aws-sdk-sagemaker 1.168.0 → 1.170.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -374,7 +374,7 @@ module Aws::SageMaker
374
374
  # * You use one of the SageMaker built-in algorithms
375
375
  #
376
376
  # * You use one of the following [Prebuilt SageMaker Docker
377
- # Images][1]\:
377
+ # Images][1]:
378
378
  #
379
379
  # * Tensorflow (version >= 1.15)
380
380
  #
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
1714
1714
  # @return [String]
1715
1715
  #
1716
1716
  # @!attribute [rw] inference_containers
1717
- # Information about the inference container definitions.
1717
+ # Information about the recommended inference container definitions.
1718
1718
  # @return [Array<Types::AutoMLContainerDefinition>]
1719
1719
  #
1720
1720
  # @!attribute [rw] creation_time
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
1737
1737
  # The properties of an AutoML candidate job.
1738
1738
  # @return [Types::CandidateProperties]
1739
1739
  #
1740
+ # @!attribute [rw] inference_container_definitions
1741
+ # The mapping of all supported processing unit (CPU, GPU, etc...) to
1742
+ # inference container definitions for the candidate. This field is
1743
+ # populated for the V2 API only (for example, for jobs created by
1744
+ # calling `CreateAutoMLJobV2`).
1745
+ # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1746
+ #
1740
1747
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1741
1748
  #
1742
1749
  class AutoMLCandidate < Struct.new(
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
1750
1757
  :end_time,
1751
1758
  :last_modified_time,
1752
1759
  :failure_reason,
1753
- :candidate_properties)
1760
+ :candidate_properties,
1761
+ :inference_container_definitions)
1754
1762
  SENSITIVE = []
1755
1763
  include Aws::Structure
1756
1764
  end
@@ -1955,9 +1963,14 @@ module Aws::SageMaker
1955
1963
  end
1956
1964
 
1957
1965
  # This structure specifies how to split the data into train and
1958
- # validation datasets. The validation and training datasets must contain
1959
- # the same headers. The validation dataset must be less than 2 GB in
1960
- # size.
1966
+ # validation datasets.
1967
+ #
1968
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
1969
+ # API for Natural Language Processing problems (for example
1970
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
1971
+ # type), the validation and training datasets must contain the same
1972
+ # headers. Also, for V1 API jobs, the validation dataset must be less
1973
+ # than 2 GB in size.
1961
1974
  #
1962
1975
  # @!attribute [rw] validation_fraction
1963
1976
  # The validation fraction (optional) is a float that specifies the
@@ -1993,17 +2006,65 @@ module Aws::SageMaker
1993
2006
  include Aws::Structure
1994
2007
  end
1995
2008
 
2009
+ # A channel is a named input source that training algorithms can
2010
+ # consume. This channel is used for the non tabular training data of an
2011
+ # AutoML job using the V2 API. For tabular training data, see . For more
2012
+ # information, see .
2013
+ #
2014
+ # @!attribute [rw] channel_type
2015
+ # The type of channel. Defines whether the data are used for training
2016
+ # or validation. The default value is `training`. Channels for
2017
+ # `training` and `validation` must share the same `ContentType`
2018
+ # @return [String]
2019
+ #
2020
+ # @!attribute [rw] content_type
2021
+ # The content type of the data from the input source. The following
2022
+ # are the allowed content types for different problems:
2023
+ #
2024
+ # * ImageClassification: `image/png`, `image/jpeg`, `image/*`
2025
+ #
2026
+ # * TextClassification: `text/csv;header=present`
2027
+ # @return [String]
2028
+ #
2029
+ # @!attribute [rw] compression_type
2030
+ # The allowed compression types depend on the input format. We allow
2031
+ # the compression type `Gzip` for `S3Prefix` inputs only. For all
2032
+ # other inputs, the compression type should be `None`. If no
2033
+ # compression type is provided, we default to `None`.
2034
+ # @return [String]
2035
+ #
2036
+ # @!attribute [rw] data_source
2037
+ # The data source for an AutoML channel.
2038
+ # @return [Types::AutoMLDataSource]
2039
+ #
2040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
2041
+ #
2042
+ class AutoMLJobChannel < Struct.new(
2043
+ :channel_type,
2044
+ :content_type,
2045
+ :compression_type,
2046
+ :data_source)
2047
+ SENSITIVE = []
2048
+ include Aws::Structure
2049
+ end
2050
+
1996
2051
  # How long a job is allowed to run, or how many candidates a job is
1997
2052
  # allowed to generate.
1998
2053
  #
1999
2054
  # @!attribute [rw] max_candidates
2000
2055
  # The maximum number of times a training job is allowed to run.
2056
+ #
2057
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2058
+ # supported value is 1.
2001
2059
  # @return [Integer]
2002
2060
  #
2003
2061
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2004
2062
  # The maximum time, in seconds, that each training job executed inside
2005
2063
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2006
2064
  # tuning job. For more information, see the used by the action.
2065
+ #
2066
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2067
+ # field controls the runtime of the job candidate.
2007
2068
  # @return [Integer]
2008
2069
  #
2009
2070
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -2092,6 +2153,8 @@ module Aws::SageMaker
2092
2153
  end
2093
2154
 
2094
2155
  # Specifies a metric to minimize or maximize as the objective of a job.
2156
+ # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2157
+ # support `Accuracy` only.
2095
2158
  #
2096
2159
  # @!attribute [rw] metric_name
2097
2160
  # The name of the objective metric used to measure the predictive
@@ -2270,11 +2333,11 @@ module Aws::SageMaker
2270
2333
  # If you do not specify a metric explicitly, the default behavior is
2271
2334
  # to automatically use:
2272
2335
  #
2273
- # * `MSE`\: for regression.
2336
+ # * `MSE`: for regression.
2274
2337
  #
2275
- # * `F1`\: for binary classification
2338
+ # * `F1`: for binary classification
2276
2339
  #
2277
- # * `Accuracy`\: for multiclass classification.
2340
+ # * `Accuracy`: for multiclass classification.
2278
2341
  # @return [String]
2279
2342
  #
2280
2343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2387,30 +2450,94 @@ module Aws::SageMaker
2387
2450
  include Aws::Structure
2388
2451
  end
2389
2452
 
2390
- # The Amazon S3 data source.
2453
+ # A collection of settings specific to the problem type used to
2454
+ # configure an AutoML job using the V2 API. There must be one and only
2455
+ # one config of the following type.
2456
+ #
2457
+ # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2458
+ #
2459
+ # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2460
+ #
2461
+ # @!attribute [rw] image_classification_job_config
2462
+ # Settings used to configure an AutoML job using the V2 API for the
2463
+ # image classification problem type.
2464
+ # @return [Types::ImageClassificationJobConfig]
2465
+ #
2466
+ # @!attribute [rw] text_classification_job_config
2467
+ # Settings used to configure an AutoML job using the V2 API for the
2468
+ # text classification problem type.
2469
+ # @return [Types::TextClassificationJobConfig]
2470
+ #
2471
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2472
+ #
2473
+ class AutoMLProblemTypeConfig < Struct.new(
2474
+ :image_classification_job_config,
2475
+ :text_classification_job_config,
2476
+ :unknown)
2477
+ SENSITIVE = []
2478
+ include Aws::Structure
2479
+ include Aws::Structure::Union
2480
+
2481
+ class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2482
+ class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2483
+ class Unknown < AutoMLProblemTypeConfig; end
2484
+ end
2485
+
2486
+ # Describes the Amazon S3 data source.
2391
2487
  #
2392
2488
  # @!attribute [rw] s3_data_type
2393
2489
  # The data type.
2394
2490
  #
2395
- # A ManifestFile should have the format shown below:
2491
+ # * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2492
+ # SageMaker uses all objects that match the specified key name
2493
+ # prefix for model training.
2494
+ #
2495
+ # The `S3Prefix` should have the following format:
2496
+ #
2497
+ # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2498
+ #
2499
+ # * If you choose `ManifestFile`, `S3Uri` identifies an object that is
2500
+ # a manifest file containing a list of object keys that you want
2501
+ # SageMaker to use for model training.
2502
+ #
2503
+ # A `ManifestFile` should have the format shown below:
2504
+ #
2505
+ # `[ \{"prefix":
2506
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2507
+ # `
2508
+ #
2509
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2510
+ #
2511
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2512
+ #
2513
+ # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2514
+ #
2515
+ # * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
2516
+ # object that is an augmented manifest file in JSON lines format.
2517
+ # This file contains the data you want to use for model training.
2518
+ # `AugmentedManifestFile` is available for V2 API jobs only (for
2519
+ # example, for jobs created by calling `CreateAutoMLJobV2`).
