aws-sdk-sagemaker 1.169.0 → 1.171.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +389 -91
- data/lib/aws-sdk-sagemaker/client_api.rb +99 -0
- data/lib/aws-sdk-sagemaker/endpoints.rb +28 -0
- data/lib/aws-sdk-sagemaker/plugins/endpoints.rb +4 -0
- data/lib/aws-sdk-sagemaker/types.rb +644 -231
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -374,7 +374,7 @@ module Aws::SageMaker
|
|
374
374
|
# * You use one of the SageMaker built-in algorithms
|
375
375
|
#
|
376
376
|
# * You use one of the following [Prebuilt SageMaker Docker
|
377
|
-
# Images][1]
|
377
|
+
# Images][1]:
|
378
378
|
#
|
379
379
|
# * Tensorflow (version >= 1.15)
|
380
380
|
#
|
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
|
|
1714
1714
|
# @return [String]
|
1715
1715
|
#
|
1716
1716
|
# @!attribute [rw] inference_containers
|
1717
|
-
# Information about the inference container definitions.
|
1717
|
+
# Information about the recommended inference container definitions.
|
1718
1718
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1719
1719
|
#
|
1720
1720
|
# @!attribute [rw] creation_time
|
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
|
|
1737
1737
|
# The properties of an AutoML candidate job.
|
1738
1738
|
# @return [Types::CandidateProperties]
|
1739
1739
|
#
|
1740
|
+
# @!attribute [rw] inference_container_definitions
|
1741
|
+
# The mapping of all supported processing unit (CPU, GPU, etc...) to
|
1742
|
+
# inference container definitions for the candidate. This field is
|
1743
|
+
# populated for the V2 API only (for example, for jobs created by
|
1744
|
+
# calling `CreateAutoMLJobV2`).
|
1745
|
+
# @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
|
1746
|
+
#
|
1740
1747
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
1741
1748
|
#
|
1742
1749
|
class AutoMLCandidate < Struct.new(
|
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
|
|
1750
1757
|
:end_time,
|
1751
1758
|
:last_modified_time,
|
1752
1759
|
:failure_reason,
|
1753
|
-
:candidate_properties
|
1760
|
+
:candidate_properties,
|
1761
|
+
:inference_container_definitions)
|
1754
1762
|
SENSITIVE = []
|
1755
1763
|
include Aws::Structure
|
1756
1764
|
end
|
@@ -1814,7 +1822,8 @@ module Aws::SageMaker
|
|
1814
1822
|
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1815
1823
|
# for the given training mode.
|
1816
1824
|
#
|
1817
|
-
# For the list of all algorithms per training mode, see
|
1825
|
+
# For the list of all algorithms per training mode, see `
|
1826
|
+
# AutoMLAlgorithmConfig `.
|
1818
1827
|
#
|
1819
1828
|
# For more information on each algorithm, see the [Algorithm
|
1820
1829
|
# support][2] section in Autopilot developer guide.
|
@@ -1863,7 +1872,7 @@ module Aws::SageMaker
|
|
1863
1872
|
# A channel is a named input source that training algorithms can
|
1864
1873
|
# consume. The validation dataset size is limited to less than 2 GB. The
|
1865
1874
|
# training dataset size must be less than 100 GB. For more information,
|
1866
|
-
# see
|
1875
|
+
# see ` Channel `.
|
1867
1876
|
#
|
1868
1877
|
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
1869
1878
|
# dataset.
|
@@ -1914,20 +1923,22 @@ module Aws::SageMaker
|
|
1914
1923
|
end
|
1915
1924
|
|
1916
1925
|
# A list of container definitions that describe the different containers
|
1917
|
-
# that make up an AutoML candidate. For more information, see
|
1926
|
+
# that make up an AutoML candidate. For more information, see `
|
1927
|
+
# ContainerDefinition `.
|
1918
1928
|
#
|
1919
1929
|
# @!attribute [rw] image
|
1920
1930
|
# The Amazon Elastic Container Registry (Amazon ECR) path of the
|
1921
|
-
# container. For more information, see
|
1931
|
+
# container. For more information, see ` ContainerDefinition `.
|
1922
1932
|
# @return [String]
|
1923
1933
|
#
|
1924
1934
|
# @!attribute [rw] model_data_url
|
1925
|
-
# The location of the model artifacts. For more information, see
|
1935
|
+
# The location of the model artifacts. For more information, see `
|
1936
|
+
# ContainerDefinition `.
|
1926
1937
|
# @return [String]
|
1927
1938
|
#
|
1928
1939
|
# @!attribute [rw] environment
|
1929
1940
|
# The environment variables to set in the container. For more
|
1930
|
-
# information, see
|
1941
|
+
# information, see ` ContainerDefinition `.
|
1931
1942
|
# @return [Hash<String,String>]
|
1932
1943
|
#
|
1933
1944
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1955,9 +1966,14 @@ module Aws::SageMaker
|
|
1955
1966
|
end
|
1956
1967
|
|
1957
1968
|
# This structure specifies how to split the data into train and
|
1958
|
-
# validation datasets.
|
1959
|
-
#
|
1960
|
-
#
|
1969
|
+
# validation datasets.
|
1970
|
+
#
|
1971
|
+
# If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
|
1972
|
+
# API for Natural Language Processing problems (for example
|
1973
|
+
# `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
|
1974
|
+
# type), the validation and training datasets must contain the same
|
1975
|
+
# headers. Also, for V1 API jobs, the validation dataset must be less
|
1976
|
+
# than 2 GB in size.
|
1961
1977
|
#
|
1962
1978
|
# @!attribute [rw] validation_fraction
|
1963
1979
|
# The validation fraction (optional) is a float that specifies the
|
@@ -1993,17 +2009,66 @@ module Aws::SageMaker
|
|
1993
2009
|
include Aws::Structure
|
1994
2010
|
end
|
1995
2011
|
|
2012
|
+
# A channel is a named input source that training algorithms can
|
2013
|
+
# consume. This channel is used for the non tabular training data of an
|
2014
|
+
# AutoML job using the V2 API. For tabular training data, see `
|
2015
|
+
# AutoMLChannel `. For more information, see ` Channel `.
|
2016
|
+
#
|
2017
|
+
# @!attribute [rw] channel_type
|
2018
|
+
# The type of channel. Defines whether the data are used for training
|
2019
|
+
# or validation. The default value is `training`. Channels for
|
2020
|
+
# `training` and `validation` must share the same `ContentType`
|
2021
|
+
# @return [String]
|
2022
|
+
#
|
2023
|
+
# @!attribute [rw] content_type
|
2024
|
+
# The content type of the data from the input source. The following
|
2025
|
+
# are the allowed content types for different problems:
|
2026
|
+
#
|
2027
|
+
# * ImageClassification: `image/png`, `image/jpeg`, `image/*`
|
2028
|
+
#
|
2029
|
+
# * TextClassification: `text/csv;header=present`
|
2030
|
+
# @return [String]
|
2031
|
+
#
|
2032
|
+
# @!attribute [rw] compression_type
|
2033
|
+
# The allowed compression types depend on the input format. We allow
|
2034
|
+
# the compression type `Gzip` for `S3Prefix` inputs only. For all
|
2035
|
+
# other inputs, the compression type should be `None`. If no
|
2036
|
+
# compression type is provided, we default to `None`.
|
2037
|
+
# @return [String]
|
2038
|
+
#
|
2039
|
+
# @!attribute [rw] data_source
|
2040
|
+
# The data source for an AutoML channel.
|
2041
|
+
# @return [Types::AutoMLDataSource]
|
2042
|
+
#
|
2043
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
|
2044
|
+
#
|
2045
|
+
class AutoMLJobChannel < Struct.new(
|
2046
|
+
:channel_type,
|
2047
|
+
:content_type,
|
2048
|
+
:compression_type,
|
2049
|
+
:data_source)
|
2050
|
+
SENSITIVE = []
