aws-sdk-sagemaker 1.169.0 → 1.171.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -374,7 +374,7 @@ module Aws::SageMaker
374
374
  # * You use one of the SageMaker built-in algorithms
375
375
  #
376
376
  # * You use one of the following [Prebuilt SageMaker Docker
377
- # Images][1]\:
377
+ # Images][1]:
378
378
  #
379
379
  # * Tensorflow (version >= 1.15)
380
380
  #
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
1714
1714
  # @return [String]
1715
1715
  #
1716
1716
  # @!attribute [rw] inference_containers
1717
- # Information about the inference container definitions.
1717
+ # Information about the recommended inference container definitions.
1718
1718
  # @return [Array<Types::AutoMLContainerDefinition>]
1719
1719
  #
1720
1720
  # @!attribute [rw] creation_time
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
1737
1737
  # The properties of an AutoML candidate job.
1738
1738
  # @return [Types::CandidateProperties]
1739
1739
  #
1740
+ # @!attribute [rw] inference_container_definitions
1741
+ # The mapping of all supported processing unit (CPU, GPU, etc...) to
1742
+ # inference container definitions for the candidate. This field is
1743
+ # populated for the V2 API only (for example, for jobs created by
1744
+ # calling `CreateAutoMLJobV2`).
1745
+ # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1746
+ #
1740
1747
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1741
1748
  #
1742
1749
  class AutoMLCandidate < Struct.new(
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
1750
1757
  :end_time,
1751
1758
  :last_modified_time,
1752
1759
  :failure_reason,
1753
- :candidate_properties)
1760
+ :candidate_properties,
1761
+ :inference_container_definitions)
1754
1762
  SENSITIVE = []
1755
1763
  include Aws::Structure
1756
1764
  end
@@ -1814,7 +1822,8 @@ module Aws::SageMaker
1814
1822
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1815
1823
  # for the given training mode.
1816
1824
  #
1817
- # For the list of all algorithms per training mode, see .
1825
+ # For the list of all algorithms per training mode, see `
1826
+ # AutoMLAlgorithmConfig `.
1818
1827
  #
1819
1828
  # For more information on each algorithm, see the [Algorithm
1820
1829
  # support][2] section in Autopilot developer guide.
@@ -1863,7 +1872,7 @@ module Aws::SageMaker
1863
1872
  # A channel is a named input source that training algorithms can
1864
1873
  # consume. The validation dataset size is limited to less than 2 GB. The
1865
1874
  # training dataset size must be less than 100 GB. For more information,
1866
- # see .
1875
+ # see ` Channel `.
1867
1876
  #
1868
1877
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1869
1878
  # dataset.
@@ -1914,20 +1923,22 @@ module Aws::SageMaker
1914
1923
  end
1915
1924
 
1916
1925
  # A list of container definitions that describe the different containers
1917
- # that make up an AutoML candidate. For more information, see .
1926
+ # that make up an AutoML candidate. For more information, see `
1927
+ # ContainerDefinition `.
1918
1928
  #
1919
1929
  # @!attribute [rw] image
1920
1930
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1921
- # container. For more information, see .
1931
+ # container. For more information, see ` ContainerDefinition `.
1922
1932
  # @return [String]
1923
1933
  #
1924
1934
  # @!attribute [rw] model_data_url
1925
- # The location of the model artifacts. For more information, see .
1935
+ # The location of the model artifacts. For more information, see `
1936
+ # ContainerDefinition `.
1926
1937
  # @return [String]
1927
1938
  #
1928
1939
  # @!attribute [rw] environment
1929
1940
  # The environment variables to set in the container. For more
1930
- # information, see .
1941
+ # information, see ` ContainerDefinition `.
1931
1942
  # @return [Hash<String,String>]
1932
1943
  #
1933
1944
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1955,9 +1966,14 @@ module Aws::SageMaker
1955
1966
  end
1956
1967
 
1957
1968
  # This structure specifies how to split the data into train and
1958
- # validation datasets. The validation and training datasets must contain
1959
- # the same headers. The validation dataset must be less than 2 GB in
1960
- # size.
1969
+ # validation datasets.
1970
+ #
1971
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
1972
+ # API for Natural Language Processing problems (for example
1973
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
1974
+ # type), the validation and training datasets must contain the same
1975
+ # headers. Also, for V1 API jobs, the validation dataset must be less
1976
+ # than 2 GB in size.
1961
1977
  #
1962
1978
  # @!attribute [rw] validation_fraction
1963
1979
  # The validation fraction (optional) is a float that specifies the
@@ -1993,17 +2009,66 @@ module Aws::SageMaker
1993
2009
  include Aws::Structure
1994
2010
  end
1995
2011
 
2012
+ # A channel is a named input source that training algorithms can
2013
+ # consume. This channel is used for the non tabular training data of an
2014
+ # AutoML job using the V2 API. For tabular training data, see `
2015
+ # AutoMLChannel `. For more information, see ` Channel `.
2016
+ #
2017
+ # @!attribute [rw] channel_type
2018
+ # The type of channel. Defines whether the data are used for training
2019
+ # or validation. The default value is `training`. Channels for
2020
+ # `training` and `validation` must share the same `ContentType`
2021
+ # @return [String]
2022
+ #
2023
+ # @!attribute [rw] content_type
2024
+ # The content type of the data from the input source. The following
2025
+ # are the allowed content types for different problems:
2026
+ #
2027
+ # * ImageClassification: `image/png`, `image/jpeg`, `image/*`
2028
+ #
2029
+ # * TextClassification: `text/csv;header=present`
2030
+ # @return [String]
2031
+ #
2032
+ # @!attribute [rw] compression_type
2033
+ # The allowed compression types depend on the input format. We allow
2034
+ # the compression type `Gzip` for `S3Prefix` inputs only. For all
2035
+ # other inputs, the compression type should be `None`. If no
2036
+ # compression type is provided, we default to `None`.
2037
+ # @return [String]
2038
+ #
2039
+ # @!attribute [rw] data_source
2040
+ # The data source for an AutoML channel.
2041
+ # @return [Types::AutoMLDataSource]
2042
+ #
2043
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
2044
+ #
2045
+ class AutoMLJobChannel < Struct.new(
2046
+ :channel_type,
2047
+ :content_type,
2048
+ :compression_type,
2049
+ :data_source)
2050
+ SENSITIVE = []
2051
+ include Aws::Structure
2052
+ end
2053
+
1996
2054
  # How long a job is allowed to run, or how many candidates a job is
1997
2055
  # allowed to generate.
1998
2056
  #
1999
2057
  # @!attribute [rw] max_candidates
2000
2058
  # The maximum number of times a training job is allowed to run.
2059
+ #
2060
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2061
+ # supported value is 1.
2001
2062
  # @return [Integer]
2002
2063
  #
2003
2064
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2004
2065
  # The maximum time, in seconds, that each training job executed inside
2005
2066
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2006
- # tuning job. For more information, see the used by the action.
2067
+ # tuning job. For more information, see the ` StoppingCondition ` used
2068
+ # by the ` CreateHyperParameterTuningJob ` action.
2069
+ #
2070
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2071
+ # field controls the runtime of the job candidate.
2007
2072
  # @return [Integer]
2008
2073
  #
2009
2074
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -2092,6 +2157,8 @@ module Aws::SageMaker
2092
2157
  end
2093
2158
 
2094
2159
  # Specifies a metric to minimize or maximize as the objective of a job.
2160
+ # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2161
+ # support `Accuracy` only.
2095
2162
  #
2096
2163
  # @!attribute [rw] metric_name
2097
2164
  # The name of the objective metric used to measure the predictive
@@ -2270,11 +2337,11 @@ module Aws::SageMaker
2270
2337
  # If you do not specify a metric explicitly, the default behavior is
2271
2338
  # to automatically use:
2272
2339
  #
2273
- # * `MSE`\: for regression.
2340
+ # * `MSE`: for regression.
2274
2341
  #
2275
- # * `F1`\: for binary classification
2342
+ # * `F1`: for binary classification
2276
2343
  #
2277
- # * `Accuracy`\: for multiclass classification.
2344
+ # * `Accuracy`: for multiclass classification.
2278
2345
  # @return [String]
2279
2346
  #
2280
2347
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2387,30 +2454,94 @@ module Aws::SageMaker
2387
2454
  include Aws::Structure
2388
2455
  end
2389
2456
 
2390
- # The Amazon S3 data source.
2457
+ # A collection of settings specific to the problem type used to
2458
+ # configure an AutoML job using the V2 API. There must be one and only
2459
+ # one config of the following type.
2460
+ #
2461
+ # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2462
+ #
2463
+ # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2464
+ #
2465
+ # @!attribute [rw] image_classification_job_config
2466
+ # Settings used to configure an AutoML job using the V2 API for the
2467
+ # image classification problem type.
2468
+ # @return [Types::ImageClassificationJobConfig]
2469
+ #
2470
+ # @!attribute [rw] text_classification_job_config
2471
+ # Settings used to configure an AutoML job using the V2 API for the
2472
+ # text classification problem type.