2396
2520
  #
2397
- # `[ \{"prefix":
2398
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2399
- # `
2521
+ # Here is a minimal, single-record example of an
2522
+ # `AugmentedManifestFile`:
2400
2523
  #
2401
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2524
+ # `\{"source-ref":
2525
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2402
2526
  #
2403
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2527
+ # `"label-metadata": \{"class-name": "cat"` \\}
2404
2528
  #
2405
- # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2529
+ # For more information on `AugmentedManifestFile`, see [Provide
2530
+ # Dataset Metadata to Training Jobs with an Augmented Manifest
2531
+ # File][1].
2406
2532
  #
2407
- # An S3Prefix should have the following format:
2408
2533
  #
2409
- # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2534
+ #
2535
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
2410
2536
  # @return [String]
2411
2537
  #
2412
2538
  # @!attribute [rw] s3_uri
2413
- # The URL to the Amazon S3 data source.
2539
+ # The URL to the Amazon S3 data source. The Uri refers to the Amazon
2540
+ # S3 prefix or ManifestFile depending on the data type.
2414
2541
  # @return [String]
2415
2542
  #
2416
2543
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
@@ -2860,10 +2987,10 @@ module Aws::SageMaker
2860
2987
  # @!attribute [rw] type
2861
2988
  # Specifies the endpoint capacity type.
2862
2989
  #
2863
- # * `INSTANCE_COUNT`\: The endpoint activates based on the number of
2990
+ # * `INSTANCE_COUNT`: The endpoint activates based on the number of
2864
2991
  # instances.
2865
2992
  #
2866
- # * `CAPACITY_PERCENT`\: The endpoint activates based on the specified
2993
+ # * `CAPACITY_PERCENT`: The endpoint activates based on the specified
2867
2994
  # percentage of capacity.
2868
2995
  # @return [String]
2869
2996
  #
@@ -3293,7 +3420,7 @@ module Aws::SageMaker
3293
3420
  # from the model container output if the model container is in JSON
3294
3421
  # Lines format.
3295
3422
  #
3296
- # **Example**\: If the model container output of a single request is
3423
+ # **Example**: If the model container output of a single request is
3297
3424
  # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3298
3425
  # `ProbabilityAttribute` to `'probability'`.
3299
3426
  # @return [String]
@@ -3302,7 +3429,7 @@ module Aws::SageMaker
3302
3429
  # A JMESPath expression used to locate the list of label headers in
3303
3430
  # the model container output.
3304
3431
  #
3305
- # **Example**\: If the model container output of a batch request is
3432
+ # **Example**: If the model container output of a batch request is
3306
3433
  # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3307
3434
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3308
3435
  # headers `["cat","dog","fish"]`
@@ -4370,7 +4497,7 @@ module Aws::SageMaker
4370
4497
  # @return [Types::AutoMLOutputDataConfig]
4371
4498
  #
4372
4499
  # @!attribute [rw] problem_type
4373
- # Defines the type of supervised learning available for the
4500
+ # Defines the type of supervised learning problem available for the
4374
4501
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4375
4502
  # problem types and algorithm support][1].
4376
4503
  #
@@ -4382,7 +4509,8 @@ module Aws::SageMaker
4382
4509
  # @!attribute [rw] auto_ml_job_objective
4383
4510
  # Defines the objective metric used to measure the predictive quality
4384
4511
  # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4385
- # Autopilot infers whether to minimize or maximize it.
4512
+ # Autopilot infers whether to minimize or maximize it. For , only
4513
+ # `Accuracy` is supported.
4386
4514
  # @return [Types::AutoMLJobObjective]
4387
4515
  #
4388
4516
  # @!attribute [rw] auto_ml_job_config
@@ -4400,8 +4528,15 @@ module Aws::SageMaker
4400
4528
  # @return [Boolean]
4401
4529
  #
4402
4530
  # @!attribute [rw] tags
4403
- # Each tag consists of a key and an optional value. Tag keys must be
4404
- # unique per resource.
4531
+ # An array of key-value pairs. You can use tags to categorize your
4532
+ # Amazon Web Services resources in different ways, for example, by
4533
+ # purpose, owner, or environment. For more information, see [Tagging
4534
+ # Amazon Web ServicesResources][1]. Tag keys must be unique per
4535
+ # resource.
4536
+ #
4537
+ #
4538
+ #
4539
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4405
4540
  # @return [Array<Types::Tag>]
4406
4541
  #
4407
4542
  # @!attribute [rw] model_deploy_config
@@ -4438,6 +4573,108 @@ module Aws::SageMaker
4438
4573
  include Aws::Structure
4439
4574
  end
4440
4575
 
4576
+ # @!attribute [rw] auto_ml_job_name
4577
+ # Identifies an Autopilot job. The name must be unique to your account
4578
+ # and is case insensitive.
4579
+ # @return [String]
4580
+ #
4581
+ # @!attribute [rw] auto_ml_job_input_data_config
4582
+ # An array of channel objects describing the input data and their
4583
+ # location. Each channel is a named input source. Similar to
4584
+ # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4585
+ # formats depend on the problem type:
4586
+ #
4587
+ # * ImageClassification: S3Prefix, `ManifestFile`,
4588
+ # `AugmentedManifestFile`
4589
+ #
4590
+ # * TextClassification: S3Prefix
4591
+ #
4592
+ #
4593
+ #
4594
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
4595
+ # @return [Array<Types::AutoMLJobChannel>]
4596
+ #
4597
+ # @!attribute [rw] output_data_config
4598
+ # Provides information about encryption and the Amazon S3 output path
4599
+ # needed to store artifacts from an AutoML job.
4600
+ # @return [Types::AutoMLOutputDataConfig]
4601
+ #
4602
+ # @!attribute [rw] auto_ml_problem_type_config
4603
+ # Defines the configuration settings of one of the supported problem
4604
+ # types.
4605
+ # @return [Types::AutoMLProblemTypeConfig]
4606
+ #
4607
+ # @!attribute [rw] role_arn
4608
+ # The ARN of the role that is used to access the data.
4609
+ # @return [String]
4610
+ #
4611
+ # @!attribute [rw] tags
4612
+ # An array of key-value pairs. You can use tags to categorize your
4613
+ # Amazon Web Services resources in different ways, such as by purpose,
4614
+ # owner, or environment. For more information, see [Tagging Amazon Web
4615
+ # ServicesResources][1]. Tag keys must be unique per resource.
4616
+ #
4617
+ #
4618
+ #
4619
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4620
+ # @return [Array<Types::Tag>]
4621
+ #
4622
+ # @!attribute [rw] security_config
4623
+ # The security configuration for traffic encryption or Amazon VPC
4624
+ # settings.
4625
+ # @return [Types::AutoMLSecurityConfig]
4626
+ #
4627
+ # @!attribute [rw] auto_ml_job_objective
4628
+ # Specifies a metric to minimize or maximize as the objective of a
4629
+ # job. For , only `Accuracy` is supported.
4630
+ # @return [Types::AutoMLJobObjective]
4631
+ #
4632
+ # @!attribute [rw] model_deploy_config
4633
+ # Specifies how to generate the endpoint name for an automatic
4634
+ # one-click Autopilot model deployment.
4635
+ # @return [Types::ModelDeployConfig]
4636
+ #
4637
+ # @!attribute [rw] data_split_config
4638
+ # This structure specifies how to split the data into train and
4639
+ # validation datasets.
4640
+ #
4641
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4642
+ # V2 API for Natural Language Processing problems (for example
4643
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4644
+ # type), the validation and training datasets must contain the same
4645
+ # headers. Also, for V1 API jobs, the validation dataset must be less
4646
+ # than 2 GB in size.
4647
+ # @return [Types::AutoMLDataSplitConfig]
4648
+ #
4649
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
4650
+ #
4651
+ class CreateAutoMLJobV2Request < Struct.new(
4652
+ :auto_ml_job_name,
4653
+ :auto_ml_job_input_data_config,
4654
+ :output_data_config,
4655
+ :auto_ml_problem_type_config,
4656
+ :role_arn,
4657
+ :tags,
4658
+ :security_config,
4659
+ :auto_ml_job_objective,
4660
+ :model_deploy_config,
4661
+ :data_split_config)
4662
+ SENSITIVE = []
4663
+ include Aws::Structure
4664
+ end
4665
+
4666
+ # @!attribute [rw] auto_ml_job_arn
4667
+ # The unique ARN assigned to the AutoMLJob when it is created.