|
2051
|
+
include Aws::Structure
|
2052
|
+
end
|
2053
|
+
|
1996
2054
|
# How long a job is allowed to run, or how many candidates a job is
|
1997
2055
|
# allowed to generate.
|
1998
2056
|
#
|
1999
2057
|
# @!attribute [rw] max_candidates
|
2000
2058
|
# The maximum number of times a training job is allowed to run.
|
2059
|
+
#
|
2060
|
+
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
|
2061
|
+
# supported value is 1.
|
2001
2062
|
# @return [Integer]
|
2002
2063
|
#
|
2003
2064
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
2004
2065
|
# The maximum time, in seconds, that each training job executed inside
|
2005
2066
|
# hyperparameter tuning is allowed to run as part of a hyperparameter
|
2006
|
-
# tuning job. For more information, see the
|
2067
|
+
# tuning job. For more information, see the ` StoppingCondition ` used
|
2068
|
+
# by the ` CreateHyperParameterTuningJob ` action.
|
2069
|
+
#
|
2070
|
+
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
|
2071
|
+
# field controls the runtime of the job candidate.
|
2007
2072
|
# @return [Integer]
|
2008
2073
|
#
|
2009
2074
|
# @!attribute [rw] max_auto_ml_job_runtime_in_seconds
|
@@ -2092,6 +2157,8 @@ module Aws::SageMaker
|
|
2092
2157
|
end
|
2093
2158
|
|
2094
2159
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
2160
|
+
# V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
|
2161
|
+
# support `Accuracy` only.
|
2095
2162
|
#
|
2096
2163
|
# @!attribute [rw] metric_name
|
2097
2164
|
# The name of the objective metric used to measure the predictive
|
@@ -2270,11 +2337,11 @@ module Aws::SageMaker
|
|
2270
2337
|
# If you do not specify a metric explicitly, the default behavior is
|
2271
2338
|
# to automatically use:
|
2272
2339
|
#
|
2273
|
-
# * `MSE
|
2340
|
+
# * `MSE`: for regression.
|
2274
2341
|
#
|
2275
|
-
# * `F1
|
2342
|
+
# * `F1`: for binary classification
|
2276
2343
|
#
|
2277
|
-
# * `Accuracy
|
2344
|
+
# * `Accuracy`: for multiclass classification.
|
2278
2345
|
# @return [String]
|
2279
2346
|
#
|
2280
2347
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
@@ -2387,30 +2454,94 @@ module Aws::SageMaker
|
|
2387
2454
|
include Aws::Structure
|
2388
2455
|
end
|
2389
2456
|
|
2390
|
-
#
|
2457
|
+
# A collection of settings specific to the problem type used to
|
2458
|
+
# configure an AutoML job using the V2 API. There must be one and only
|
2459
|
+
# one config of the following type.
|
2460
|
+
#
|
2461
|
+
# @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
|
2462
|
+
#
|
2463
|
+
# @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
|
2464
|
+
#
|
2465
|
+
# @!attribute [rw] image_classification_job_config
|
2466
|
+
# Settings used to configure an AutoML job using the V2 API for the
|
2467
|
+
# image classification problem type.
|
2468
|
+
# @return [Types::ImageClassificationJobConfig]
|
2469
|
+
#
|
2470
|
+
# @!attribute [rw] text_classification_job_config
|
2471
|
+
# Settings used to configure an AutoML job using the V2 API for the
|
2472
|
+
# text classification problem type.
|
2473
|
+
# @return [Types::TextClassificationJobConfig]
|
2474
|
+
#
|
2475
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2476
|
+
#
|
2477
|
+
class AutoMLProblemTypeConfig < Struct.new(
|
2478
|
+
:image_classification_job_config,
|
2479
|
+
:text_classification_job_config,
|
2480
|
+
:unknown)
|
2481
|
+
SENSITIVE = []
|
2482
|
+
include Aws::Structure
|
2483
|
+
include Aws::Structure::Union
|
2484
|
+
|
2485
|
+
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2486
|
+
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2487
|
+
class Unknown < AutoMLProblemTypeConfig; end
|
2488
|
+
end
|
2489
|
+
|
2490
|
+
# Describes the Amazon S3 data source.
|
2391
2491
|
#
|
2392
2492
|
# @!attribute [rw] s3_data_type
|
2393
2493
|
# The data type.
|
2394
2494
|
#
|
2395
|
-
#
|
2495
|
+
# * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
2496
|
+
# SageMaker uses all objects that match the specified key name
|
2497
|
+
# prefix for model training.
|
2498
|
+
#
|
2499
|
+
# The `S3Prefix` should have the following format:
|
2500
|
+
#
|
2501
|
+
# `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
|
2502
|
+
#
|
2503
|
+
# * If you choose `ManifestFile`, `S3Uri` identifies an object that is
|
2504
|
+
# a manifest file containing a list of object keys that you want
|
2505
|
+
# SageMaker to use for model training.
|
2506
|
+
#
|
2507
|
+
# A `ManifestFile` should have the format shown below:
|
2508
|
+
#
|
2509
|
+
# `[ \{"prefix":
|
2510
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
|
2511
|
+
# `
|
2512
|
+
#
|
2513
|
+
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
|
2514
|
+
#
|
2515
|
+
# `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
|
2396
2516
|
#
|
2397
|
-
#
|
2398
|
-
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
|
2399
|
-
# `
|
2517
|
+
# `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
|
2400
2518
|
#
|
2401
|
-
# `
|
2519
|
+
# * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
|
2520
|
+
# object that is an augmented manifest file in JSON lines format.
|
2521
|
+
# This file contains the data you want to use for model training.
|
2522
|
+
# `AugmentedManifestFile` is available for V2 API jobs only (for
|
2523
|
+
# example, for jobs created by calling `CreateAutoMLJobV2`).
|
2402
2524
|
#
|
2403
|
-
#
|
2525
|
+
# Here is a minimal, single-record example of an
|
2526
|
+
# `AugmentedManifestFile`:
|
2404
2527
|
#
|
2405
|
-
#
|
2528
|
+
# `\{"source-ref":
|
2529
|
+
# "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
|
2406
2530
|
#
|
2407
|
-
#
|
2531
|
+
# `"label-metadata": \{"class-name": "cat"` \\}
|
2408
2532
|
#
|
2409
|
-
#
|
2533
|
+
# For more information on `AugmentedManifestFile`, see [Provide
|
2534
|
+
# Dataset Metadata to Training Jobs with an Augmented Manifest
|
2535
|
+
# File][1].
|
2536
|
+
#
|
2537
|
+
#
|
2538
|
+
#
|
2539
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
|
2410
2540
|
# @return [String]
|
2411
2541
|
#
|
2412
2542
|
# @!attribute [rw] s3_uri
|
2413
|
-
# The URL to the Amazon S3 data source.
|
2543
|
+
# The URL to the Amazon S3 data source. The Uri refers to the Amazon
|
2544
|
+
# S3 prefix or ManifestFile depending on the data type.
|
2414
2545
|
# @return [String]
|
2415
2546
|
#
|
2416
2547
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
|
@@ -2860,10 +2991,10 @@ module Aws::SageMaker
|
|
2860
2991
|
# @!attribute [rw] type
|
2861
2992
|
# Specifies the endpoint capacity type.
|
2862
2993
|
#
|
2863
|
-
# * `INSTANCE_COUNT
|
2994
|
+
# * `INSTANCE_COUNT`: The endpoint activates based on the number of
|
2864
2995
|
# instances.
|
2865
2996
|
#
|
2866
|
-
# * `CAPACITY_PERCENT
|
2997
|
+
# * `CAPACITY_PERCENT`: The endpoint activates based on the specified
|
2867
2998
|
# percentage of capacity.
|
2868
2999
|
# @return [String]
|
2869
3000
|
#
|
@@ -3293,7 +3424,7 @@ module Aws::SageMaker
|
|
3293
3424
|
# from the model container output if the model container is in JSON
|
3294
3425
|
# Lines format.
|
3295
3426
|
#
|
3296
|
-
# **Example
|
3427
|
+
# **Example**: If the model container output of a single request is
|
3297
3428
|
# `'\{"predicted_label":1,"probability":0.6\}'`, then set
|
3298
3429
|
# `ProbabilityAttribute` to `'probability'`.
|
3299
3430
|
# @return [String]
|
@@ -3302,7 +3433,7 @@ module Aws::SageMaker
|
|
3302
3433
|
# A JMESPath expression used to locate the list of label headers in
|
3303
3434
|
# the model container output.
|
3304
3435
|
#
|
3305
|
-
# **Example
|
3436
|
+
# **Example**: If the model container output of a batch request is
|
3306
3437
|
# `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
|
3307
3438
|
# then set `LabelAttribute` to `'labels'` to extract the list of label
|
3308
3439
|
# headers `["cat","dog","fish"]`
|
@@ -4358,9 +4489,10 @@ module Aws::SageMaker
|
|
4358
4489
|
# @!attribute [rw] input_data_config
|
4359
4490
|
# An array of channel objects that describes the input data and its
|
4360
4491
|
# location. Each channel is a named input source. Similar to
|
4361
|
-
# `InputDataConfig` supported by
|
4362
|
-
# A minimum of 500 rows is
|
4363
|
-
#
|
4492
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
4493
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
4494
|
+
# required for the training dataset. There is not a minimum number of
|
4495
|
+
# rows required for the validation dataset.
|
4364
4496
|
# @return [Array<Types::AutoMLChannel>]
|
4365
4497
|
#
|
4366
4498
|
# @!attribute [rw] output_data_config
|
@@ -4370,19 +4502,20 @@ module Aws::SageMaker
|
|
4370
4502
|
# @return [Types::AutoMLOutputDataConfig]
|
4371
4503
|
#
|
4372
4504
|
# @!attribute [rw] problem_type
|
4373
|
-
# Defines the type of supervised learning available for the
|
4505
|
+
# Defines the type of supervised learning problem available for the
|
4374
4506
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4375
|
-
# problem types
|
4507
|
+
# problem types][1].
|
4376
4508
|
#
|
4377
4509
|
#
|
4378
4510
|
#
|
4379
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
4511
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
4380
4512
|
# @return [String]
|
4381
4513
|
#
|
4382
4514
|
# @!attribute [rw] auto_ml_job_objective
|
4383
4515
|
# Defines the objective metric used to measure the predictive quality
|
4384
|
-
# of an AutoML job. You provide an AutoMLJobObjective$MetricName
|
4385
|
-
# Autopilot infers whether to minimize or maximize it.
|
4516
|
+
# of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
|
4517
|
+
# and Autopilot infers whether to minimize or maximize it. For `
|
4518
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4386
4519
|
# @return [Types::AutoMLJobObjective]
|
4387
4520
|
#
|
4388
4521
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4400,8 +4533,15 @@ module Aws::SageMaker