2473
+ # @return [Types::TextClassificationJobConfig]
2474
+ #
2475
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2476
+ #
2477
+ class AutoMLProblemTypeConfig < Struct.new(
2478
+ :image_classification_job_config,
2479
+ :text_classification_job_config,
2480
+ :unknown)
2481
+ SENSITIVE = []
2482
+ include Aws::Structure
2483
+ include Aws::Structure::Union
2484
+
2485
+ class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2486
+ class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2487
+ class Unknown < AutoMLProblemTypeConfig; end
2488
+ end
2489
+
2490
+ # Describes the Amazon S3 data source.
2391
2491
  #
2392
2492
  # @!attribute [rw] s3_data_type
2393
2493
  # The data type.
2394
2494
  #
2395
- # A ManifestFile should have the format shown below:
2495
+ # * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2496
+ # SageMaker uses all objects that match the specified key name
2497
+ # prefix for model training.
2498
+ #
2499
+ # The `S3Prefix` should have the following format:
2500
+ #
2501
+ # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2502
+ #
2503
+ # * If you choose `ManifestFile`, `S3Uri` identifies an object that is
2504
+ # a manifest file containing a list of object keys that you want
2505
+ # SageMaker to use for model training.
2506
+ #
2507
+ # A `ManifestFile` should have the format shown below:
2508
+ #
2509
+ # `[ \{"prefix":
2510
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2511
+ # `
2512
+ #
2513
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2514
+ #
2515
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2396
2516
  #
2397
- # `[ \{"prefix":
2398
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2399
- # `
2517
+ # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2400
2518
  #
2401
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2519
+ # * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
2520
+ # object that is an augmented manifest file in JSON lines format.
2521
+ # This file contains the data you want to use for model training.
2522
+ # `AugmentedManifestFile` is available for V2 API jobs only (for
2523
+ # example, for jobs created by calling `CreateAutoMLJobV2`).
2402
2524
  #
2403
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2525
+ # Here is a minimal, single-record example of an
2526
+ # `AugmentedManifestFile`:
2404
2527
  #
2405
- # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2528
+ # `\{"source-ref":
2529
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2406
2530
  #
2407
- # An S3Prefix should have the following format:
2531
+ # `"label-metadata": \{"class-name": "cat"` \\}
2408
2532
  #
2409
- # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2533
+ # For more information on `AugmentedManifestFile`, see [Provide
2534
+ # Dataset Metadata to Training Jobs with an Augmented Manifest
2535
+ # File][1].
2536
+ #
2537
+ #
2538
+ #
2539
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
2410
2540
  # @return [String]
2411
2541
  #
2412
2542
  # @!attribute [rw] s3_uri
2413
- # The URL to the Amazon S3 data source.
2543
+ # The URL to the Amazon S3 data source. The Uri refers to the Amazon
2544
+ # S3 prefix or ManifestFile depending on the data type.
2414
2545
  # @return [String]
2415
2546
  #
2416
2547
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
@@ -2860,10 +2991,10 @@ module Aws::SageMaker
2860
2991
  # @!attribute [rw] type
2861
2992
  # Specifies the endpoint capacity type.
2862
2993
  #
2863
- # * `INSTANCE_COUNT`\: The endpoint activates based on the number of
2994
+ # * `INSTANCE_COUNT`: The endpoint activates based on the number of
2864
2995
  # instances.
2865
2996
  #
2866
- # * `CAPACITY_PERCENT`\: The endpoint activates based on the specified
2997
+ # * `CAPACITY_PERCENT`: The endpoint activates based on the specified
2867
2998
  # percentage of capacity.
2868
2999
  # @return [String]
2869
3000
  #
@@ -3293,7 +3424,7 @@ module Aws::SageMaker
3293
3424
  # from the model container output if the model container is in JSON
3294
3425
  # Lines format.
3295
3426
  #
3296
- # **Example**\: If the model container output of a single request is
3427
+ # **Example**: If the model container output of a single request is
3297
3428
  # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3298
3429
  # `ProbabilityAttribute` to `'probability'`.
3299
3430
  # @return [String]
@@ -3302,7 +3433,7 @@ module Aws::SageMaker
3302
3433
  # A JMESPath expression used to locate the list of label headers in
3303
3434
  # the model container output.
3304
3435
  #
3305
- # **Example**\: If the model container output of a batch request is
3436
+ # **Example**: If the model container output of a batch request is
3306
3437
  # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3307
3438
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3308
3439
  # headers `["cat","dog","fish"]`
@@ -4358,9 +4489,10 @@ module Aws::SageMaker
4358
4489
  # @!attribute [rw] input_data_config
4359
4490
  # An array of channel objects that describes the input data and its
4360
4491
  # location. Each channel is a named input source. Similar to
4361
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4362
- # A minimum of 500 rows is required for the training dataset. There is
4363
- # not a minimum number of rows required for the validation dataset.
4492
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
4493
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
4494
+ # required for the training dataset. There is not a minimum number of
4495
+ # rows required for the validation dataset.
4364
4496
  # @return [Array<Types::AutoMLChannel>]
4365
4497
  #
4366
4498
  # @!attribute [rw] output_data_config
@@ -4370,19 +4502,20 @@ module Aws::SageMaker
4370
4502
  # @return [Types::AutoMLOutputDataConfig]
4371
4503
  #
4372
4504
  # @!attribute [rw] problem_type
4373
- # Defines the type of supervised learning available for the
4505
+ # Defines the type of supervised learning problem available for the
4374
4506
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4375
- # problem types and algorithm support][1].
4507
+ # problem types][1].
4376
4508
  #
4377
4509
  #
4378
4510
  #
4379
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
4511
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
4380
4512
  # @return [String]
4381
4513
  #
4382
4514
  # @!attribute [rw] auto_ml_job_objective
4383
4515
  # Defines the objective metric used to measure the predictive quality
4384
- # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4385
- # Autopilot infers whether to minimize or maximize it.
4516
+ # of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
4517
+ # and Autopilot infers whether to minimize or maximize it. For `
4518
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
4386
4519
  # @return [Types::AutoMLJobObjective]
4387
4520
  #
4388
4521
  # @!attribute [rw] auto_ml_job_config
@@ -4400,8 +4533,15 @@ module Aws::SageMaker
4400
4533
  # @return [Boolean]
4401
4534
  #
4402
4535
  # @!attribute [rw] tags
4403
- # Each tag consists of a key and an optional value. Tag keys must be
4404
- # unique per resource.
4536
+ # An array of key-value pairs. You can use tags to categorize your
4537
+ # Amazon Web Services resources in different ways, for example, by
4538
+ # purpose, owner, or environment. For more information, see [Tagging
4539
+ # Amazon Web ServicesResources][1]. Tag keys must be unique per
4540
+ # resource.
4541
+ #
4542
+ #
4543
+ #
4544
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4405
4545
  # @return [Array<Types::Tag>]
4406
4546
  #
4407
4547
  # @!attribute [rw] model_deploy_config
@@ -4438,6 +4578,104 @@ module Aws::SageMaker
4438
4578
  include Aws::Structure
4439
4579
  end
4440
4580
 
4581
+ # @!attribute [rw] auto_ml_job_name
4582
+ # Identifies an Autopilot job. The name must be unique to your account
4583
+ # and is case insensitive.
4584
+ # @return [String]
4585
+ #
4586
+ # @!attribute [rw] auto_ml_job_input_data_config
4587
+ # An array of channel objects describing the input data and their
4588
+ # location. Each channel is a named input source. Similar to `
4589
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
4590
+ # formats depend on the problem type:
4591
+ #
4592
+ # * ImageClassification: S3Prefix, `ManifestFile`,
4593
+ # `AugmentedManifestFile`
4594
+ #
4595
+ # * TextClassification: S3Prefix
4596
+ # @return [Array<Types::AutoMLJobChannel>]
4597
+ #
4598
+ # @!attribute [rw] output_data_config
4599
+ # Provides information about encryption and the Amazon S3 output path
4600
+ # needed to store artifacts from an AutoML job.
4601
+ # @return [Types::AutoMLOutputDataConfig]
4602
+ #
4603
+ # @!attribute [rw] auto_ml_problem_type_config
4604
+ # Defines the configuration settings of one of the supported problem
4605
+ # types.
4606
+ # @return [Types::AutoMLProblemTypeConfig]
4607
+ #
4608
+ # @!attribute [rw] role_arn
4609
+ # The ARN of the role that is used to access the data.
4610
+ # @return [String]
4611
+ #
4612
+ # @!attribute [rw] tags
4613
+ # An array of key-value pairs. You can use tags to categorize your
4614
+ # Amazon Web Services resources in different ways, such as by purpose,
4615
+ # owner, or environment. For more information, see [Tagging Amazon Web
4616
+ # ServicesResources][1]. Tag keys must be unique per resource.
4617
+ #
4618
+ #
4619
+ #
4620
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4621
+ # @return [Array<Types::Tag>]
4622
+ #
4623
+ # @!attribute [rw] security_config
4624
+ # The security configuration for traffic encryption or Amazon VPC
4625
+ # settings.
4626
+ # @return [Types::AutoMLSecurityConfig]
4627
+ #
4628
+ # @!attribute [rw] auto_ml_job_objective
4629
+ # Specifies a metric to minimize or maximize as the objective of a
4630
+ # job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
4631
+ # @return [Types::AutoMLJobObjective]
4632
+ #
4633
+ # @!attribute [rw] model_deploy_config
4634
+ # Specifies how to generate the endpoint name for an automatic
4635
+ # one-click Autopilot model deployment.
