 @@ module Aws::SageMaker
|
|
1914
1923
|
end
|
1915
1924
|
|
1916
1925
|
# A list of container definitions that describe the different containers
|
1917
|
-
# that make up an AutoML candidate. For more information, see
|
1926
|
+
# that make up an AutoML candidate. For more information, see `
|
1927
|
+
# ContainerDefinition `.
|
1918
1928
|
#
|
1919
1929
|
# @!attribute [rw] image
|
1920
1930
|
# The Amazon Elastic Container Registry (Amazon ECR) path of the
|
1921
|
-
# container. For more information, see
|
1931
|
+
# container. For more information, see ` ContainerDefinition `.
|
1922
1932
|
# @return [String]
|
1923
1933
|
#
|
1924
1934
|
# @!attribute [rw] model_data_url
|
1925
|
-
# The location of the model artifacts. For more information, see
|
1935
|
+
# The location of the model artifacts. For more information, see `
|
1936
|
+
# ContainerDefinition `.
|
1926
1937
|
# @return [String]
|
1927
1938
|
#
|
1928
1939
|
# @!attribute [rw] environment
|
1929
1940
|
# The environment variables to set in the container. For more
|
1930
|
-
# information, see
|
1941
|
+
# information, see ` ContainerDefinition `.
|
1931
1942
|
# @return [Hash<String,String>]
|
1932
1943
|
#
|
1933
1944
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1955,9 +1966,14 @@ module Aws::SageMaker
|
|
1955
1966
|
end
|
1956
1967
|
|
1957
1968
|
# This structure specifies how to split the data into train and
|
1958
|
-
# validation datasets.
|
1959
|
-
#
|
1960
|
-
#
|
1969
|
+
# validation datasets.
|
1970
|
+
#
|
1971
|
+
# If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
|
1972
|
+
# API for Natural Language Processing problems (for example
|
1973
|
+
# `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
|
1974
|
+
# type), the validation and training datasets must contain the same
|
1975
|
+
# headers. Also, for V1 API jobs, the validation dataset must be less
|
1976
|
+
# than 2 GB in size.
|
1961
1977
|
#
|
1962
1978
|
# @!attribute [rw] validation_fraction
|
1963
1979
|
# The validation fraction (optional) is a float that specifies the
|
@@ -1993,17 +2009,66 @@ module Aws::SageMaker
|
|
1993
2009
|
include Aws::Structure
|
1994
2010
|
end
|
1995
2011
|
|
2012
|
+
# A channel is a named input source that training algorithms can
|
2013
|
+
# consume. This channel is used for the non tabular training data of an
|
2014
|
+
# AutoML job using the V2 API. For tabular training data, see `
|
2015
|
+
# AutoMLChannel `. For more information, see ` Channel `.
|
2016
|
+
#
|
2017
|
+
# @!attribute [rw] channel_type
|
2018
|
+
# The type of channel. Defines whether the data are used for training
|
2019
|
+
# or validation. The default value is `training`. Channels for
|
2020
|
+
# `training` and `validation` must share the same `ContentType`
|
2021
|
+
# @return [String]
|
2022
|
+
#
|
2023
|
+
# @!attribute [rw] content_type
|
2024
|
+
# The content type of the data from the input source. The following
|
2025
|
+
# are the allowed content types for different problems:
|
2026
|
+
#
|
2027
|
+
# * ImageClassification: `image/png`, `image/jpeg`, `image/*`
|
2028
|
+
#
|
2029
|
+
# * TextClassification: `text/csv;header=present`
|
2030
|
+
# @return [String]
|
2031
|
+
#
|
2032
|
+
# @!attribute [rw] compression_type
|
2033
|
+
# The allowed compression types depend on the input format. We allow
|
2034
|
+
# the compression type `Gzip` for `S3Prefix` inputs only. For all
|
2035
|
+
# other inputs, the compression type should be `None`. If no
|
2036
|
+
# compression type is provided, we default to `None`.
|
2037
|
+
# @return [String]
|
2038
|
+
#
|
2039
|
+
# @!attribute [rw] data_source
|
2040
|
+
# The data source for an AutoML channel.
|
2041
|
+
# @return [Types::AutoMLDataSource]
|
2042
|
+
#
|
2043
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
2044
|
+
#
|
2045
|
+
class AutoMLJobChannel < Struct.new(
|
2046
|
+
:channel_type,
|
2047
|
+
:content_type,
|
2048
|
+
:compression_type,
|
2049
|
+
:data_source)
|
2050
|
+
SENSITIVE = []
|
2051
|
+
include Aws::Structure
|
2052
|
+
end
|
2053
|
+
|
1996
2054
|
# How long a job is allowed to run, or how many candidates a job is
|
1997
2055
|
# allowed to generate.
|
1998
2056
|
#
|
1999
2057
|
# @!attribute [rw] max_candidates
|
2000
2058
|
# The maximum number of times a training job is allowed to run.
|
2059
|
+
#
|
2060
|
+
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
|
2061
|
+
# supported value is 1.
|
2001
2062
|
# @return [Integer]
|
2002
2063
|
#
|
2003
2064
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
2004
2065
|
# The maximum time, in seconds, that each training job executed inside
|
2005
2066
|
# hyperparameter tuning is allowed to run as part of a hyperparameter
|
2006
|
-
# tuning job. For more information, see the
|
2067
|
+
# tuning job. For more information, see the ` StoppingCondition ` used
|
2068
|
+
# by the ` CreateHyperParameterTuningJob ` action.
|
2069
|
+
#
|
2070
|
+
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
|
2071
|
+
# field controls the runtime of the job candidate.
|
2007
2072
|
# @return [Integer]
|
2008
2073
|
#
|
2009
2074
|
# @!attribute [rw] max_auto_ml_job_runtime_in_seconds
|
@@ -2092,6 +2157,8 @@ module Aws::SageMaker
|
|
2092
2157
|
end
|
2093
2158
|
|
2094
2159
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2160
|
+
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2161
|
+
# support `Accuracy` only.
|
2095
2162
|
#
|
2096
2163
|
# @!attribute [rw] metric_name
|
2097
2164
|
# The name of the objective metric used to measure the predictive
|
@@ -2270,11 +2337,11 @@ module Aws::SageMaker
|
|
2270
2337
|
# If you do not specify a metric explicitly, the default behavior is
|
2271
2338
|
# to automatically use:
|
2272
2339
|
#
|
2273
|
-
# * `MSE
|
2340
|
+
# * `MSE`: for regression.
|
2274
2341
|
#
|
2275
|
-
# * `F1
|
2342
|
+
# * `F1`: for binary classification
|
2276
2343
|
#
|
2277
|
-
# * `Accuracy
|
2344
|
+
# * `Accuracy`: for multiclass classification.
|
2278
2345
|
# @return [String]
|
2279
2346
|
#
|
2280
2347
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -2387,30 +2454,94 @@ module Aws::SageMaker
|
|
2387
2454
|
include Aws::Structure
|
2388
2455
|
end
|
2389
2456
|
|
2390
|
-
#
|
2457
|
+
# A collection of settings specific to the problem type used to
|
2458
|
+
# configure an AutoML job using the V2 API. There must be one and only
|
2459
|
+
# one config of the following type.
|
2460
|
+
#
|
2461
|
+
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2462
|
+
#
|
2463
|
+
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2464
|
+
#
|
2465
|
+
# @!attribute [rw] image_classification_job_config
|
2466
|
+
# Settings used to configure an AutoML job using the V2 API for the
|
2467
|
+
# image classification problem type.
|
2468
|
+
# @return [Types::ImageClassificationJobConfig]
|
2469
|
+
#
|
2470
|
+
# @!attribute [rw] text_classification_job_config
|
2471
|
+
# Settings used to configure an AutoML job using the V2 API for the
|
2472
|
+
# text classification problem type.
|
2473
|
+
# @return [Types::TextClassificationJobConfig]
|
2474
|
+
#
|
2475
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2476
|
+
#
|
2477
|
+
class AutoMLProblemTypeConfig < Struct.new(
|
2478
|
+
:image_classification_job_config,
|
2479
|
+
:text_classification_job_config,
|
2480
|
+
:unknown)
|
2481
|
+
SENSITIVE = []