|
|
4400
4533
|
# @return [Boolean]
|
4401
4534
|
#
|
4402
4535
|
# @!attribute [rw] tags
|
4403
|
-
#
|
4404
|
-
#
|
4536
|
+
# An array of key-value pairs. You can use tags to categorize your
|
4537
|
+
# Amazon Web Services resources in different ways, for example, by
|
4538
|
+
# purpose, owner, or environment. For more information, see [Tagging
|
4539
|
+
# Amazon Web ServicesResources][1]. Tag keys must be unique per
|
4540
|
+
# resource.
|
4541
|
+
#
|
4542
|
+
#
|
4543
|
+
#
|
4544
|
+
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
4405
4545
|
# @return [Array<Types::Tag>]
|
4406
4546
|
#
|
4407
4547
|
# @!attribute [rw] model_deploy_config
|
@@ -4438,6 +4578,104 @@ module Aws::SageMaker
|
|
4438
4578
|
include Aws::Structure
|
4439
4579
|
end
|
4440
4580
|
|
4581
|
+
# @!attribute [rw] auto_ml_job_name
|
4582
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
4583
|
+
# and is case insensitive.
|
4584
|
+
# @return [String]
|
4585
|
+
#
|
4586
|
+
# @!attribute [rw] auto_ml_job_input_data_config
|
4587
|
+
# An array of channel objects describing the input data and their
|
4588
|
+
# location. Each channel is a named input source. Similar to `
|
4589
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
4590
|
+
# formats depend on the problem type:
|
4591
|
+
#
|
4592
|
+
# * ImageClassification: S3Prefix, `ManifestFile`,
|
4593
|
+
# `AugmentedManifestFile`
|
4594
|
+
#
|
4595
|
+
# * TextClassification: S3Prefix
|
4596
|
+
# @return [Array<Types::AutoMLJobChannel>]
|
4597
|
+
#
|
4598
|
+
# @!attribute [rw] output_data_config
|
4599
|
+
# Provides information about encryption and the Amazon S3 output path
|
4600
|
+
# needed to store artifacts from an AutoML job.
|
4601
|
+
# @return [Types::AutoMLOutputDataConfig]
|
4602
|
+
#
|
4603
|
+
# @!attribute [rw] auto_ml_problem_type_config
|
4604
|
+
# Defines the configuration settings of one of the supported problem
|
4605
|
+
# types.
|
4606
|
+
# @return [Types::AutoMLProblemTypeConfig]
|
4607
|
+
#
|
4608
|
+
# @!attribute [rw] role_arn
|
4609
|
+
# The ARN of the role that is used to access the data.
|
4610
|
+
# @return [String]
|
4611
|
+
#
|
4612
|
+
# @!attribute [rw] tags
|
4613
|
+
# An array of key-value pairs. You can use tags to categorize your
|
4614
|
+
# Amazon Web Services resources in different ways, such as by purpose,
|
4615
|
+
# owner, or environment. For more information, see [Tagging Amazon Web
|
4616
|
+
# ServicesResources][1]. Tag keys must be unique per resource.
|
4617
|
+
#
|
4618
|
+
#
|
4619
|
+
#
|
4620
|
+
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
4621
|
+
# @return [Array<Types::Tag>]
|
4622
|
+
#
|
4623
|
+
# @!attribute [rw] security_config
|
4624
|
+
# The security configuration for traffic encryption or Amazon VPC
|
4625
|
+
# settings.
|
4626
|
+
# @return [Types::AutoMLSecurityConfig]
|
4627
|
+
#
|
4628
|
+
# @!attribute [rw] auto_ml_job_objective
|
4629
|
+
# Specifies a metric to minimize or maximize as the objective of a
|
4630
|
+
# job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4631
|
+
# @return [Types::AutoMLJobObjective]
|
4632
|
+
#
|
4633
|
+
# @!attribute [rw] model_deploy_config
|
4634
|
+
# Specifies how to generate the endpoint name for an automatic
|
4635
|
+
# one-click Autopilot model deployment.
|
4636
|
+
# @return [Types::ModelDeployConfig]
|
4637
|
+
#
|
4638
|
+
# @!attribute [rw] data_split_config
|
4639
|
+
# This structure specifies how to split the data into train and
|
4640
|
+
# validation datasets.
|
4641
|
+
#
|
4642
|
+
# If you are using the V1 API (for example `CreateAutoMLJob`) or the
|
4643
|
+
# V2 API for Natural Language Processing problems (for example
|
4644
|
+
# `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
|
4645
|
+
# type), the validation and training datasets must contain the same
|
4646
|
+
# headers. Also, for V1 API jobs, the validation dataset must be less
|
4647
|
+
# than 2 GB in size.
|
4648
|
+
# @return [Types::AutoMLDataSplitConfig]
|
4649
|
+
#
|
4650
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
4651
|
+
#
|
4652
|
+
class CreateAutoMLJobV2Request < Struct.new(
|
4653
|
+
:auto_ml_job_name,
|
4654
|
+
:auto_ml_job_input_data_config,
|
4655
|
+
:output_data_config,
|
4656
|
+
:auto_ml_problem_type_config,
|
4657
|
+
:role_arn,
|
4658
|
+
:tags,
|
4659
|
+
:security_config,
|
4660
|
+
:auto_ml_job_objective,
|
4661
|
+
:model_deploy_config,
|
4662
|
+
:data_split_config)
|
4663
|
+
SENSITIVE = []
|
4664
|
+
include Aws::Structure
|
4665
|
+
end
|
4666
|
+
|
4667
|
+
# @!attribute [rw] auto_ml_job_arn
|
4668
|
+
# The unique ARN assigned to the AutoMLJob when it is created.
|
4669
|
+
# @return [String]
|
4670
|
+
#
|
4671
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
|
4672
|
+
#
|
4673
|
+
class CreateAutoMLJobV2Response < Struct.new(
|
4674
|
+
:auto_ml_job_arn)
|
4675
|
+
SENSITIVE = []
|
4676
|
+
include Aws::Structure
|
4677
|
+
end
|
4678
|
+
|
4441
4679
|
# @!attribute [rw] code_repository_name
|
4442
4680
|
# The name of the Git repository. The name must have 1 to 63
|
4443
4681
|
# characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
|
@@ -4578,7 +4816,7 @@ module Aws::SageMaker
|
|
4578
4816
|
# response. Amazon SageMaker returns the following data in JSON
|
4579
4817
|
# format:
|
4580
4818
|
#
|
4581
|
-
# * `CompilationJobArn
|
4819
|
+
# * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
|
4582
4820
|
# compiled job.
|
4583
4821
|
#
|
4584
4822
|
# ^
|
@@ -5244,11 +5482,11 @@ module Aws::SageMaker
|
|
5244
5482
|
#
|
5245
5483
|
# An `EventTime` can be a `String` or `Fractional`.
|
5246
5484
|
#
|
5247
|
-
# * `Fractional
|
5485
|
+
# * `Fractional`: `EventTime` feature values must be a Unix timestamp
|
5248
5486
|
# in seconds.
|
5249
5487
|
#
|
5250
|
-
# * `String
|
5251
|
-
#
|
5488
|
+
# * `String`: `EventTime` feature values must be an ISO-8601 string in
|
5489
|
+
# the format. The following formats are supported
|
5252
5490
|
# `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
|
5253
5491
|
# `yyyy`, `MM`, and `dd` represent the year, month, and day
|
5254
5492
|
# respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
|
@@ -5668,29 +5906,29 @@ module Aws::SageMaker
|
|
5668
5906
|
# @!attribute [rw] vendor_guidance
|
5669
5907
|
# The stability of the image version, specified by the maintainer.
|
5670
5908
|
#
|
5671
|
-
# * `NOT_PROVIDED
|
5672
|
-
#
|
5909
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
5910
|
+
# version stability.
|
5673
5911
|
#
|
5674
|
-
# * `STABLE
|
5912
|
+
# * `STABLE`: The image version is stable.
|
5675
5913
|
#
|
5676
|
-
# * `TO_BE_ARCHIVED
|
5914
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
5677
5915
|
# image versions that are set to be archived are automatically
|
5678
5916
|
# archived after three months.
|
5679
5917
|
#
|
5680
|
-
# * `ARCHIVED
|
5681
|
-
#
|
5918
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
5919
|
+
# are not searchable and are no longer actively supported.
|
5682
5920
|
# @return [String]
|
5683
5921
|
#
|
5684
5922
|
# @!attribute [rw] job_type
|
5685
5923
|
# Indicates SageMaker job type compatibility.
|
5686
5924
|
#
|
5687
|
-
# * `TRAINING
|
5925
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
5688
5926
|
# training jobs.
|
5689
5927
|
#
|
5690
|
-
# * `INFERENCE
|
5928
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
5691
5929
|
# inference jobs.
|
5692
5930
|
#
|
5693
|
-
# * `NOTEBOOK_KERNEL
|
5931
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
5694
5932
|
# notebook kernels.
|
5695
5933
|
# @return [String]
|
5696
5934
|
#
|
@@ -5705,9 +5943,9 @@ module Aws::SageMaker
|
|
5705
5943
|
# @!attribute [rw] processor
|
5706
5944
|
# Indicates CPU or GPU compatibility.
|
5707
5945
|
#
|
5708
|
-
# * `CPU
|
5946
|
+
# * `CPU`: The image version is compatible with CPU.
|
5709
5947
|
#
|
5710
|
-
# * `GPU
|
5948
|
+
# * `GPU`: The image version is compatible with GPU.
|
5711
5949
|
# @return [String]
|
5712
5950
|
#
|
5713
5951
|
# @!attribute [rw] horovod
|
@@ -5756,7 +5994,7 @@ module Aws::SageMaker
|
|
5756
5994
|
# The type of the inference experiment that you want to run. The
|
5757
5995
|
# following types of experiments are possible:
|
5758
5996
|
#
|
5759
|
-
# * `ShadowMode
|
5997
|
+
# * `ShadowMode`: You can use this type to validate a shadow variant.
|
5760
5998
|
# For more information, see [Shadow tests][1].
|
5761
5999
|
#
|
5762
6000
|
# ^
|
@@ -6334,13 +6572,13 @@ module Aws::SageMaker
|
|
6334
6572
|
# Different organizations might have different criteria for model card
|
6335
6573
|
# review and approval.
|
6336
6574
|
#
|
6337
|
-
# * `Draft
|
6575
|
+
# * `Draft`: The model card is a work in progress.
|
6338
6576
|
#
|
6339
|
-
# * `PendingReview
|
6577
|
+
# * `PendingReview`: The model card is pending review.
|
6340
6578
|
#
|
6341
|
-
# * `Approved
|
6579
|
+
# * `Approved`: The model card is approved.
|
6342
6580
|
#
|
6343
|
-
# * `Archived
|
6581
|
+
# * `Archived`: The model card is archived. No more updates should be
|
6344
6582
|
# made to the model card, but it can still be exported.
|
6345
6583
|
# @return [String]
|
6346
6584
|
#
|
@@ -10279,6 +10517,130 @@ module Aws::SageMaker
|
|
10279
10517
|
include Aws::Structure
|
10280
10518
|
end
|
10281
10519
|
|
10520
|
+
# @!attribute [rw] auto_ml_job_name
|
10521
|
+
# Requests information about an AutoML V2 job using its unique name.
|
10522
|
+
# @return [String]
|
10523
|
+
#
|
10524
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
|
10525
|
+
#
|
10526
|
+
class DescribeAutoMLJobV2Request < Struct.new(
|
10527
|
+
:auto_ml_job_name)
|
10528
|
+
SENSITIVE = []
