aws-sdk-sagemaker 1.168.0 → 1.170.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -374,7 +374,7 @@ module Aws::SageMaker
374
374
  # * You use one of the SageMaker built-in algorithms
375
375
  #
376
376
  # * You use one of the following [Prebuilt SageMaker Docker
377
- # Images][1]\:
377
+ # Images][1]:
378
378
  #
379
379
  # * Tensorflow (version >= 1.15)
380
380
  #
@@ -1714,7 +1714,7 @@ module Aws::SageMaker
1714
1714
  # @return [String]
1715
1715
  #
1716
1716
  # @!attribute [rw] inference_containers
1717
- # Information about the inference container definitions.
1717
+ # Information about the recommended inference container definitions.
1718
1718
  # @return [Array<Types::AutoMLContainerDefinition>]
1719
1719
  #
1720
1720
  # @!attribute [rw] creation_time
@@ -1737,6 +1737,13 @@ module Aws::SageMaker
1737
1737
  # The properties of an AutoML candidate job.
1738
1738
  # @return [Types::CandidateProperties]
1739
1739
  #
1740
+ # @!attribute [rw] inference_container_definitions
1741
+ # The mapping of all supported processing unit (CPU, GPU, etc...) to
1742
+ # inference container definitions for the candidate. This field is
1743
+ # populated for the V2 API only (for example, for jobs created by
1744
+ # calling `CreateAutoMLJobV2`).
1745
+ # @return [Hash<String,Array<Types::AutoMLContainerDefinition>>]
1746
+ #
1740
1747
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1741
1748
  #
1742
1749
  class AutoMLCandidate < Struct.new(
@@ -1750,7 +1757,8 @@ module Aws::SageMaker
1750
1757
  :end_time,
1751
1758
  :last_modified_time,
1752
1759
  :failure_reason,
1753
- :candidate_properties)
1760
+ :candidate_properties,
1761
+ :inference_container_definitions)
1754
1762
  SENSITIVE = []
1755
1763
  include Aws::Structure
1756
1764
  end
@@ -1955,9 +1963,14 @@ module Aws::SageMaker
1955
1963
  end
1956
1964
 
1957
1965
  # This structure specifies how to split the data into train and
1958
- # validation datasets. The validation and training datasets must contain
1959
- # the same headers. The validation dataset must be less than 2 GB in
1960
- # size.
1966
+ # validation datasets.
1967
+ #
1968
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the V2
1969
+ # API for Natural Language Processing problems (for example
1970
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
1971
+ # type), the validation and training datasets must contain the same
1972
+ # headers. Also, for V1 API jobs, the validation dataset must be less
1973
+ # than 2 GB in size.
1961
1974
  #
1962
1975
  # @!attribute [rw] validation_fraction
1963
1976
  # The validation fraction (optional) is a float that specifies the
@@ -1993,17 +2006,65 @@ module Aws::SageMaker
1993
2006
  include Aws::Structure
1994
2007
  end
1995
2008
 
2009
+ # A channel is a named input source that training algorithms can
2010
+ # consume. This channel is used for the non tabular training data of an
2011
+ # AutoML job using the V2 API. For tabular training data, see . For more
2012
+ # information, see .
2013
+ #
2014
+ # @!attribute [rw] channel_type
2015
+ # The type of channel. Defines whether the data are used for training
2016
+ # or validation. The default value is `training`. Channels for
2017
+ # `training` and `validation` must share the same `ContentType`
2018
+ # @return [String]
2019
+ #
2020
+ # @!attribute [rw] content_type
2021
+ # The content type of the data from the input source. The following
2022
+ # are the allowed content types for different problems:
2023
+ #
2024
+ # * ImageClassification: `image/png`, `image/jpeg`, `image/*`
2025
+ #
2026
+ # * TextClassification: `text/csv;header=present`
2027
+ # @return [String]
2028
+ #
2029
+ # @!attribute [rw] compression_type
2030
+ # The allowed compression types depend on the input format. We allow
2031
+ # the compression type `Gzip` for `S3Prefix` inputs only. For all
2032
+ # other inputs, the compression type should be `None`. If no
2033
+ # compression type is provided, we default to `None`.
2034
+ # @return [String]
2035
+ #
2036
+ # @!attribute [rw] data_source
2037
+ # The data source for an AutoML channel.
2038
+ # @return [Types::AutoMLDataSource]
2039
+ #
2040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobChannel AWS API Documentation
2041
+ #
2042
+ class AutoMLJobChannel < Struct.new(
2043
+ :channel_type,
2044
+ :content_type,
2045
+ :compression_type,
2046
+ :data_source)
2047
+ SENSITIVE = []
2048
+ include Aws::Structure
2049
+ end
2050
+
1996
2051
  # How long a job is allowed to run, or how many candidates a job is
1997
2052
  # allowed to generate.
1998
2053
  #
1999
2054
  # @!attribute [rw] max_candidates
2000
2055
  # The maximum number of times a training job is allowed to run.
2056
+ #
2057
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), the
2058
+ # supported value is 1.
2001
2059
  # @return [Integer]
2002
2060
  #
2003
2061
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2004
2062
  # The maximum time, in seconds, that each training job executed inside
2005
2063
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2006
2064
  # tuning job. For more information, see the used by the action.
2065
+ #
2066
+ # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2067
+ # field controls the runtime of the job candidate.