4636
+ # @return [Types::ModelDeployConfig]
4637
+ #
4638
+ # @!attribute [rw] data_split_config
4639
+ # This structure specifies how to split the data into train and
4640
+ # validation datasets.
4641
+ #
4642
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4643
+ # V2 API for Natural Language Processing problems (for example
4644
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4645
+ # type), the validation and training datasets must contain the same
4646
+ # headers. Also, for V1 API jobs, the validation dataset must be less
4647
+ # than 2 GB in size.
4648
+ # @return [Types::AutoMLDataSplitConfig]
4649
+ #
4650
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
4651
+ #
4652
+ class CreateAutoMLJobV2Request < Struct.new(
4653
+ :auto_ml_job_name,
4654
+ :auto_ml_job_input_data_config,
4655
+ :output_data_config,
4656
+ :auto_ml_problem_type_config,
4657
+ :role_arn,
4658
+ :tags,
4659
+ :security_config,
4660
+ :auto_ml_job_objective,
4661
+ :model_deploy_config,
4662
+ :data_split_config)
4663
+ SENSITIVE = []
4664
+ include Aws::Structure
4665
+ end
4666
+
4667
+ # @!attribute [rw] auto_ml_job_arn
4668
+ # The unique ARN assigned to the AutoMLJob when it is created.
4669
+ # @return [String]
4670
+ #
4671
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
4672
+ #
4673
+ class CreateAutoMLJobV2Response < Struct.new(
4674
+ :auto_ml_job_arn)
4675
+ SENSITIVE = []
4676
+ include Aws::Structure
4677
+ end
4678
+
4441
4679
  # @!attribute [rw] code_repository_name
4442
4680
  # The name of the Git repository. The name must have 1 to 63
4443
4681
  # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
@@ -4578,7 +4816,7 @@ module Aws::SageMaker
4578
4816
  # response. Amazon SageMaker returns the following data in JSON
4579
4817
  # format:
4580
4818
  #
4581
- # * `CompilationJobArn`\: The Amazon Resource Name (ARN) of the
4819
+ # * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
4582
4820
  # compiled job.
4583
4821
  #
4584
4822
  # ^
@@ -5244,11 +5482,11 @@ module Aws::SageMaker
5244
5482
  #
5245
5483
  # An `EventTime` can be a `String` or `Fractional`.
5246
5484
  #
5247
- # * `Fractional`\: `EventTime` feature values must be a Unix timestamp
5485
+ # * `Fractional`: `EventTime` feature values must be a Unix timestamp
5248
5486
  # in seconds.
5249
5487
  #
5250
- # * `String`\: `EventTime` feature values must be an ISO-8601 string
5251
- # in the format. The following formats are supported
5488
+ # * `String`: `EventTime` feature values must be an ISO-8601 string in
5489
+ # the format. The following formats are supported
5252
5490
  # `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
5253
5491
  # `yyyy`, `MM`, and `dd` represent the year, month, and day
5254
5492
  # respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
@@ -5668,29 +5906,29 @@ module Aws::SageMaker
5668
5906
  # @!attribute [rw] vendor_guidance
5669
5907
  # The stability of the image version, specified by the maintainer.
5670
5908
  #
5671
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5672
- # image version stability.
5909
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
5910
+ # version stability.
5673
5911
  #
5674
- # * `STABLE`\: The image version is stable.
5912
+ # * `STABLE`: The image version is stable.
5675
5913
  #
5676
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5914
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
5677
5915
  # image versions that are set to be archived are automatically
5678
5916
  # archived after three months.
5679
5917
  #
5680
- # * `ARCHIVED`\: The image version is archived. Archived image
5681
- # versions are not searchable and are no longer actively supported.
5918
+ # * `ARCHIVED`: The image version is archived. Archived image versions
5919
+ # are not searchable and are no longer actively supported.
5682
5920
  # @return [String]
5683
5921
  #
5684
5922
  # @!attribute [rw] job_type
5685
5923
  # Indicates SageMaker job type compatibility.
5686
5924
  #
5687
- # * `TRAINING`\: The image version is compatible with SageMaker
5925
+ # * `TRAINING`: The image version is compatible with SageMaker
5688
5926
  # training jobs.
5689
5927
  #
5690
- # * `INFERENCE`\: The image version is compatible with SageMaker
5928
+ # * `INFERENCE`: The image version is compatible with SageMaker
5691
5929
  # inference jobs.
5692
5930
  #
5693
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5931
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
5694
5932
  # notebook kernels.
5695
5933
  # @return [String]
5696
5934
  #
@@ -5705,9 +5943,9 @@ module Aws::SageMaker
5705
5943
  # @!attribute [rw] processor
5706
5944
  # Indicates CPU or GPU compatibility.
5707
5945
  #
5708
- # * `CPU`\: The image version is compatible with CPU.
5946
+ # * `CPU`: The image version is compatible with CPU.
5709
5947
  #
5710
- # * `GPU`\: The image version is compatible with GPU.
5948
+ # * `GPU`: The image version is compatible with GPU.
5711
5949
  # @return [String]
5712
5950
  #
5713
5951
  # @!attribute [rw] horovod
@@ -5756,7 +5994,7 @@ module Aws::SageMaker
5756
5994
  # The type of the inference experiment that you want to run. The
5757
5995
  # following types of experiments are possible:
5758
5996
  #
5759
- # * `ShadowMode`\: You can use this type to validate a shadow variant.
5997
+ # * `ShadowMode`: You can use this type to validate a shadow variant.
5760
5998
  # For more information, see [Shadow tests][1].
5761
5999
  #
5762
6000
  # ^
@@ -6334,13 +6572,13 @@ module Aws::SageMaker
6334
6572
  # Different organizations might have different criteria for model card
6335
6573
  # review and approval.
6336
6574
  #
6337
- # * `Draft`\: The model card is a work in progress.
6575
+ # * `Draft`: The model card is a work in progress.
6338
6576
  #
6339
- # * `PendingReview`\: The model card is pending review.
6577
+ # * `PendingReview`: The model card is pending review.
6340
6578
  #
6341
- # * `Approved`\: The model card is approved.
6579
+ # * `Approved`: The model card is approved.
6342
6580
  #
6343
- # * `Archived`\: The model card is archived. No more updates should be
6581
+ # * `Archived`: The model card is archived. No more updates should be
6344
6582
  # made to the model card, but it can still be exported.
6345
6583
  # @return [String]
6346
6584
  #
@@ -10279,6 +10517,130 @@ module Aws::SageMaker
10279
10517
  include Aws::Structure
10280
10518
  end
10281
10519
 
10520
+ # @!attribute [rw] auto_ml_job_name
10521
+ # Requests information about an AutoML V2 job using its unique name.
10522
+ # @return [String]
10523
+ #
10524
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
10525
+ #
10526
+ class DescribeAutoMLJobV2Request < Struct.new(
10527
+ :auto_ml_job_name)
10528
+ SENSITIVE = []
10529
+ include Aws::Structure
10530
+ end
10531
+
10532
+ # @!attribute [rw] auto_ml_job_name
10533
+ # Returns the name of the AutoML V2 job.
10534
+ # @return [String]
10535
+ #
10536
+ # @!attribute [rw] auto_ml_job_arn
10537
+ # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10538
+ # @return [String]
10539
+ #
10540
+ # @!attribute [rw] auto_ml_job_input_data_config
10541
+ # Returns an array of channel objects describing the input data and
10542
+ # their location.
10543
+ # @return [Array<Types::AutoMLJobChannel>]
10544
+ #
10545
+ # @!attribute [rw] output_data_config
10546
+ # Returns the job's output data config.
10547
+ # @return [Types::AutoMLOutputDataConfig]
10548
+ #
10549
+ # @!attribute [rw] role_arn
10550
+ # The ARN of the Identity and Access Management role that has read
10551
+ # permission to the input data location and write permission to the
10552
+ # output data location in Amazon S3.
10553
+ # @return [String]
10554
+ #
10555
+ # @!attribute [rw] auto_ml_job_objective
10556
+ # Returns the job's objective.
10557
+ # @return [Types::AutoMLJobObjective]
10558
+ #
10559
+ # @!attribute [rw] auto_ml_problem_type_config
10560
+ # Returns the configuration settings of the problem type set for the
10561
+ # AutoML V2 job.
10562
+ # @return [Types::AutoMLProblemTypeConfig]
10563
+ #
10564
+ # @!attribute [rw] creation_time
10565
+ # Returns the creation time of the AutoML V2 job.
10566
+ # @return [Time]
10567
+ #
10568
+ # @!attribute [rw] end_time
10569
+ # Returns the end time of the AutoML V2 job.
10570
+ # @return [Time]
10571
+ #
10572
+ # @!attribute [rw] last_modified_time
10573
+ # Returns the job's last modified time.
10574
+ # @return [Time]
10575
+ #
10576
+ # @!attribute [rw] failure_reason
10577
+ # Returns the reason for the failure of the AutoML V2 job, when
10578
+ # applicable.
10579
+ # @return [String]
10580
+ #
10581
+ # @!attribute [rw] partial_failure_reasons
10582
+ # Returns a list of reasons for partial failures within an AutoML V2
10583
+ # job.