|
2482
|
+
include Aws::Structure
|
2483
|
+
include Aws::Structure::Union
|
2484
|
+
|
2485
|
+
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2486
|
+
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2487
|
+
class Unknown < AutoMLProblemTypeConfig; end
|
2488
|
+
end
|
2489
|
+
|
2490
|
+
# Describes the Amazon S3 data source.
|
2391
2491
|
#
|
2392
2492
|
# @!attribute [rw] s3_data_type
|
2393
2493
|
# The data type.
|
2394
2494
|
#
|
2395
|
-
#
|
2495
|
+
# * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
2496
|
+
# SageMaker uses all objects that match the specified key name
|
2497
|
+
# prefix for model training.
|
2498
|
+
#
|
2499
|
+
# The `S3Prefix` should have the following format:
|
2500
|
+
#
|
2501
|
+
# `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
|
2502
|
+
#
|
2503
|
+
# * If you choose `ManifestFile`, `S3Uri` identifies an object that is
|
2504
|
+
# a manifest file containing a list of object keys that you want
|
2505
|
+
# SageMaker to use for model training.
|
2506
|
+
#
|
2507
|
+
# A `ManifestFile` should have the format shown below:
|
2508
|
+
#
|
2509
|
+
# `[ \{"prefix":
|
2510
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
|
2511
|
+
# `
|
2512
|
+
#
|
2513
|
+
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
|
2514
|
+
#
|
2515
|
+
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
|
2396
2516
|
#
|
2397
|
-
#
|
2398
|
-
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
|
2399
|
-
# `
|
2517
|
+
# `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
|
2400
2518
|
#
|
2401
|
-
# `
|
2519
|
+
# * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
|
2520
|
+
# object that is an augmented manifest file in JSON lines format.
|
2521
|
+
# This file contains the data you want to use for model training.
|
2522
|
+
# `AugmentedManifestFile` is available for V2 API jobs only (for
|
2523
|
+
# example, for jobs created by calling `CreateAutoMLJobV2`).
|
2402
2524
|
#
|
2403
|
-
#
|
2525
|
+
# Here is a minimal, single-record example of an
|
2526
|
+
# `AugmentedManifestFile`:
|
2404
2527
|
#
|
2405
|
-
#
|
2528
|
+
# `\{"source-ref":
|
2529
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
|
2406
2530
|
#
|
2407
|
-
#
|
2531
|
+
# `"label-metadata": \{"class-name": "cat"` \\}
|
2408
2532
|
#
|
2409
|
-
#
|
2533
|
+
# For more information on `AugmentedManifestFile`, see [Provide
|
2534
|
+
# Dataset Metadata to Training Jobs with an Augmented Manifest
|
2535
|
+
# File][1].
|
2536
|
+
#
|
2537
|
+
#
|
2538
|
+
#
|
2539
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
|
2410
2540
|
# @return [String]
|
2411
2541
|
#
|
2412
2542
|
# @!attribute [rw] s3_uri
|
2413
|
-
# The URL to the Amazon S3 data source.
|
2543
|
+
# The URL to the Amazon S3 data source. The Uri refers to the Amazon
|
2544
|
+
# S3 prefix or ManifestFile depending on the data type.
|
2414
2545
|
# @return [String]
|
2415
2546
|
#
|
2416
2547
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
|
@@ -2860,10 +2991,10 @@ module Aws::SageMaker
|
|
2860
2991
|
# @!attribute [rw] type
|
2861
2992
|
# Specifies the endpoint capacity type.
|
2862
2993
|
#
|
2863
|
-
# * `INSTANCE_COUNT
|
2994
|
+
# * `INSTANCE_COUNT`: The endpoint activates based on the number of
|
2864
2995
|
# instances.
|
2865
2996
|
#
|
2866
|
-
# * `CAPACITY_PERCENT
|
2997
|
+
# * `CAPACITY_PERCENT`: The endpoint activates based on the specified
|
2867
2998
|
# percentage of capacity.
|
2868
2999
|
# @return [String]
|
2869
3000
|
#
|
@@ -3293,7 +3424,7 @@ module Aws::SageMaker
|
|
3293
3424
|
# from the model container output if the model container is in JSON
|
3294
3425
|
# Lines format.
|
3295
3426
|
#
|
3296
|
-
# **Example
|
3427
|
+
# **Example**: If the model container output of a single request is
|
3297
3428
|
# `'\{"predicted_label":1,"probability":0.6\}'`, then set
|
3298
3429
|
# `ProbabilityAttribute` to `'probability'`.
|
3299
3430
|
# @return [String]
|
@@ -3302,7 +3433,7 @@ module Aws::SageMaker
|
|
3302
3433
|
# A JMESPath expression used to locate the list of label headers in
|
3303
3434
|
# the model container output.
|
3304
3435
|
#
|
3305
|
-
# **Example
|
3436
|
+
# **Example**: If the model container output of a batch request is
|
3306
3437
|
# `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
|
3307
3438
|
# then set `LabelAttribute` to `'labels'` to extract the list of label
|
3308
3439
|
# headers `["cat","dog","fish"]`
|
@@ -4358,9 +4489,10 @@ module Aws::SageMaker
|
|
4358
4489
|
# @!attribute [rw] input_data_config
|
4359
4490
|
# An array of channel objects that describes the input data and its
|
4360
4491
|
# location. Each channel is a named input source. Similar to
|
4361
|
-
# `InputDataConfig` supported by
|
4362
|
-
# A minimum of 500 rows is
|
4363
|
-
#
|
4492
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
4493
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
4494
|
+
# required for the training dataset. There is not a minimum number of
|
4495
|
+
# rows required for the validation dataset.
|
4364
4496
|
# @return [Array<Types::AutoMLChannel>]
|
4365
4497
|
#
|
4366
4498
|
# @!attribute [rw] output_data_config
|
@@ -4370,19 +4502,20 @@ module Aws::SageMaker
|
|
4370
4502
|
# @return [Types::AutoMLOutputDataConfig]
|
4371
4503
|
#
|
4372
4504
|
# @!attribute [rw] problem_type
|
4373
|
-
# Defines the type of supervised learning available for the
|
4505
|
+
# Defines the type of supervised learning problem available for the
|
4374
4506
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4375
|
-
# problem types
|
4507
|
+
# problem types][1].
|
4376
4508
|
#
|
4377
4509
|
#
|
4378
4510
|
#
|
4379
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
4511
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
4380
4512
|
# @return [String]
|
4381
4513
|
#
|
4382
4514
|
# @!attribute [rw] auto_ml_job_objective
|
4383
4515
|
# Defines the objective metric used to measure the predictive quality
|
4384
|
-
# of an AutoML job. You provide an AutoMLJobObjective$MetricName
|
4385
|
-
# Autopilot infers whether to minimize or maximize it.
|
4516
|
+
# of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
|
4517
|
+
# and Autopilot infers whether to minimize or maximize it. For `
|
4518
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4386
4519
|
# @return [Types::AutoMLJobObjective]
|
4387
4520
|
#
|
4388
4521
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4400,8 +4533,15 @@ module Aws::SageMaker