2007
2068
  # @return [Integer]
2008
2069
  #
2009
2070
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -2092,6 +2153,8 @@ module Aws::SageMaker
2092
2153
  end
2093
2154
 
2094
2155
  # Specifies a metric to minimize or maximize as the objective of a job.
2156
+ # V2 API jobs (for example jobs created by calling `CreateAutoMLJobV2`),
2157
+ # support `Accuracy` only.
2095
2158
  #
2096
2159
  # @!attribute [rw] metric_name
2097
2160
  # The name of the objective metric used to measure the predictive
@@ -2270,11 +2333,11 @@ module Aws::SageMaker
2270
2333
  # If you do not specify a metric explicitly, the default behavior is
2271
2334
  # to automatically use:
2272
2335
  #
2273
- # * `MSE`\: for regression.
2336
+ # * `MSE`: for regression.
2274
2337
  #
2275
- # * `F1`\: for binary classification
2338
+ # * `F1`: for binary classification
2276
2339
  #
2277
- # * `Accuracy`\: for multiclass classification.
2340
+ # * `Accuracy`: for multiclass classification.
2278
2341
  # @return [String]
2279
2342
  #
2280
2343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -2387,30 +2450,94 @@ module Aws::SageMaker
2387
2450
  include Aws::Structure
2388
2451
  end
2389
2452
 
2390
- # The Amazon S3 data source.
2453
+ # A collection of settings specific to the problem type used to
2454
+ # configure an AutoML job using the V2 API. There must be one and only
2455
+ # one config of the following type.
2456
+ #
2457
+ # @note AutoMLProblemTypeConfig is a union - when making an API calls you must set exactly one of the members.
2458
+ #
2459
+ # @note AutoMLProblemTypeConfig is a union - when returned from an API call exactly one value will be set and the returned type will be a subclass of AutoMLProblemTypeConfig corresponding to the set member.
2460
+ #
2461
+ # @!attribute [rw] image_classification_job_config
2462
+ # Settings used to configure an AutoML job using the V2 API for the
2463
+ # image classification problem type.
2464
+ # @return [Types::ImageClassificationJobConfig]
2465
+ #
2466
+ # @!attribute [rw] text_classification_job_config
2467
+ # Settings used to configure an AutoML job using the V2 API for the
2468
+ # text classification problem type.
2469
+ # @return [Types::TextClassificationJobConfig]
2470
+ #
2471
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2472
+ #
2473
+ class AutoMLProblemTypeConfig < Struct.new(
2474
+ :image_classification_job_config,
2475
+ :text_classification_job_config,
2476
+ :unknown)
2477
+ SENSITIVE = []
2478
+ include Aws::Structure
2479
+ include Aws::Structure::Union
2480
+
2481
+ class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2482
+ class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2483
+ class Unknown < AutoMLProblemTypeConfig; end
2484
+ end
2485
+
2486
+ # Describes the Amazon S3 data source.
2391
2487
  #
2392
2488
  # @!attribute [rw] s3_data_type
2393
2489
  # The data type.
2394
2490
  #
2395
- # A ManifestFile should have the format shown below:
2491
+ # * If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2492
+ # SageMaker uses all objects that match the specified key name
2493
+ # prefix for model training.
2494
+ #
2495
+ # The `S3Prefix` should have the following format:
2496
+ #
2497
+ # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2498
+ #
2499
+ # * If you choose `ManifestFile`, `S3Uri` identifies an object that is
2500
+ # a manifest file containing a list of object keys that you want
2501
+ # SageMaker to use for model training.
2502
+ #
2503
+ # A `ManifestFile` should have the format shown below:
2504
+ #
2505
+ # `[ \{"prefix":
2506
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2507
+ # `
2508
+ #
2509
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2510
+ #
2511
+ # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2512
+ #
2513
+ # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2514
+ #
2515
+ # * If you choose `AugmentedManifestFile`, `S3Uri` identifies an
2516
+ # object that is an augmented manifest file in JSON lines format.
2517
+ # This file contains the data you want to use for model training.
2518
+ # `AugmentedManifestFile` is available for V2 API jobs only (for
2519
+ # example, for jobs created by calling `CreateAutoMLJobV2`).
2396
2520
  #
2397
- # `[ \{"prefix":
2398
- # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"\},
2399
- # `
2521
+ # Here is a minimal, single-record example of an
2522
+ # `AugmentedManifestFile`:
2400
2523
  #
2401
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",`
2524
+ # `\{"source-ref":
2525
+ # "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",`
2402
2526
  #
2403
- # `"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",`
2527
+ # `"label-metadata": \{"class-name": "cat"` \\}
2404
2528
  #
2405
- # `... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]`
2529
+ # For more information on `AugmentedManifestFile`, see [Provide
2530
+ # Dataset Metadata to Training Jobs with an Augmented Manifest
2531
+ # File][1].
2406
2532
  #
2407
- # An S3Prefix should have the following format:
2408
2533
  #
2409
- # `s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE`
2534
+ #
2535
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
2410
2536
  # @return [String]
2411
2537
  #
2412
2538
  # @!attribute [rw] s3_uri
2413
- # The URL to the Amazon S3 data source.
2539
+ # The URL to the Amazon S3 data source. The Uri refers to the Amazon
2540
+ # S3 prefix or ManifestFile depending on the data type.