10584
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10585
+ #
10586
+ # @!attribute [rw] best_candidate
10587
+ # Information about the candidate produced by an AutoML training job
10588
+ # V2, including its status, steps, and other properties.
10589
+ # @return [Types::AutoMLCandidate]
10590
+ #
10591
+ # @!attribute [rw] auto_ml_job_status
10592
+ # Returns the status of the AutoML V2 job.
10593
+ # @return [String]
10594
+ #
10595
+ # @!attribute [rw] auto_ml_job_secondary_status
10596
+ # Returns the secondary status of the AutoML V2 job.
10597
+ # @return [String]
10598
+ #
10599
+ # @!attribute [rw] model_deploy_config
10600
+ # Indicates whether the model was deployed automatically to an
10601
+ # endpoint and the name of that endpoint if deployed automatically.
10602
+ # @return [Types::ModelDeployConfig]
10603
+ #
10604
+ # @!attribute [rw] model_deploy_result
10605
+ # Provides information about endpoint for the model deployment.
10606
+ # @return [Types::ModelDeployResult]
10607
+ #
10608
+ # @!attribute [rw] data_split_config
10609
+ # Returns the configuration settings of how the data are split into
10610
+ # train and validation datasets.
10611
+ # @return [Types::AutoMLDataSplitConfig]
10612
+ #
10613
+ # @!attribute [rw] security_config
10614
+ # Returns the security configuration for traffic encryption or Amazon
10615
+ # VPC settings.
10616
+ # @return [Types::AutoMLSecurityConfig]
10617
+ #
10618
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10619
+ #
10620
+ class DescribeAutoMLJobV2Response < Struct.new(
10621
+ :auto_ml_job_name,
10622
+ :auto_ml_job_arn,
10623
+ :auto_ml_job_input_data_config,
10624
+ :output_data_config,
10625
+ :role_arn,
10626
+ :auto_ml_job_objective,
10627
+ :auto_ml_problem_type_config,
10628
+ :creation_time,
10629
+ :end_time,
10630
+ :last_modified_time,
10631
+ :failure_reason,
10632
+ :partial_failure_reasons,
10633
+ :best_candidate,
10634
+ :auto_ml_job_status,
10635
+ :auto_ml_job_secondary_status,
10636
+ :model_deploy_config,
10637
+ :model_deploy_result,
10638
+ :data_split_config,
10639
+ :security_config)
10640
+ SENSITIVE = []
10641
+ include Aws::Structure
10642
+ end
10643
+
10282
10644
  # @!attribute [rw] code_repository_name
10283
10645
  # The name of the Git repository to describe.
10284
10646
  # @return [String]
@@ -11199,21 +11561,21 @@ module Aws::SageMaker
11199
11561
  # @!attribute [rw] endpoint_status
11200
11562
  # The status of the endpoint.
11201
11563
  #
11202
- # * `OutOfService`\: Endpoint is not available to take incoming
11564
+ # * `OutOfService`: Endpoint is not available to take incoming
11203
11565
  # requests.
11204
11566
  #
11205
- # * `Creating`\: CreateEndpoint is executing.
11567
+ # * `Creating`: CreateEndpoint is executing.
11206
11568
  #
11207
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11569
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11208
11570
  # is executing.
11209
11571
  #
11210
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
11211
- # be updated or deleted or re-scaled until it has completed. This
11572
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
11573
+ # updated or deleted or re-scaled until it has completed. This
11212
11574
  # maintenance operation does not change any customer-specified
11213
11575
  # values such as VPC config, KMS encryption, model, instance type,
11214
11576
  # or instance count.
11215
11577
  #
11216
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
11578
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
11217
11579
  # variant weight and is in the process of rolling back to its
11218
11580
  # previous configuration. Once the rollback completes, endpoint
11219
11581
  # returns to an `InService` status. This transitional status only
@@ -11222,11 +11584,11 @@ module Aws::SageMaker
11222
11584
  # UpdateEndpointWeightsAndCapacities call or when the
11223
11585
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
11224
11586
  #
11225
- # * `InService`\: Endpoint is available to process incoming requests.
11587
+ # * `InService`: Endpoint is available to process incoming requests.
11226
11588
  #
11227
- # * `Deleting`\: DeleteEndpoint is executing.
11589
+ # * `Deleting`: DeleteEndpoint is executing.
11228
11590
  #
11229
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
11591
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
11230
11592
  # Use DescribeEndpointOutput$FailureReason for information about the
11231
11593
  # failure. DeleteEndpoint is the only operation that can be
11232
11594
  # performed on a failed endpoint.
@@ -12130,29 +12492,29 @@ module Aws::SageMaker
12130
12492
  # @!attribute [rw] vendor_guidance
12131
12493
  # The stability of the image version specified by the maintainer.
12132
12494
  #
12133
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
12134
- # image version stability.
12495
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
12496
+ # version stability.
12135
12497
  #
12136
- # * `STABLE`\: The image version is stable.
12498
+ # * `STABLE`: The image version is stable.
12137
12499
  #
12138
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
12500
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
12139
12501
  # image versions that are set to be archived are automatically
12140
12502
  # archived after three months.
12141
12503
  #
12142
- # * `ARCHIVED`\: The image version is archived. Archived image
12143
- # versions are not searchable and are no longer actively supported.
12504
+ # * `ARCHIVED`: The image version is archived. Archived image versions
12505
+ # are not searchable and are no longer actively supported.
12144
12506
  # @return [String]
12145
12507
  #
12146
12508
  # @!attribute [rw] job_type
12147
12509
  # Indicates SageMaker job type compatibility.
12148
12510
  #
12149
- # * `TRAINING`\: The image version is compatible with SageMaker
12511
+ # * `TRAINING`: The image version is compatible with SageMaker
12150
12512
  # training jobs.
12151
12513
  #
12152
- # * `INFERENCE`\: The image version is compatible with SageMaker
12514
+ # * `INFERENCE`: The image version is compatible with SageMaker
12153
12515
  # inference jobs.
12154
12516
  #
12155
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12517
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
12156
12518
  # notebook kernels.
12157
12519
  # @return [String]
12158
12520
  #
@@ -12167,9 +12529,9 @@ module Aws::SageMaker
12167
12529
  # @!attribute [rw] processor
12168
12530
  # Indicates CPU or GPU compatibility.
12169
12531
  #
12170
- # * `CPU`\: The image version is compatible with CPU.
12532
+ # * `CPU`: The image version is compatible with CPU.
12171
12533
  #
12172
- # * `GPU`\: The image version is compatible with GPU.
12534
+ # * `GPU`: The image version is compatible with GPU.
12173
12535
  # @return [String]
12174
12536
  #
12175
12537
  # @!attribute [rw] horovod
@@ -12767,11 +13129,11 @@ module Aws::SageMaker
12767
13129
  # @!attribute [rw] status
12768
13130
  # The completion status of the model card export job.
12769
13131
  #
12770
- # * `InProgress`\: The model card export job is in progress.
13132
+ # * `InProgress`: The model card export job is in progress.
12771
13133
  #
12772
- # * `Completed`\: The model card export job is complete.
13134
+ # * `Completed`: The model card export job is complete.
12773
13135
  #
12774
- # * `Failed`\: The model card export job failed. To see the reason for
13136
+ # * `Failed`: The model card export job failed. To see the reason for
12775
13137
  # the failure, see the `FailureReason` field in the response to a
12776
13138
  # `DescribeModelCardExportJob` call.
12777
13139
  # @return [String]
@@ -12860,13 +13222,13 @@ module Aws::SageMaker
12860
13222
  # Different organizations might have different criteria for model card
12861
13223
  # review and approval.
12862
13224
  #
12863
- # * `Draft`\: The model card is a work in progress.
13225
+ # * `Draft`: The model card is a work in progress.
12864
13226
  #
12865
- # * `PendingReview`\: The model card is pending review.
13227
+ # * `PendingReview`: The model card is pending review.
12866
13228
  #
12867
- # * `Approved`\: The model card is approved.
13229
+ # * `Approved`: The model card is approved.
12868
13230
  #
12869
- # * `Archived`\: The model card is archived. No more updates should be
13231
+ # * `Archived`: The model card is archived. No more updates should be
12870
13232
  # made to the model card, but it can still be exported.
12871
13233
  # @return [String]
12872
13234
  #
@@ -12897,18 +13259,18 @@ module Aws::SageMaker
12897
13259
  # `ModelCardProcessingStatus` updates throughout the different
12898
13260
  # deletion steps.
12899
13261
  #
12900
- # * `DeletePending`\: Model card deletion request received.
13262
+ # * `DeletePending`: Model card deletion request received.
12901
13263
  #
12902
- # * `DeleteInProgress`\: Model card deletion is in progress.
13264
+ # * `DeleteInProgress`: Model card deletion is in progress.
12903
13265
  #
12904
- # * `ContentDeleted`\: Deleted model card content.
13266
+ # * `ContentDeleted`: Deleted model card content.
12905
13267
  #
12906
- # * `ExportJobsDeleted`\: Deleted all export jobs associated with the
13268
+ # * `ExportJobsDeleted`: Deleted all export jobs associated with the
12907
13269
  # model card.
12908
13270
  #
12909
- # * `DeleteCompleted`\: Successfully deleted the model card.