|
|
4400
4533
|
# @return [Boolean]
|
4401
4534
|
#
|
4402
4535
|
# @!attribute [rw] tags
|
4403
|
-
#
|
4404
|
-
#
|
4536
|
+
# An array of key-value pairs. You can use tags to categorize your
|
4537
|
+
# Amazon Web Services resources in different ways, for example, by
|
4538
|
+
# purpose, owner, or environment. For more information, see [Tagging
|
4539
|
+
# Amazon Web ServicesResources][1]. Tag keys must be unique per
|
4540
|
+
# resource.
|
4541
|
+
#
|
4542
|
+
#
|
4543
|
+
#
|
4544
|
+
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
4405
4545
|
# @return [Array<Types::Tag>]
|
4406
4546
|
#
|
4407
4547
|
# @!attribute [rw] model_deploy_config
|
@@ -4438,6 +4578,104 @@ module Aws::SageMaker
|
|
4438
4578
|
include Aws::Structure
|
4439
4579
|
end
|
4440
4580
|
|
4581
|
+
# @!attribute [rw] auto_ml_job_name
|
4582
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
4583
|
+
# and is case insensitive.
|
4584
|
+
# @return [String]
|
4585
|
+
#
|
4586
|
+
# @!attribute [rw] auto_ml_job_input_data_config
|
4587
|
+
# An array of channel objects describing the input data and their
|
4588
|
+
# location. Each channel is a named input source. Similar to `
|
4589
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
4590
|
+
# formats depend on the problem type:
|
4591
|
+
#
|
4592
|
+
# * ImageClassification: S3Prefix, `ManifestFile`,
|
4593
|
+
# `AugmentedManifestFile`
|
4594
|
+
#
|
4595
|
+
# * TextClassification: S3Prefix
|
4596
|
+
# @return [Array<Types::AutoMLJobChannel>]
|
4597
|
+
#
|
4598
|
+
# @!attribute [rw] output_data_config
|
4599
|
+
# Provides information about encryption and the Amazon S3 output path
|
4600
|
+
# needed to store artifacts from an AutoML job.
|
4601
|
+
# @return [Types::AutoMLOutputDataConfig]
|
4602
|
+
#
|
4603
|
+
# @!attribute [rw] auto_ml_problem_type_config
|
4604
|
+
# Defines the configuration settings of one of the supported problem
|
4605
|
+
# types.
|
4606
|
+
# @return [Types::AutoMLProblemTypeConfig]
|
4607
|
+
#
|
4608
|
+
# @!attribute [rw] role_arn
|
4609
|
+
# The ARN of the role that is used to access the data.
|
4610
|
+
# @return [String]
|
4611
|
+
#
|
4612
|
+
# @!attribute [rw] tags
|
4613
|
+
# An array of key-value pairs. You can use tags to categorize your
|
4614
|
+
# Amazon Web Services resources in different ways, such as by purpose,
|
4615
|
+
# owner, or environment. For more information, see [Tagging Amazon Web
|
4616
|
+
# ServicesResources][1]. Tag keys must be unique per resource.
|
4617
|
+
#
|
4618
|
+
#
|
4619
|
+
#
|
4620
|
+
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
4621
|
+
# @return [Array<Types::Tag>]
|
4622
|
+
#
|
4623
|
+
# @!attribute [rw] security_config
|
4624
|
+
# The security configuration for traffic encryption or Amazon VPC
|
4625
|
+
# settings.
|
4626
|
+
# @return [Types::AutoMLSecurityConfig]
|
4627
|
+
#
|
4628
|
+
# @!attribute [rw] auto_ml_job_objective
|
4629
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4630
|
+
# job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4631
|
+
# @return [Types::AutoMLJobObjective]
|
4632
|
+
#
|
4633
|
+
# @!attribute [rw] model_deploy_config
|
4634
|
+
# Specifies how to generate the endpoint name for an automatic
|
4635
|
+
# one-click Autopilot model deployment.
|
4636
|
+
# @return [Types::ModelDeployConfig]
|
4637
|
+
#
|
4638
|
+
# @!attribute [rw] data_split_config
|
4639
|
+
# This structure specifies how to split the data into train and
|
4640
|
+
# validation datasets.
|
4641
|
+
#
|
4642
|
+
# If you are using the V1 API (for example `CreateAutoMLJob`) or the
|
4643
|
+
# V2 API for Natural Language Processing problems (for example
|
4644
|
+
# `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
|
4645
|
+
# type), the validation and training datasets must contain the same
|
4646
|
+
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4647
|
+
# than 2 GB in size.
|
4648
|
+
# @return [Types::AutoMLDataSplitConfig]
|
4649
|
+
#
|
4650
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
4651
|
+
#
|
4652
|
+
class CreateAutoMLJobV2Request < Struct.new(
|
4653
|
+
:auto_ml_job_name,
|
4654
|
+
:auto_ml_job_input_data_config,
|
4655
|
+
:output_data_config,
|
4656
|
+
:auto_ml_problem_type_config,
|
4657
|
+
:role_arn,
|
4658
|
+
:tags,
|
4659
|
+
:security_config,
|
4660
|
+
:auto_ml_job_objective,
|
4661
|
+
:model_deploy_config,
|
4662
|
+
:data_split_config)
|
4663
|
+
SENSITIVE = []
|
4664
|
+
include Aws::Structure
|
4665
|
+
end
|
4666
|
+
|
4667
|
+
# @!attribute [rw] auto_ml_job_arn
|
4668
|
+
# The unique ARN assigned to the AutoMLJob when it is created.
|
4669
|
+
# @return [String]
|
4670
|
+
#
|
4671
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
|
4672
|
+
#
|
4673
|
+
class CreateAutoMLJobV2Response < Struct.new(
|
4674
|
+
:auto_ml_job_arn)
|
4675
|
+
SENSITIVE = []
|
4676
|
+
include Aws::Structure
|
4677
|
+
end
|
4678
|
+
|
4441
4679
|
# @!attribute [rw] code_repository_name
|
4442
4680
|
# The name of the Git repository. The name must have 1 to 63
|
4443
4681
|
# characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
|
@@ -4578,7 +4816,7 @@ module Aws::SageMaker
|
|
4578
4816
|
# response. Amazon SageMaker returns the following data in JSON
|
4579
4817
|
# format:
|
4580
4818
|
#
|
4581
|
-
# * `CompilationJobArn
|
4819
|
+
# * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
|
4582
4820
|
# compiled job.
|
4583
4821
|
#
|
4584
4822
|
# ^
|
@@ -5244,11 +5482,11 @@ module Aws::SageMaker
|
|
5244
5482
|
#
|
5245
5483
|
# An `EventTime` can be a `String` or `Fractional`.
|
5246
5484
|
#
|
5247
|
-
# * `Fractional
|
5485
|
+
# * `Fractional`: `EventTime` feature values must be a Unix timestamp
|
5248
5486
|
# in seconds.
|
5249
5487
|
#
|
5250
|
-
# * `String
|
5251
|
-
#
|
5488
|
+
# * `String`: `EventTime` feature values must be an ISO-8601 string in
|
5489
|
+
# the format. The following formats are supported
|
5252
5490
|
# `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
|
5253
5491
|
# `yyyy`, `MM`, and `dd` represent the year, month, and day
|
5254
5492
|
# respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
|
@@ -5668,29 +5906,29 @@ module Aws::SageMaker
|
|
5668
5906
|
# @!attribute [rw] vendor_guidance
|
5669
5907
|
# The stability of the image version, specified by the maintainer.
|
5670
5908
|
#
|
5671
|
-
# * `NOT_PROVIDED
|
5672
|
-
#
|
5909
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
5910
|
+
# version stability.
|
5673
5911
|
#
|
5674
|
-
# * `STABLE
|
5912
|
+
# * `STABLE`: The image version is stable.
|
5675
5913
|
#
|
5676
|
-
# * `TO_BE_ARCHIVED
|
5914
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
5677
5915
|
# image versions that are set to be archived are automatically
|
5678
5916
|
# archived after three months.
|
5679
5917
|
#
|
5680
|
-
# * `ARCHIVED
|
5681
|
-
#
|
5918
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
5919
|
+
# are not searchable and are no longer actively supported.
|
5682
5920
|
# @return [String]
|
5683
5921
|
#
|
5684
5922
|
# @!attribute [rw] job_type
|
5685
5923
|
# Indicates SageMaker job type compatibility.
|
5686
5924
|
#
|
5687
|
-
# * `TRAINING
|
5925
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
5688
5926
|
# training jobs.
|
5689
5927
|
#
|
5690
|
-
# * `INFERENCE
|
5928
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
5691
5929
|
# inference jobs.
|
5692
5930
|
#
|
5693
|
-
# * `NOTEBOOK_KERNEL
|
5931
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
5694
5932
|
# notebook kernels.
|
5695
5933
|
# @return [String]
|
5696
5934
|
#
|
@@ -5705,9 +5943,9 @@ module Aws::SageMaker
|
|
5705
5943
|
# @!attribute [rw] processor
|
5706
5944
|
# Indicates CPU or GPU compatibility.
|
5707
5945
|
#
|
5708
|
-
# * `CPU
|
5946
|
+
# * `CPU`: The image version is compatible with CPU.
|
5709
5947
|
#
|
5710
|
-
# * `GPU
|
5948
|
+
# * `GPU`: The image version is compatible with GPU.
|
5711
5949
|
# @return [String]
|
5712
5950
|
#
|
5713
5951
|
# @!attribute [rw] horovod
|
@@ -5756,7 +5994,7 @@ module Aws::SageMaker
|
|
5756
5994
|
# The type of the inference experiment that you want to run. The
|
5757
5995
|
# following types of experiments are possible:
|
5758
5996
|
#
|
5759
|
-
# * `ShadowMode
|
5997
|
+
# * `ShadowMode`: You can use this type to validate a shadow variant.
|
5760
5998
|
# For more information, see [Shadow tests][1].
|
5761
5999
|
#
|
5762
6000
|
# ^
|
@@ -6334,13 +6572,13 @@ module Aws::SageMaker
|
|
6334
6572
|
# Different organizations might have different criteria for model card
|
6335
6573
|
# review and approval.
|
6336
6574
|
#
|
6337
|
-
# * `Draft
|
6575
|
+
# * `Draft`: The model card is a work in progress.
|
6338
6576
|
#
|
6339
|
-
# * `PendingReview
|
6577
|
+
# * `PendingReview`: The model card is pending review.
|
6340
6578
|
#
|
6341
|
-
# * `Approved
|
6579
|
+
# * `Approved`: The model card is approved.
|
6342
6580
|
#
|
6343
|
-
# * `Archived
|
6581
|
+
# * `Archived`: The model card is archived. No more updates should be
|
6344
6582
|
# made to the model card, but it can still be exported.
|
6345
6583
|
# @return [String]
|
6346
6584
|
#
|
@@ -10279,6 +10517,130 @@ module Aws::SageMaker
|
|
10279
10517
|
include Aws::Structure
|
10280
10518
|
end
|
10281
10519
|
|
10520
|
+
# @!attribute [rw] auto_ml_job_name
|
10521
|
+
# Requests information about an AutoML V2 job using its unique name.
|
10522
|
+
# @return [String]
|
10523
|
+
#
|
10524
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
10525
|
+
#
|
10526
|
+
class DescribeAutoMLJobV2Request < Struct.new(
|
10527
|
+
:auto_ml_job_name)
|
10528
|
+
SENSITIVE = []