4668
+ # @return [String]
4669
+ #
4670
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
4671
+ #
4672
+ class CreateAutoMLJobV2Response < Struct.new(
4673
+ :auto_ml_job_arn)
4674
+ SENSITIVE = []
4675
+ include Aws::Structure
4676
+ end
4677
+
4441
4678
  # @!attribute [rw] code_repository_name
4442
4679
  # The name of the Git repository. The name must have 1 to 63
4443
4680
  # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
@@ -4578,7 +4815,7 @@ module Aws::SageMaker
4578
4815
  # response. Amazon SageMaker returns the following data in JSON
4579
4816
  # format:
4580
4817
  #
4581
- # * `CompilationJobArn`\: The Amazon Resource Name (ARN) of the
4818
+ # * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
4582
4819
  # compiled job.
4583
4820
  #
4584
4821
  # ^
@@ -5244,11 +5481,11 @@ module Aws::SageMaker
5244
5481
  #
5245
5482
  # An `EventTime` can be a `String` or `Fractional`.
5246
5483
  #
5247
- # * `Fractional`\: `EventTime` feature values must be a Unix timestamp
5484
+ # * `Fractional`: `EventTime` feature values must be a Unix timestamp
5248
5485
  # in seconds.
5249
5486
  #
5250
- # * `String`\: `EventTime` feature values must be an ISO-8601 string
5251
- # in the format. The following formats are supported
5487
+ # * `String`: `EventTime` feature values must be an ISO-8601 string in
5488
+ # the format. The following formats are supported
5252
5489
  # `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
5253
5490
  # `yyyy`, `MM`, and `dd` represent the year, month, and day
5254
5491
  # respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
@@ -5668,29 +5905,29 @@ module Aws::SageMaker
5668
5905
  # @!attribute [rw] vendor_guidance
5669
5906
  # The stability of the image version, specified by the maintainer.
5670
5907
  #
5671
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5672
- # image version stability.
5908
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
5909
+ # version stability.
5673
5910
  #
5674
- # * `STABLE`\: The image version is stable.
5911
+ # * `STABLE`: The image version is stable.
5675
5912
  #
5676
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5913
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
5677
5914
  # image versions that are set to be archived are automatically
5678
5915
  # archived after three months.
5679
5916
  #
5680
- # * `ARCHIVED`\: The image version is archived. Archived image
5681
- # versions are not searchable and are no longer actively supported.
5917
+ # * `ARCHIVED`: The image version is archived. Archived image versions
5918
+ # are not searchable and are no longer actively supported.
5682
5919
  # @return [String]
5683
5920
  #
5684
5921
  # @!attribute [rw] job_type
5685
5922
  # Indicates SageMaker job type compatibility.
5686
5923
  #
5687
- # * `TRAINING`\: The image version is compatible with SageMaker
5924
+ # * `TRAINING`: The image version is compatible with SageMaker
5688
5925
  # training jobs.
5689
5926
  #
5690
- # * `INFERENCE`\: The image version is compatible with SageMaker
5927
+ # * `INFERENCE`: The image version is compatible with SageMaker
5691
5928
  # inference jobs.
5692
5929
  #
5693
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5930
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
5694
5931
  # notebook kernels.
5695
5932
  # @return [String]
5696
5933
  #
@@ -5705,9 +5942,9 @@ module Aws::SageMaker
5705
5942
  # @!attribute [rw] processor
5706
5943
  # Indicates CPU or GPU compatibility.
5707
5944
  #
5708
- # * `CPU`\: The image version is compatible with CPU.
5945
+ # * `CPU`: The image version is compatible with CPU.
5709
5946
  #
5710
- # * `GPU`\: The image version is compatible with GPU.
5947
+ # * `GPU`: The image version is compatible with GPU.
5711
5948
  # @return [String]
5712
5949
  #
5713
5950
  # @!attribute [rw] horovod
@@ -5756,7 +5993,7 @@ module Aws::SageMaker
5756
5993
  # The type of the inference experiment that you want to run. The
5757
5994
  # following types of experiments are possible:
5758
5995
  #
5759
- # * `ShadowMode`\: You can use this type to validate a shadow variant.
5996
+ # * `ShadowMode`: You can use this type to validate a shadow variant.
5760
5997
  # For more information, see [Shadow tests][1].
5761
5998
  #
5762
5999
  # ^
@@ -6334,13 +6571,13 @@ module Aws::SageMaker
6334
6571
  # Different organizations might have different criteria for model card
6335
6572
  # review and approval.
6336
6573
  #
6337
- # * `Draft`\: The model card is a work in progress.
6574
+ # * `Draft`: The model card is a work in progress.
6338
6575
  #
6339
- # * `PendingReview`\: The model card is pending review.
6576
+ # * `PendingReview`: The model card is pending review.
6340
6577
  #
6341
- # * `Approved`\: The model card is approved.
6578
+ # * `Approved`: The model card is approved.
6342
6579
  #
6343
- # * `Archived`\: The model card is archived. No more updates should be
6580
+ # * `Archived`: The model card is archived. No more updates should be
6344
6581
  # made to the model card, but it can still be exported.
6345
6582
  # @return [String]
6346
6583
  #
@@ -10279,6 +10516,130 @@ module Aws::SageMaker
10279
10516
  include Aws::Structure
10280
10517
  end
10281
10518
 
10519
+ # @!attribute [rw] auto_ml_job_name
10520
+ # Requests information about an AutoML V2 job using its unique name.
10521
+ # @return [String]
10522
+ #
10523
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
10524
+ #
10525
+ class DescribeAutoMLJobV2Request < Struct.new(
10526
+ :auto_ml_job_name)
10527
+ SENSITIVE = []
10528
+ include Aws::Structure
10529
+ end
10530
+
10531
+ # @!attribute [rw] auto_ml_job_name
10532
+ # Returns the name of the AutoML V2 job.
10533
+ # @return [String]
10534
+ #
10535
+ # @!attribute [rw] auto_ml_job_arn
10536
+ # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10537
+ # @return [String]
10538
+ #
10539
+ # @!attribute [rw] auto_ml_job_input_data_config
10540
+ # Returns an array of channel objects describing the input data and
10541
+ # their location.
10542
+ # @return [Array<Types::AutoMLJobChannel>]
10543
+ #
10544
+ # @!attribute [rw] output_data_config
10545
+ # Returns the job's output data config.
10546
+ # @return [Types::AutoMLOutputDataConfig]
10547
+ #
10548
+ # @!attribute [rw] role_arn
10549
+ # The ARN of the Identity and Access Management role that has read
10550
+ # permission to the input data location and write permission to the
10551
+ # output data location in Amazon S3.
10552
+ # @return [String]
10553
+ #
10554
+ # @!attribute [rw] auto_ml_job_objective
10555
+ # Returns the job's objective.
10556
+ # @return [Types::AutoMLJobObjective]
10557
+ #
10558
+ # @!attribute [rw] auto_ml_problem_type_config
10559
+ # Returns the configuration settings of the problem type set for the
10560
+ # AutoML V2 job.
10561
+ # @return [Types::AutoMLProblemTypeConfig]
10562
+ #
10563
+ # @!attribute [rw] creation_time
10564
+ # Returns the creation time of the AutoML V2 job.
10565
+ # @return [Time]
10566
+ #
10567
+ # @!attribute [rw] end_time
10568
+ # Returns the end time of the AutoML V2 job.
10569
+ # @return [Time]
10570
+ #
10571
+ # @!attribute [rw] last_modified_time
10572
+ # Returns the job's last modified time.
10573
+ # @return [Time]
10574
+ #
10575
+ # @!attribute [rw] failure_reason
10576
+ # Returns the reason for the failure of the AutoML V2 job, when
10577
+ # applicable.
10578
+ # @return [String]
10579
+ #
10580
+ # @!attribute [rw] partial_failure_reasons
10581
+ # Returns a list of reasons for partial failures within an AutoML V2
10582
+ # job.
10583
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10584
+ #
10585
+ # @!attribute [rw] best_candidate
10586
+ # Information about the candidate produced by an AutoML training job
10587
+ # V2, including its status, steps, and other properties.
10588
+ # @return [Types::AutoMLCandidate]
10589
+ #
10590
+ # @!attribute [rw] auto_ml_job_status
10591
+ # Returns the status of the AutoML V2 job.
10592
+ # @return [String]
10593
+ #
10594
+ # @!attribute [rw] auto_ml_job_secondary_status
10595
+ # Returns the secondary status of the AutoML V2 job.
10596
+ # @return [String]
10597
+ #
10598
+ # @!attribute [rw] model_deploy_config
10599
+ # Indicates whether the model was deployed automatically to an
10600
+ # endpoint and the name of that endpoint if deployed automatically.
10601
+ # @return [Types::ModelDeployConfig]
10602
+ #
10603
+ # @!attribute [rw] model_deploy_result
10604
+ # Provides information about endpoint for the model deployment.
10605
+ # @return [Types::ModelDeployResult]
10606
+ #
10607
+ # @!attribute [rw] data_split_config
10608
+ # Returns the configuration settings of how the data are split into
10609
+ # train and validation datasets.
10610
+ # @return [Types::AutoMLDataSplitConfig]
10611
+ #
10612
+ # @!attribute [rw] security_config
10613
+ # Returns the security configuration for traffic encryption or Amazon
10614
+ # VPC settings.