13271
+ # * `DeleteCompleted`: Successfully deleted the model card.
12910
13272
  #
12911
- # * `DeleteFailed`\: The model card failed to delete.
13273
+ # * `DeleteFailed`: The model card failed to delete.
12912
13274
  # @return [String]
12913
13275
  #
12914
13276
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
@@ -16435,21 +16797,21 @@ module Aws::SageMaker
16435
16797
  # @!attribute [rw] endpoint_status
16436
16798
  # The status of the endpoint.
16437
16799
  #
16438
- # * `OutOfService`\: Endpoint is not available to take incoming
16800
+ # * `OutOfService`: Endpoint is not available to take incoming
16439
16801
  # requests.
16440
16802
  #
16441
- # * `Creating`\: CreateEndpoint is executing.
16803
+ # * `Creating`: CreateEndpoint is executing.
16442
16804
  #
16443
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16805
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16444
16806
  # is executing.
16445
16807
  #
16446
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
16447
- # be updated or deleted or re-scaled until it has completed. This
16808
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
16809
+ # updated or deleted or re-scaled until it has completed. This
16448
16810
  # maintenance operation does not change any customer-specified
16449
16811
  # values such as VPC config, KMS encryption, model, instance type,
16450
16812
  # or instance count.
16451
16813
  #
16452
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
16814
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
16453
16815
  # variant weight and is in the process of rolling back to its
16454
16816
  # previous configuration. Once the rollback completes, endpoint
16455
16817
  # returns to an `InService` status. This transitional status only
@@ -16458,11 +16820,11 @@ module Aws::SageMaker
16458
16820
  # UpdateEndpointWeightsAndCapacities call or when the
16459
16821
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
16460
16822
  #
16461
- # * `InService`\: Endpoint is available to process incoming requests.
16823
+ # * `InService`: Endpoint is available to process incoming requests.
16462
16824
  #
16463
- # * `Deleting`\: DeleteEndpoint is executing.
16825
+ # * `Deleting`: DeleteEndpoint is executing.
16464
16826
  #
16465
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
16827
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
16466
16828
  # Use DescribeEndpointOutput$FailureReason for information about the
16467
16829
  # failure. DeleteEndpoint is the only operation that can be
16468
16830
  # performed on a failed endpoint.
@@ -17087,7 +17449,7 @@ module Aws::SageMaker
17087
17449
  # : To define a metric filter, enter a value using the form
17088
17450
  # `"Metrics.<name>"`, where `<name>` is a metric name. For example,
17089
17451
  # the following filter searches for training jobs with an `"accuracy"`
17090
- # metric greater than `"0.9"`\:
17452
+ # metric greater than `"0.9"`:
17091
17453
  #
17092
17454
  # `\{`
17093
17455
  #
@@ -17107,7 +17469,7 @@ module Aws::SageMaker
17107
17469
  # also a decimal value. If the specified `Value` is an integer, the
17108
17470
  # decimal hyperparameter values are treated as integers. For example,
17109
17471
  # the following filter is satisfied by training jobs with a
17110
- # `"learning_rate"` hyperparameter that is less than `"0.5"`\:
17472
+ # `"learning_rate"` hyperparameter that is less than `"0.5"`:
17111
17473
  #
17112
17474
  # ` \{`
17113
17475
  #
@@ -17237,7 +17599,8 @@ module Aws::SageMaker
17237
17599
  #
17238
17600
  # @!attribute [rw] metric_name
17239
17601
  # The name of the metric with the best result. For a description of
17240
- # the possible objective metrics, see AutoMLJobObjective$MetricName.
17602
+ # the possible objective metrics, see ` AutoMLJobObjective$MetricName
17603
+ # `.
17241
17604
  # @return [String]
17242
17605
  #
17243
17606
  # @!attribute [rw] value
@@ -19133,7 +19496,7 @@ module Aws::SageMaker
19133
19496
  #
19134
19497
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
19135
19498
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
19136
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
19499
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
19137
19500
  # @return [Hash<String,String>]
19138
19501
  #
19139
19502
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
@@ -19891,8 +20254,8 @@ module Aws::SageMaker
19891
20254
  # reaches the `MaxResource` value, it is stopped. If a value for
19892
20255
  # `MaxResource` is not provided, and `Hyperband` is selected as the
19893
20256
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
19894
- # infer `MaxResource` from the following keys (if present) in
19895
- # [StaticsHyperParameters][1]\:
20257
+ # infer `MaxResource` from the following keys (if present) in `
20258
+ # StaticsHyperParameters `:
19896
20259
  #
19897
20260
  # * `epochs`
19898
20261
  #
@@ -19907,8 +20270,8 @@ module Aws::SageMaker
19907
20270
  # If `HyperbandStrategyConfig` is unable to infer a value for
19908
20271
  # `MaxResource`, it generates a validation error. The maximum value is
19909
20272
  # 20,000 epochs. All metrics that correspond to an objective metric
19910
- # are used to derive [early stopping decisions][2]. For
19911
- # [distributive][3] training jobs, ensure that duplicate metrics are
20273
+ # are used to derive [early stopping decisions][1]. For
20274
+ # [distributive][2] training jobs, ensure that duplicate metrics are
19912
20275
  # not printed in the logs across the individual nodes in a training
19913
20276
  # job. If multiple nodes are publishing duplicate or incorrect
19914
20277
  # metrics, training jobs may make an incorrect stopping decision and
@@ -19916,9 +20279,8 @@ module Aws::SageMaker
19916
20279
  #
19917
20280
  #
19918
20281
  #
19919
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
19920
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
19921
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20282
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20283
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
19922
20284
  # @return [Integer]
19923
20285
  #
19924
20286
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
@@ -20008,6 +20370,22 @@ module Aws::SageMaker
20008
20370
  include Aws::Structure
20009
20371
  end
20010
20372
 
20373
+ # Stores the configuration information for the image classification
20374
+ # problem of an AutoML job using the V2 API.
20375
+ #
20376
+ # @!attribute [rw] completion_criteria
20377
+ # How long a job is allowed to run, or how many candidates a job is
20378
+ # allowed to generate.
20379
+ # @return [Types::AutoMLJobCompletionCriteria]
20380
+ #
20381
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
20382
+ #
20383
+ class ImageClassificationJobConfig < Struct.new(
20384
+ :completion_criteria)
20385
+ SENSITIVE = []
20386
+ include Aws::Structure
20387
+ end
20388
+
20011
20389
  # Specifies whether the model container is in Amazon ECR or a private
20012
20390
  # Docker registry accessible from your Amazon Virtual Private Cloud
20013
20391
  # (VPC).
@@ -20422,7 +20800,7 @@ module Aws::SageMaker
20422
20800
  # @!attribute [rw] step_type
20423
20801
  # The type of the subtask.
20424
20802
  #
20425
- # `BENCHMARK`\: Evaluate the performance of your model on different
20803
+ # `BENCHMARK`: Evaluate the performance of your model on different
20426
20804
  # instance types.
20427
20805
  # @return [String]
20428
20806
  #
@@ -20508,8 +20886,8 @@ module Aws::SageMaker
20508
20886
  # trained model with a JSON dictionary form. The data inputs are
20509
20887
  # InputConfig$Framework specific.
20510
20888
  #
20511
- # * `TensorFlow`\: You must specify the name and shape (NHWC format)
20512
- # of the expected data inputs using a dictionary format for your
20889
+ # * `TensorFlow`: You must specify the name and shape (NHWC format) of
20890
+ # the expected data inputs using a dictionary format for your
20513
20891
  # trained model. The dictionary formats required for the console and
20514
20892
  # CLI are different.
20515
20893
  #
@@ -20527,7 +20905,7 @@ module Aws::SageMaker
20527
20905
  # * If using the CLI, `\{"data1": [1,28,28,1],
20528
20906
  # "data2":[1,28,28,1]\}`
20529
20907
  #
20530
- # * `KERAS`\: You must specify the name and shape (NCHW format) of
20908
+ # * `KERAS`: You must specify the name and shape (NCHW format) of
20531
20909
  # expected data inputs using a dictionary format for your trained
20532
20910
  # model. Note that while Keras model artifacts should be uploaded in
20533
20911
  # NHWC (channel-last) format, `DataInputConfig` should be specified
@@ -20548,7 +20926,7 @@ module Aws::SageMaker
20548
20926
  # * If using the CLI, `\{"input_1": [1,3,224,224],
20549
20927
  # "input_2":[1,3,224,224]\}`
20550
20928
  #
20551
- # * `MXNET/ONNX/DARKNET`\: You must specify the name and shape (NCHW
20929
+ # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
20552
20930
  # format) of the expected data inputs in order using a dictionary
20553
20931
  # format for your trained model. The dictionary formats required for
20554
20932
  # the console and CLI are different.
@@ -20567,12 +20945,12 @@ module Aws::SageMaker
20567
20945
  # * If using the CLI, `\{"var1": [1,1,28,28],
20568
20946
  # "var2":[1,1,28,28]\}`
20569
20947
  #
20570
- # * `PyTorch`\: You can either specify the name and shape (NCHW
20571
- # format) of expected data inputs in order using a dictionary format
20572
- # for your trained model or you can specify the shape only using a
20573
- # list format. The dictionary formats required for the console and
20574
- # CLI are different. The list formats for the console and CLI are
20575
- # the same.