|
10529
|
+
include Aws::Structure
|
10530
|
+
end
|
10531
|
+
|
10532
|
+
# @!attribute [rw] auto_ml_job_name
|
10533
|
+
# Returns the name of the AutoML V2 job.
|
10534
|
+
# @return [String]
|
10535
|
+
#
|
10536
|
+
# @!attribute [rw] auto_ml_job_arn
|
10537
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
|
10538
|
+
# @return [String]
|
10539
|
+
#
|
10540
|
+
# @!attribute [rw] auto_ml_job_input_data_config
|
10541
|
+
# Returns an array of channel objects describing the input data and
|
10542
|
+
# their location.
|
10543
|
+
# @return [Array<Types::AutoMLJobChannel>]
|
10544
|
+
#
|
10545
|
+
# @!attribute [rw] output_data_config
|
10546
|
+
# Returns the job's output data config.
|
10547
|
+
# @return [Types::AutoMLOutputDataConfig]
|
10548
|
+
#
|
10549
|
+
# @!attribute [rw] role_arn
|
10550
|
+
# The ARN of the Identity and Access Management role that has read
|
10551
|
+
# permission to the input data location and write permission to the
|
10552
|
+
# output data location in Amazon S3.
|
10553
|
+
# @return [String]
|
10554
|
+
#
|
10555
|
+
# @!attribute [rw] auto_ml_job_objective
|
10556
|
+
# Returns the job's objective.
|
10557
|
+
# @return [Types::AutoMLJobObjective]
|
10558
|
+
#
|
10559
|
+
# @!attribute [rw] auto_ml_problem_type_config
|
10560
|
+
# Returns the configuration settings of the problem type set for the
|
10561
|
+
# AutoML V2 job.
|
10562
|
+
# @return [Types::AutoMLProblemTypeConfig]
|
10563
|
+
#
|
10564
|
+
# @!attribute [rw] creation_time
|
10565
|
+
# Returns the creation time of the AutoML V2 job.
|
10566
|
+
# @return [Time]
|
10567
|
+
#
|
10568
|
+
# @!attribute [rw] end_time
|
10569
|
+
# Returns the end time of the AutoML V2 job.
|
10570
|
+
# @return [Time]
|
10571
|
+
#
|
10572
|
+
# @!attribute [rw] last_modified_time
|
10573
|
+
# Returns the job's last modified time.
|
10574
|
+
# @return [Time]
|
10575
|
+
#
|
10576
|
+
# @!attribute [rw] failure_reason
|
10577
|
+
# Returns the reason for the failure of the AutoML V2 job, when
|
10578
|
+
# applicable.
|
10579
|
+
# @return [String]
|
10580
|
+
#
|
10581
|
+
# @!attribute [rw] partial_failure_reasons
|
10582
|
+
# Returns a list of reasons for partial failures within an AutoML V2
|
10583
|
+
# job.
|
10584
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10585
|
+
#
|
10586
|
+
# @!attribute [rw] best_candidate
|
10587
|
+
# Information about the candidate produced by an AutoML training job
|
10588
|
+
# V2, including its status, steps, and other properties.
|
10589
|
+
# @return [Types::AutoMLCandidate]
|
10590
|
+
#
|
10591
|
+
# @!attribute [rw] auto_ml_job_status
|
10592
|
+
# Returns the status of the AutoML V2 job.
|
10593
|
+
# @return [String]
|
10594
|
+
#
|
10595
|
+
# @!attribute [rw] auto_ml_job_secondary_status
|
10596
|
+
# Returns the secondary status of the AutoML V2 job.
|
10597
|
+
# @return [String]
|
10598
|
+
#
|
10599
|
+
# @!attribute [rw] model_deploy_config
|
10600
|
+
# Indicates whether the model was deployed automatically to an
|
10601
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
10602
|
+
# @return [Types::ModelDeployConfig]
|
10603
|
+
#
|
10604
|
+
# @!attribute [rw] model_deploy_result
|
10605
|
+
# Provides information about endpoint for the model deployment.
|
10606
|
+
# @return [Types::ModelDeployResult]
|
10607
|
+
#
|
10608
|
+
# @!attribute [rw] data_split_config
|
10609
|
+
# Returns the configuration settings of how the data are split into
|
10610
|
+
# train and validation datasets.
|
10611
|
+
# @return [Types::AutoMLDataSplitConfig]
|
10612
|
+
#
|
10613
|
+
# @!attribute [rw] security_config
|
10614
|
+
# Returns the security configuration for traffic encryption or Amazon
|
10615
|
+
# VPC settings.
|
10616
|
+
# @return [Types::AutoMLSecurityConfig]
|
10617
|
+
#
|
10618
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10619
|
+
#
|
10620
|
+
class DescribeAutoMLJobV2Response < Struct.new(
|
10621
|
+
:auto_ml_job_name,
|
10622
|
+
:auto_ml_job_arn,
|
10623
|
+
:auto_ml_job_input_data_config,
|
10624
|
+
:output_data_config,
|
10625
|
+
:role_arn,
|
10626
|
+
:auto_ml_job_objective,
|
10627
|
+
:auto_ml_problem_type_config,
|
10628
|
+
:creation_time,
|
10629
|
+
:end_time,
|
10630
|
+
:last_modified_time,
|
10631
|
+
:failure_reason,
|
10632
|
+
:partial_failure_reasons,
|
10633
|
+
:best_candidate,
|
10634
|
+
:auto_ml_job_status,
|
10635
|
+
:auto_ml_job_secondary_status,
|
10636
|
+
:model_deploy_config,
|
10637
|
+
:model_deploy_result,
|
10638
|
+
:data_split_config,
|
10639
|
+
:security_config)
|
10640
|
+
SENSITIVE = []