10615
+ # @return [Types::AutoMLSecurityConfig]
10616
+ #
10617
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10618
+ #
10619
+ class DescribeAutoMLJobV2Response < Struct.new(
10620
+ :auto_ml_job_name,
10621
+ :auto_ml_job_arn,
10622
+ :auto_ml_job_input_data_config,
10623
+ :output_data_config,
10624
+ :role_arn,
10625
+ :auto_ml_job_objective,
10626
+ :auto_ml_problem_type_config,
10627
+ :creation_time,
10628
+ :end_time,
10629
+ :last_modified_time,
10630
+ :failure_reason,
10631
+ :partial_failure_reasons,
10632
+ :best_candidate,
10633
+ :auto_ml_job_status,
10634
+ :auto_ml_job_secondary_status,
10635
+ :model_deploy_config,
10636
+ :model_deploy_result,
10637
+ :data_split_config,
10638
+ :security_config)
10639
+ SENSITIVE = []
10640
+ include Aws::Structure
10641
+ end
10642
+
10282
10643
  # @!attribute [rw] code_repository_name
10283
10644
  # The name of the Git repository to describe.
10284
10645
  # @return [String]
@@ -11199,21 +11560,21 @@ module Aws::SageMaker
11199
11560
  # @!attribute [rw] endpoint_status
11200
11561
  # The status of the endpoint.
11201
11562
  #
11202
- # * `OutOfService`\: Endpoint is not available to take incoming
11563
+ # * `OutOfService`: Endpoint is not available to take incoming
11203
11564
  # requests.
11204
11565
  #
11205
- # * `Creating`\: CreateEndpoint is executing.
11566
+ # * `Creating`: CreateEndpoint is executing.
11206
11567
  #
11207
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11568
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11208
11569
  # is executing.
11209
11570
  #
11210
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
11211
- # be updated or deleted or re-scaled until it has completed. This
11571
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
11572
+ # updated or deleted or re-scaled until it has completed. This
11212
11573
  # maintenance operation does not change any customer-specified
11213
11574
  # values such as VPC config, KMS encryption, model, instance type,
11214
11575
  # or instance count.
11215
11576
  #
11216
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
11577
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
11217
11578
  # variant weight and is in the process of rolling back to its
11218
11579
  # previous configuration. Once the rollback completes, endpoint
11219
11580
  # returns to an `InService` status. This transitional status only
@@ -11222,11 +11583,11 @@ module Aws::SageMaker
11222
11583
  # UpdateEndpointWeightsAndCapacities call or when the
11223
11584
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
11224
11585
  #
11225
- # * `InService`\: Endpoint is available to process incoming requests.
11586
+ # * `InService`: Endpoint is available to process incoming requests.
11226
11587
  #
11227
- # * `Deleting`\: DeleteEndpoint is executing.
11588
+ # * `Deleting`: DeleteEndpoint is executing.
11228
11589
  #
11229
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
11590
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
11230
11591
  # Use DescribeEndpointOutput$FailureReason for information about the
11231
11592
  # failure. DeleteEndpoint is the only operation that can be
11232
11593
  # performed on a failed endpoint.
@@ -12130,29 +12491,29 @@ module Aws::SageMaker
12130
12491
  # @!attribute [rw] vendor_guidance
12131
12492
  # The stability of the image version specified by the maintainer.
12132
12493
  #
12133
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
12134
- # image version stability.
12494
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
12495
+ # version stability.
12135
12496
  #
12136
- # * `STABLE`\: The image version is stable.
12497
+ # * `STABLE`: The image version is stable.
12137
12498
  #
12138
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
12499
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
12139
12500
  # image versions that are set to be archived are automatically
12140
12501
  # archived after three months.
12141
12502
  #
12142
- # * `ARCHIVED`\: The image version is archived. Archived image
12143
- # versions are not searchable and are no longer actively supported.
12503
+ # * `ARCHIVED`: The image version is archived. Archived image versions
12504
+ # are not searchable and are no longer actively supported.
12144
12505
  # @return [String]
12145
12506
  #
12146
12507
  # @!attribute [rw] job_type
12147
12508
  # Indicates SageMaker job type compatibility.
12148
12509
  #
12149
- # * `TRAINING`\: The image version is compatible with SageMaker
12510
+ # * `TRAINING`: The image version is compatible with SageMaker
12150
12511
  # training jobs.
12151
12512
  #
12152
- # * `INFERENCE`\: The image version is compatible with SageMaker
12513
+ # * `INFERENCE`: The image version is compatible with SageMaker
12153
12514
  # inference jobs.
12154
12515
  #
12155
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12516
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
12156
12517
  # notebook kernels.
12157
12518
  # @return [String]
12158
12519
  #
@@ -12167,9 +12528,9 @@ module Aws::SageMaker
12167
12528
  # @!attribute [rw] processor
12168
12529
  # Indicates CPU or GPU compatibility.
12169
12530
  #
12170
- # * `CPU`\: The image version is compatible with CPU.
12531
+ # * `CPU`: The image version is compatible with CPU.
12171
12532
  #
12172
- # * `GPU`\: The image version is compatible with GPU.
12533
+ # * `GPU`: The image version is compatible with GPU.
12173
12534
  # @return [String]
12174
12535
  #
12175
12536
  # @!attribute [rw] horovod
@@ -12767,11 +13128,11 @@ module Aws::SageMaker
12767
13128
  # @!attribute [rw] status
12768
13129
  # The completion status of the model card export job.
12769
13130
  #
12770
- # * `InProgress`\: The model card export job is in progress.
13131
+ # * `InProgress`: The model card export job is in progress.
12771
13132
  #
12772
- # * `Completed`\: The model card export job is complete.
13133
+ # * `Completed`: The model card export job is complete.
12773
13134
  #
12774
- # * `Failed`\: The model card export job failed. To see the reason for
13135
+ # * `Failed`: The model card export job failed. To see the reason for
12775
13136
  # the failure, see the `FailureReason` field in the response to a
12776
13137
  # `DescribeModelCardExportJob` call.
12777
13138
  # @return [String]
@@ -12860,13 +13221,13 @@ module Aws::SageMaker
12860
13221
  # Different organizations might have different criteria for model card
12861
13222
  # review and approval.
12862
13223
  #
12863
- # * `Draft`\: The model card is a work in progress.
13224
+ # * `Draft`: The model card is a work in progress.
12864
13225
  #
12865
- # * `PendingReview`\: The model card is pending review.
13226
+ # * `PendingReview`: The model card is pending review.
12866
13227
  #
12867
- # * `Approved`\: The model card is approved.
13228
+ # * `Approved`: The model card is approved.
12868
13229
  #
12869
- # * `Archived`\: The model card is archived. No more updates should be
13230
+ # * `Archived`: The model card is archived. No more updates should be
12870
13231
  # made to the model card, but it can still be exported.
12871
13232
  # @return [String]
12872
13233
  #
@@ -12897,18 +13258,18 @@ module Aws::SageMaker
12897
13258
  # `ModelCardProcessingStatus` updates throughout the different
12898
13259
  # deletion steps.
12899
13260
  #
12900
- # * `DeletePending`\: Model card deletion request received.
13261
+ # * `DeletePending`: Model card deletion request received.
12901
13262
  #
12902
- # * `DeleteInProgress`\: Model card deletion is in progress.
13263
+ # * `DeleteInProgress`: Model card deletion is in progress.
12903
13264
  #
12904
- # * `ContentDeleted`\: Deleted model card content.
13265
+ # * `ContentDeleted`: Deleted model card content.
12905
13266
  #
12906
- # * `ExportJobsDeleted`\: Deleted all export jobs associated with the
13267
+ # * `ExportJobsDeleted`: Deleted all export jobs associated with the
12907
13268
  # model card.
12908
13269
  #
12909
- # * `DeleteCompleted`\: Successfully deleted the model card.
13270
+ # * `DeleteCompleted`: Successfully deleted the model card.
12910
13271
  #
12911
- # * `DeleteFailed`\: The model card failed to delete.
13272
+ # * `DeleteFailed`: The model card failed to delete.
12912
13273
  # @return [String]
12913
13274
  #
12914
13275
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
@@ -16435,21 +16796,21 @@ module Aws::SageMaker
16435
16796
  # @!attribute [rw] endpoint_status
16436
16797
  # The status of the endpoint.
16437
16798
  #
16438
- # * `OutOfService`\: Endpoint is not available to take incoming
16799
+ # * `OutOfService`: Endpoint is not available to take incoming
16439
16800
  # requests.
16440
16801
  #
16441
- # * `Creating`\: CreateEndpoint is executing.
16802
+ # * `Creating`: CreateEndpoint is executing.
16442
16803
  #
16443
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16804
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16444
16805
  # is executing.
16445
16806
  #
16446
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
16447
- # be updated or deleted or re-scaled until it has completed. This
16807
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
16808
+ # updated or deleted or re-scaled until it has completed. This
16448
16809
  # maintenance operation does not change any customer-specified
16449
16810
  # values such as VPC config, KMS encryption, model, instance type,
16450
16811
  # or instance count.
16451
16812
  #
16452
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
16813
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
16453
16814
  # variant weight and is in the process of rolling back to its
16454
16815
  # previous configuration. Once the rollback completes, endpoint
16455
16816
  # returns to an `InService` status. This transitional status only
@@ -16458,11 +16819,11 @@ module Aws::SageMaker
16458
16819
  # UpdateEndpointWeightsAndCapacities call or when the
16459
16820
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
16460
16821
  #
16461
- # * `InService`\: Endpoint is available to process incoming requests.