20948
+ # * `PyTorch`: You can either specify the name and shape (NCHW format)
20949
+ # of expected data inputs in order using a dictionary format for
20950
+ # your trained model or you can specify the shape only using a list
20951
+ # format. The dictionary formats required for the console and CLI
20952
+ # are different. The list formats for the console and CLI are the
20953
+ # same.
20576
20954
  #
20577
20955
  # * Examples for one input in dictionary format:
20578
20956
  #
@@ -20593,12 +20971,12 @@ module Aws::SageMaker
20593
20971
  # * Example for two inputs in list format: `[[1,3,224,224],
20594
20972
  # [1,3,224,224]]`
20595
20973
  #
20596
- # * `XGBOOST`\: input data name and shape are not needed.
20974
+ # * `XGBOOST`: input data name and shape are not needed.
20597
20975
  #
20598
20976
  # `DataInputConfig` supports the following parameters for `CoreML`
20599
20977
  # OutputConfig$TargetDevice (ML Model format):
20600
20978
  #
20601
- # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
20979
+ # * `shape`: Input shape, for example `\{"input_1": \{"shape":
20602
20980
  # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
20603
20981
  # converter supports Flexible input shapes:
20604
20982
  #
@@ -20612,21 +20990,21 @@ module Aws::SageMaker
20612
20990
  # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
20613
20991
  # 224, 3], [1, 160, 160, 3]]\}\}`
20614
20992
  #
20615
- # * `default_shape`\: Default input shape. You can set a default shape
20993
+ # * `default_shape`: Default input shape. You can set a default shape
20616
20994
  # during conversion for both Range Dimension and Enumerated Shapes.
20617
20995
  # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
20618
20996
  # "default_shape": [1, 224, 224, 3]\}\}`
20619
20997
  #
20620
- # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
20998
+ # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
20621
20999
  # default, the converter generates an ML Model with inputs of type
20622
21000
  # Tensor (MultiArray). User can set input type to be Image. Image
20623
21001
  # input type requires additional input parameters such as `bias` and
20624
21002
  # `scale`.
20625
21003
  #
20626
- # * `bias`\: If the input type is an Image, you need to provide the
21004
+ # * `bias`: If the input type is an Image, you need to provide the
20627
21005
  # bias vector.
20628
21006
  #
20629
- # * `scale`\: If the input type is an Image, you need to provide a
21007
+ # * `scale`: If the input type is an Image, you need to provide a
20630
21008
  # scale factor.
20631
21009
  #
20632
21010
  # CoreML `ClassifierConfig` parameters can be specified using
@@ -21325,11 +21703,11 @@ module Aws::SageMaker
21325
21703
  # one of the following keys: `source-ref` or `source`. The value of
21326
21704
  # the keys are interpreted as follows:
21327
21705
  #
21328
- # * `source-ref`\: The source of the object is the Amazon S3 object
21706
+ # * `source-ref`: The source of the object is the Amazon S3 object
21329
21707
  # specified in the value. Use this value when the object is a binary
21330
21708
  # object, such as an image.
21331
21709
  #
21332
- # * `source`\: The source of the object is the value. Use this value
21710
+ # * `source`: The source of the object is the value. Use this value
21333
21711
  # when the object is a text value.
21334
21712
  #
21335
21713
  # If you are a new user of Ground Truth, it is recommended you review
@@ -23785,7 +24163,7 @@ module Aws::SageMaker
23785
24163
  # @!attribute [rw] step_type
23786
24164
  # A filter to return details about the specified type of subtask.
23787
24165
  #
23788
- # `BENCHMARK`\: Evaluate the performance of your model on different
24166
+ # `BENCHMARK`: Evaluate the performance of your model on different
23789
24167
  # instance types.
23790
24168
  # @return [String]
23791
24169
  #
@@ -26710,9 +27088,17 @@ module Aws::SageMaker
26710
27088
  end
26711
27089
 
26712
27090
  # Specifies a metric that the training algorithm writes to `stderr` or
26713
- # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
26714
- # You specify one metric that a hyperparameter tuning job uses as its
26715
- # objective metric to choose the best training job.
27091
+ # `stdout`. You can view these logs to understand how your training job
27092
+ # performs and check for any errors encountered during training.
27093
+ # SageMaker hyperparameter tuning captures all defined metrics. Specify
27094
+ # one of the defined metrics to use as an objective metric using the
27095
+ # [TuningObjective][1] parameter in the
27096
+ # `HyperParameterTrainingJobDefinition` API to evaluate job performance
27097
+ # during hyperparameter tuning.
27098
+ #
27099
+ #
27100
+ #
27101
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
26716
27102
  #
26717
27103
  # @!attribute [rw] name
26718
27104
  # The name of the metric.
@@ -26721,12 +27107,12 @@ module Aws::SageMaker
26721
27107
  # @!attribute [rw] regex
26722
27108
  # A regular expression that searches the output of a training job and
26723
27109
  # gets the value of the metric. For more information about using
26724
- # regular expressions to define metrics, see [Defining Objective
26725
- # Metrics][1].
27110
+ # regular expressions to define metrics, see [Defining metrics and
27111
+ # environment variables][1].
26726
27112
  #
26727
27113
  #
26728
27114
  #
26729
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
27115
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
26730
27116
  # @return [String]
26731
27117
  #
26732
27118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -26960,13 +27346,13 @@ module Aws::SageMaker
26960
27346
  # Different organizations might have different criteria for model card
26961
27347
  # review and approval.
26962
27348
  #
26963
- # * `Draft`\: The model card is a work in progress.
27349
+ # * `Draft`: The model card is a work in progress.
26964
27350
  #
26965
- # * `PendingReview`\: The model card is pending review.
27351
+ # * `PendingReview`: The model card is pending review.
26966
27352
  #
26967
- # * `Approved`\: The model card is approved.
27353
+ # * `Approved`: The model card is approved.
26968
27354
  #
26969
- # * `Archived`\: The model card is archived. No more updates should be
27355
+ # * `Archived`: The model card is archived. No more updates should be
26970
27356
  # made to the model card, but it can still be exported.
26971
27357
  # @return [String]
26972
27358
  #
@@ -27137,13 +27523,13 @@ module Aws::SageMaker
27137
27523
  # Different organizations might have different criteria for model card
27138
27524
  # review and approval.
27139
27525
  #
27140
- # * `Draft`\: The model card is a work in progress.
27526
+ # * `Draft`: The model card is a work in progress.
27141
27527
  #
27142
- # * `PendingReview`\: The model card is pending review.
27528
+ # * `PendingReview`: The model card is pending review.
27143
27529
  #
27144
- # * `Approved`\: The model card is approved.
27530
+ # * `Approved`: The model card is approved.
27145
27531
  #
27146
- # * `Archived`\: The model card is archived. No more updates should be
27532
+ # * `Archived`: The model card is archived. No more updates should be
27147
27533
  # made to the model card, but it can still be exported.
27148
27534
  # @return [String]
27149
27535
  #
@@ -27182,13 +27568,13 @@ module Aws::SageMaker
27182
27568
  # organization. Different organizations might have different criteria
27183
27569
  # for model card review and approval.
27184
27570
  #
27185
- # * `Draft`\: The model card is a work in progress.
27571
+ # * `Draft`: The model card is a work in progress.
27186
27572
  #
27187
- # * `PendingReview`\: The model card is pending review.
27573
+ # * `PendingReview`: The model card is pending review.
27188
27574
  #
27189
- # * `Approved`\: The model card is approved.
27575
+ # * `Approved`: The model card is approved.
27190
27576
  #
27191
- # * `Archived`\: The model card is archived. No more updates should be
27577
+ # * `Archived`: The model card is archived. No more updates should be
27192
27578
  # made to the model card, but it can still be exported.
27193
27579
  # @return [String]
27194
27580
  #
@@ -27659,7 +28045,7 @@ module Aws::SageMaker
27659
28045
  # The inference option to which to deploy your model. Possible values
27660
28046
  # are the following:
27661
28047
  #
27662
- # * `RealTime`\: Deploy to real-time inference.
28048
+ # * `RealTime`: Deploy to real-time inference.
27663
28049
  #
27664
28050
  # ^
27665
28051
  # @return [String]
@@ -29885,8 +30271,8 @@ module Aws::SageMaker
29885
30271
  # SageMaker Feature Store uses to encrypt the Amazon S3 objects at
29886
30272
  # rest using Amazon S3 server-side encryption.
29887
30273
  #
29888
- # The caller (either IAM user or IAM role) of `CreateFeatureGroup`
29889
- # must have below permissions to the `OnlineStore` `KmsKeyId`\:
30274
+ # The caller (either user or IAM role) of `CreateFeatureGroup` must
30275
+ # have below permissions to the `OnlineStore` `KmsKeyId`:
29890
30276
  #
29891
30277
  # * `"kms:Encrypt"`
29892
30278
  #
@@ -29912,7 +30298,7 @@ module Aws::SageMaker
29912
30298
  #
29913
30299
  # The caller (either user or IAM role) to all DataPlane operations
29914
30300
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29915
- # permissions to the `KmsKeyId`\:
30301
+ # permissions to the `KmsKeyId`:
29916
30302
  #
29917
30303
  # * `"kms:Decrypt"`
29918
30304
  #
@@ -30004,11 +30390,10 @@ module Aws::SageMaker
30004
30390
  # for NVIDIA accelerators and highly recommended for CPU compilations.
30005
30391
  # For any other cases, it is optional to specify `CompilerOptions.`
30006
30392
  #
30007
- # * `DTYPE`\: Specifies the data type for the input. When compiling
30008
- # for `ml_*` (except for `ml_inf`) instances using PyTorch
30009
- # framework, provide the data type (dtype) of the model's input.