|
10641
|
+
include Aws::Structure
|
10642
|
+
end
|
10643
|
+
|
10282
10644
|
# @!attribute [rw] code_repository_name
|
10283
10645
|
# The name of the Git repository to describe.
|
10284
10646
|
# @return [String]
|
@@ -11199,21 +11561,21 @@ module Aws::SageMaker
|
|
11199
11561
|
# @!attribute [rw] endpoint_status
|
11200
11562
|
# The status of the endpoint.
|
11201
11563
|
#
|
11202
|
-
# * `OutOfService
|
11564
|
+
# * `OutOfService`: Endpoint is not available to take incoming
|
11203
11565
|
# requests.
|
11204
11566
|
#
|
11205
|
-
# * `Creating
|
11567
|
+
# * `Creating`: CreateEndpoint is executing.
|
11206
11568
|
#
|
11207
|
-
# * `Updating
|
11569
|
+
# * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
|
11208
11570
|
# is executing.
|
11209
11571
|
#
|
11210
|
-
# * `SystemUpdating
|
11211
|
-
#
|
11572
|
+
# * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
|
11573
|
+
# updated or deleted or re-scaled until it has completed. This
|
11212
11574
|
# maintenance operation does not change any customer-specified
|
11213
11575
|
# values such as VPC config, KMS encryption, model, instance type,
|
11214
11576
|
# or instance count.
|
11215
11577
|
#
|
11216
|
-
# * `RollingBack
|
11578
|
+
# * `RollingBack`: Endpoint fails to scale up or down or change its
|
11217
11579
|
# variant weight and is in the process of rolling back to its
|
11218
11580
|
# previous configuration. Once the rollback completes, endpoint
|
11219
11581
|
# returns to an `InService` status. This transitional status only
|
@@ -11222,11 +11584,11 @@ module Aws::SageMaker
|
|
11222
11584
|
# UpdateEndpointWeightsAndCapacities call or when the
|
11223
11585
|
# UpdateEndpointWeightsAndCapacities operation is called explicitly.
|
11224
11586
|
#
|
11225
|
-
# * `InService
|
11587
|
+
# * `InService`: Endpoint is available to process incoming requests.
|
11226
11588
|
#
|
11227
|
-
# * `Deleting
|
11589
|
+
# * `Deleting`: DeleteEndpoint is executing.
|
11228
11590
|
#
|
11229
|
-
# * `Failed
|
11591
|
+
# * `Failed`: Endpoint could not be created, updated, or re-scaled.
|
11230
11592
|
# Use DescribeEndpointOutput$FailureReason for information about the
|
11231
11593
|
# failure. DeleteEndpoint is the only operation that can be
|
11232
11594
|
# performed on a failed endpoint.
|
@@ -12130,29 +12492,29 @@ module Aws::SageMaker
|
|
12130
12492
|
# @!attribute [rw] vendor_guidance
|
12131
12493
|
# The stability of the image version specified by the maintainer.
|
12132
12494
|
#
|
12133
|
-
# * `NOT_PROVIDED
|
12134
|
-
#
|
12495
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
12496
|
+
# version stability.
|
12135
12497
|
#
|
12136
|
-
# * `STABLE
|
12498
|
+
# * `STABLE`: The image version is stable.
|
12137
12499
|
#
|
12138
|
-
# * `TO_BE_ARCHIVED
|
12500
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
12139
12501
|
# image versions that are set to be archived are automatically
|
12140
12502
|
# archived after three months.
|
12141
12503
|
#
|
12142
|
-
# * `ARCHIVED
|
12143
|
-
#
|
12504
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
12505
|
+
# are not searchable and are no longer actively supported.
|
12144
12506
|
# @return [String]
|
12145
12507
|
#
|
12146
12508
|
# @!attribute [rw] job_type
|
12147
12509
|
# Indicates SageMaker job type compatibility.
|
12148
12510
|
#
|
12149
|
-
# * `TRAINING
|
12511
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
12150
12512
|
# training jobs.
|
12151
12513
|
#
|
12152
|
-
# * `INFERENCE
|
12514
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
12153
12515
|
# inference jobs.
|
12154
12516
|
#
|
12155
|
-
# * `NOTEBOOK_KERNEL
|
12517
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
12156
12518
|
# notebook kernels.
|
12157
12519
|
# @return [String]
|
12158
12520
|
#
|
@@ -12167,9 +12529,9 @@ module Aws::SageMaker
|
|
12167
12529
|
# @!attribute [rw] processor
|
12168
12530
|
# Indicates CPU or GPU compatibility.
|
12169
12531
|
#
|
12170
|
-
# * `CPU
|
12532
|
+
# * `CPU`: The image version is compatible with CPU.
|
12171
12533
|
#
|
12172
|
-
# * `GPU
|
12534
|
+
# * `GPU`: The image version is compatible with GPU.
|
12173
12535
|
# @return [String]
|
12174
12536
|
#
|
12175
12537
|
# @!attribute [rw] horovod
|
@@ -12767,11 +13129,11 @@ module Aws::SageMaker
|
|
12767
13129
|
# @!attribute [rw] status
|
12768
13130
|
# The completion status of the model card export job.
|
12769
13131
|
#
|
12770
|
-
# * `InProgress
|
13132
|
+
# * `InProgress`: The model card export job is in progress.
|
12771
13133
|
#
|
12772
|
-
# * `Completed
|
13134
|
+
# * `Completed`: The model card export job is complete.
|
12773
13135
|
#
|
12774
|
-
# * `Failed
|
13136
|
+
# * `Failed`: The model card export job failed. To see the reason for
|
12775
13137
|
# the failure, see the `FailureReason` field in the response to a
|
12776
13138
|
# `DescribeModelCardExportJob` call.
|
12777
13139
|
# @return [String]
|
@@ -12860,13 +13222,13 @@ module Aws::SageMaker
|
|
12860
13222
|
# Different organizations might have different criteria for model card
|
12861
13223
|
# review and approval.
|
12862
13224
|
#
|
12863
|
-
# * `Draft
|
13225
|
+
# * `Draft`: The model card is a work in progress.
|
12864
13226
|
#
|
12865
|
-
# * `PendingReview
|
13227
|
+
# * `PendingReview`: The model card is pending review.
|
12866
13228
|
#
|
12867
|
-
# * `Approved
|
13229
|
+
# * `Approved`: The model card is approved.
|
12868
13230
|
#
|
12869
|
-
# * `Archived
|
13231
|
+
# * `Archived`: The model card is archived. No more updates should be
|
12870
13232
|
# made to the model card, but it can still be exported.
|
12871
13233
|
# @return [String]
|
12872
13234
|
#
|
@@ -12897,18 +13259,18 @@ module Aws::SageMaker
|
|
12897
13259
|
# `ModelCardProcessingStatus` updates throughout the different
|
12898
13260
|
# deletion steps.
|
12899
13261
|
#
|
12900
|
-
# * `DeletePending
|
13262
|
+
# * `DeletePending`: Model card deletion request received.
|
12901
13263
|
#
|
12902
|
-
# * `DeleteInProgress
|
13264
|
+
# * `DeleteInProgress`: Model card deletion is in progress.
|
12903
13265
|
#
|
12904
|
-
# * `ContentDeleted
|
13266
|
+
# * `ContentDeleted`: Deleted model card content.
|
12905
13267
|
#
|
12906
|
-
# * `ExportJobsDeleted
|
13268
|
+
# * `ExportJobsDeleted`: Deleted all export jobs associated with the
|
12907
13269
|
# model card.
|
12908
13270
|
#
|
12909
|
-
# * `DeleteCompleted
|
13271
|
+
# * `DeleteCompleted`: Successfully deleted the model card.
|
12910
13272
|
#
|
12911
|
-
# * `DeleteFailed
|
13273
|
+
# * `DeleteFailed`: The model card failed to delete.
|
12912
13274
|
# @return [String]
|
12913
13275
|
#
|
12914
13276
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
|
@@ -16435,21 +16797,21 @@ module Aws::SageMaker
|
|
16435
16797
|
# @!attribute [rw] endpoint_status
|
16436
16798
|
# The status of the endpoint.
|
16437
16799
|
#
|
16438
|
-
# * `OutOfService
|
16800
|
+
# * `OutOfService`: Endpoint is not available to take incoming
|
16439
16801
|
# requests.
|
16440
16802
|
#
|
16441
|
-
# * `Creating
|
16803
|
+
# * `Creating`: CreateEndpoint is executing.
|
16442
16804
|
#
|
16443
|
-
# * `Updating
|
16805
|
+
# * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
|
16444
16806
|
# is executing.
|
16445
16807
|
#
|
16446
|
-
# * `SystemUpdating
|
16447
|
-
#
|
16808
|
+
# * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
|
16809
|
+
# updated or deleted or re-scaled until it has completed. This
|
16448
16810
|
# maintenance operation does not change any customer-specified
|
16449
16811
|
# values such as VPC config, KMS encryption, model, instance type,
|
16450
16812
|
# or instance count.
|
16451
16813
|
#
|
16452
|
-
# * `RollingBack
|
16814
|
+
# * `RollingBack`: Endpoint fails to scale up or down or change its
|
16453
16815
|
# variant weight and is in the process of rolling back to its
|
16454
16816
|
# previous configuration. Once the rollback completes, endpoint
|
16455
16817
|
# returns to an `InService` status. This transitional status only
|
@@ -16458,11 +16820,11 @@ module Aws::SageMaker
|
|
16458
16820
|
# UpdateEndpointWeightsAndCapacities call or when the
|
16459
16821
|
# UpdateEndpointWeightsAndCapacities operation is called explicitly.
|
16460
16822
|
#
|
16461
|
-
# * `InService
|
16823
|
+
# * `InService`: Endpoint is available to process incoming requests.
|
16462
16824
|
#
|
16463
|
-
# * `Deleting
|
16825
|
+
# * `Deleting`: DeleteEndpoint is executing.
|
16464
16826
|
#
|
16465
|
-
# * `Failed
|
16827
|
+
# * `Failed`: Endpoint could not be created, updated, or re-scaled.
|
16466
16828
|
# Use DescribeEndpointOutput$FailureReason for information about the
|
16467
16829
|
# failure. DeleteEndpoint is the only operation that can be
|
16468
16830
|
# performed on a failed endpoint.
|
@@ -17087,7 +17449,7 @@ module Aws::SageMaker
|
|
17087
17449
|
# : To define a metric filter, enter a value using the form
|
17088
17450
|
# `"Metrics.<name>"`, where `<name>` is a metric name. For example,
|
17089
17451
|
# the following filter searches for training jobs with an `"accuracy"`
|
17090
|
-
# metric greater than `"0.9"
|
17452
|
+
# metric greater than `"0.9"`:
|
17091
17453
|
#
|
17092
17454
|
# `\{`
|
17093
17455
|
#
|
@@ -17107,7 +17469,7 @@ module Aws::SageMaker
|
|
17107
17469
|
# also a decimal value. If the specified `Value` is an integer, the
|
17108
17470
|
# decimal hyperparameter values are treated as integers. For example,
|
17109
17471
|
# the following filter is satisfied by training jobs with a
|
17110
|
-
# `"learning_rate"` hyperparameter that is less than `"0.5"
|
17472
|
+
# `"learning_rate"` hyperparameter that is less than `"0.5"`:
|
17111
17473
|
#
|
17112
17474
|
# ` \{`
|
17113
17475
|
#
|
@@ -17237,7 +17599,8 @@ module Aws::SageMaker
|
|
17237
17599
|
#
|
17238
17600
|
# @!attribute [rw] metric_name
|
17239
17601
|
# The name of the metric with the best result. For a description of
|
17240
|
-
# the possible objective metrics, see AutoMLJobObjective$MetricName
|
17602
|
+
# the possible objective metrics, see ` AutoMLJobObjective$MetricName
|
17603
|
+
# `.
|
17241
17604
|
# @return [String]
|
17242
17605
|
#
|
17243
17606
|
# @!attribute [rw] value
|
@@ -19133,7 +19496,7 @@ module Aws::SageMaker
|
|
19133
19496
|
#
|
19134
19497
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
|
19135
19498
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
|
19136
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
19499
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
19137
19500
|
# @return [Hash<String,String>]
|
19138
19501
|
#
|
19139
19502
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
@@ -19891,8 +20254,8 @@ module Aws::SageMaker
|
|
19891
20254
|
# reaches the `MaxResource` value, it is stopped. If a value for
|
19892
20255
|
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
19893
20256
|
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
19894
|
-
# infer `MaxResource` from the following keys (if present) in
|
19895
|
-
#
|
20257
|
+
# infer `MaxResource` from the following keys (if present) in `
|
20258
|
+
# StaticsHyperParameters `:
|
19896
20259
|
#
|
19897
20260
|
# * `epochs`
|
19898
20261
|
#
|
@@ -19907,8 +20270,8 @@ module Aws::SageMaker
|
|
19907
20270
|
# If `HyperbandStrategyConfig` is unable to infer a value for
|
19908
20271
|
# `MaxResource`, it generates a validation error. The maximum value is
|
19909
20272
|
# 20,000 epochs. All metrics that correspond to an objective metric
|
19910
|
-
# are used to derive [early stopping decisions][
|
19911
|
-
# [distributive][
|
20273
|
+
# are used to derive [early stopping decisions][1]. For
|
20274
|
+
# [distributive][2] training jobs, ensure that duplicate metrics are
|
19912
20275
|
# not printed in the logs across the individual nodes in a training
|
19913
20276
|
# job. If multiple nodes are publishing duplicate or incorrect
|
19914
20277
|
# metrics, training jobs may make an incorrect stopping decision and
|
@@ -19916,9 +20279,8 @@ module Aws::SageMaker
|
|
19916
20279
|
#
|
19917
20280
|
#
|
19918
20281
|
#
|
19919
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
19920
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
19921
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20282
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
20283
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
19922
20284
|
# @return [Integer]
|
19923
20285
|
#
|
19924
20286
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
@@ -20008,6 +20370,22 @@ module Aws::SageMaker
|
|
20008
20370
|
include Aws::Structure
|
20009
20371
|
end
|
20010
20372
|
|
20373
|
+
# Stores the configuration information for the image classification
|
20374
|
+
# problem of an AutoML job using the V2 API.
|
20375
|
+
#
|
20376
|
+
# @!attribute [rw] completion_criteria
|
20377
|
+
# How long a job is allowed to run, or how many candidates a job is
|
20378
|
+
# allowed to generate.
|
20379
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
20380
|
+
#
|
20381
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
|
20382
|
+
#
|
20383
|
+
class ImageClassificationJobConfig < Struct.new(
|
20384
|
+
:completion_criteria)
|
20385
|
+
SENSITIVE = []