16822
+ # * `InService`: Endpoint is available to process incoming requests.
16462
16823
  #
16463
- # * `Deleting`\: DeleteEndpoint is executing.
16824
+ # * `Deleting`: DeleteEndpoint is executing.
16464
16825
  #
16465
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
16826
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
16466
16827
  # Use DescribeEndpointOutput$FailureReason for information about the
16467
16828
  # failure. DeleteEndpoint is the only operation that can be
16468
16829
  # performed on a failed endpoint.
@@ -17087,7 +17448,7 @@ module Aws::SageMaker
17087
17448
  # : To define a metric filter, enter a value using the form
17088
17449
  # `"Metrics.<name>"`, where `<name>` is a metric name. For example,
17089
17450
  # the following filter searches for training jobs with an `"accuracy"`
17090
- # metric greater than `"0.9"`\:
17451
+ # metric greater than `"0.9"`:
17091
17452
  #
17092
17453
  # `\{`
17093
17454
  #
@@ -17107,7 +17468,7 @@ module Aws::SageMaker
17107
17468
  # also a decimal value. If the specified `Value` is an integer, the
17108
17469
  # decimal hyperparameter values are treated as integers. For example,
17109
17470
  # the following filter is satisfied by training jobs with a
17110
- # `"learning_rate"` hyperparameter that is less than `"0.5"`\:
17471
+ # `"learning_rate"` hyperparameter that is less than `"0.5"`:
17111
17472
  #
17112
17473
  # ` \{`
17113
17474
  #
@@ -17264,18 +17625,27 @@ module Aws::SageMaker
17264
17625
  include Aws::Structure
17265
17626
  end
17266
17627
 
17267
- # Shows the final value for the objective metric for a training job that
17268
- # was launched by a hyperparameter tuning job. You define the objective
17628
+ # Shows the latest objective metric emitted by a training job that was
17629
+ # launched by a hyperparameter tuning job. You define the objective
17269
17630
  # metric in the `HyperParameterTuningJobObjective` parameter of
17270
17631
  # HyperParameterTuningJobConfig.
17271
17632
  #
17272
17633
  # @!attribute [rw] type
17273
- # Whether to minimize or maximize the objective metric. Valid values
17274
- # are Minimize and Maximize.
17634
+ # Select if you want to minimize or maximize the objective metric
17635
+ # during hyperparameter tuning.
17275
17636
  # @return [String]
17276
17637
  #
17277
17638
  # @!attribute [rw] metric_name
17278
- # The name of the objective metric.
17639
+ # The name of the objective metric. For SageMaker built-in algorithms,
17640
+ # metrics are defined per algorithm. See the [metrics for XGBoost][1]
17641
+ # as an example. You can also use a custom algorithm for training and
17642
+ # define your own metrics. For more information, see [Define metrics
17643
+ # and environment variables][2].
17644
+ #
17645
+ #
17646
+ #
17647
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-tuning.html
17648
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
17279
17649
  # @return [String]
17280
17650
  #
17281
17651
  # @!attribute [rw] value
@@ -19883,7 +20253,7 @@ module Aws::SageMaker
19883
20253
  # `MaxResource` is not provided, and `Hyperband` is selected as the
19884
20254
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
19885
20255
  # infer `MaxResource` from the following keys (if present) in
19886
- # [StaticsHyperParameters][1]\:
20256
+ # [StaticsHyperParameters][1]:
19887
20257
  #
19888
20258
  # * `epochs`
19889
20259
  #
@@ -19999,6 +20369,22 @@ module Aws::SageMaker
19999
20369
  include Aws::Structure
20000
20370
  end
20001
20371
 
20372
+ # Stores the configuration information for the image classification
20373
+ # problem of an AutoML job using the V2 API.
20374
+ #
20375
+ # @!attribute [rw] completion_criteria
20376
+ # How long a job is allowed to run, or how many candidates a job is
20377
+ # allowed to generate.
20378
+ # @return [Types::AutoMLJobCompletionCriteria]
20379
+ #
20380
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
20381
+ #
20382
+ class ImageClassificationJobConfig < Struct.new(
20383
+ :completion_criteria)
20384
+ SENSITIVE = []
20385
+ include Aws::Structure
20386
+ end
20387
+
20002
20388
  # Specifies whether the model container is in Amazon ECR or a private
20003
20389
  # Docker registry accessible from your Amazon Virtual Private Cloud
20004
20390
  # (VPC).
@@ -20413,7 +20799,7 @@ module Aws::SageMaker
20413
20799
  # @!attribute [rw] step_type
20414
20800
  # The type of the subtask.
20415
20801
  #
20416
- # `BENCHMARK`\: Evaluate the performance of your model on different
20802
+ # `BENCHMARK`: Evaluate the performance of your model on different
20417
20803
  # instance types.
20418
20804
  # @return [String]
20419
20805
  #
@@ -20499,8 +20885,8 @@ module Aws::SageMaker
20499
20885
  # trained model with a JSON dictionary form. The data inputs are
20500
20886
  # InputConfig$Framework specific.
20501
20887
  #
20502
- # * `TensorFlow`\: You must specify the name and shape (NHWC format)
20503
- # of the expected data inputs using a dictionary format for your
20888
+ # * `TensorFlow`: You must specify the name and shape (NHWC format) of
20889
+ # the expected data inputs using a dictionary format for your
20504
20890
  # trained model. The dictionary formats required for the console and
20505
20891
  # CLI are different.
20506
20892
  #
@@ -20518,7 +20904,7 @@ module Aws::SageMaker
20518
20904
  # * If using the CLI, `\{"data1": [1,28,28,1],
20519
20905
  # "data2":[1,28,28,1]\}`
20520
20906
  #
20521
- # * `KERAS`\: You must specify the name and shape (NCHW format) of
20907
+ # * `KERAS`: You must specify the name and shape (NCHW format) of
20522
20908
  # expected data inputs using a dictionary format for your trained
20523
20909
  # model. Note that while Keras model artifacts should be uploaded in
20524
20910
  # NHWC (channel-last) format, `DataInputConfig` should be specified
@@ -20539,7 +20925,7 @@ module Aws::SageMaker
20539
20925
  # * If using the CLI, `\{"input_1": [1,3,224,224],
20540
20926
  # "input_2":[1,3,224,224]\}`
20541
20927
  #
20542
- # * `MXNET/ONNX/DARKNET`\: You must specify the name and shape (NCHW
20928
+ # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
20543
20929
  # format) of the expected data inputs in order using a dictionary
20544
20930
  # format for your trained model. The dictionary formats required for
20545
20931
  # the console and CLI are different.
@@ -20558,12 +20944,12 @@ module Aws::SageMaker
20558
20944
  # * If using the CLI, `\{"var1": [1,1,28,28],
20559
20945
  # "var2":[1,1,28,28]\}`
20560
20946
  #
20561
- # * `PyTorch`\: You can either specify the name and shape (NCHW
20562
- # format) of expected data inputs in order using a dictionary format
20563
- # for your trained model or you can specify the shape only using a
20564
- # list format. The dictionary formats required for the console and
20565
- # CLI are different. The list formats for the console and CLI are
20566
- # the same.
20947
+ # * `PyTorch`: You can either specify the name and shape (NCHW format)
20948
+ # of expected data inputs in order using a dictionary format for
20949
+ # your trained model or you can specify the shape only using a list
20950
+ # format. The dictionary formats required for the console and CLI
20951
+ # are different. The list formats for the console and CLI are the
20952
+ # same.
20567
20953
  #
20568
20954
  # * Examples for one input in dictionary format:
20569
20955
  #
@@ -20584,12 +20970,12 @@ module Aws::SageMaker
20584
20970
  # * Example for two inputs in list format: `[[1,3,224,224],
20585
20971
  # [1,3,224,224]]`
20586
20972
  #
20587
- # * `XGBOOST`\: input data name and shape are not needed.
20973
+ # * `XGBOOST`: input data name and shape are not needed.