30010
- # `"float32"` is used if `"DTYPE"` is not specified. Options for
30011
- # data type are:
30393
+ # * `DTYPE`: Specifies the data type for the input. When compiling for
30394
+ # `ml_*` (except for `ml_inf`) instances using PyTorch framework,
30395
+ # provide the data type (dtype) of the model's input. `"float32"`
30396
+ # is used if `"DTYPE"` is not specified. Options for data type are:
30012
30397
  #
30013
30398
  # * float32: Use either `"float"` or `"float32"`.
30014
30399
  #
@@ -30016,75 +30401,74 @@ module Aws::SageMaker
30016
30401
  #
30017
30402
  # For example, `\{"dtype" : "float32"\}`.
30018
30403
  #
30019
- # * `CPU`\: Compilation for CPU supports the following compiler
30404
+ # * `CPU`: Compilation for CPU supports the following compiler
30020
30405
  # options.
30021
30406
  #
30022
- # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
30407
+ # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
30023
30408
  # 'skylake-avx512'\}`
30024
30409
  #
30025
- # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
30410
+ # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
30026
30411
  # '+vfpv4']\}`
30027
30412
  #
30028
- # * `ARM`\: Details of ARM CPU compilations.
30413
+ # * `ARM`: Details of ARM CPU compilations.
30029
30414
  #
30030
- # * `NEON`\: NEON is an implementation of the Advanced SIMD
30031
- # extension used in ARMv7 processors.
30415
+ # * `NEON`: NEON is an implementation of the Advanced SIMD extension
30416
+ # used in ARMv7 processors.
30032
30417
  #
30033
30418
  # For example, add `\{'mattr': ['+neon']\}` to the compiler
30034
30419
  # options if compiling for ARM 32-bit platform with the NEON
30035
30420
  # support.
30036
30421
  #
30037
- # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
30422
+ # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
30038
30423
  # compiler options.
30039
30424
  #
30040
- # * `gpu_code`\: Specifies the targeted architecture.
30425
+ # * `gpu_code`: Specifies the targeted architecture.
30041
30426
  #
30042
- # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
30427
+ # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
30043
30428
  #
30044
- # * `cuda-ver`\: Specifies the CUDA version in x.y format.
30429
+ # * `cuda-ver`: Specifies the CUDA version in x.y format.
30045
30430
  #
30046
30431
  # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
30047
30432
  # 'cuda-ver': '10.1'\}`
30048
30433
  #
30049
- # * `ANDROID`\: Compilation for the Android OS supports the following
30434
+ # * `ANDROID`: Compilation for the Android OS supports the following
30050
30435
  # compiler options:
30051
30436
  #
30052
- # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
30437
+ # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
30053
30438
  # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
30054
30439
  # 28\}`.
30055
30440
  #
30056
- # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
30441
+ # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
30057
30442
  # compiling for ARM 32-bit platform with NEON support.
30058
30443
  #
30059
- # * `INFERENTIA`\: Compilation for target ml\_inf1 uses compiler
30444
+ # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
30060
30445
  # options passed in as a JSON string. For example,
30061
30446
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
30062
30447
  #
30063
30448
  # For information about supported compiler options, see [ Neuron
30064
30449
  # Compiler CLI][1].
30065
30450
  #
30066
- # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
30451
+ # * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
30067
30452
  # supports the following compiler options:
30068
30453
  #
30069
- # * `class_labels`\: Specifies the classification labels file name
30454
+ # * `class_labels`: Specifies the classification labels file name
30070
30455
  # inside input tar.gz file. For example, `\{"class_labels":
30071
30456
  # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
30072
30457
  # be separated by newlines.
30073
30458
  #
30074
30459
  # ^
30075
30460
  #
30076
- # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
30461
+ # * `EIA`: Compilation for the Elastic Inference Accelerator supports
30077
30462
  # the following compiler options:
30078
30463
  #
30079
- # * `precision_mode`\: Specifies the precision of compiled
30080
- # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
30081
- # is `"FP32"`.
30464
+ # * `precision_mode`: Specifies the precision of compiled artifacts.
30465
+ # Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
30082
30466
  #
30083
- # * `signature_def_key`\: Specifies the signature to use for models
30467
+ # * `signature_def_key`: Specifies the signature to use for models
30084
30468
  # in SavedModel format. Defaults is TensorFlow's default
30085
30469
  # signature def key.
30086
30470
  #
30087
- # * `output_names`\: Specifies a list of output tensor names for
30471
+ # * `output_names`: Specifies a list of output tensor names for
30088
30472
  # models in FrozenGraph format. Set at most one API field, either:
30089
30473
  # `signature_def_key` or `output_names`.
30090
30474
  #
@@ -31589,7 +31973,7 @@ module Aws::SageMaker
31589
31973
  # You can use this parameter to turn on native Amazon Web Services
31590
31974
  # Systems Manager (SSM) access for a production variant behind an
31591
31975
  # endpoint. By default, SSM access is disabled for all production
31592
- # variants behind an endpoints. You can turn on or turn off SSM access
31976
+ # variants behind an endpoint. You can turn on or turn off SSM access
31593
31977
  # for a production variant behind an existing endpoint by creating a
31594
31978
  # new endpoint configuration and calling `UpdateEndpoint`.
31595
31979
  # @return [Boolean]
@@ -31702,18 +32086,18 @@ module Aws::SageMaker
31702
32086
  # The endpoint variant status which describes the current deployment
31703
32087
  # stage status or operational status.
31704
32088
  #
31705
- # * `Creating`\: Creating inference resources for the production
32089
+ # * `Creating`: Creating inference resources for the production
31706
32090
  # variant.
31707
32091
  #
31708
- # * `Deleting`\: Terminating inference resources for the production
32092
+ # * `Deleting`: Terminating inference resources for the production
31709
32093
  # variant.
31710
32094
  #
31711
- # * `Updating`\: Updating capacity for the production variant.
32095
+ # * `Updating`: Updating capacity for the production variant.
31712
32096
  #
31713
- # * `ActivatingTraffic`\: Turning on traffic for the production
32097
+ # * `ActivatingTraffic`: Turning on traffic for the production
31714
32098
  # variant.
31715
32099
  #
31716
- # * `Baking`\: Waiting period to monitor the CloudWatch alarms in the
32100
+ # * `Baking`: Waiting period to monitor the CloudWatch alarms in the
31717
32101
  # automatic rollback configuration.
31718
32102
  # @return [String]
31719
32103
  #
@@ -33395,7 +33779,8 @@ module Aws::SageMaker
33395
33779
  #
33396
33780
  # @!attribute [rw] auto_ml_job_objective
33397
33781
  # Specifies a metric to minimize or maximize as the objective of a
33398
- # job.
33782
+ # job. V2 API jobs (for example jobs created by calling
33783
+ # `CreateAutoMLJobV2`), support `Accuracy` only.
33399
33784
  # @return [Types::AutoMLJobObjective]
33400
33785
  #
33401
33786
  # @!attribute [rw] problem_type
@@ -33877,7 +34262,7 @@ module Aws::SageMaker
33877
34262
  # location.
33878
34263
  #
33879
34264
  # The IAM `roleARN` that is passed as a parameter to
33880
- # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`\:
34265
+ # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
33881
34266
  #
33882
34267
  # * `"kms:GenerateDataKey"`
33883
34268
  #
@@ -34916,9 +35301,9 @@ module Aws::SageMaker
34916
35301
  # The desired state of the experiment after stopping. The possible
34917
35302
  # states are the following:
34918
35303
  #
34919
- # * `Completed`\: The experiment completed successfully
35304
+ # * `Completed`: The experiment completed successfully
34920
35305
  #
34921
- # * `Cancelled`\: The experiment was canceled
35306
+ # * `Cancelled`: The experiment was canceled
34922
35307
  # @return [String]
34923
35308
  #
34924
35309
  # @!attribute [rw] reason
@@ -35263,9 +35648,9 @@ module Aws::SageMaker
35263
35648
  # @!attribute [rw] os
35264
35649
  # Specifies a target platform OS.
35265
35650
  #
35266
- # * `LINUX`\: Linux-based operating systems.
35651
+ # * `LINUX`: Linux-based operating systems.
35267
35652
  #
35268
- # * `ANDROID`\: Android operating systems. Android API level can be
35653
+ # * `ANDROID`: Android operating systems. Android API level can be
35269
35654
  # specified using the `ANDROID_PLATFORM` compiler option. For
35270
35655
  # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
35271
35656
  # @return [String]
@@ -35273,27 +35658,27 @@ module Aws::SageMaker
35273
35658
  # @!attribute [rw] arch
35274
35659
  # Specifies a target platform architecture.
35275
35660
  #
35276
- # * `X86_64`\: 64-bit version of the x86 instruction set.