|
10529
|
+
include Aws::Structure
|
10530
|
+
end
|
10531
|
+
|
10532
|
+
# @!attribute [rw] auto_ml_job_name
|
10533
|
+
# Returns the name of the AutoML V2 job.
|
10534
|
+
# @return [String]
|
10535
|
+
#
|
10536
|
+
# @!attribute [rw] auto_ml_job_arn
|
10537
|
+
# Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
|
10538
|
+
# @return [String]
|
10539
|
+
#
|
10540
|
+
# @!attribute [rw] auto_ml_job_input_data_config
|
10541
|
+
# Returns an array of channel objects describing the input data and
|
10542
|
+
# their location.
|
10543
|
+
# @return [Array<Types::AutoMLJobChannel>]
|
10544
|
+
#
|
10545
|
+
# @!attribute [rw] output_data_config
|
10546
|
+
# Returns the job's output data config.
|
10547
|
+
# @return [Types::AutoMLOutputDataConfig]
|
10548
|
+
#
|
10549
|
+
# @!attribute [rw] role_arn
|
10550
|
+
# The ARN of the Identity and Access Management role that has read
|
10551
|
+
# permission to the input data location and write permission to the
|
10552
|
+
# output data location in Amazon S3.
|
10553
|
+
# @return [String]
|
10554
|
+
#
|
10555
|
+
# @!attribute [rw] auto_ml_job_objective
|
10556
|
+
# Returns the job's objective.
|
10557
|
+
# @return [Types::AutoMLJobObjective]
|
10558
|
+
#
|
10559
|
+
# @!attribute [rw] auto_ml_problem_type_config
|
10560
|
+
# Returns the configuration settings of the problem type set for the
|
10561
|
+
# AutoML V2 job.
|
10562
|
+
# @return [Types::AutoMLProblemTypeConfig]
|
10563
|
+
#
|
10564
|
+
# @!attribute [rw] creation_time
|
10565
|
+
# Returns the creation time of the AutoML V2 job.
|
10566
|
+
# @return [Time]
|
10567
|
+
#
|
10568
|
+
# @!attribute [rw] end_time
|
10569
|
+
# Returns the end time of the AutoML V2 job.
|
10570
|
+
# @return [Time]
|
10571
|
+
#
|
10572
|
+
# @!attribute [rw] last_modified_time
|
10573
|
+
# Returns the job's last modified time.
|
10574
|
+
# @return [Time]
|
10575
|
+
#
|
10576
|
+
# @!attribute [rw] failure_reason
|
10577
|
+
# Returns the reason for the failure of the AutoML V2 job, when
|
10578
|
+
# applicable.
|
10579
|
+
# @return [String]
|
10580
|
+
#
|
10581
|
+
# @!attribute [rw] partial_failure_reasons
|
10582
|
+
# Returns a list of reasons for partial failures within an AutoML V2
|
10583
|
+
# job.
|
10584
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10585
|
+
#
|
10586
|
+
# @!attribute [rw] best_candidate
|
10587
|
+
# Information about the candidate produced by an AutoML training job
|
10588
|
+
# V2, including its status, steps, and other properties.
|
10589
|
+
# @return [Types::AutoMLCandidate]
|
10590
|
+
#
|
10591
|
+
# @!attribute [rw] auto_ml_job_status
|
10592
|
+
# Returns the status of the AutoML V2 job.
|
10593
|
+
# @return [String]
|
10594
|
+
#
|
10595
|
+
# @!attribute [rw] auto_ml_job_secondary_status
|
10596
|
+
# Returns the secondary status of the AutoML V2 job.
|
10597
|
+
# @return [String]
|
10598
|
+
#
|
10599
|
+
# @!attribute [rw] model_deploy_config
|
10600
|
+
# Indicates whether the model was deployed automatically to an
|
10601
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
10602
|
+
# @return [Types::ModelDeployConfig]
|
10603
|
+
#
|
10604
|
+
# @!attribute [rw] model_deploy_result
|
10605
|
+
# Provides information about endpoint for the model deployment.
|
10606
|
+
# @return [Types::ModelDeployResult]
|
10607
|
+
#
|
10608
|
+
# @!attribute [rw] data_split_config
|
10609
|
+
# Returns the configuration settings of how the data are split into
|
10610
|
+
# train and validation datasets.
|
10611
|
+
# @return [Types::AutoMLDataSplitConfig]
|
10612
|
+
#
|
10613
|
+
# @!attribute [rw] security_config
|
10614
|
+
# Returns the security configuration for traffic encryption or Amazon
|
10615
|
+
# VPC settings.
|
10616
|
+
# @return [Types::AutoMLSecurityConfig]
|
10617
|
+
#
|
10618
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
10619
|
+
#
|
10620
|
+
class DescribeAutoMLJobV2Response < Struct.new(
|
10621
|
+
:auto_ml_job_name,
|
10622
|
+
:auto_ml_job_arn,
|
10623
|
+
:auto_ml_job_input_data_config,
|
10624
|
+
:output_data_config,
|
10625
|
+
:role_arn,
|
10626
|
+
:auto_ml_job_objective,
|
10627
|
+
:auto_ml_problem_type_config,
|
10628
|
+
:creation_time,
|
10629
|
+
:end_time,
|
10630
|
+
:last_modified_time,
|
10631
|
+
:failure_reason,
|
10632
|
+
:partial_failure_reasons,
|
10633
|
+
:best_candidate,
|
10634
|
+
:auto_ml_job_status,
|
10635
|
+
:auto_ml_job_secondary_status,
|
10636
|
+
:model_deploy_config,
|
10637
|
+
:model_deploy_result,
|
10638
|
+
:data_split_config,
|
10639
|
+
:security_config)
|
10640
|
+
SENSITIVE = []