20588
20974
  #
20589
20975
  # `DataInputConfig` supports the following parameters for `CoreML`
20590
20976
  # OutputConfig$TargetDevice (ML Model format):
20591
20977
  #
20592
- # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
20978
+ # * `shape`: Input shape, for example `\{"input_1": \{"shape":
20593
20979
  # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
20594
20980
  # converter supports Flexible input shapes:
20595
20981
  #
@@ -20603,21 +20989,21 @@ module Aws::SageMaker
20603
20989
  # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
20604
20990
  # 224, 3], [1, 160, 160, 3]]\}\}`
20605
20991
  #
20606
- # * `default_shape`\: Default input shape. You can set a default shape
20992
+ # * `default_shape`: Default input shape. You can set a default shape
20607
20993
  # during conversion for both Range Dimension and Enumerated Shapes.
20608
20994
  # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
20609
20995
  # "default_shape": [1, 224, 224, 3]\}\}`
20610
20996
  #
20611
- # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
20997
+ # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
20612
20998
  # default, the converter generates an ML Model with inputs of type
20613
20999
  # Tensor (MultiArray). User can set input type to be Image. Image
20614
21000
  # input type requires additional input parameters such as `bias` and
20615
21001
  # `scale`.
20616
21002
  #
20617
- # * `bias`\: If the input type is an Image, you need to provide the
21003
+ # * `bias`: If the input type is an Image, you need to provide the
20618
21004
  # bias vector.
20619
21005
  #
20620
- # * `scale`\: If the input type is an Image, you need to provide a
21006
+ # * `scale`: If the input type is an Image, you need to provide a
20621
21007
  # scale factor.
20622
21008
  #
20623
21009
  # CoreML `ClassifierConfig` parameters can be specified using
@@ -21316,11 +21702,11 @@ module Aws::SageMaker
21316
21702
  # one of the following keys: `source-ref` or `source`. The value of
21317
21703
  # the keys are interpreted as follows:
21318
21704
  #
21319
- # * `source-ref`\: The source of the object is the Amazon S3 object
21705
+ # * `source-ref`: The source of the object is the Amazon S3 object
21320
21706
  # specified in the value. Use this value when the object is a binary
21321
21707
  # object, such as an image.
21322
21708
  #
21323
- # * `source`\: The source of the object is the value. Use this value
21709
+ # * `source`: The source of the object is the value. Use this value
21324
21710
  # when the object is a text value.
21325
21711
  #
21326
21712
  # If you are a new user of Ground Truth, it is recommended you review
@@ -23776,7 +24162,7 @@ module Aws::SageMaker
23776
24162
  # @!attribute [rw] step_type
23777
24163
  # A filter to return details about the specified type of subtask.
23778
24164
  #
23779
- # `BENCHMARK`\: Evaluate the performance of your model on different
24165
+ # `BENCHMARK`: Evaluate the performance of your model on different
23780
24166
  # instance types.
23781
24167
  # @return [String]
23782
24168
  #
@@ -26951,13 +27337,13 @@ module Aws::SageMaker
26951
27337
  # Different organizations might have different criteria for model card
26952
27338
  # review and approval.
26953
27339
  #
26954
- # * `Draft`\: The model card is a work in progress.
27340
+ # * `Draft`: The model card is a work in progress.
26955
27341
  #
26956
- # * `PendingReview`\: The model card is pending review.
27342
+ # * `PendingReview`: The model card is pending review.
26957
27343
  #
26958
- # * `Approved`\: The model card is approved.
27344
+ # * `Approved`: The model card is approved.
26959
27345
  #
26960
- # * `Archived`\: The model card is archived. No more updates should be
27346
+ # * `Archived`: The model card is archived. No more updates should be
26961
27347
  # made to the model card, but it can still be exported.
26962
27348
  # @return [String]
26963
27349
  #
@@ -27128,13 +27514,13 @@ module Aws::SageMaker
27128
27514
  # Different organizations might have different criteria for model card
27129
27515
  # review and approval.
27130
27516
  #
27131
- # * `Draft`\: The model card is a work in progress.
27517
+ # * `Draft`: The model card is a work in progress.
27132
27518
  #
27133
- # * `PendingReview`\: The model card is pending review.
27519
+ # * `PendingReview`: The model card is pending review.
27134
27520
  #
27135
- # * `Approved`\: The model card is approved.
27521
+ # * `Approved`: The model card is approved.
27136
27522
  #
27137
- # * `Archived`\: The model card is archived. No more updates should be
27523
+ # * `Archived`: The model card is archived. No more updates should be
27138
27524
  # made to the model card, but it can still be exported.
27139
27525
  # @return [String]
27140
27526
  #
@@ -27173,13 +27559,13 @@ module Aws::SageMaker
27173
27559
  # organization. Different organizations might have different criteria
27174
27560
  # for model card review and approval.
27175
27561
  #
27176
- # * `Draft`\: The model card is a work in progress.
27562
+ # * `Draft`: The model card is a work in progress.
27177
27563
  #
27178
- # * `PendingReview`\: The model card is pending review.
27564
+ # * `PendingReview`: The model card is pending review.
27179
27565
  #
27180
- # * `Approved`\: The model card is approved.
27566
+ # * `Approved`: The model card is approved.
27181
27567
  #
27182
- # * `Archived`\: The model card is archived. No more updates should be
27568
+ # * `Archived`: The model card is archived. No more updates should be
27183
27569
  # made to the model card, but it can still be exported.
27184
27570
  # @return [String]
27185
27571
  #
@@ -27650,7 +28036,7 @@ module Aws::SageMaker
27650
28036
  # The inference option to which to deploy your model. Possible values
27651
28037
  # are the following:
27652
28038
  #
27653
- # * `RealTime`\: Deploy to real-time inference.
28039
+ # * `RealTime`: Deploy to real-time inference.
27654
28040
  #
27655
28041
  # ^
27656
28042
  # @return [String]
@@ -29872,12 +30258,12 @@ module Aws::SageMaker
29872
30258
  # The security configuration for `OnlineStore`.
29873
30259
  #
29874
30260
  # @!attribute [rw] kms_key_id
29875
- # The ID of the Amazon Web Services Key Management Service (Amazon Web
29876
- # Services KMS) key that SageMaker Feature Store uses to encrypt the
29877
- # Amazon S3 objects at rest using Amazon S3 server-side encryption.
30261
+ # The Amazon Web Services Key Management Service (KMS) key ARN that
30262
+ # SageMaker Feature Store uses to encrypt the Amazon S3 objects at
30263
+ # rest using Amazon S3 server-side encryption.
29878
30264
  #
29879
- # The caller (either IAM user or IAM role) of `CreateFeatureGroup`
29880
- # must have below permissions to the `OnlineStore` `KmsKeyId`\:
30265
+ # The caller (either user or IAM role) of `CreateFeatureGroup` must
30266
+ # have below permissions to the `OnlineStore` `KmsKeyId`:
29881
30267
  #
29882
30268
  # * `"kms:Encrypt"`
29883
30269
  #
@@ -29903,7 +30289,7 @@ module Aws::SageMaker
29903
30289
  #
29904
30290
  # The caller (either user or IAM role) to all DataPlane operations
29905
30291
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29906
- # permissions to the `KmsKeyId`\:
30292
+ # permissions to the `KmsKeyId`:
29907
30293
  #
29908
30294
  # * `"kms:Decrypt"`
29909
30295
  #
@@ -29995,11 +30381,10 @@ module Aws::SageMaker
29995
30381
  # for NVIDIA accelerators and highly recommended for CPU compilations.
29996
30382
  # For any other cases, it is optional to specify `CompilerOptions.`
29997
30383
  #
29998
- # * `DTYPE`\: Specifies the data type for the input. When compiling
29999
- # for `ml_*` (except for `ml_inf`) instances using PyTorch
30000
- # framework, provide the data type (dtype) of the model's input.
30001
- # `"float32"` is used if `"DTYPE"` is not specified. Options for
30002
- # data type are:
30384
+ # * `DTYPE`: Specifies the data type for the input. When compiling for
30385
+ # `ml_*` (except for `ml_inf`) instances using PyTorch framework,
30386
+ # provide the data type (dtype) of the model's input. `"float32"`
30387
+ # is used if `"DTYPE"` is not specified. Options for data type are:
30003
30388
  #
30004
30389
  # * float32: Use either `"float"` or `"float32"`.
30005
30390
  #
@@ -30007,75 +30392,74 @@ module Aws::SageMaker
30007
30392
  #
30008
30393
  # For example, `\{"dtype" : "float32"\}`.
30009
30394
  #
30010
- # * `CPU`\: Compilation for CPU supports the following compiler
30395
+ # * `CPU`: Compilation for CPU supports the following compiler
30011
30396
  # options.
30012
30397
  #
30013
- # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
30398
+ # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
30014
30399
  # 'skylake-avx512'\}`
30015
30400
  #
30016
- # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
30401
+ # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
30017
30402
  # '+vfpv4']\}`
30018
30403
  #
30019
- # * `ARM`\: Details of ARM CPU compilations.
30404
+ # * `ARM`: Details of ARM CPU compilations.
30020
30405
  #
30021
- # * `NEON`\: NEON is an implementation of the Advanced SIMD
30022
- # extension used in ARMv7 processors.
30406
+ # * `NEON`: NEON is an implementation of the Advanced SIMD extension
30407
+ # used in ARMv7 processors.