2414
2541
  # @return [String]
2415
2542
  #
2416
2543
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLS3DataSource AWS API Documentation
@@ -2860,10 +2987,10 @@ module Aws::SageMaker
2860
2987
  # @!attribute [rw] type
2861
2988
  # Specifies the endpoint capacity type.
2862
2989
  #
2863
- # * `INSTANCE_COUNT`\: The endpoint activates based on the number of
2990
+ # * `INSTANCE_COUNT`: The endpoint activates based on the number of
2864
2991
  # instances.
2865
2992
  #
2866
- # * `CAPACITY_PERCENT`\: The endpoint activates based on the specified
2993
+ # * `CAPACITY_PERCENT`: The endpoint activates based on the specified
2867
2994
  # percentage of capacity.
2868
2995
  # @return [String]
2869
2996
  #
@@ -3293,7 +3420,7 @@ module Aws::SageMaker
3293
3420
  # from the model container output if the model container is in JSON
3294
3421
  # Lines format.
3295
3422
  #
3296
- # **Example**\: If the model container output of a single request is
3423
+ # **Example**: If the model container output of a single request is
3297
3424
  # `'\{"predicted_label":1,"probability":0.6\}'`, then set
3298
3425
  # `ProbabilityAttribute` to `'probability'`.
3299
3426
  # @return [String]
@@ -3302,7 +3429,7 @@ module Aws::SageMaker
3302
3429
  # A JMESPath expression used to locate the list of label headers in
3303
3430
  # the model container output.
3304
3431
  #
3305
- # **Example**\: If the model container output of a batch request is
3432
+ # **Example**: If the model container output of a batch request is
3306
3433
  # `'\{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]\}'`,
3307
3434
  # then set `LabelAttribute` to `'labels'` to extract the list of label
3308
3435
  # headers `["cat","dog","fish"]`
@@ -4370,7 +4497,7 @@ module Aws::SageMaker
4370
4497
  # @return [Types::AutoMLOutputDataConfig]
4371
4498
  #
4372
4499
  # @!attribute [rw] problem_type
4373
- # Defines the type of supervised learning available for the
4500
+ # Defines the type of supervised learning problem available for the
4374
4501
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4375
4502
  # problem types and algorithm support][1].
4376
4503
  #
@@ -4382,7 +4509,8 @@ module Aws::SageMaker
4382
4509
  # @!attribute [rw] auto_ml_job_objective
4383
4510
  # Defines the objective metric used to measure the predictive quality
4384
4511
  # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4385
- # Autopilot infers whether to minimize or maximize it.
4512
+ # Autopilot infers whether to minimize or maximize it. For , only
4513
+ # `Accuracy` is supported.
4386
4514
  # @return [Types::AutoMLJobObjective]
4387
4515
  #
4388
4516
  # @!attribute [rw] auto_ml_job_config
@@ -4400,8 +4528,15 @@ module Aws::SageMaker
4400
4528
  # @return [Boolean]
4401
4529
  #
4402
4530
  # @!attribute [rw] tags
4403
- # Each tag consists of a key and an optional value. Tag keys must be
4404
- # unique per resource.
4531
+ # An array of key-value pairs. You can use tags to categorize your
4532
+ # Amazon Web Services resources in different ways, for example, by
4533
+ # purpose, owner, or environment. For more information, see [Tagging
4534
+ # Amazon Web ServicesResources][1]. Tag keys must be unique per
4535
+ # resource.
4536
+ #
4537
+ #
4538
+ #
4539
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4405
4540
  # @return [Array<Types::Tag>]
4406
4541
  #
4407
4542
  # @!attribute [rw] model_deploy_config
@@ -4438,6 +4573,108 @@ module Aws::SageMaker
4438
4573
  include Aws::Structure
4439
4574
  end
4440
4575
 
4576
+ # @!attribute [rw] auto_ml_job_name
4577
+ # Identifies an Autopilot job. The name must be unique to your account
4578
+ # and is case insensitive.
4579
+ # @return [String]
4580
+ #
4581
+ # @!attribute [rw] auto_ml_job_input_data_config
4582
+ # An array of channel objects describing the input data and their
4583
+ # location. Each channel is a named input source. Similar to
4584
+ # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4585
+ # formats depend on the problem type:
4586
+ #
4587
+ # * ImageClassification: S3Prefix, `ManifestFile`,
4588
+ # `AugmentedManifestFile`
4589
+ #
4590
+ # * TextClassification: S3Prefix
4591
+ #
4592
+ #
4593
+ #
4594
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
4595
+ # @return [Array<Types::AutoMLJobChannel>]
4596
+ #
4597
+ # @!attribute [rw] output_data_config
4598
+ # Provides information about encryption and the Amazon S3 output path
4599
+ # needed to store artifacts from an AutoML job.
4600
+ # @return [Types::AutoMLOutputDataConfig]
4601
+ #
4602
+ # @!attribute [rw] auto_ml_problem_type_config
4603
+ # Defines the configuration settings of one of the supported problem
4604
+ # types.
4605
+ # @return [Types::AutoMLProblemTypeConfig]
4606
+ #
4607
+ # @!attribute [rw] role_arn
4608
+ # The ARN of the role that is used to access the data.
4609
+ # @return [String]
4610
+ #
4611
+ # @!attribute [rw] tags
4612
+ # An array of key-value pairs. You can use tags to categorize your
4613
+ # Amazon Web Services resources in different ways, such as by purpose,
4614
+ # owner, or environment. For more information, see [Tagging Amazon Web
4615
+ # ServicesResources][1]. Tag keys must be unique per resource.