|
10641
|
+
include Aws::Structure
|
10642
|
+
end
|
10643
|
+
|
10282
10644
|
# @!attribute [rw] code_repository_name
|
10283
10645
|
# The name of the Git repository to describe.
|
10284
10646
|
# @return [String]
|
@@ -11199,21 +11561,21 @@ module Aws::SageMaker
|
|
11199
11561
|
# @!attribute [rw] endpoint_status
|
11200
11562
|
# The status of the endpoint.
|
11201
11563
|
#
|
11202
|
-
# * `OutOfService
|
11564
|
+
# * `OutOfService`: Endpoint is not available to take incoming
|
11203
11565
|
# requests.
|
11204
11566
|
#
|
11205
|
-
# * `Creating
|
11567
|
+
# * `Creating`: CreateEndpoint is executing.
|
11206
11568
|
#
|
11207
|
-
# * `Updating
|
11569
|
+
# * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
|
11208
11570
|
# is executing.
|
11209
11571
|
#
|
11210
|
-
# * `SystemUpdating
|
11211
|
-
#
|
11572
|
+
# * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
|
11573
|
+
# updated or deleted or re-scaled until it has completed. This
|
11212
11574
|
# maintenance operation does not change any customer-specified
|
11213
11575
|
# values such as VPC config, KMS encryption, model, instance type,
|
11214
11576
|
# or instance count.
|
11215
11577
|
#
|
11216
|
-
# * `RollingBack
|
11578
|
+
# * `RollingBack`: Endpoint fails to scale up or down or change its
|
11217
11579
|
# variant weight and is in the process of rolling back to its
|
11218
11580
|
# previous configuration. Once the rollback completes, endpoint
|
11219
11581
|
# returns to an `InService` status. This transitional status only
|
@@ -11222,11 +11584,11 @@ module Aws::SageMaker
|
|
11222
11584
|
# UpdateEndpointWeightsAndCapacities call or when the
|
11223
11585
|
# UpdateEndpointWeightsAndCapacities operation is called explicitly.
|
11224
11586
|
#
|
11225
|
-
# * `InService
|
11587
|
+
# * `InService`: Endpoint is available to process incoming requests.
|
11226
11588
|
#
|
11227
|
-
# * `Deleting
|
11589
|
+
# * `Deleting`: DeleteEndpoint is executing.
|
11228
11590
|
#
|
11229
|
-
# * `Failed
|
11591
|
+
# * `Failed`: Endpoint could not be created, updated, or re-scaled.
|
11230
11592
|
# Use DescribeEndpointOutput$FailureReason for information about the
|
11231
11593
|
# failure. DeleteEndpoint is the only operation that can be
|
11232
11594
|
# performed on a failed endpoint.
|
@@ -12130,29 +12492,29 @@ module Aws::SageMaker
|
|
12130
12492
|
# @!attribute [rw] vendor_guidance
|
12131
12493
|
# The stability of the image version specified by the maintainer.
|
12132
12494
|
#
|
12133
|
-
# * `NOT_PROVIDED
|
12134
|
-
#
|
12495
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
12496
|
+
# version stability.
|
12135
12497
|
#
|
12136
|
-
# * `STABLE
|
12498
|
+
# * `STABLE`: The image version is stable.
|
12137
12499
|
#
|
12138
|
-
# * `TO_BE_ARCHIVED
|
12500
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
12139
12501
|
# image versions that are set to be archived are automatically
|
12140
12502
|
# archived after three months.
|
12141
12503
|
#
|
12142
|
-
# * `ARCHIVED
|
12143
|
-
#
|
12504
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
12505
|
+
# are not searchable and are no longer actively supported.
|
12144
12506
|
# @return [String]
|
12145
12507
|
#
|
12146
12508
|
# @!attribute [rw] job_type
|
12147
12509
|
# Indicates SageMaker job type compatibility.
|
12148
12510
|
#
|
12149
|
-
# * `TRAINING
|
12511
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
12150
12512
|
# training jobs.
|
12151
12513
|
#
|
12152
|
-
# * `INFERENCE
|
12514
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
12153
12515
|
# inference jobs.
|
12154
12516
|
#
|
12155
|
-
# * `NOTEBOOK_KERNEL
|
12517
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
12156
12518
|
# notebook kernels.
|
12157
12519
|
# @return [String]
|
12158
12520
|
#
|
@@ -12167,9 +12529,9 @@ module Aws::SageMaker
|
|
12167
12529
|
# @!attribute [rw] processor
|
12168
12530
|
# Indicates CPU or GPU compatibility.
|
12169
12531
|
#
|
12170
|
-
# * `CPU
|
12532
|
+
# * `CPU`: The image version is compatible with CPU.
|
12171
12533
|
#
|
12172
|
-
# * `GPU
|
12534
|
+
# * `GPU`: The image version is compatible with GPU.
|
12173
12535
|
# @return [String]
|
12174
12536
|
#
|
12175
12537
|
# @!attribute [rw] horovod
|
@@ -12767,11 +13129,11 @@ module Aws::SageMaker
|
|
12767
13129
|
# @!attribute [rw] status
|
12768
13130
|
# The completion status of the model card export job.
|
12769
13131
|
#
|
12770
|
-
# * `InProgress
|
13132
|
+
# * `InProgress`: The model card export job is in progress.
|
12771
13133
|
#
|
12772
|
-
# * `Completed
|
13134
|
+
# * `Completed`: The model card export job is complete.
|
12773
13135
|
#
|
12774
|
-
# * `Failed
|
13136
|
+
# * `Failed`: The model card export job failed. To see the reason for
|
12775
13137
|
# the failure, see the `FailureReason` field in the response to a
|
12776
13138
|
# `DescribeModelCardExportJob` call.
|
12777
13139
|
# @return [String]
|
@@ -12860,13 +13222,13 @@ module Aws::SageMaker
|
|
12860
13222
|
# Different organizations might have different criteria for model card
|
12861
13223
|
# review and approval.
|
12862
13224
|
#
|
12863
|
-
# * `Draft
|
13225
|
+
# * `Draft`: The model card is a work in progress.
|
12864
13226
|
#
|
12865
|
-
# * `PendingReview
|
13227
|
+
# * `PendingReview`: The model card is pending review.
|
12866
13228
|
#
|
12867
|
-
# * `Approved
|
13229
|
+
# * `Approved`: The model card is approved.
|
12868
13230
|
#
|
12869
|
-
# * `Archived
|
13231
|
+
# * `Archived`: The model card is archived. No more updates should be
|
12870
13232
|
# made to the model card, but it can still be exported.
|
12871
13233
|
# @return [String]
|
12872
13234
|
#
|
@@ -12897,18 +13259,18 @@ module Aws::SageMaker
|
|
12897
13259
|
# `ModelCardProcessingStatus` updates throughout the different
|
12898
13260
|
# deletion steps.
|
12899
13261
|
#
|
12900
|
-
# * `DeletePending
|
13262
|
+
# * `DeletePending`: Model card deletion request received.
|
12901
13263
|
#
|
12902
|
-
# * `DeleteInProgress
|
13264
|
+
# * `DeleteInProgress`: Model card deletion is in progress.
|
12903
13265
|
#
|
12904
|
-
# * `ContentDeleted
|
13266
|
+
# * `ContentDeleted`: Deleted model card content.
|
12905
13267
|
#
|
12906
|
-
# * `ExportJobsDeleted
|
13268
|
+
# * `ExportJobsDeleted`: Deleted all export jobs associated with the
|
12907
13269
|
# model card.
|
12908
13270
|
#
|
12909
|
-
# * `DeleteCompleted
|
13271
|
+
# * `DeleteCompleted`: Successfully deleted the model card.
|
12910
13272
|
#
|
12911
|
-
# * `DeleteFailed
|
13273
|
+
# * `DeleteFailed`: The model card failed to delete.
|
12912
13274
|
# @return [String]
|
12913
13275
|
#
|
12914
13276
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
|
@@ -16435,21 +16797,21 @@ module Aws::SageMaker
|
|
16435
16797
|
# @!attribute [rw] endpoint_status
|
16436
16798
|
# The status of the endpoint.
|
16437
16799
|
#
|
16438
|
-
# * `OutOfService
|
16800
|
+
# * `OutOfService`: Endpoint is not available to take incoming
|
16439
16801
|
# requests.
|
16440
16802
|
#
|
16441
|
-
# * `Creating
|
16803
|
+
# * `Creating`: CreateEndpoint is executing.
|
16442
16804
|
#
|
16443
|
-
# * `Updating
|
16805
|
+
# * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
|
16444
16806
|
# is executing.
|
16445
16807
|
#
|
16446
|
-
# * `SystemUpdating
|
16447
|
-
#
|
16808
|
+
# * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
|
16809
|
+
# updated or deleted or re-scaled until it has completed. This
|
16448
16810
|
# maintenance operation does not change any customer-specified
|
16449
16811
|
# values such as VPC config, KMS encryption, model, instance type,
|
16450
16812
|
# or instance count.
|
16451
16813
|
#
|
16452
|
-
# * `RollingBack
|
16814
|
+
# * `RollingBack`: Endpoint fails to scale up or down or change its
|
16453
16815
|
# variant weight and is in the process of rolling back to its
|
16454
16816
|
# previous configuration. Once the rollback completes, endpoint
|
16455
16817
|
# returns to an `InService` status. This transitional status only
|
@@ -16458,11 +16820,11 @@ module Aws::SageMaker
|
|
16458
16820
|
# UpdateEndpointWeightsAndCapacities call or when the
|
16459
16821
|
# UpdateEndpointWeightsAndCapacities operation is called explicitly.
|
16460
16822
|
#
|
16461
|
-
# * `InService
|
16823
|
+
# * `InService`: Endpoint is available to process incoming requests.
|
16462
16824
|
#
|
16463
|
-
# * `Deleting
|
16825
|
+
# * `Deleting`: DeleteEndpoint is executing.
|
16464
16826
|
#
|
16465
|
-
# * `Failed
|
16827
|
+
# * `Failed`: Endpoint could not be created, updated, or re-scaled.
|
16466
16828
|
# Use DescribeEndpointOutput$FailureReason for information about the
|
16467
16829
|
# failure. DeleteEndpoint is the only operation that can be
|
16468
16830
|
# performed on a failed endpoint.
|
@@ -17087,7 +17449,7 @@ module Aws::SageMaker
|
|
17087
17449
|
# : To define a metric filter, enter a value using the form
|
17088
17450
|
# `"Metrics.<name>"`, where `<name>` is a metric name. For example,
|
17089
17451
|
# the following filter searches for training jobs with an `"accuracy"`
|
17090
|
-
# metric greater than `"0.9"
|
17452
|
+
# metric greater than `"0.9"`:
|
17091
17453
|
#
|
17092
17454
|
# `\{`
|
17093
17455
|
#
|
@@ -17107,7 +17469,7 @@ module Aws::SageMaker
|
|
17107
17469
|
# also a decimal value. If the specified `Value` is an integer, the
|
17108
17470
|
# decimal hyperparameter values are treated as integers. For example,
|
17109
17471
|
# the following filter is satisfied by training jobs with a
|
17110
|
-
# `"learning_rate"` hyperparameter that is less than `"0.5"
|
17472
|
+
# `"learning_rate"` hyperparameter that is less than `"0.5"`:
|
17111
17473
|
#
|
17112
17474
|
# ` \{`
|
17113
17475
|
#
|
@@ -17237,7 +17599,8 @@ module Aws::SageMaker
|
|
17237
17599
|
#
|
17238
17600
|
# @!attribute [rw] metric_name
|
17239
17601
|
# The name of the metric with the best result. For a description of
|
17240
|
-
# the possible objective metrics, see AutoMLJobObjective$MetricName
|
17602
|
+
# the possible objective metrics, see ` AutoMLJobObjective$MetricName
|
17603
|
+
# `.
|
17241
17604
|
# @return [String]
|
17242
17605
|
#
|
17243
17606
|
# @!attribute [rw] value
|
@@ -19133,7 +19496,7 @@ module Aws::SageMaker
|
|
19133
19496
|
#
|
19134
19497
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
|
19135
19498
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
|
19136
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
19499
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
19137
19500
|
# @return [Hash<String,String>]
|
19138
19501
|
#
|
19139
19502
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
@@ -19891,8 +20254,8 @@ module Aws::SageMaker
|
|
19891
20254
|
# reaches the `MaxResource` value, it is stopped. If a value for
|
19892
20255
|
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
19893
20256
|
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
19894
|
-
# infer `MaxResource` from the following keys (if present) in
|
19895
|
-
#
|
20257
|
+
# infer `MaxResource` from the following keys (if present) in `
|
20258
|
+
# StaticsHyperParameters `:
|
19896
20259
|
#
|
19897
20260
|
# * `epochs`
|
19898
20261
|
#
|
@@ -19907,8 +20270,8 @@ module Aws::SageMaker
|
|
19907
20270
|
# If `HyperbandStrategyConfig` is unable to infer a value for
|
19908
20271
|
# `MaxResource`, it generates a validation error. The maximum value is
|
19909
20272
|
# 20,000 epochs. All metrics that correspond to an objective metric
|
19910
|
-
# are used to derive [early stopping decisions][
|
19911
|
-
# [distributive][
|
20273
|
+
# are used to derive [early stopping decisions][1]. For
|
20274
|
+
# [distributive][2] training jobs, ensure that duplicate metrics are
|
19912
20275
|
# not printed in the logs across the individual nodes in a training
|
19913
20276
|
# job. If multiple nodes are publishing duplicate or incorrect
|
19914
20277
|
# metrics, training jobs may make an incorrect stopping decision and
|
@@ -19916,9 +20279,8 @@ module Aws::SageMaker
|
|
19916
20279
|
#
|
19917
20280
|
#
|
19918
20281
|
#
|
19919
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
19920
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
19921
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20282
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
20283
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
19922
20284
|
# @return [Integer]
|
19923
20285
|
#
|
19924
20286
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
@@ -20008,6 +20370,22 @@ module Aws::SageMaker
|
|
20008
20370
|
include Aws::Structure
|
20009
20371
|
end
|
20010
20372
|
|
20373
|
+
# Stores the configuration information for the image classification
|
20374
|
+
# problem of an AutoML job using the V2 API.
|
20375
|
+
#
|
20376
|
+
# @!attribute [rw] completion_criteria
|
20377
|
+
# How long a job is allowed to run, or how many candidates a job is
|
20378
|
+
# allowed to generate.
|
20379
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
20380
|
+
#
|
20381
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
|
20382
|
+
#
|
20383
|
+
class ImageClassificationJobConfig < Struct.new(
|
20384
|
+
:completion_criteria)
|
20385
|
+
SENSITIVE = []