30023
30408
  #
30024
30409
  # For example, add `\{'mattr': ['+neon']\}` to the compiler
30025
30410
  # options if compiling for ARM 32-bit platform with the NEON
30026
30411
  # support.
30027
30412
  #
30028
- # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
30413
+ # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
30029
30414
  # compiler options.
30030
30415
  #
30031
- # * `gpu_code`\: Specifies the targeted architecture.
30416
+ # * `gpu_code`: Specifies the targeted architecture.
30032
30417
  #
30033
- # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
30418
+ # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
30034
30419
  #
30035
- # * `cuda-ver`\: Specifies the CUDA version in x.y format.
30420
+ # * `cuda-ver`: Specifies the CUDA version in x.y format.
30036
30421
  #
30037
30422
  # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
30038
30423
  # 'cuda-ver': '10.1'\}`
30039
30424
  #
30040
- # * `ANDROID`\: Compilation for the Android OS supports the following
30425
+ # * `ANDROID`: Compilation for the Android OS supports the following
30041
30426
  # compiler options:
30042
30427
  #
30043
- # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
30428
+ # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
30044
30429
  # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
30045
30430
  # 28\}`.
30046
30431
  #
30047
- # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
30432
+ # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
30048
30433
  # compiling for ARM 32-bit platform with NEON support.
30049
30434
  #
30050
- # * `INFERENTIA`\: Compilation for target ml\_inf1 uses compiler
30435
+ # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
30051
30436
  # options passed in as a JSON string. For example,
30052
30437
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
30053
30438
  #
30054
30439
  # For information about supported compiler options, see [ Neuron
30055
30440
  # Compiler CLI][1].
30056
30441
  #
30057
- # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
30442
+ # * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
30058
30443
  # supports the following compiler options:
30059
30444
  #
30060
- # * `class_labels`\: Specifies the classification labels file name
30445
+ # * `class_labels`: Specifies the classification labels file name
30061
30446
  # inside input tar.gz file. For example, `\{"class_labels":
30062
30447
  # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
30063
30448
  # be separated by newlines.
30064
30449
  #
30065
30450
  # ^
30066
30451
  #
30067
- # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
30452
+ # * `EIA`: Compilation for the Elastic Inference Accelerator supports
30068
30453
  # the following compiler options:
30069
30454
  #
30070
- # * `precision_mode`\: Specifies the precision of compiled
30071
- # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
30072
- # is `"FP32"`.
30455
+ # * `precision_mode`: Specifies the precision of compiled artifacts.
30456
+ # Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
30073
30457
  #
30074
- # * `signature_def_key`\: Specifies the signature to use for models
30458
+ # * `signature_def_key`: Specifies the signature to use for models
30075
30459
  # in SavedModel format. Defaults is TensorFlow's default
30076
30460
  # signature def key.
30077
30461
  #
30078
- # * `output_names`\: Specifies a list of output tensor names for
30462
+ # * `output_names`: Specifies a list of output tensor names for
30079
30463
  # models in FrozenGraph format. Set at most one API field, either:
30080
30464
  # `signature_def_key` or `output_names`.
30081
30465
  #
@@ -31499,7 +31883,12 @@ module Aws::SageMaker
31499
31883
  # Identifies a model that you want to host and the resources chosen to
31500
31884
  # deploy for hosting it. If you are deploying multiple models, tell
31501
31885
  # SageMaker how to distribute traffic among the models by specifying
31502
- # variant weights.
31886
+ # variant weights. For more information on production variants, check [
31887
+ # Production variants][1].
31888
+ #
31889
+ #
31890
+ #
31891
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html
31503
31892
  #
31504
31893
  # @!attribute [rw] variant_name
31505
31894
  # The name of the production variant.
@@ -31571,6 +31960,15 @@ module Aws::SageMaker
31571
31960
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests
31572
31961
  # @return [Integer]
31573
31962
  #
31963
+ # @!attribute [rw] enable_ssm_access
31964
+ # You can use this parameter to turn on native Amazon Web Services
31965
+ # Systems Manager (SSM) access for a production variant behind an
31966
+ # endpoint. By default, SSM access is disabled for all production
31967
+ # variants behind an endpoint. You can turn on or turn off SSM access
31968
+ # for a production variant behind an existing endpoint by creating a
31969
+ # new endpoint configuration and calling `UpdateEndpoint`.
31970
+ # @return [Boolean]
31971
+ #
31574
31972
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
31575
31973
  #
31576
31974
  class ProductionVariant < Struct.new(
@@ -31584,7 +31982,8 @@ module Aws::SageMaker
31584
31982
  :serverless_config,
31585
31983
  :volume_size_in_gb,
31586
31984
  :model_data_download_timeout_in_seconds,
31587
- :container_startup_health_check_timeout_in_seconds)
31985
+ :container_startup_health_check_timeout_in_seconds,
31986
+ :enable_ssm_access)
31588
31987
  SENSITIVE = []
31589
31988
  include Aws::Structure
31590
31989
  end
@@ -31678,18 +32077,18 @@ module Aws::SageMaker
31678
32077
  # The endpoint variant status which describes the current deployment
31679
32078
  # stage status or operational status.
31680
32079
  #
31681
- # * `Creating`\: Creating inference resources for the production
32080
+ # * `Creating`: Creating inference resources for the production
31682
32081
  # variant.
31683
32082
  #
31684
- # * `Deleting`\: Terminating inference resources for the production
32083
+ # * `Deleting`: Terminating inference resources for the production
31685
32084
  # variant.
31686
32085
  #
31687
- # * `Updating`\: Updating capacity for the production variant.
32086
+ # * `Updating`: Updating capacity for the production variant.
31688
32087
  #
31689
- # * `ActivatingTraffic`\: Turning on traffic for the production
32088
+ # * `ActivatingTraffic`: Turning on traffic for the production
31690
32089
  # variant.
31691
32090
  #
31692
- # * `Baking`\: Waiting period to monitor the CloudWatch alarms in the
32091
+ # * `Baking`: Waiting period to monitor the CloudWatch alarms in the
31693
32092
  # automatic rollback configuration.
31694
32093
  # @return [String]
31695
32094
  #
@@ -33371,7 +33770,8 @@ module Aws::SageMaker
33371
33770
  #
33372
33771
  # @!attribute [rw] auto_ml_job_objective
33373
33772
  # Specifies a metric to minimize or maximize as the objective of a
33374
- # job.
33773
+ # job. V2 API jobs (for example jobs created by calling
33774
+ # `CreateAutoMLJobV2`), support `Accuracy` only.
33375
33775
  # @return [Types::AutoMLJobObjective]
33376
33776
  #
33377
33777
  # @!attribute [rw] problem_type
@@ -33848,12 +34248,12 @@ module Aws::SageMaker
33848
34248
  # @return [String]
33849
34249
  #
33850
34250
  # @!attribute [rw] kms_key_id
33851
- # The Amazon Web Services Key Management Service (KMS) key ID of the
34251
+ # The Amazon Web Services Key Management Service (KMS) key ARN of the
33852
34252
  # key used to encrypt any objects written into the `OfflineStore` S3
33853
34253
  # location.
33854
34254
  #
33855
34255
  # The IAM `roleARN` that is passed as a parameter to
33856
- # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`\:
34256
+ # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
33857
34257
  #
33858
34258
  # * `"kms:GenerateDataKey"`
33859
34259
  #
@@ -34892,9 +35292,9 @@ module Aws::SageMaker
34892
35292
  # The desired state of the experiment after stopping. The possible
34893
35293
  # states are the following:
34894
35294
  #
34895
- # * `Completed`\: The experiment completed successfully
35295
+ # * `Completed`: The experiment completed successfully
34896
35296
  #
34897
- # * `Cancelled`\: The experiment was canceled
35297
+ # * `Cancelled`: The experiment was canceled
34898
35298
  # @return [String]
34899
35299
  #
34900
35300
  # @!attribute [rw] reason
@@ -35239,9 +35639,9 @@ module Aws::SageMaker
35239
35639
  # @!attribute [rw] os
35240
35640
  # Specifies a target platform OS.
35241
35641
  #
35242
- # * `LINUX`\: Linux-based operating systems.
35642
+ # * `LINUX`: Linux-based operating systems.
35243
35643
  #
35244
- # * `ANDROID`\: Android operating systems. Android API level can be
35644
+ # * `ANDROID`: Android operating systems. Android API level can be
35245
35645
  # specified using the `ANDROID_PLATFORM` compiler option. For
35246
35646
  # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
35247
35647
  # @return [String]
@@ -35249,27 +35649,27 @@ module Aws::SageMaker
35249
35649
  # @!attribute [rw] arch
35250
35650
  # Specifies a target platform architecture.
35251
35651
  #
35252
- # * `X86_64`\: 64-bit version of the x86 instruction set.
35652
+ # * `X86_64`: 64-bit version of the x86 instruction set.
35253
35653
  #
35254
- # * `X86`\: 32-bit version of the x86 instruction set.
35654
+ # * `X86`: 32-bit version of the x86 instruction set.