35661
+ # * `X86_64`: 64-bit version of the x86 instruction set.
35277
35662
  #
35278
- # * `X86`\: 32-bit version of the x86 instruction set.
35663
+ # * `X86`: 32-bit version of the x86 instruction set.
35279
35664
  #
35280
- # * `ARM64`\: ARMv8 64-bit CPU.
35665
+ # * `ARM64`: ARMv8 64-bit CPU.
35281
35666
  #
35282
- # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
35667
+ # * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
35283
35668
  #
35284
- # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35669
+ # * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35285
35670
  # platform.
35286
35671
  # @return [String]
35287
35672
  #
35288
35673
  # @!attribute [rw] accelerator
35289
35674
  # Specifies a target platform accelerator (optional).
35290
35675
  #
35291
- # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
35676
+ # * `NVIDIA`: Nvidia graphics processing unit. It also requires
35292
35677
  # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
35293
35678
  #
35294
- # * `MALI`\: ARM Mali graphics processor
35679
+ # * `MALI`: ARM Mali graphics processor
35295
35680
  #
35296
- # * `INTEL_GRAPHICS`\: Integrated Intel graphics
35681
+ # * `INTEL_GRAPHICS`: Integrated Intel graphics
35297
35682
  # @return [String]
35298
35683
  #
35299
35684
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
@@ -35342,6 +35727,34 @@ module Aws::SageMaker
35342
35727
  include Aws::Structure
35343
35728
  end
35344
35729
 
35730
+ # Stores the configuration information for the text classification
35731
+ # problem of an AutoML job using the V2 API.
35732
+ #
35733
+ # @!attribute [rw] completion_criteria
35734
+ # How long a job is allowed to run, or how many candidates a job is
35735
+ # allowed to generate.
35736
+ # @return [Types::AutoMLJobCompletionCriteria]
35737
+ #
35738
+ # @!attribute [rw] content_column
35739
+ # The name of the column used to provide the sentences to be
35740
+ # classified. It should not be the same as the target column.
35741
+ # @return [String]
35742
+ #
35743
+ # @!attribute [rw] target_label_column
35744
+ # The name of the column used to provide the class labels. It should
35745
+ # not be same as the content column.
35746
+ # @return [String]
35747
+ #
35748
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
35749
+ #
35750
+ class TextClassificationJobConfig < Struct.new(
35751
+ :completion_criteria,
35752
+ :content_column,
35753
+ :target_label_column)
35754
+ SENSITIVE = []
35755
+ include Aws::Structure
35756
+ end
35757
+
35345
35758
  # Time series forecast settings for the SageMaker Canvas app.
35346
35759
  #
35347
35760
  # @!attribute [rw] status
@@ -35399,15 +35812,15 @@ module Aws::SageMaker
35399
35812
  # @!attribute [rw] type
35400
35813
  # Traffic routing strategy type.
35401
35814
  #
35402
- # * `ALL_AT_ONCE`\: Endpoint traffic shifts to the new fleet in a
35815
+ # * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
35403
35816
  # single step.
35404
35817
  #
35405
- # * `CANARY`\: Endpoint traffic shifts to the new fleet in two steps.
35818
+ # * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
35406
35819
  # The first step is the canary, which is a small portion of the
35407
35820
  # traffic. The second step is the remainder of the traffic.
35408
35821
  #
35409
- # * `LINEAR`\: Endpoint traffic shifts to the new fleet in n steps of
35410
- # a configurable size.
35822
+ # * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
35823
+ # configurable size.
35411
35824
  # @return [String]
35412
35825
  #
35413
35826
  # @!attribute [rw] wait_interval_in_seconds
@@ -36639,7 +37052,7 @@ module Aws::SageMaker
36639
37052
  #
36640
37053
  # `]`
36641
37054
  #
36642
- # The preceding JSON matches the following `S3Uris`\:
37055
+ # The preceding JSON matches the following `S3Uris`:
36643
37056
  #
36644
37057
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
36645
37058
  #
@@ -37997,29 +38410,29 @@ module Aws::SageMaker
37997
38410
  # @!attribute [rw] vendor_guidance
37998
38411
  # The availability of the image version specified by the maintainer.
37999
38412
  #
38000
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
38001
- # image version stability.
38413
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
38414
+ # version stability.
38002
38415
  #
38003
- # * `STABLE`\: The image version is stable.
38416
+ # * `STABLE`: The image version is stable.
38004
38417
  #
38005
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
38418
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
38006
38419
  # image versions that are set to be archived are automatically
38007
38420
  # archived after three months.
38008
38421
  #
38009
- # * `ARCHIVED`\: The image version is archived. Archived image
38010
- # versions are not searchable and are no longer actively supported.
38422
+ # * `ARCHIVED`: The image version is archived. Archived image versions
38423
+ # are not searchable and are no longer actively supported.
38011
38424
  # @return [String]
38012
38425
  #
38013
38426
  # @!attribute [rw] job_type
38014
38427
  # Indicates SageMaker job type compatibility.
38015
38428
  #
38016
- # * `TRAINING`\: The image version is compatible with SageMaker
38429
+ # * `TRAINING`: The image version is compatible with SageMaker
38017
38430
  # training jobs.
38018
38431
  #
38019
- # * `INFERENCE`\: The image version is compatible with SageMaker
38432
+ # * `INFERENCE`: The image version is compatible with SageMaker
38020
38433
  # inference jobs.
38021
38434
  #
38022
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
38435
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
38023
38436
  # notebook kernels.
38024
38437
  # @return [String]
38025
38438
  #
@@ -38034,9 +38447,9 @@ module Aws::SageMaker
38034
38447
  # @!attribute [rw] processor
38035
38448
  # Indicates CPU or GPU compatibility.
38036
38449
  #
38037
- # * `CPU`\: The image version is compatible with CPU.
38450
+ # * `CPU`: The image version is compatible with CPU.
38038
38451
  #
38039
- # * `GPU`\: The image version is compatible with GPU.
38452
+ # * `GPU`: The image version is compatible with GPU.
38040
38453
  # @return [String]
38041
38454
  #
38042
38455
  # @!attribute [rw] horovod
@@ -38158,13 +38571,13 @@ module Aws::SageMaker
38158
38571
  # Different organizations might have different criteria for model card
38159
38572
  # review and approval.
38160
38573
  #
38161
- # * `Draft`\: The model card is a work in progress.
38574
+ # * `Draft`: The model card is a work in progress.
38162
38575
  #
38163
- # * `PendingReview`\: The model card is pending review.
38576
+ # * `PendingReview`: The model card is pending review.
38164
38577
  #
38165
- # * `Approved`\: The model card is approved.
38578
+ # * `Approved`: The model card is approved.
38166
38579
  #
38167
- # * `Archived`\: The model card is archived. No more updates should be
38580
+ # * `Archived`: The model card is archived. No more updates should be
38168
38581
  # made to the model card, but it can still be exported.
38169
38582
  # @return [String]
38170
38583
  #
@@ -39162,15 +39575,15 @@ module Aws::SageMaker
39162
39575
  # @!attribute [rw] variant_property_type
39163
39576
  # The type of variant property. The supported values are:
39164
39577
  #
39165
- # * `DesiredInstanceCount`\: Overrides the existing variant instance
39578
+ # * `DesiredInstanceCount`: Overrides the existing variant instance
39166
39579
  # counts using the ProductionVariant$InitialInstanceCount values in
39167
39580
  # the CreateEndpointConfigInput$ProductionVariants.
39168
39581
  #
39169
- # * `DesiredWeight`\: Overrides the existing variant weights using the
39582
+ # * `DesiredWeight`: Overrides the existing variant weights using the
39170
39583
  # ProductionVariant$InitialVariantWeight values in the
39171
39584
  # CreateEndpointConfigInput$ProductionVariants.
39172
39585
  #
39173
- # * `DataCaptureConfig`\: (Not currently supported.)
39586
+ # * `DataCaptureConfig`: (Not currently supported.)
39174
39587
  # @return [String]
39175
39588
  #
39176
39589
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
@@ -39248,16 +39661,16 @@ module Aws::SageMaker
39248
39661
  # @!attribute [rw] status
39249
39662
  # The status of the warm pool.
39250
39663
  #
39251
- # * `InUse`\: The warm pool is in use for the training job.
39664
+ # * `InUse`: The warm pool is in use for the training job.
39252
39665
  #
39253
- # * `Available`\: The warm pool is available to reuse for a matching
39666
+ # * `Available`: The warm pool is available to reuse for a matching
39254
39667
  # training job.
39255
39668
  #
39256
- # * `Reused`\: The warm pool moved to a matching training job for
39669
+ # * `Reused`: The warm pool moved to a matching training job for
39257
39670
  # reuse.
39258
39671
  #
39259
- # * `Terminated`\: The warm pool is no longer available. Warm pools
39260
- # are unavailable if they are terminated by a user, terminated for a
39672
+ # * `Terminated`: The warm pool is no longer available. Warm pools are
39673
+ # unavailable if they are terminated by a user, terminated for a
39261
39674
  # patch update, or terminated for exceeding the specified
39262
39675
  # `KeepAlivePeriodInSeconds`.
39263
39676
  # @return [String]