4616
+ #
4617
+ #
4618
+ #
4619
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
4620
+ # @return [Array<Types::Tag>]
4621
+ #
4622
+ # @!attribute [rw] security_config
4623
+ # The security configuration for traffic encryption or Amazon VPC
4624
+ # settings.
4625
+ # @return [Types::AutoMLSecurityConfig]
4626
+ #
4627
+ # @!attribute [rw] auto_ml_job_objective
4628
+ # Specifies a metric to minimize or maximize as the objective of a
4629
+ # job. For , only `Accuracy` is supported.
4630
+ # @return [Types::AutoMLJobObjective]
4631
+ #
4632
+ # @!attribute [rw] model_deploy_config
4633
+ # Specifies how to generate the endpoint name for an automatic
4634
+ # one-click Autopilot model deployment.
4635
+ # @return [Types::ModelDeployConfig]
4636
+ #
4637
+ # @!attribute [rw] data_split_config
4638
+ # This structure specifies how to split the data into train and
4639
+ # validation datasets.
4640
+ #
4641
+ # If you are using the V1 API (for example `CreateAutoMLJob`) or the
4642
+ # V2 API for Natural Language Processing problems (for example
4643
+ # `CreateAutoMLJobV2` with a `TextClassificationJobConfig` problem
4644
+ # type), the validation and training datasets must contain the same
4645
+ # headers. Also, for V1 API jobs, the validation dataset must be less
4646
+ # than 2 GB in size.
4647
+ # @return [Types::AutoMLDataSplitConfig]
4648
+ #
4649
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
4650
+ #
4651
+ class CreateAutoMLJobV2Request < Struct.new(
4652
+ :auto_ml_job_name,
4653
+ :auto_ml_job_input_data_config,
4654
+ :output_data_config,
4655
+ :auto_ml_problem_type_config,
4656
+ :role_arn,
4657
+ :tags,
4658
+ :security_config,
4659
+ :auto_ml_job_objective,
4660
+ :model_deploy_config,
4661
+ :data_split_config)
4662
+ SENSITIVE = []
4663
+ include Aws::Structure
4664
+ end
4665
+
4666
+ # @!attribute [rw] auto_ml_job_arn
4667
+ # The unique ARN assigned to the AutoMLJob when it is created.
4668
+ # @return [String]
4669
+ #
4670
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Response AWS API Documentation
4671
+ #
4672
+ class CreateAutoMLJobV2Response < Struct.new(
4673
+ :auto_ml_job_arn)
4674
+ SENSITIVE = []
4675
+ include Aws::Structure
4676
+ end
4677
+
4441
4678
  # @!attribute [rw] code_repository_name
4442
4679
  # The name of the Git repository. The name must have 1 to 63
4443
4680
  # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
@@ -4578,7 +4815,7 @@ module Aws::SageMaker
4578
4815
  # response. Amazon SageMaker returns the following data in JSON
4579
4816
  # format:
4580
4817
  #
4581
- # * `CompilationJobArn`\: The Amazon Resource Name (ARN) of the
4818
+ # * `CompilationJobArn`: The Amazon Resource Name (ARN) of the
4582
4819
  # compiled job.
4583
4820
  #
4584
4821
  # ^
@@ -5244,11 +5481,11 @@ module Aws::SageMaker
5244
5481
  #
5245
5482
  # An `EventTime` can be a `String` or `Fractional`.
5246
5483
  #
5247
- # * `Fractional`\: `EventTime` feature values must be a Unix timestamp
5484
+ # * `Fractional`: `EventTime` feature values must be a Unix timestamp
5248
5485
  # in seconds.
5249
5486
  #
5250
- # * `String`\: `EventTime` feature values must be an ISO-8601 string
5251
- # in the format. The following formats are supported
5487
+ # * `String`: `EventTime` feature values must be an ISO-8601 string in
5488
+ # the format. The following formats are supported
5252
5489
  # `yyyy-MM-dd'T'HH:mm:ssZ` and `yyyy-MM-dd'T'HH:mm:ss.SSSZ` where
5253
5490
  # `yyyy`, `MM`, and `dd` represent the year, month, and day
5254
5491
  # respectively and `HH`, `mm`, `ss`, and if applicable, `SSS`
@@ -5668,29 +5905,29 @@ module Aws::SageMaker
5668
5905
  # @!attribute [rw] vendor_guidance
5669
5906
  # The stability of the image version, specified by the maintainer.
5670
5907
  #
5671
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5672
- # image version stability.
5908
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
5909
+ # version stability.
5673
5910
  #
5674
- # * `STABLE`\: The image version is stable.
5911
+ # * `STABLE`: The image version is stable.
5675
5912
  #
5676
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5913
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
5677
5914
  # image versions that are set to be archived are automatically
5678
5915
  # archived after three months.
5679
5916
  #
5680
- # * `ARCHIVED`\: The image version is archived. Archived image
5681
- # versions are not searchable and are no longer actively supported.
5917
+ # * `ARCHIVED`: The image version is archived. Archived image versions
5918
+ # are not searchable and are no longer actively supported.