|
20386
|
+
include Aws::Structure
|
20387
|
+
end
|
20388
|
+
|
20011
20389
|
# Specifies whether the model container is in Amazon ECR or a private
|
20012
20390
|
# Docker registry accessible from your Amazon Virtual Private Cloud
|
20013
20391
|
# (VPC).
|
@@ -20422,7 +20800,7 @@ module Aws::SageMaker
|
|
20422
20800
|
# @!attribute [rw] step_type
|
20423
20801
|
# The type of the subtask.
|
20424
20802
|
#
|
20425
|
-
# `BENCHMARK
|
20803
|
+
# `BENCHMARK`: Evaluate the performance of your model on different
|
20426
20804
|
# instance types.
|
20427
20805
|
# @return [String]
|
20428
20806
|
#
|
@@ -20508,8 +20886,8 @@ module Aws::SageMaker
|
|
20508
20886
|
# trained model with a JSON dictionary form. The data inputs are
|
20509
20887
|
# InputConfig$Framework specific.
|
20510
20888
|
#
|
20511
|
-
# * `TensorFlow
|
20512
|
-
#
|
20889
|
+
# * `TensorFlow`: You must specify the name and shape (NHWC format) of
|
20890
|
+
# the expected data inputs using a dictionary format for your
|
20513
20891
|
# trained model. The dictionary formats required for the console and
|
20514
20892
|
# CLI are different.
|
20515
20893
|
#
|
@@ -20527,7 +20905,7 @@ module Aws::SageMaker
|
|
20527
20905
|
# * If using the CLI, `\{"data1": [1,28,28,1],
|
20528
20906
|
# "data2":[1,28,28,1]\}`
|
20529
20907
|
#
|
20530
|
-
# * `KERAS
|
20908
|
+
# * `KERAS`: You must specify the name and shape (NCHW format) of
|
20531
20909
|
# expected data inputs using a dictionary format for your trained
|
20532
20910
|
# model. Note that while Keras model artifacts should be uploaded in
|
20533
20911
|
# NHWC (channel-last) format, `DataInputConfig` should be specified
|
@@ -20548,7 +20926,7 @@ module Aws::SageMaker
|
|
20548
20926
|
# * If using the CLI, `\{"input_1": [1,3,224,224],
|
20549
20927
|
# "input_2":[1,3,224,224]\}`
|
20550
20928
|
#
|
20551
|
-
# * `MXNET/ONNX/DARKNET
|
20929
|
+
# * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
|
20552
20930
|
# format) of the expected data inputs in order using a dictionary
|
20553
20931
|
# format for your trained model. The dictionary formats required for
|
20554
20932
|
# the console and CLI are different.
|
@@ -20567,12 +20945,12 @@ module Aws::SageMaker
|
|
20567
20945
|
# * If using the CLI, `\{"var1": [1,1,28,28],
|
20568
20946
|
# "var2":[1,1,28,28]\}`
|
20569
20947
|
#
|
20570
|
-
# * `PyTorch
|
20571
|
-
#
|
20572
|
-
#
|
20573
|
-
#
|
20574
|
-
#
|
20575
|
-
#
|
20948
|
+
# * `PyTorch`: You can either specify the name and shape (NCHW format)
|
20949
|
+
# of expected data inputs in order using a dictionary format for
|
20950
|
+
# your trained model or you can specify the shape only using a list
|
20951
|
+
# format. The dictionary formats required for the console and CLI
|
20952
|
+
# are different. The list formats for the console and CLI are the
|
20953
|
+
# same.
|
20576
20954
|
#
|
20577
20955
|
# * Examples for one input in dictionary format:
|
20578
20956
|
#
|
@@ -20593,12 +20971,12 @@ module Aws::SageMaker
|
|
20593
20971
|
# * Example for two inputs in list format: `[[1,3,224,224],
|
20594
20972
|
# [1,3,224,224]]`
|
20595
20973
|
#
|
20596
|
-
# * `XGBOOST
|
20974
|
+
# * `XGBOOST`: input data name and shape are not needed.
|
20597
20975
|
#
|
20598
20976
|
# `DataInputConfig` supports the following parameters for `CoreML`
|
20599
20977
|
# OutputConfig$TargetDevice (ML Model format):
|
20600
20978
|
#
|
20601
|
-
# * `shape
|
20979
|
+
# * `shape`: Input shape, for example `\{"input_1": \{"shape":
|
20602
20980
|
# [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
|
20603
20981
|
# converter supports Flexible input shapes:
|
20604
20982
|
#
|
@@ -20612,21 +20990,21 @@ module Aws::SageMaker
|
|
20612
20990
|
# input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
|
20613
20991
|
# 224, 3], [1, 160, 160, 3]]\}\}`
|
20614
20992
|
#
|
20615
|
-
# * `default_shape
|
20993
|
+
# * `default_shape`: Default input shape. You can set a default shape
|
20616
20994
|
# during conversion for both Range Dimension and Enumerated Shapes.
|
20617
20995
|
# For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
|
20618
20996
|
# "default_shape": [1, 224, 224, 3]\}\}`
|
20619
20997
|
#
|
20620
|
-
# * `type
|
20998
|
+
# * `type`: Input type. Allowed values: `Image` and `Tensor`. By
|
20621
20999
|
# default, the converter generates an ML Model with inputs of type
|
20622
21000
|
# Tensor (MultiArray). User can set input type to be Image. Image
|
20623
21001
|
# input type requires additional input parameters such as `bias` and
|
20624
21002
|
# `scale`.
|
20625
21003
|
#
|
20626
|
-
# * `bias
|
21004
|
+
# * `bias`: If the input type is an Image, you need to provide the
|
20627
21005
|
# bias vector.
|
20628
21006
|
#
|
20629
|
-
# * `scale
|
21007
|
+
# * `scale`: If the input type is an Image, you need to provide a
|
20630
21008
|
# scale factor.
|
20631
21009
|
#
|
20632
21010
|
# CoreML `ClassifierConfig` parameters can be specified using
|
@@ -21325,11 +21703,11 @@ module Aws::SageMaker
|
|
21325
21703
|
# one of the following keys: `source-ref` or `source`. The value of
|
21326
21704
|
# the keys are interpreted as follows:
|
21327
21705
|
#
|
21328
|
-
# * `source-ref
|
21706
|
+
# * `source-ref`: The source of the object is the Amazon S3 object
|
21329
21707
|
# specified in the value. Use this value when the object is a binary
|
21330
21708
|
# object, such as an image.
|
21331
21709
|
#
|
21332
|
-
# * `source
|
21710
|
+
# * `source`: The source of the object is the value. Use this value
|
21333
21711
|
# when the object is a text value.
|
21334
21712
|
#
|
21335
21713
|
# If you are a new user of Ground Truth, it is recommended you review
|
@@ -23785,7 +24163,7 @@ module Aws::SageMaker
|
|
23785
24163
|
# @!attribute [rw] step_type
|
23786
24164
|
# A filter to return details about the specified type of subtask.
|
23787
24165
|
#
|
23788
|
-
# `BENCHMARK
|
24166
|
+
# `BENCHMARK`: Evaluate the performance of your model on different
|
23789
24167
|
# instance types.
|
23790
24168
|
# @return [String]
|
23791
24169
|
#
|
@@ -26710,9 +27088,17 @@ module Aws::SageMaker
|
|
26710
27088
|
end
|
26711
27089
|
|
26712
27090
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
26713
|
-
# `stdout`.
|
26714
|
-
#
|
26715
|
-
#
|
27091
|
+
# `stdout`. You can view these logs to understand how your training job
|
27092
|
+
# performs and check for any errors encountered during training.
|
27093
|
+
# SageMaker hyperparameter tuning captures all defined metrics. Specify
|
27094
|
+
# one of the defined metrics to use as an objective metric using the
|
27095
|
+
# [TuningObjective][1] parameter in the
|
27096
|
+
# `HyperParameterTrainingJobDefinition` API to evaluate job performance
|
27097
|
+
# during hyperparameter tuning.
|
27098
|
+
#
|
27099
|
+
#
|
27100
|
+
#
|
27101
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
|
26716
27102
|
#
|
26717
27103
|
# @!attribute [rw] name
|
26718
27104
|
# The name of the metric.
|
@@ -26721,12 +27107,12 @@ module Aws::SageMaker
|
|
26721
27107
|
# @!attribute [rw] regex
|
26722
27108
|
# A regular expression that searches the output of a training job and
|
26723
27109
|
# gets the value of the metric. For more information about using
|
26724
|
-
# regular expressions to define metrics, see [Defining
|
26725
|
-
#
|
27110
|
+
# regular expressions to define metrics, see [Defining metrics and
|
27111
|
+
# environment variables][1].
|
26726
27112
|
#
|
26727
27113
|
#
|
26728
27114
|
#
|
26729
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
27115
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
26730
27116
|
# @return [String]
|
26731
27117
|
#
|
26732
27118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
|
@@ -26960,13 +27346,13 @@ module Aws::SageMaker
|
|
26960
27346
|
# Different organizations might have different criteria for model card
|
26961
27347
|
# review and approval.
|
26962
27348
|
#
|
26963
|
-
# * `Draft
|
27349
|
+
# * `Draft`: The model card is a work in progress.
|
26964
27350
|
#
|
26965
|
-
# * `PendingReview
|
27351
|
+
# * `PendingReview`: The model card is pending review.
|
26966
27352
|
#
|
26967
|
-
# * `Approved
|
27353
|
+
# * `Approved`: The model card is approved.
|
26968
27354
|
#
|
26969
|
-
# * `Archived
|
27355
|
+
# * `Archived`: The model card is archived. No more updates should be
|
26970
27356
|
# made to the model card, but it can still be exported.
|
26971
27357
|
# @return [String]
|
26972
27358
|
#
|
@@ -27137,13 +27523,13 @@ module Aws::SageMaker
|
|
27137
27523
|
# Different organizations might have different criteria for model card
|
27138
27524
|
# review and approval.
|
27139
27525
|
#
|
27140
|
-
# * `Draft
|
27526
|
+
# * `Draft`: The model card is a work in progress.
|
27141
27527
|
#
|
27142
|
-
# * `PendingReview
|
27528
|
+
# * `PendingReview`: The model card is pending review.
|
27143
27529
|
#
|
27144
|
-
# * `Approved
|
27530
|
+
# * `Approved`: The model card is approved.
|
27145
27531
|
#
|
27146
|
-
# * `Archived
|
27532
|
+
# * `Archived`: The model card is archived. No more updates should be
|
27147
27533
|
# made to the model card, but it can still be exported.
|
27148
27534
|
# @return [String]
|
27149
27535
|
#
|
@@ -27182,13 +27568,13 @@ module Aws::SageMaker
|
|
27182
27568
|
# organization. Different organizations might have different criteria
|
27183
27569
|