|
20386
|
+
include Aws::Structure
|
20387
|
+
end
|
20388
|
+
|
20011
20389
|
# Specifies whether the model container is in Amazon ECR or a private
|
20012
20390
|
# Docker registry accessible from your Amazon Virtual Private Cloud
|
20013
20391
|
# (VPC).
|
@@ -20422,7 +20800,7 @@ module Aws::SageMaker
|
|
20422
20800
|
# @!attribute [rw] step_type
|
20423
20801
|
# The type of the subtask.
|
20424
20802
|
#
|
20425
|
-
# `BENCHMARK
|
20803
|
+
# `BENCHMARK`: Evaluate the performance of your model on different
|
20426
20804
|
# instance types.
|
20427
20805
|
# @return [String]
|
20428
20806
|
#
|
@@ -20508,8 +20886,8 @@ module Aws::SageMaker
|
|
20508
20886
|
# trained model with a JSON dictionary form. The data inputs are
|
20509
20887
|
# InputConfig$Framework specific.
|
20510
20888
|
#
|
20511
|
-
# * `TensorFlow
|
20512
|
-
#
|
20889
|
+
# * `TensorFlow`: You must specify the name and shape (NHWC format) of
|
20890
|
+
# the expected data inputs using a dictionary format for your
|
20513
20891
|
# trained model. The dictionary formats required for the console and
|
20514
20892
|
# CLI are different.
|
20515
20893
|
#
|
@@ -20527,7 +20905,7 @@ module Aws::SageMaker
|
|
20527
20905
|
# * If using the CLI, `\{"data1": [1,28,28,1],
|
20528
20906
|
# "data2":[1,28,28,1]\}`
|
20529
20907
|
#
|
20530
|
-
# * `KERAS
|
20908
|
+
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
20531
20909
|
# expected data inputs using a dictionary format for your trained
|
20532
20910
|
# model. Note that while Keras model artifacts should be uploaded in
|
20533
20911
|
# NHWC (channel-last) format, `DataInputConfig` should be specified
|
@@ -20548,7 +20926,7 @@ module Aws::SageMaker
|
|
20548
20926
|
# * If using the CLI, `\{"input_1": [1,3,224,224],
|
20549
20927
|
# "input_2":[1,3,224,224]\}`
|
20550
20928
|
#
|
20551
|
-
# * `MXNET/ONNX/DARKNET
|
20929
|
+
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
20552
20930
|
# format) of the expected data inputs in order using a dictionary
|
20553
20931
|
# format for your trained model. The dictionary formats required for
|
20554
20932
|
# the console and CLI are different.
|
@@ -20567,12 +20945,12 @@ module Aws::SageMaker
|
|
20567
20945
|
# * If using the CLI, `\{"var1": [1,1,28,28],
|
20568
20946
|
# "var2":[1,1,28,28]\}`
|
20569
20947
|
#
|
20570
|
-
# * `PyTorch
|
20571
|
-
#
|
20572
|
-
#
|
20573
|
-
#
|
20574
|
-
#
|
20575
|
-
#
|
20948
|
+
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
20949
|
+
# of expected data inputs in order using a dictionary format for
|
20950
|
+
# your trained model or you can specify the shape only using a list
|
20951
|
+
# format. The dictionary formats required for the console and CLI
|
20952
|
+
# are different. The list formats for the console and CLI are the
|
20953
|
+
# same.
|
20576
20954
|
#
|
20577
20955
|
# * Examples for one input in dictionary format:
|
20578
20956
|
#
|
@@ -20593,12 +20971,12 @@ module Aws::SageMaker
|
|
20593
20971
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
20594
20972
|
# [1,3,224,224]]`
|
20595
20973
|
#
|
20596
|
-
# * `XGBOOST
|
20974
|
+
# * `XGBOOST`: input data name and shape are not needed.
|
20597
20975
|
#
|
20598
20976
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
20599
20977
|
# OutputConfig$TargetDevice (ML Model format):
|
20600
20978
|
#
|
20601
|
-
# * `shape
|
20979
|
+
# * `shape`: Input shape, for example `\{"input_1": \{"shape":
|
20602
20980
|
# [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
|
20603
20981
|
# converter supports Flexible input shapes:
|
20604
20982
|
#
|
@@ -20612,21 +20990,21 @@ module Aws::SageMaker
|
|
20612
20990
|
# input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
|
20613
20991
|
# 224, 3], [1, 160, 160, 3]]\}\}`
|
20614
20992
|
#
|
20615
|
-
# * `default_shape
|
20993
|
+
# * `default_shape`: Default input shape. You can set a default shape
|
20616
20994
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
20617
20995
|
# For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
|
20618
20996
|
# "default_shape": [1, 224, 224, 3]\}\}`
|
20619
20997
|
#
|
20620
|
-
# * `type
|
20998
|
+
# * `type`: Input type. Allowed values: `Image` and `Tensor`. By
|
20621
20999
|
# default, the converter generates an ML Model with inputs of type
|
20622
21000
|
# Tensor (MultiArray). User can set input type to be Image. Image
|
20623
21001
|
# input type requires additional input parameters such as `bias` and
|
20624
21002
|
# `scale`.
|
20625
21003
|
#
|
20626
|
-
# * `bias
|
21004
|
+
# * `bias`: If the input type is an Image, you need to provide the
|
20627
21005
|
# bias vector.
|
20628
21006
|
#
|
20629
|
-
# * `scale
|
21007
|
+
# * `scale`: If the input type is an Image, you need to provide a
|
20630
21008
|
# scale factor.
|
20631
21009
|
#
|
20632
21010
|
# CoreML `ClassifierConfig` parameters can be specified using
|
@@ -21325,11 +21703,11 @@ module Aws::SageMaker
|
|
21325
21703
|
# one of the following keys: `source-ref` or `source`. The value of
|
21326
21704
|
# the keys are interpreted as follows:
|
21327
21705
|
#
|
21328
|
-
# * `source-ref
|
21706
|
+
# * `source-ref`: The source of the object is the Amazon S3 object
|
21329
21707
|
# specified in the value. Use this value when the object is a binary
|
21330
21708
|
# object, such as an image.
|
21331
21709
|
#
|
21332
|
-
# * `source
|
21710
|
+
# * `source`: The source of the object is the value. Use this value
|
21333
21711
|
# when the object is a text value.
|
21334
21712
|
#
|
21335
21713
|
# If you are a new user of Ground Truth, it is recommended you review
|
@@ -23785,7 +24163,7 @@ module Aws::SageMaker
|
|
23785
24163
|
# @!attribute [rw] step_type
|
23786
24164
|
# A filter to return details about the specified type of subtask.
|
23787
24165
|
#
|
23788
|
-
# `BENCHMARK
|
24166
|
+
# `BENCHMARK`: Evaluate the performance of your model on different
|
23789
24167
|
# instance types.
|
23790
24168
|
# @return [String]
|
23791
24169
|
#
|
@@ -26710,9 +27088,17 @@ module Aws::SageMaker
|
|
26710
27088
|
end
|
26711
27089
|
|
26712
27090
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
26713
|
-
# `stdout`.
|
26714
|
-
#
|
26715
|
-
#
|
27091
|
+
# `stdout`. You can view these logs to understand how your training job
|
27092
|
+
# performs and check for any errors encountered during training.
|
27093
|
+
# SageMaker hyperparameter tuning captures all defined metrics. Specify
|
27094
|
+
# one of the defined metrics to use as an objective metric using the
|
27095
|
+
# [TuningObjective][1] parameter in the
|
27096
|
+
# `HyperParameterTrainingJobDefinition` API to evaluate job performance
|
27097
|
+
# during hyperparameter tuning.
|
27098
|
+
#
|
27099
|
+
#
|
27100
|
+
#
|
27101
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
|
26716
27102
|
#
|
26717
27103
|
# @!attribute [rw] name
|
26718
27104
|
# The name of the metric.
|
@@ -26721,12 +27107,12 @@ module Aws::SageMaker
|
|
26721
27107
|
# @!attribute [rw] regex
|
26722
27108
|
# A regular expression that searches the output of a training job and
|
26723
27109
|
# gets the value of the metric. For more information about using
|
26724
|
-
# regular expressions to define metrics, see [Defining
|
26725
|
-
#
|
27110
|
+
# regular expressions to define metrics, see [Defining metrics and
|
27111
|
+
# environment variables][1].
|
26726
27112
|
#
|
26727
27113
|
#
|
26728
27114
|
#
|
26729
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
27115
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
26730
27116
|
# @return [String]
|
26731
27117
|
#
|
26732
27118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
|
@@ -26960,13 +27346,13 @@ module Aws::SageMaker
|
|
26960
27346
|
# Different organizations might have different criteria for model card
|
26961
27347
|
# review and approval.
|
26962
27348
|
#
|
26963
|
-
# * `Draft
|
27349
|
+
# * `Draft`: The model card is a work in progress.
|
26964
27350
|
#
|
26965
|
-
# * `PendingReview
|
27351
|
+
# * `PendingReview`: The model card is pending review.
|
26966
27352
|
#
|
26967
|
-
# * `Approved
|
27353
|
+
# * `Approved`: The model card is approved.
|
26968
27354
|
#
|
26969
|
-
# * `Archived
|
27355
|
+
# * `Archived`: The model card is archived. No more updates should be
|
26970
27356
|
# made to the model card, but it can still be exported.
|
26971
27357
|
# @return [String]
|
26972
27358
|
#
|
@@ -27137,13 +27523,13 @@ module Aws::SageMaker
|
|
27137
27523
|
# Different organizations might have different criteria for model card
|
27138
27524
|
# review and approval.
|
27139
27525
|
#
|
27140
|
-
# * `Draft
|
27526
|
+
# * `Draft`: The model card is a work in progress.
|
27141
27527
|
#
|
27142
|
-
# * `PendingReview
|
27528
|
+
# * `PendingReview`: The model card is pending review.
|
27143
27529
|
#
|
27144
|
-
# * `Approved
|
27530
|
+
# * `Approved`: The model card is approved.
|
27145
27531
|
#
|
27146
|
-
# * `Archived
|
27532
|
+
# * `Archived`: The model card is archived. No more updates should be
|
27147
27533
|
# made to the model card, but it can still be exported.
|
27148
27534
|
# @return [String]
|
27149
27535
|
#
|
@@ -27182,13 +27568,13 @@ module Aws::SageMaker
|
|
27182
27568
|
# organization. Different organizations might have different criteria
|
27183
27569
|