5682
5919
  # @return [String]
5683
5920
  #
5684
5921
  # @!attribute [rw] job_type
5685
5922
  # Indicates SageMaker job type compatibility.
5686
5923
  #
5687
- # * `TRAINING`\: The image version is compatible with SageMaker
5924
+ # * `TRAINING`: The image version is compatible with SageMaker
5688
5925
  # training jobs.
5689
5926
  #
5690
- # * `INFERENCE`\: The image version is compatible with SageMaker
5927
+ # * `INFERENCE`: The image version is compatible with SageMaker
5691
5928
  # inference jobs.
5692
5929
  #
5693
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5930
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
5694
5931
  # notebook kernels.
5695
5932
  # @return [String]
5696
5933
  #
@@ -5705,9 +5942,9 @@ module Aws::SageMaker
5705
5942
  # @!attribute [rw] processor
5706
5943
  # Indicates CPU or GPU compatibility.
5707
5944
  #
5708
- # * `CPU`\: The image version is compatible with CPU.
5945
+ # * `CPU`: The image version is compatible with CPU.
5709
5946
  #
5710
- # * `GPU`\: The image version is compatible with GPU.
5947
+ # * `GPU`: The image version is compatible with GPU.
5711
5948
  # @return [String]
5712
5949
  #
5713
5950
  # @!attribute [rw] horovod
@@ -5756,7 +5993,7 @@ module Aws::SageMaker
5756
5993
  # The type of the inference experiment that you want to run. The
5757
5994
  # following types of experiments are possible:
5758
5995
  #
5759
- # * `ShadowMode`\: You can use this type to validate a shadow variant.
5996
+ # * `ShadowMode`: You can use this type to validate a shadow variant.
5760
5997
  # For more information, see [Shadow tests][1].
5761
5998
  #
5762
5999
  # ^
@@ -6334,13 +6571,13 @@ module Aws::SageMaker
6334
6571
  # Different organizations might have different criteria for model card
6335
6572
  # review and approval.
6336
6573
  #
6337
- # * `Draft`\: The model card is a work in progress.
6574
+ # * `Draft`: The model card is a work in progress.
6338
6575
  #
6339
- # * `PendingReview`\: The model card is pending review.
6576
+ # * `PendingReview`: The model card is pending review.
6340
6577
  #
6341
- # * `Approved`\: The model card is approved.
6578
+ # * `Approved`: The model card is approved.
6342
6579
  #
6343
- # * `Archived`\: The model card is archived. No more updates should be
6580
+ # * `Archived`: The model card is archived. No more updates should be
6344
6581
  # made to the model card, but it can still be exported.
6345
6582
  # @return [String]
6346
6583
  #
@@ -10279,6 +10516,130 @@ module Aws::SageMaker
10279
10516
  include Aws::Structure
10280
10517
  end
10281
10518
 
10519
+ # @!attribute [rw] auto_ml_job_name
10520
+ # Requests information about an AutoML V2 job using its unique name.
10521
+ # @return [String]
10522
+ #
10523
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Request AWS API Documentation
10524
+ #
10525
+ class DescribeAutoMLJobV2Request < Struct.new(
10526
+ :auto_ml_job_name)
10527
+ SENSITIVE = []
10528
+ include Aws::Structure
10529
+ end
10530
+
10531
+ # @!attribute [rw] auto_ml_job_name
10532
+ # Returns the name of the AutoML V2 job.
10533
+ # @return [String]
10534
+ #
10535
+ # @!attribute [rw] auto_ml_job_arn
10536
+ # Returns the Amazon Resource Name (ARN) of the AutoML V2 job.
10537
+ # @return [String]
10538
+ #
10539
+ # @!attribute [rw] auto_ml_job_input_data_config
10540
+ # Returns an array of channel objects describing the input data and
10541
+ # their location.
10542
+ # @return [Array<Types::AutoMLJobChannel>]
10543
+ #
10544
+ # @!attribute [rw] output_data_config
10545
+ # Returns the job's output data config.
10546
+ # @return [Types::AutoMLOutputDataConfig]
10547
+ #
10548
+ # @!attribute [rw] role_arn
10549
+ # The ARN of the Identity and Access Management role that has read
10550
+ # permission to the input data location and write permission to the
10551
+ # output data location in Amazon S3.
10552
+ # @return [String]
10553
+ #
10554
+ # @!attribute [rw] auto_ml_job_objective
10555
+ # Returns the job's objective.
10556
+ # @return [Types::AutoMLJobObjective]
10557
+ #
10558
+ # @!attribute [rw] auto_ml_problem_type_config
10559
+ # Returns the configuration settings of the problem type set for the
10560
+ # AutoML V2 job.
10561
+ # @return [Types::AutoMLProblemTypeConfig]
10562
+ #
10563
+ # @!attribute [rw] creation_time
10564
+ # Returns the creation time of the AutoML V2 job.
10565
+ # @return [Time]
10566
+ #
10567
+ # @!attribute [rw] end_time
10568
+ # Returns the end time of the AutoML V2 job.
10569
+ # @return [Time]
10570
+ #
10571
+ # @!attribute [rw] last_modified_time
10572
+ # Returns the job's last modified time.
10573
+ # @return [Time]
10574
+ #
10575
+ # @!attribute [rw] failure_reason
10576
+ # Returns the reason for the failure of the AutoML V2 job, when
10577
+ # applicable.
10578
+ # @return [String]
10579
+ #
10580
+ # @!attribute [rw] partial_failure_reasons
10581
+ # Returns a list of reasons for partial failures within an AutoML V2
10582
+ # job.