# for model card review and approval.
|
27184
27570
|
#
|
27185
|
-
# * `Draft
|
27571
|
+
# * `Draft`: The model card is a work in progress.
|
27186
27572
|
#
|
27187
|
-
# * `PendingReview
|
27573
|
+
# * `PendingReview`: The model card is pending review.
|
27188
27574
|
#
|
27189
|
-
# * `Approved
|
27575
|
+
# * `Approved`: The model card is approved.
|
27190
27576
|
#
|
27191
|
-
# * `Archived
|
27577
|
+
# * `Archived`: The model card is archived. No more updates should be
|
27192
27578
|
# made to the model card, but it can still be exported.
|
27193
27579
|
# @return [String]
|
27194
27580
|
#
|
@@ -27659,7 +28045,7 @@ module Aws::SageMaker
|
|
27659
28045
|
# The inference option to which to deploy your model. Possible values
|
27660
28046
|
# are the following:
|
27661
28047
|
#
|
27662
|
-
# * `RealTime
|
28048
|
+
# * `RealTime`: Deploy to real-time inference.
|
27663
28049
|
#
|
27664
28050
|
# ^
|
27665
28051
|
# @return [String]
|
@@ -29885,8 +30271,8 @@ module Aws::SageMaker
|
|
29885
30271
|
# SageMaker Feature Store uses to encrypt the Amazon S3 objects at
|
29886
30272
|
# rest using Amazon S3 server-side encryption.
|
29887
30273
|
#
|
29888
|
-
# The caller (either
|
29889
|
-
#
|
30274
|
+
# The caller (either user or IAM role) of `CreateFeatureGroup` must
|
30275
|
+
# have below permissions to the `OnlineStore` `KmsKeyId`:
|
29890
30276
|
#
|
29891
30277
|
# * `"kms:Encrypt"`
|
29892
30278
|
#
|
@@ -29912,7 +30298,7 @@ module Aws::SageMaker
|
|
29912
30298
|
#
|
29913
30299
|
# The caller (either user or IAM role) to all DataPlane operations
|
29914
30300
|
# (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
|
29915
|
-
# permissions to the `KmsKeyId
|
30301
|
+
# permissions to the `KmsKeyId`:
|
29916
30302
|
#
|
29917
30303
|
# * `"kms:Decrypt"`
|
29918
30304
|
#
|
@@ -30004,11 +30390,10 @@ module Aws::SageMaker
|
|
30004
30390
|
# for NVIDIA accelerators and highly recommended for CPU compilations.
|
30005
30391
|
# For any other cases, it is optional to specify `CompilerOptions.`
|
30006
30392
|
#
|
30007
|
-
# * `DTYPE
|
30008
|
-
#
|
30009
|
-
#
|
30010
|
-
#
|
30011
|
-
# data type are:
|
30393
|
+
# * `DTYPE`: Specifies the data type for the input. When compiling for
|
30394
|
+
# `ml_*` (except for `ml_inf`) instances using PyTorch framework,
|
30395
|
+
# provide the data type (dtype) of the model's input. `"float32"`
|
30396
|
+
# is used if `"DTYPE"` is not specified. Options for data type are:
|
30012
30397
|
#
|
30013
30398
|
# * float32: Use either `"float"` or `"float32"`.
|
30014
30399
|
#
|
@@ -30016,75 +30401,74 @@ module Aws::SageMaker
|
|
30016
30401
|
#
|
30017
30402
|
# For example, `\{"dtype" : "float32"\}`.
|
30018
30403
|
#
|
30019
|
-
# * `CPU
|
30404
|
+
# * `CPU`: Compilation for CPU supports the following compiler
|
30020
30405
|
# options.
|
30021
30406
|
#
|
30022
|
-
# * `mcpu
|
30407
|
+
# * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
|
30023
30408
|
# 'skylake-avx512'\}`
|
30024
30409
|
#
|
30025
|
-
# * `mattr
|
30410
|
+
# * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
|
30026
30411
|
# '+vfpv4']\}`
|
30027
30412
|
#
|
30028
|
-
# * `ARM
|
30413
|
+
# * `ARM`: Details of ARM CPU compilations.
|
30029
30414
|
#
|
30030
|
-
# * `NEON
|
30031
|
-
#
|
30415
|
+
# * `NEON`: NEON is an implementation of the Advanced SIMD extension
|
30416
|
+
# used in ARMv7 processors.
|
30032
30417
|
#
|
30033
30418
|
# For example, add `\{'mattr': ['+neon']\}` to the compiler
|
30034
30419
|
# options if compiling for ARM 32-bit platform with the NEON
|
30035
30420
|
# support.
|
30036
30421
|
#
|
30037
|
-
# * `NVIDIA
|
30422
|
+
# * `NVIDIA`: Compilation for NVIDIA GPU supports the following
|
30038
30423
|
# compiler options.
|
30039
30424
|
#
|
30040
|
-
# * `gpu_code
|
30425
|
+
# * `gpu_code`: Specifies the targeted architecture.
|
30041
30426
|
#
|
30042
|
-
# * `trt-ver
|
30427
|
+
# * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
|
30043
30428
|
#
|
30044
|
-
# * `cuda-ver
|
30429
|
+
# * `cuda-ver`: Specifies the CUDA version in x.y format.
|
30045
30430
|
#
|
30046
30431
|
# For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
|
30047
30432
|
# 'cuda-ver': '10.1'\}`
|
30048
30433
|
#
|
30049
|
-
# * `ANDROID
|
30434
|
+
# * `ANDROID`: Compilation for the Android OS supports the following
|
30050
30435
|
# compiler options:
|
30051
30436
|
#
|
30052
|
-
# * `ANDROID_PLATFORM
|
30437
|
+
# * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
|
30053
30438
|
# levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
|
30054
30439
|
# 28\}`.
|
30055
30440
|
#
|
30056
|
-
# * `mattr
|
30441
|
+
# * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
|
30057
30442
|
# compiling for ARM 32-bit platform with NEON support.
|
30058
30443
|
#
|
30059
|
-
# * `INFERENTIA
|
30444
|
+
# * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
|
30060
30445
|
# options passed in as a JSON string. For example,
|
30061
30446
|
# `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
|
30062
30447
|
#
|
30063
30448
|
# For information about supported compiler options, see [ Neuron
|
30064
30449
|
# Compiler CLI][1].
|
30065
30450
|
#
|
30066
|
-
# * `CoreML
|
30451
|
+
# * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
|
30067
30452
|
# supports the following compiler options:
|
30068
30453
|
#
|
30069
|
-
# * `class_labels
|
30454
|
+
# * `class_labels`: Specifies the classification labels file name
|
30070
30455
|
# inside input tar.gz file. For example, `\{"class_labels":
|
30071
30456
|
# "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
|
30072
30457
|
# be separated by newlines.
|
30073
30458
|
#
|
30074
30459
|
# ^
|
30075
30460
|
#
|
30076
|
-
# * `EIA
|
30461
|
+
# * `EIA`: Compilation for the Elastic Inference Accelerator supports
|
30077
30462
|
# the following compiler options:
|
30078
30463
|
#
|
30079
|
-
# * `precision_mode
|
30080
|
-
#
|
30081
|
-
# is `"FP32"`.
|
30464
|
+
# * `precision_mode`: Specifies the precision of compiled artifacts.
|
30465
|
+
# Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
|
30082
30466
|
#
|
30083
|
-
# * `signature_def_key
|
30467
|
+
# * `signature_def_key`: Specifies the signature to use for models
|
30084
30468
|
# in SavedModel format. Defaults is TensorFlow's default
|
30085
30469
|
# signature def key.
|
30086
30470
|
#
|
30087
|
-
# * `output_names
|
30471
|
+
# * `output_names`: Specifies a list of output tensor names for
|
30088
30472
|
# models in FrozenGraph format. Set at most one API field, either:
|
30089
30473
|
# `signature_def_key` or `output_names`.
|
30090
30474
|
#
|
@@ -31589,7 +31973,7 @@ module Aws::SageMaker
|
|
31589
31973
|
# You can use this parameter to turn on native Amazon Web Services
|
31590
31974
|
# Systems Manager (SSM) access for a production variant behind an
|
31591
31975
|
# endpoint. By default, SSM access is disabled for all production
|
31592
|
-
# variants behind an
|
31976
|
+
# variants behind an endpoint. You can turn on or turn off SSM access
|
31593
31977
|
# for a production variant behind an existing endpoint by creating a
|
31594
31978
|
# new endpoint configuration and calling `UpdateEndpoint`.
|
31595
31979
|
# @return [Boolean]
|
@@ -31702,18 +32086,18 @@ module Aws::SageMaker
|
|
31702
32086
|
# The endpoint variant status which describes the current deployment
|
31703
32087
|
# stage status or operational status.
|
31704
32088
|
#
|
31705
|
-
# * `Creating
|
32089
|
+
# * `Creating`: Creating inference resources for the production
|
31706
32090
|
# variant.
|
31707
32091
|
#
|
31708
|
-
# * `Deleting
|
32092
|
+
# * `Deleting`: Terminating inference resources for the production
|
31709
32093
|
# variant.
|
31710
32094
|
#
|
31711
|
-
# * `Updating
|
32095
|
+
# * `Updating`: Updating capacity for the production variant.
|
31712
32096
|
#
|
31713
|
-
# * `ActivatingTraffic
|
32097
|
+
# * `ActivatingTraffic`: Turning on traffic for the production
|
31714
32098
|
# variant.
|
31715
32099
|
#
|
31716
|
-
# * `Baking
|
32100
|
+
# * `Baking`: Waiting period to monitor the CloudWatch alarms in the
|
31717
32101
|
# automatic rollback configuration.
|
31718
32102
|
# @return [String]
|
31719
32103
|
#
|
@@ -33395,7 +33779,8 @@ module Aws::SageMaker
|
|
33395
33779
|
#
|
33396
33780
|
# @!attribute [rw] auto_ml_job_objective
|
33397
33781
|
# Specifies a metric to minimize or maximize as the objective of a
|
33398
|
-
# job.
|
33782
|
+
# job. V2 API jobs (for example jobs created by calling
|
33783
|
+
# `CreateAutoMLJobV2`), support `Accuracy` only.
|
33399
33784
|
# @return [Types::AutoMLJobObjective]
|
33400
33785
|
#
|
33401
33786
|
# @!attribute [rw] problem_type
|
@@ -33877,7 +34262,7 @@ module Aws::SageMaker
|
|
33877
34262
|
# location.
|
33878
34263
|
#
|
33879
34264
|
# The IAM `roleARN` that is passed as a parameter to
|
33880
|
-
# `CreateFeatureGroup` must have below permissions to the `KmsKeyId
|
34265
|
+
# `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
|
33881
34266
|
#
|
33882
34267
|
# * `"kms:GenerateDataKey"`
|
33883
34268
|
#
|
@@ -34916,9 +35301,9 @@ module Aws::SageMaker
|
|
34916
35301
|
# The desired state of the experiment after stopping. The possible
|
34917
35302
|
# states are the following:
|
34918
35303
|
#
|
34919
|
-
# * `Completed
|
35304
|
+
# * `Completed`: The experiment completed successfully
|
34920
35305
|
#
|
34921
|
-