# for model card review and approval.
|
27184
27570
|
#
|
27185
|
-
# * `Draft
|
27571
|
+
# * `Draft`: The model card is a work in progress.
|
27186
27572
|
#
|
27187
|
-
# * `PendingReview
|
27573
|
+
# * `PendingReview`: The model card is pending review.
|
27188
27574
|
#
|
27189
|
-
# * `Approved
|
27575
|
+
# * `Approved`: The model card is approved.
|
27190
27576
|
#
|
27191
|
-
# * `Archived
|
27577
|
+
# * `Archived`: The model card is archived. No more updates should be
|
27192
27578
|
# made to the model card, but it can still be exported.
|
27193
27579
|
# @return [String]
|
27194
27580
|
#
|
@@ -27659,7 +28045,7 @@ module Aws::SageMaker
|
|
27659
28045
|
# The inference option to which to deploy your model. Possible values
|
27660
28046
|
# are the following:
|
27661
28047
|
#
|
27662
|
-
# * `RealTime
|
28048
|
+
# * `RealTime`: Deploy to real-time inference.
|
27663
28049
|
#
|
27664
28050
|
# ^
|
27665
28051
|
# @return [String]
|
@@ -29885,8 +30271,8 @@ module Aws::SageMaker
|
|
29885
30271
|
# SageMaker Feature Store uses to encrypt the Amazon S3 objects at
|
29886
30272
|
# rest using Amazon S3 server-side encryption.
|
29887
30273
|
#
|
29888
|
-
# The caller (either
|
29889
|
-
#
|
30274
|
+
# The caller (either user or IAM role) of `CreateFeatureGroup` must
|
30275
|
+
# have below permissions to the `OnlineStore` `KmsKeyId`:
|
29890
30276
|
#
|
29891
30277
|
# * `"kms:Encrypt"`
|
29892
30278
|
#
|
@@ -29912,7 +30298,7 @@ module Aws::SageMaker
|
|
29912
30298
|
#
|
29913
30299
|
# The caller (either user or IAM role) to all DataPlane operations
|
29914
30300
|
# (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
|
29915
|
-
# permissions to the `KmsKeyId
|
30301
|
+
# permissions to the `KmsKeyId`:
|
29916
30302
|
#
|
29917
30303
|
# * `"kms:Decrypt"`
|
29918
30304
|
#
|
@@ -30004,11 +30390,10 @@ module Aws::SageMaker
|
|
30004
30390
|
# for NVIDIA accelerators and highly recommended for CPU compilations.
|
30005
30391
|
# For any other cases, it is optional to specify `CompilerOptions.`
|
30006
30392
|
#
|
30007
|
-
# * `DTYPE
|
30008
|
-
#
|
30009
|
-
#
|
30010
|
-
#
|
30011
|
-
# data type are:
|
30393
|
+
# * `DTYPE`: Specifies the data type for the input. When compiling for
|
30394
|
+
# `ml_*` (except for `ml_inf`) instances using PyTorch framework,
|
30395
|
+
# provide the data type (dtype) of the model's input. `"float32"`
|
30396
|
+
# is used if `"DTYPE"` is not specified. Options for data type are:
|
30012
30397
|
#
|
30013
30398
|
# * float32: Use either `"float"` or `"float32"`.
|
30014
30399
|
#
|
@@ -30016,75 +30401,74 @@ module Aws::SageMaker
|
|
30016
30401
|
#
|
30017
30402
|
# For example, `\{"dtype" : "float32"\}`.
|
30018
30403
|
#
|
30019
|
-
# * `CPU
|
30404
|
+
# * `CPU`: Compilation for CPU supports the following compiler
|
30020
30405
|
# options.
|
30021
30406
|
#
|
30022
|
-
# * `mcpu
|
30407
|
+
# * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
|
30023
30408
|
# 'skylake-avx512'\}`
|
30024
30409
|
#
|
30025
|
-
# * `mattr
|
30410
|
+
# * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
|
30026
30411
|
# '+vfpv4']\}`
|
30027
30412
|
#
|
30028
|
-
# * `ARM
|
30413
|
+
# * `ARM`: Details of ARM CPU compilations.
|
30029
30414
|
#
|
30030
|
-
# * `NEON
|
30031
|
-
#
|
30415
|
+
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
30416
|
+
# used in ARMv7 processors.
|
30032
30417
|
#
|
30033
30418
|
# For example, add `\{'mattr': ['+neon']\}` to the compiler
|
30034
30419
|
# options if compiling for ARM 32-bit platform with the NEON
|
30035
30420
|
# support.
|
30036
30421
|
#
|
30037
|
-
# * `NVIDIA
|
30422
|
+
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
30038
30423
|
# compiler options.
|
30039
30424
|
#
|
30040
|
-
# * `gpu_code
|
30425
|
+
# * `gpu_code`: Specifies the targeted architecture.
|
30041
30426
|
#
|
30042
|
-
# * `trt-ver
|
30427
|
+
# * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
|
30043
30428
|
#
|
30044
|
-
# * `cuda-ver
|
30429
|
+
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
30045
30430
|
#
|
30046
30431
|
# For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
30047
30432
|
# 'cuda-ver': '10.1'\}`
|
30048
30433
|
#
|
30049
|
-
# * `ANDROID
|
30434
|
+
# * `ANDROID`: Compilation for the Android OS supports the following
|
30050
30435
|
# compiler options:
|
30051
30436
|
#
|
30052
|
-
# * `ANDROID_PLATFORM
|
30437
|
+
# * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
|
30053
30438
|
# levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
|
30054
30439
|
# 28\}`.
|
30055
30440
|
#
|
30056
|
-
# * `mattr
|
30441
|
+
# * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
|
30057
30442
|
# compiling for ARM 32-bit platform with NEON support.
|
30058
30443
|
#
|
30059
|
-
# * `INFERENTIA
|
30444
|
+
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
30060
30445
|
# options passed in as a JSON string. For example,
|
30061
30446
|
# `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
|
30062
30447
|
#
|
30063
30448
|
# For information about supported compiler options, see [ Neuron
|
30064
30449
|
# Compiler CLI][1].
|
30065
30450
|
#
|
30066
|
-
# * `CoreML
|
30451
|
+
# * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
|
30067
30452
|
# supports the following compiler options:
|
30068
30453
|
#
|
30069
|
-
# * `class_labels
|
30454
|
+
# * `class_labels`: Specifies the classification labels file name
|
30070
30455
|
# inside input tar.gz file. For example, `\{"class_labels":
|
30071
30456
|
# "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
|
30072
30457
|
# be separated by newlines.
|
30073
30458
|
#
|
30074
30459
|
# ^
|
30075
30460
|
#
|
30076
|
-
# * `EIA
|
30461
|
+
# * `EIA`: Compilation for the Elastic Inference Accelerator supports
|
30077
30462
|
# the following compiler options:
|
30078
30463
|
#
|
30079
|
-
# * `precision_mode
|
30080
|
-
#
|
30081
|
-
# is `"FP32"`.
|
30464
|
+
# * `precision_mode`: Specifies the precision of compiled artifacts.
|
30465
|
+
# Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
|
30082
30466
|
#
|
30083
|
-
# * `signature_def_key
|
30467
|
+
# * `signature_def_key`: Specifies the signature to use for models
|
30084
30468
|
# in SavedModel format. Defaults is TensorFlow's default
|
30085
30469
|
# signature def key.
|
30086
30470
|
#
|
30087
|
-
# * `output_names
|
30471
|
+
# * `output_names`: Specifies a list of output tensor names for
|
30088
30472
|
# models in FrozenGraph format. Set at most one API field, either:
|
30089
30473
|
# `signature_def_key` or `output_names`.
|
30090
30474
|
#
|
@@ -31589,7 +31973,7 @@ module Aws::SageMaker
|
|
31589
31973
|
# You can use this parameter to turn on native Amazon Web Services
|
31590
31974
|
# Systems Manager (SSM) access for a production variant behind an
|
31591
31975
|
# endpoint. By default, SSM access is disabled for all production
|
31592
|
-
# variants behind an
|
31976
|
+
# variants behind an endpoint. You can turn on or turn off SSM access
|
31593
31977
|
# for a production variant behind an existing endpoint by creating a
|
31594
31978
|
# new endpoint configuration and calling `UpdateEndpoint`.
|
31595
31979
|
# @return [Boolean]
|
@@ -31702,18 +32086,18 @@ module Aws::SageMaker
|
|
31702
32086
|
# The endpoint variant status which describes the current deployment
|
31703
32087
|
# stage status or operational status.
|
31704
32088
|
#
|
31705
|
-
# * `Creating
|
32089
|
+
# * `Creating`: Creating inference resources for the production
|
31706
32090
|
# variant.
|
31707
32091
|
#
|
31708
|
-
# * `Deleting
|
32092
|
+
# * `Deleting`: Terminating inference resources for the production
|
31709
32093
|
# variant.
|
31710
32094
|
#
|
31711
|
-
# * `Updating
|
32095
|
+
# * `Updating`: Updating capacity for the production variant.
|
31712
32096
|
#
|
31713
|
-
# * `ActivatingTraffic
|
32097
|
+
# * `ActivatingTraffic`: Turning on traffic for the production
|
31714
32098
|
# variant.
|
31715
32099
|
#
|
31716
|
-
# * `Baking
|
32100
|
+
# * `Baking`: Waiting period to monitor the CloudWatch alarms in the
|
31717
32101
|
# automatic rollback configuration.
|
31718
32102
|
# @return [String]
|
31719
32103
|
#
|
@@ -33395,7 +33779,8 @@ module Aws::SageMaker
|
|
33395
33779
|
#
|
33396
33780
|
# @!attribute [rw] auto_ml_job_objective
|
33397
33781
|
# Specifies a metric to minimize or maximize as the objective of a
|
33398
|
-
# job.
|
33782
|
+
# job. V2 API jobs (for example jobs created by calling
|
33783
|
+
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
33399
33784
|
# @return [Types::AutoMLJobObjective]
|
33400
33785
|
#
|
33401
33786
|
# @!attribute [rw] problem_type
|
@@ -33877,7 +34262,7 @@ module Aws::SageMaker
|
|
33877
34262
|
# location.
|
33878
34263
|
#
|
33879
34264
|
# The IAM `roleARN` that is passed as a parameter to
|
33880
|
-
# `CreateFeatureGroup` must have below permissions to the `KmsKeyId
|
34265
|
+
# `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
|
33881
34266
|
#
|
33882
34267
|
# * `"kms:GenerateDataKey"`
|
33883
34268
|
#
|
@@ -34916,9 +35301,9 @@ module Aws::SageMaker
|
|
34916
35301
|
# The desired state of the experiment after stopping. The possible
|
34917
35302
|
# states are the following:
|
34918
35303
|
#
|
34919
|
-
# * `Completed
|
35304
|
+
# * `Completed`: The experiment completed successfully
|
34920