10583
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10584
+ #
10585
+ # @!attribute [rw] best_candidate
10586
+ # Information about the candidate produced by an AutoML training job
10587
+ # V2, including its status, steps, and other properties.
10588
+ # @return [Types::AutoMLCandidate]
10589
+ #
10590
+ # @!attribute [rw] auto_ml_job_status
10591
+ # Returns the status of the AutoML V2 job.
10592
+ # @return [String]
10593
+ #
10594
+ # @!attribute [rw] auto_ml_job_secondary_status
10595
+ # Returns the secondary status of the AutoML V2 job.
10596
+ # @return [String]
10597
+ #
10598
+ # @!attribute [rw] model_deploy_config
10599
+ # Indicates whether the model was deployed automatically to an
10600
+ # endpoint and the name of that endpoint if deployed automatically.
10601
+ # @return [Types::ModelDeployConfig]
10602
+ #
10603
+ # @!attribute [rw] model_deploy_result
10604
+ # Provides information about endpoint for the model deployment.
10605
+ # @return [Types::ModelDeployResult]
10606
+ #
10607
+ # @!attribute [rw] data_split_config
10608
+ # Returns the configuration settings of how the data are split into
10609
+ # train and validation datasets.
10610
+ # @return [Types::AutoMLDataSplitConfig]
10611
+ #
10612
+ # @!attribute [rw] security_config
10613
+ # Returns the security configuration for traffic encryption or Amazon
10614
+ # VPC settings.
10615
+ # @return [Types::AutoMLSecurityConfig]
10616
+ #
10617
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
10618
+ #
10619
+ class DescribeAutoMLJobV2Response < Struct.new(
10620
+ :auto_ml_job_name,
10621
+ :auto_ml_job_arn,
10622
+ :auto_ml_job_input_data_config,
10623
+ :output_data_config,
10624
+ :role_arn,
10625
+ :auto_ml_job_objective,
10626
+ :auto_ml_problem_type_config,
10627
+ :creation_time,
10628
+ :end_time,
10629
+ :last_modified_time,
10630
+ :failure_reason,
10631
+ :partial_failure_reasons,
10632
+ :best_candidate,
10633
+ :auto_ml_job_status,
10634
+ :auto_ml_job_secondary_status,
10635
+ :model_deploy_config,
10636
+ :model_deploy_result,
10637
+ :data_split_config,
10638
+ :security_config)
10639
+ SENSITIVE = []
10640
+ include Aws::Structure
10641
+ end
10642
+
10282
10643
  # @!attribute [rw] code_repository_name
10283
10644
  # The name of the Git repository to describe.
10284
10645
  # @return [String]
@@ -11199,21 +11560,21 @@ module Aws::SageMaker
11199
11560
  # @!attribute [rw] endpoint_status
11200
11561
  # The status of the endpoint.
11201
11562
  #
11202
- # * `OutOfService`\: Endpoint is not available to take incoming
11563
+ # * `OutOfService`: Endpoint is not available to take incoming
11203
11564
  # requests.
11204
11565
  #
11205
- # * `Creating`\: CreateEndpoint is executing.
11566
+ # * `Creating`: CreateEndpoint is executing.
11206
11567
  #
11207
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11568
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
11208
11569
  # is executing.
11209
11570
  #
11210
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
11211
- # be updated or deleted or re-scaled until it has completed. This
11571
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
11572
+ # updated or deleted or re-scaled until it has completed. This
11212
11573
  # maintenance operation does not change any customer-specified
11213
11574
  # values such as VPC config, KMS encryption, model, instance type,
11214
11575
  # or instance count.
11215
11576
  #
11216
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
11577
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
11217
11578
  # variant weight and is in the process of rolling back to its
11218
11579
  # previous configuration. Once the rollback completes, endpoint
11219
11580
  # returns to an `InService` status. This transitional status only
@@ -11222,11 +11583,11 @@ module Aws::SageMaker
11222
11583
  # UpdateEndpointWeightsAndCapacities call or when the
11223
11584
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
11224
11585
  #
11225
- # * `InService`\: Endpoint is available to process incoming requests.
11586
+ # * `InService`: Endpoint is available to process incoming requests.
11226
11587
  #
11227
- # * `Deleting`\: DeleteEndpoint is executing.
11588
+ # * `Deleting`: DeleteEndpoint is executing.
11228
11589
  #
11229
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
11590
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
11230
11591
  # Use DescribeEndpointOutput$FailureReason for information about the
11231
11592
  # failure. DeleteEndpoint is the only operation that can be
11232
11593
  # performed on a failed endpoint.
@@ -12130,29 +12491,29 @@ module Aws::SageMaker
12130
12491
  # @!attribute [rw] vendor_guidance
12131
12492
  # The stability of the image version specified by the maintainer.
12132
12493
  #
12133
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
12134
- # image version stability.
12494
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
12495
+ # version stability.
12135
12496
  #
12136
- # * `STABLE`\: The image version is stable.
12497
+ # * `STABLE`: The image version is stable.
12137
12498
  #
12138
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
12499
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
12139
12500
  # image versions that are set to be archived are automatically
12140
12501
  # archived after three months.
12141
12502
  #
12142
- # * `ARCHIVED`\: The image version is archived. Archived image
12143
- # versions are not searchable and are no longer actively supported.
12503
+ # * `ARCHIVED`: The image version is archived. Archived image versions
12504
+ # are not searchable and are no longer actively supported.