35255
35655
  #
35256
- # * `ARM64`\: ARMv8 64-bit CPU.
35656
+ # * `ARM64`: ARMv8 64-bit CPU.
35257
35657
  #
35258
- # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
35658
+ # * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
35259
35659
  #
35260
- # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35660
+ # * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35261
35661
  # platform.
35262
35662
  # @return [String]
35263
35663
  #
35264
35664
  # @!attribute [rw] accelerator
35265
35665
  # Specifies a target platform accelerator (optional).
35266
35666
  #
35267
- # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
35667
+ # * `NVIDIA`: Nvidia graphics processing unit. It also requires
35268
35668
  # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
35269
35669
  #
35270
- # * `MALI`\: ARM Mali graphics processor
35670
+ # * `MALI`: ARM Mali graphics processor
35271
35671
  #
35272
- # * `INTEL_GRAPHICS`\: Integrated Intel graphics
35672
+ # * `INTEL_GRAPHICS`: Integrated Intel graphics
35273
35673
  # @return [String]
35274
35674
  #
35275
35675
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
@@ -35318,6 +35718,34 @@ module Aws::SageMaker
35318
35718
  include Aws::Structure
35319
35719
  end
35320
35720
 
35721
+ # Stores the configuration information for the text classification
35722
+ # problem of an AutoML job using the V2 API.
35723
+ #
35724
+ # @!attribute [rw] completion_criteria
35725
+ # How long a job is allowed to run, or how many candidates a job is
35726
+ # allowed to generate.
35727
+ # @return [Types::AutoMLJobCompletionCriteria]
35728
+ #
35729
+ # @!attribute [rw] content_column
35730
+ # The name of the column used to provide the sentences to be
35731
+ # classified. It should not be the same as the target column.
35732
+ # @return [String]
35733
+ #
35734
+ # @!attribute [rw] target_label_column
35735
+ # The name of the column used to provide the class labels. It should
35736
+ # not be same as the content column.
35737
+ # @return [String]
35738
+ #
35739
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
35740
+ #
35741
+ class TextClassificationJobConfig < Struct.new(
35742
+ :completion_criteria,
35743
+ :content_column,
35744
+ :target_label_column)
35745
+ SENSITIVE = []
35746
+ include Aws::Structure
35747
+ end
35748
+
35321
35749
  # Time series forecast settings for the SageMaker Canvas app.
35322
35750
  #
35323
35751
  # @!attribute [rw] status
@@ -35375,15 +35803,15 @@ module Aws::SageMaker
35375
35803
  # @!attribute [rw] type
35376
35804
  # Traffic routing strategy type.
35377
35805
  #
35378
- # * `ALL_AT_ONCE`\: Endpoint traffic shifts to the new fleet in a
35806
+ # * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
35379
35807
  # single step.
35380
35808
  #
35381
- # * `CANARY`\: Endpoint traffic shifts to the new fleet in two steps.
35809
+ # * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
35382
35810
  # The first step is the canary, which is a small portion of the
35383
35811
  # traffic. The second step is the remainder of the traffic.
35384
35812
  #
35385
- # * `LINEAR`\: Endpoint traffic shifts to the new fleet in n steps of
35386
- # a configurable size.
35813
+ # * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
35814
+ # configurable size.
35387
35815
  # @return [String]
35388
35816
  #
35389
35817
  # @!attribute [rw] wait_interval_in_seconds
@@ -36615,7 +37043,7 @@ module Aws::SageMaker
36615
37043
  #
36616
37044
  # `]`
36617
37045
  #
36618
- # The preceding JSON matches the following `S3Uris`\:
37046
+ # The preceding JSON matches the following `S3Uris`:
36619
37047
  #
36620
37048
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
36621
37049
  #
@@ -37973,29 +38401,29 @@ module Aws::SageMaker
37973
38401
  # @!attribute [rw] vendor_guidance
37974
38402
  # The availability of the image version specified by the maintainer.
37975
38403
  #
37976
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
37977
- # image version stability.
38404
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
38405
+ # version stability.
37978
38406
  #
37979
- # * `STABLE`\: The image version is stable.
38407
+ # * `STABLE`: The image version is stable.
37980
38408
  #
37981
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
38409
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
37982
38410
  # image versions that are set to be archived are automatically
37983
38411
  # archived after three months.
37984
38412
  #
37985
- # * `ARCHIVED`\: The image version is archived. Archived image
37986
- # versions are not searchable and are no longer actively supported.
38413
+ # * `ARCHIVED`: The image version is archived. Archived image versions
38414
+ # are not searchable and are no longer actively supported.
37987
38415
  # @return [String]
37988
38416
  #
37989
38417
  # @!attribute [rw] job_type
37990
38418
  # Indicates SageMaker job type compatibility.
37991
38419
  #
37992
- # * `TRAINING`\: The image version is compatible with SageMaker
38420
+ # * `TRAINING`: The image version is compatible with SageMaker
37993
38421
  # training jobs.
37994
38422
  #
37995
- # * `INFERENCE`\: The image version is compatible with SageMaker
38423
+ # * `INFERENCE`: The image version is compatible with SageMaker
37996
38424
  # inference jobs.
37997
38425
  #
37998
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
38426
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
37999
38427
  # notebook kernels.
38000
38428
  # @return [String]
38001
38429
  #
@@ -38010,9 +38438,9 @@ module Aws::SageMaker
38010
38438
  # @!attribute [rw] processor
38011
38439
  # Indicates CPU or GPU compatibility.
38012
38440
  #
38013
- # * `CPU`\: The image version is compatible with CPU.
38441
+ # * `CPU`: The image version is compatible with CPU.
38014
38442
  #
38015
- # * `GPU`\: The image version is compatible with GPU.
38443
+ # * `GPU`: The image version is compatible with GPU.
38016
38444
  # @return [String]
38017
38445
  #
38018
38446
  # @!attribute [rw] horovod
@@ -38134,13 +38562,13 @@ module Aws::SageMaker
38134
38562
  # Different organizations might have different criteria for model card
38135
38563
  # review and approval.
38136
38564
  #
38137
- # * `Draft`\: The model card is a work in progress.
38565
+ # * `Draft`: The model card is a work in progress.
38138
38566
  #
38139
- # * `PendingReview`\: The model card is pending review.
38567
+ # * `PendingReview`: The model card is pending review.
38140
38568
  #
38141
- # * `Approved`\: The model card is approved.
38569
+ # * `Approved`: The model card is approved.
38142
38570
  #
38143
- # * `Archived`\: The model card is archived. No more updates should be
38571
+ # * `Archived`: The model card is archived. No more updates should be
38144
38572
  # made to the model card, but it can still be exported.
38145
38573
  # @return [String]
38146
38574
  #
@@ -39138,15 +39566,15 @@ module Aws::SageMaker
39138
39566
  # @!attribute [rw] variant_property_type
39139
39567
  # The type of variant property. The supported values are:
39140
39568
  #
39141
- # * `DesiredInstanceCount`\: Overrides the existing variant instance
39569
+ # * `DesiredInstanceCount`: Overrides the existing variant instance
39142
39570
  # counts using the ProductionVariant$InitialInstanceCount values in
39143
39571
  # the CreateEndpointConfigInput$ProductionVariants.
39144
39572
  #
39145
- # * `DesiredWeight`\: Overrides the existing variant weights using the
39573
+ # * `DesiredWeight`: Overrides the existing variant weights using the
39146
39574
  # ProductionVariant$InitialVariantWeight values in the
39147
39575
  # CreateEndpointConfigInput$ProductionVariants.
39148
39576
  #
39149
- # * `DataCaptureConfig`\: (Not currently supported.)
39577
+ # * `DataCaptureConfig`: (Not currently supported.)
39150
39578
  # @return [String]
39151
39579
  #
39152
39580
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
@@ -39224,16 +39652,16 @@ module Aws::SageMaker
39224
39652
  # @!attribute [rw] status
39225
39653
  # The status of the warm pool.
39226
39654
  #
39227
- # * `InUse`\: The warm pool is in use for the training job.
39655
+ # * `InUse`: The warm pool is in use for the training job.
39228
39656
  #
39229
- # * `Available`\: The warm pool is available to reuse for a matching
39657
+ # * `Available`: The warm pool is available to reuse for a matching
39230
39658
  # training job.
39231
39659
  #
39232
- # * `Reused`\: The warm pool moved to a matching training job for
39660
+ # * `Reused`: The warm pool moved to a matching training job for
39233
39661
  # reuse.
39234
39662
  #
39235
- # * `Terminated`\: The warm pool is no longer available. Warm pools
39236
- # are unavailable if they are terminated by a user, terminated for a
39663
+ # * `Terminated`: The warm pool is no longer available. Warm pools are
39664
+ # unavailable if they are terminated by a user, terminated for a
39237
39665
  # patch update, or terminated for exceeding the specified
39238
39666
  # `KeepAlivePeriodInSeconds`.
39239
39667
  # @return [String]