35305
|
#
|
34921
|
-
# * `Cancelled
|
35306
|
+
# * `Cancelled`: The experiment was canceled
|
34922
35307
|
# @return [String]
|
34923
35308
|
#
|
34924
35309
|
# @!attribute [rw] reason
|
@@ -35263,9 +35648,9 @@ module Aws::SageMaker
|
|
35263
35648
|
# @!attribute [rw] os
|
35264
35649
|
# Specifies a target platform OS.
|
35265
35650
|
#
|
35266
|
-
# * `LINUX
|
35651
|
+
# * `LINUX`: Linux-based operating systems.
|
35267
35652
|
#
|
35268
|
-
# * `ANDROID
|
35653
|
+
# * `ANDROID`: Android operating systems. Android API level can be
|
35269
35654
|
# specified using the `ANDROID_PLATFORM` compiler option. For
|
35270
35655
|
# example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
|
35271
35656
|
# @return [String]
|
@@ -35273,27 +35658,27 @@ module Aws::SageMaker
|
|
35273
35658
|
# @!attribute [rw] arch
|
35274
35659
|
# Specifies a target platform architecture.
|
35275
35660
|
#
|
35276
|
-
# * `X86_64
|
35661
|
+
# * `X86_64`: 64-bit version of the x86 instruction set.
|
35277
35662
|
#
|
35278
|
-
# * `X86
|
35663
|
+
# * `X86`: 32-bit version of the x86 instruction set.
|
35279
35664
|
#
|
35280
|
-
# * `ARM64
|
35665
|
+
# * `ARM64`: ARMv8 64-bit CPU.
|
35281
35666
|
#
|
35282
|
-
# * `ARM_EABIHF
|
35667
|
+
# * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
|
35283
35668
|
#
|
35284
|
-
# * `ARM_EABI
|
35669
|
+
# * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
|
35285
35670
|
# platform.
|
35286
35671
|
# @return [String]
|
35287
35672
|
#
|
35288
35673
|
# @!attribute [rw] accelerator
|
35289
35674
|
# Specifies a target platform accelerator (optional).
|
35290
35675
|
#
|
35291
|
-
# * `NVIDIA
|
35676
|
+
# * `NVIDIA`: Nvidia graphics processing unit. It also requires
|
35292
35677
|
# `gpu-code`, `trt-ver`, `cuda-ver` compiler options
|
35293
35678
|
#
|
35294
|
-
# * `MALI
|
35679
|
+
# * `MALI`: ARM Mali graphics processor
|
35295
35680
|
#
|
35296
|
-
# * `INTEL_GRAPHICS
|
35681
|
+
# * `INTEL_GRAPHICS`: Integrated Intel graphics
|
35297
35682
|
# @return [String]
|
35298
35683
|
#
|
35299
35684
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
|
@@ -35342,6 +35727,34 @@ module Aws::SageMaker
|
|
35342
35727
|
include Aws::Structure
|
35343
35728
|
end
|
35344
35729
|
|
35730
|
+
# Stores the configuration information for the text classification
|
35731
|
+
# problem of an AutoML job using the V2 API.
|
35732
|
+
#
|
35733
|
+
# @!attribute [rw] completion_criteria
|
35734
|
+
# How long a job is allowed to run, or how many candidates a job is
|
35735
|
+
# allowed to generate.
|
35736
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
35737
|
+
#
|
35738
|
+
# @!attribute [rw] content_column
|
35739
|
+
# The name of the column used to provide the sentences to be
|
35740
|
+
# classified. It should not be the same as the target column.
|
35741
|
+
# @return [String]
|
35742
|
+
#
|
35743
|
+
# @!attribute [rw] target_label_column
|
35744
|
+
# The name of the column used to provide the class labels. It should
|
35745
|
+
# not be same as the content column.
|
35746
|
+
# @return [String]
|
35747
|
+
#
|
35748
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|
35749
|
+
#
|
35750
|
+
class TextClassificationJobConfig < Struct.new(
|
35751
|
+
:completion_criteria,
|
35752
|
+
:content_column,
|
35753
|
+
:target_label_column)
|
35754
|
+
SENSITIVE = []
|
35755
|
+
include Aws::Structure
|
35756
|
+
end
|
35757
|
+
|
35345
35758
|
# Time series forecast settings for the SageMaker Canvas app.
|
35346
35759
|
#
|
35347
35760
|
# @!attribute [rw] status
|
@@ -35399,15 +35812,15 @@ module Aws::SageMaker
|
|
35399
35812
|
# @!attribute [rw] type
|
35400
35813
|
# Traffic routing strategy type.
|
35401
35814
|
#
|
35402
|
-
# * `ALL_AT_ONCE
|
35815
|
+
# * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
|
35403
35816
|
# single step.
|
35404
35817
|
#
|
35405
|
-
# * `CANARY
|
35818
|
+
# * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
|
35406
35819
|
# The first step is the canary, which is a small portion of the
|
35407
35820
|
# traffic. The second step is the remainder of the traffic.
|
35408
35821
|
#
|
35409
|
-
# * `LINEAR
|
35410
|
-
#
|
35822
|
+
# * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
|
35823
|
+
# configurable size.
|
35411
35824
|
# @return [String]
|
35412
35825
|
#
|
35413
35826
|
# @!attribute [rw] wait_interval_in_seconds
|
@@ -36639,7 +37052,7 @@ module Aws::SageMaker
|
|
36639
37052
|
#
|
36640
37053
|
# `]`
|
36641
37054
|
#
|
36642
|
-
# The preceding JSON matches the following `S3Uris
|
37055
|
+
# The preceding JSON matches the following `S3Uris`:
|
36643
37056
|
#
|
36644
37057
|
# `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
|
36645
37058
|
#
|
@@ -37997,29 +38410,29 @@ module Aws::SageMaker
|
|
37997
38410
|
# @!attribute [rw] vendor_guidance
|
37998
38411
|
# The availability of the image version specified by the maintainer.
|
37999
38412
|
#
|
38000
|
-
# * `NOT_PROVIDED
|
38001
|
-
#
|
38413
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
38414
|
+
# version stability.
|
38002
38415
|
#
|
38003
|
-
# * `STABLE
|
38416
|
+
# * `STABLE`: The image version is stable.
|
38004
38417
|
#
|
38005
|
-
# * `TO_BE_ARCHIVED
|
38418
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
38006
38419
|
# image versions that are set to be archived are automatically
|
38007
38420
|
# archived after three months.
|
38008
38421
|
#
|
38009
|
-
# * `ARCHIVED
|
38010
|
-
#
|
38422
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
38423
|
+
# are not searchable and are no longer actively supported.
|
38011
38424
|
# @return [String]
|
38012
38425
|
#
|
38013
38426
|
# @!attribute [rw] job_type
|
38014
38427
|
# Indicates SageMaker job type compatibility.
|
38015
38428
|
#
|
38016
|
-
# * `TRAINING
|
38429
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
38017
38430
|
# training jobs.
|
38018
38431
|
#
|
38019
|
-
# * `INFERENCE
|
38432
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
38020
38433
|
# inference jobs.
|
38021
38434
|
#
|
38022
|
-
# * `NOTEBOOK_KERNEL
|
38435
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
38023
38436
|
# notebook kernels.
|
38024
38437
|
# @return [String]
|
38025
38438
|
#
|
@@ -38034,9 +38447,9 @@ module Aws::SageMaker
|
|
38034
38447
|
# @!attribute [rw] processor
|
38035
38448
|
# Indicates CPU or GPU compatibility.
|
38036
38449
|
#
|
38037
|
-
# * `CPU
|
38450
|
+
# * `CPU`: The image version is compatible with CPU.
|
38038
38451
|
#
|
38039
|
-
# * `GPU
|
38452
|
+
# * `GPU`: The image version is compatible with GPU.
|
38040
38453
|
# @return [String]
|
38041
38454
|
#
|
38042
38455
|
# @!attribute [rw] horovod
|
@@ -38158,13 +38571,13 @@ module Aws::SageMaker
|
|
38158
38571
|
# Different organizations might have different criteria for model card
|
38159
38572
|
# review and approval.
|
38160
38573
|
#
|
38161
|
-
# * `Draft
|
38574
|
+
# * `Draft`: The model card is a work in progress.
|
38162
38575
|
#
|
38163
|
-
# * `PendingReview
|
38576
|
+
# * `PendingReview`: The model card is pending review.
|
38164
38577
|
#
|
38165
|
-
# * `Approved
|
38578
|
+
# * `Approved`: The model card is approved.
|
38166
38579
|
#
|
38167
|
-
# * `Archived
|
38580
|
+
# * `Archived`: The model card is archived. No more updates should be
|
38168
38581
|
# made to the model card, but it can still be exported.
|
38169
38582
|
# @return [String]
|
38170
38583
|
#
|
@@ -39162,15 +39575,15 @@ module Aws::SageMaker
|
|
39162
39575
|
# @!attribute [rw] variant_property_type
|
39163
39576
|
# The type of variant property. The supported values are:
|
39164
39577
|
#
|
39165
|
-
# * `DesiredInstanceCount
|
39578
|
+
# * `DesiredInstanceCount`: Overrides the existing variant instance
|
39166
39579
|
# counts using the ProductionVariant$InitialInstanceCount values in
|
39167
39580
|
# the CreateEndpointConfigInput$ProductionVariants.
|
39168
39581
|
#
|
39169
|
-
# * `DesiredWeight
|
39582
|
+
# * `DesiredWeight`: Overrides the existing variant weights using the
|
39170
39583
|
# ProductionVariant$InitialVariantWeight values in the
|
39171
39584
|
# CreateEndpointConfigInput$ProductionVariants.
|
39172
39585
|
#
|
39173
|
-
# * `DataCaptureConfig
|
39586
|
+
# * `DataCaptureConfig`: (Not currently supported.)
|
39174
39587
|
# @return [String]
|
39175
39588
|
#
|
39176
39589
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
|
@@ -39248,16 +39661,16 @@ module Aws::SageMaker
|
|
39248
39661
|
# @!attribute [rw] status
|
39249
39662
|
# The status of the warm pool.
|
39250
39663
|
#
|
39251
|
-
# * `InUse
|
39664
|
+
# * `InUse`: The warm pool is in use for the training job.
|
39252
39665
|
#
|
39253
|
-
# * `Available
|
39666
|
+
# * `Available`: The warm pool is available to reuse for a matching
|
39254
39667
|
# training job.
|
39255
39668
|
#
|
39256
|
-
# * `Reused
|
39669
|
+
# * `Reused`: The warm pool moved to a matching training job for
|
39257
39670
|
# reuse.
|
39258
39671
|
#
|
39259
|
-
# * `Terminated
|
39260
|
-
#
|
39672
|
+
# * `Terminated`: The warm pool is no longer available. Warm pools are
|
39673
|
+
# unavailable if they are terminated by a user, terminated for a
|
39261
39674
|
# patch update, or terminated for exceeding the specified
|
39262
39675
|
# `KeepAlivePeriodInSeconds`.
|
39263
39676
|
# @return [String]
|