12144
12505
  # @return [String]
12145
12506
  #
12146
12507
  # @!attribute [rw] job_type
12147
12508
  # Indicates SageMaker job type compatibility.
12148
12509
  #
12149
- # * `TRAINING`\: The image version is compatible with SageMaker
12510
+ # * `TRAINING`: The image version is compatible with SageMaker
12150
12511
  # training jobs.
12151
12512
  #
12152
- # * `INFERENCE`\: The image version is compatible with SageMaker
12513
+ # * `INFERENCE`: The image version is compatible with SageMaker
12153
12514
  # inference jobs.
12154
12515
  #
12155
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12516
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
12156
12517
  # notebook kernels.
12157
12518
  # @return [String]
12158
12519
  #
@@ -12167,9 +12528,9 @@ module Aws::SageMaker
12167
12528
  # @!attribute [rw] processor
12168
12529
  # Indicates CPU or GPU compatibility.
12169
12530
  #
12170
- # * `CPU`\: The image version is compatible with CPU.
12531
+ # * `CPU`: The image version is compatible with CPU.
12171
12532
  #
12172
- # * `GPU`\: The image version is compatible with GPU.
12533
+ # * `GPU`: The image version is compatible with GPU.
12173
12534
  # @return [String]
12174
12535
  #
12175
12536
  # @!attribute [rw] horovod
@@ -12767,11 +13128,11 @@ module Aws::SageMaker
12767
13128
  # @!attribute [rw] status
12768
13129
  # The completion status of the model card export job.
12769
13130
  #
12770
- # * `InProgress`\: The model card export job is in progress.
13131
+ # * `InProgress`: The model card export job is in progress.
12771
13132
  #
12772
- # * `Completed`\: The model card export job is complete.
13133
+ # * `Completed`: The model card export job is complete.
12773
13134
  #
12774
- # * `Failed`\: The model card export job failed. To see the reason for
13135
+ # * `Failed`: The model card export job failed. To see the reason for
12775
13136
  # the failure, see the `FailureReason` field in the response to a
12776
13137
  # `DescribeModelCardExportJob` call.
12777
13138
  # @return [String]
@@ -12860,13 +13221,13 @@ module Aws::SageMaker
12860
13221
  # Different organizations might have different criteria for model card
12861
13222
  # review and approval.
12862
13223
  #
12863
- # * `Draft`\: The model card is a work in progress.
13224
+ # * `Draft`: The model card is a work in progress.
12864
13225
  #
12865
- # * `PendingReview`\: The model card is pending review.
13226
+ # * `PendingReview`: The model card is pending review.
12866
13227
  #
12867
- # * `Approved`\: The model card is approved.
13228
+ # * `Approved`: The model card is approved.
12868
13229
  #
12869
- # * `Archived`\: The model card is archived. No more updates should be
13230
+ # * `Archived`: The model card is archived. No more updates should be
12870
13231
  # made to the model card, but it can still be exported.
12871
13232
  # @return [String]
12872
13233
  #
@@ -12897,18 +13258,18 @@ module Aws::SageMaker
12897
13258
  # `ModelCardProcessingStatus` updates throughout the different
12898
13259
  # deletion steps.
12899
13260
  #
12900
- # * `DeletePending`\: Model card deletion request received.
13261
+ # * `DeletePending`: Model card deletion request received.
12901
13262
  #
12902
- # * `DeleteInProgress`\: Model card deletion is in progress.
13263
+ # * `DeleteInProgress`: Model card deletion is in progress.
12903
13264
  #
12904
- # * `ContentDeleted`\: Deleted model card content.
13265
+ # * `ContentDeleted`: Deleted model card content.
12905
13266
  #
12906
- # * `ExportJobsDeleted`\: Deleted all export jobs associated with the
13267
+ # * `ExportJobsDeleted`: Deleted all export jobs associated with the
12907
13268
  # model card.
12908
13269
  #
12909
- # * `DeleteCompleted`\: Successfully deleted the model card.
13270
+ # * `DeleteCompleted`: Successfully deleted the model card.
12910
13271
  #
12911
- # * `DeleteFailed`\: The model card failed to delete.
13272
+ # * `DeleteFailed`: The model card failed to delete.
12912
13273
  # @return [String]
12913
13274
  #
12914
13275
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelCardResponse AWS API Documentation
@@ -16435,21 +16796,21 @@ module Aws::SageMaker
16435
16796
  # @!attribute [rw] endpoint_status
16436
16797
  # The status of the endpoint.
16437
16798
  #
16438
- # * `OutOfService`\: Endpoint is not available to take incoming
16799
+ # * `OutOfService`: Endpoint is not available to take incoming
16439
16800
  # requests.
16440
16801
  #
16441
- # * `Creating`\: CreateEndpoint is executing.
16802
+ # * `Creating`: CreateEndpoint is executing.