# * `Cancelled
|
35306
|
+
# * `Cancelled`: The experiment was canceled
|
34922
35307
|
# @return [String]
|
34923
35308
|
#
|
34924
35309
|
# @!attribute [rw] reason
|
@@ -35263,9 +35648,9 @@ module Aws::SageMaker
|
|
35263
35648
|
# @!attribute [rw] os
|
35264
35649
|
# Specifies a target platform OS.
|
35265
35650
|
#
|
35266
|
-
# * `LINUX
|
35651
|
+
# * `LINUX`: Linux-based operating systems.
|
35267
35652
|
#
|
35268
|
-
# * `ANDROID
|
35653
|
+
# * `ANDROID`: Android operating systems. Android API level can be
|
35269
35654
|
# specified using the `ANDROID_PLATFORM` compiler option. For
|
35270
35655
|
# example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
|
35271
35656
|
# @return [String]
|
@@ -35273,27 +35658,27 @@ module Aws::SageMaker
|
|
35273
35658
|
# @!attribute [rw] arch
|
35274
35659
|
# Specifies a target platform architecture.
|
35275
35660
|
#
|
35276
|
-
# * `X86_64
|
35661
|
+
# * `X86_64`: 64-bit version of the x86 instruction set.
|
35277
35662
|
#
|
35278
|
-
# * `X86
|
35663
|
+
# * `X86`: 32-bit version of the x86 instruction set.
|
35279
35664
|
#
|
35280
|
-
# * `ARM64
|
35665
|
+
# * `ARM64`: ARMv8 64-bit CPU.
|
35281
35666
|
#
|
35282
|
-
# * `ARM_EABIHF
|
35667
|
+
# * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
|
35283
35668
|
#
|
35284
|
-
# * `ARM_EABI
|
35669
|
+
# * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
|
35285
35670
|
# platform.
|
35286
35671
|
# @return [String]
|
35287
35672
|
#
|
35288
35673
|
# @!attribute [rw] accelerator
|
35289
35674
|
# Specifies a target platform accelerator (optional).
|
35290
35675
|
#
|
35291
|
-
# * `NVIDIA
|
35676
|
+
# * `NVIDIA`: Nvidia graphics processing unit. It also requires
|
35292
35677
|
# `gpu-code`, `trt-ver`, `cuda-ver` compiler options
|
35293
35678
|
#
|
35294
|
-
# * `MALI
|
35679
|
+
# * `MALI`: ARM Mali graphics processor
|
35295
35680
|
#
|
35296
|
-
# * `INTEL_GRAPHICS
|
35681
|
+
# * `INTEL_GRAPHICS`: Integrated Intel graphics
|
35297
35682
|
# @return [String]
|
35298
35683
|
#
|
35299
35684
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
|
@@ -35342,6 +35727,34 @@ module Aws::SageMaker
|
|
35342
35727
|
include Aws::Structure
|
35343
35728
|
end
|
35344
35729
|
|
35730
|
+
# Stores the configuration information for the text classification
|
35731
|
+
# problem of an AutoML job using the V2 API.
|
35732
|
+
#
|
35733
|
+
# @!attribute [rw] completion_criteria
|
35734
|
+
# How long a job is allowed to run, or how many candidates a job is
|
35735
|
+
# allowed to generate.
|
35736
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
35737
|
+
#
|
35738
|
+
# @!attribute [rw] content_column
|
35739
|
+
# The name of the column used to provide the sentences to be
|
35740
|
+
# classified. It should not be the same as the target column.
|
35741
|
+
# @return [String]
|
35742
|
+
#
|
35743
|
+
# @!attribute [rw] target_label_column
|
35744
|
+
# The name of the column used to provide the class labels. It should
|
35745
|
+
# not be same as the content column.
|
35746
|
+
# @return [String]
|
35747
|
+
#
|
35748
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
|
35749
|
+
#
|
35750
|
+
class TextClassificationJobConfig < Struct.new(
|
35751
|
+
:completion_criteria,
|
35752
|
+
:content_column,
|
35753
|
+
:target_label_column)
|
35754
|
+
SENSITIVE = []
|
35755
|
+
include Aws::Structure
|
35756
|
+
end
|
35757
|
+
|
35345
35758
|
# Time series forecast settings for the SageMaker Canvas app.
|
35346
35759
|
#
|
35347
35760
|
# @!attribute [rw] status
|
@@ -35399,15 +35812,15 @@ module Aws::SageMaker
|
|
35399
35812
|
# @!attribute [rw] type
|
35400
35813
|
# Traffic routing strategy type.
|
35401
35814
|
#
|
35402
|
-
# * `ALL_AT_ONCE
|
35815
|
+
# * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
|
35403
35816
|
# single step.
|
35404
35817
|
#
|
35405
|
-
# * `CANARY
|
35818
|
+
# * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
|
35406
35819
|
# The first step is the canary, which is a small portion of the
|
35407
35820
|
# traffic. The second step is the remainder of the traffic.
|
35408
35821
|
#
|
35409
|
-
# * `LINEAR
|
35410
|
-
#
|
35822
|
+
# * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
|
35823
|
+
# configurable size.
|
35411
35824
|
# @return [String]
|
35412
35825
|
#
|
35413
35826
|
# @!attribute [rw] wait_interval_in_seconds
|
@@ -36639,7 +37052,7 @@ module Aws::SageMaker
|
|
36639
37052
|
#
|
36640
37053
|
# `]`
|
36641
37054
|
#
|
36642
|
-
# The preceding JSON matches the following `S3Uris
|
37055
|
+
# The preceding JSON matches the following `S3Uris`:
|
36643
37056
|
#
|
36644
37057
|
# `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
|
36645
37058
|
#
|
@@ -37997,29 +38410,29 @@ module Aws::SageMaker
|
|
37997
38410
|
# @!attribute [rw] vendor_guidance
|
37998
38411
|
# The availability of the image version specified by the maintainer.
|
37999
38412
|
#
|
38000
|
-
# * `NOT_PROVIDED
|
38001
|
-
#
|
38413
|
+
# * `NOT_PROVIDED`: The maintainers did not provide a status for image
|
38414
|
+
# version stability.
|
38002
38415
|
#
|
38003
|
-
# * `STABLE
|
38416
|
+
# * `STABLE`: The image version is stable.
|
38004
38417
|
#
|
38005
|
-
# * `TO_BE_ARCHIVED
|
38418
|
+
# * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
|
38006
38419
|
# image versions that are set to be archived are automatically
|
38007
38420
|
# archived after three months.
|
38008
38421
|
#
|
38009
|
-
# * `ARCHIVED
|
38010
|
-
#
|
38422
|
+
# * `ARCHIVED`: The image version is archived. Archived image versions
|
38423
|
+
# are not searchable and are no longer actively supported.
|
38011
38424
|
# @return [String]
|
38012
38425
|
#
|
38013
38426
|
# @!attribute [rw] job_type
|
38014
38427
|
# Indicates SageMaker job type compatibility.
|
38015
38428
|
#
|
38016
|
-
# * `TRAINING
|
38429
|
+
# * `TRAINING`: The image version is compatible with SageMaker
|
38017
38430
|
# training jobs.
|
38018
38431
|
#
|
38019
|
-
# * `INFERENCE
|
38432
|
+
# * `INFERENCE`: The image version is compatible with SageMaker
|
38020
38433
|
# inference jobs.
|
38021
38434
|
#
|
38022
|
-
# * `NOTEBOOK_KERNEL
|
38435
|
+
# * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
|
38023
38436
|
# notebook kernels.
|
38024
38437
|
# @return [String]
|
38025
38438
|
#
|
@@ -38034,9 +38447,9 @@ module Aws::SageMaker
|
|
38034
38447
|
# @!attribute [rw] processor
|
38035
38448
|
# Indicates CPU or GPU compatibility.
|
38036
38449
|
#
|
38037
|
-
# * `CPU
|
38450
|
+
# * `CPU`: The image version is compatible with CPU.
|
38038
38451
|
#
|
38039
|
-
# * `GPU
|
38452
|
+
# * `GPU`: The image version is compatible with GPU.
|
38040
38453
|
# @return [String]
|
38041
38454
|
#
|
38042
38455
|
# @!attribute [rw] horovod
|
@@ -38158,13 +38571,13 @@ module Aws::SageMaker
|
|
38158
38571
|
# Different organizations might have different criteria for model card
|
38159
38572
|
# review and approval.
|
38160
38573
|
#
|
38161
|
-
# * `Draft
|
38574
|
+
# * `Draft`: The model card is a work in progress.
|
38162
38575
|
#
|
38163
|
-
# * `PendingReview
|
38576
|
+
# * `PendingReview`: The model card is pending review.
|
38164
38577
|
#
|
38165
|
-
# * `Approved
|
38578
|
+
# * `Approved`: The model card is approved.
|
38166
38579
|
#
|
38167
|
-
# * `Archived
|
38580
|
+
# * `Archived`: The model card is archived. No more updates should be
|
38168
38581
|
# made to the model card, but it can still be exported.
|
38169
38582
|
# @return [String]
|
38170
38583
|
#
|
@@ -39162,15 +39575,15 @@ module Aws::SageMaker
|
|
39162
39575
|
# @!attribute [rw] variant_property_type
|
39163
39576
|
# The type of variant property. The supported values are:
|
39164
39577
|
#
|
39165
|
-
# * `DesiredInstanceCount
|
39578
|
+
# * `DesiredInstanceCount`: Overrides the existing variant instance
|
39166
39579
|
# counts using the ProductionVariant$InitialInstanceCount values in
|
39167
39580
|
# the CreateEndpointConfigInput$ProductionVariants.
|
39168
39581
|
#
|
39169
|
-
# * `DesiredWeight
|
39582
|
+
# * `DesiredWeight`: Overrides the existing variant weights using the
|
39170
39583
|
# ProductionVariant$InitialVariantWeight values in the
|
39171
39584
|
# CreateEndpointConfigInput$ProductionVariants.
|
39172
39585
|
#
|
39173
|
-
# * `DataCaptureConfig
|
39586
|
+
# * `DataCaptureConfig`: (Not currently supported.)
|
39174
39587
|
# @return [String]
|
39175
39588
|
#
|
39176
39589
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
|
@@ -39248,16 +39661,16 @@ module Aws::SageMaker
|
|
39248
39661
|
# @!attribute [rw] status
|
39249
39662
|
# The status of the warm pool.
|
39250
39663
|
#
|
39251
|
-
# * `InUse
|
39664
|
+
# * `InUse`: The warm pool is in use for the training job.
|
39252
39665
|
#
|
39253
|
-
# * `Available
|
39666
|
+
# * `Available`: The warm pool is available to reuse for a matching
|
39254
39667
|
# training job.
|
39255
39668
|
#
|
39256
|
-
# * `Reused
|
39669
|
+
# * `Reused`: The warm pool moved to a matching training job for
|
39257
39670
|
# reuse.
|
39258
39671
|
#
|
39259
|
-
# * `Terminated
|
39260
|
-
#
|
39672
|
+
# * `Terminated`: The warm pool is no longer available. Warm pools are
|
39673
|
+
# unavailable if they are terminated by a user, terminated for a
|
39261
39674
|
# patch update, or terminated for exceeding the specified
|
39262
39675
|
# `KeepAlivePeriodInSeconds`.
|
39263
39676
|
# @return [String]
|