16442
16803
  #
16443
- # * `Updating`\: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16804
+ # * `Updating`: UpdateEndpoint or UpdateEndpointWeightsAndCapacities
16444
16805
  # is executing.
16445
16806
  #
16446
- # * `SystemUpdating`\: Endpoint is undergoing maintenance and cannot
16447
- # be updated or deleted or re-scaled until it has completed. This
16807
+ # * `SystemUpdating`: Endpoint is undergoing maintenance and cannot be
16808
+ # updated or deleted or re-scaled until it has completed. This
16448
16809
  # maintenance operation does not change any customer-specified
16449
16810
  # values such as VPC config, KMS encryption, model, instance type,
16450
16811
  # or instance count.
16451
16812
  #
16452
- # * `RollingBack`\: Endpoint fails to scale up or down or change its
16813
+ # * `RollingBack`: Endpoint fails to scale up or down or change its
16453
16814
  # variant weight and is in the process of rolling back to its
16454
16815
  # previous configuration. Once the rollback completes, endpoint
16455
16816
  # returns to an `InService` status. This transitional status only
@@ -16458,11 +16819,11 @@ module Aws::SageMaker
16458
16819
  # UpdateEndpointWeightsAndCapacities call or when the
16459
16820
  # UpdateEndpointWeightsAndCapacities operation is called explicitly.
16460
16821
  #
16461
- # * `InService`\: Endpoint is available to process incoming requests.
16822
+ # * `InService`: Endpoint is available to process incoming requests.
16462
16823
  #
16463
- # * `Deleting`\: DeleteEndpoint is executing.
16824
+ # * `Deleting`: DeleteEndpoint is executing.
16464
16825
  #
16465
- # * `Failed`\: Endpoint could not be created, updated, or re-scaled.
16826
+ # * `Failed`: Endpoint could not be created, updated, or re-scaled.
16466
16827
  # Use DescribeEndpointOutput$FailureReason for information about the
16467
16828
  # failure. DeleteEndpoint is the only operation that can be
16468
16829
  # performed on a failed endpoint.
@@ -17087,7 +17448,7 @@ module Aws::SageMaker
17087
17448
  # : To define a metric filter, enter a value using the form
17088
17449
  # `"Metrics.<name>"`, where `<name>` is a metric name. For example,
17089
17450
  # the following filter searches for training jobs with an `"accuracy"`
17090
- # metric greater than `"0.9"`\:
17451
+ # metric greater than `"0.9"`:
17091
17452
  #
17092
17453
  # `\{`
17093
17454
  #
@@ -17107,7 +17468,7 @@ module Aws::SageMaker
17107
17468
  # also a decimal value. If the specified `Value` is an integer, the
17108
17469
  # decimal hyperparameter values are treated as integers. For example,
17109
17470
  # the following filter is satisfied by training jobs with a
17110
- # `"learning_rate"` hyperparameter that is less than `"0.5"`\:
17471
+ # `"learning_rate"` hyperparameter that is less than `"0.5"`:
17111
17472
  #
17112
17473
  # ` \{`
17113
17474
  #
@@ -17264,18 +17625,27 @@ module Aws::SageMaker
17264
17625
  include Aws::Structure
17265
17626
  end
17266
17627
 
17267
- # Shows the final value for the objective metric for a training job that
17268
- # was launched by a hyperparameter tuning job. You define the objective
17628
+ # Shows the latest objective metric emitted by a training job that was
17629
+ # launched by a hyperparameter tuning job. You define the objective
17269
17630
  # metric in the `HyperParameterTuningJobObjective` parameter of
17270
17631
  # HyperParameterTuningJobConfig.
17271
17632
  #
17272
17633
  # @!attribute [rw] type
17273
- # Whether to minimize or maximize the objective metric. Valid values
17274
- # are Minimize and Maximize.
17634
+ # Select if you want to minimize or maximize the objective metric
17635
+ # during hyperparameter tuning.
17275
17636
  # @return [String]
17276
17637
  #
17277
17638
  # @!attribute [rw] metric_name
17278
- # The name of the objective metric.
17639
+ # The name of the objective metric. For SageMaker built-in algorithms,
17640
+ # metrics are defined per algorithm. See the [metrics for XGBoost][1]
17641
+ # as an example. You can also use a custom algorithm for training and
17642
+ # define your own metrics. For more information, see [Define metrics
17643
+ # and environment variables][2].
17644
+ #
17645
+ #
17646
+ #
17647
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-tuning.html
17648
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
17279
17649
  # @return [String]
17280
17650
  #
17281
17651
  # @!attribute [rw] value
@@ -19883,7 +20253,7 @@ module Aws::SageMaker
19883
20253
  # `MaxResource` is not provided, and `Hyperband` is selected as the
19884
20254
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
19885
20255
  # infer `MaxResource` from the following keys (if present) in
19886
- # [StaticsHyperParameters][1]\:
20256
+ # [StaticsHyperParameters][1]:
19887
20257
  #
19888
20258
  # * `epochs`
19889
20259
  #
@@ -19999,6 +20369,22 @@ module Aws::SageMaker
19999
20369
  include Aws::Structure
20000
20370
  end
20001
20371
 
20372
+ # Stores the configuration information for the image classification
20373
+ # problem of an AutoML job using the V2 API.
20374
+ #
20375
+ # @!attribute [rw] completion_criteria
20376
+ # How long a job is allowed to run, or how many candidates a job is
20377
+ # allowed to generate.
20378
+ # @return [Types::AutoMLJobCompletionCriteria]
20379
+ #
20380
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageClassificationJobConfig AWS API Documentation
20381
+ #
20382
+ class ImageClassificationJobConfig < Struct.new(
20383
+ :completion_criteria)
20384
+ SENSITIVE = []
20385
+ include Aws::Structure
20386
+ end
20387
+
20002
20388
  # Specifies whether the model container is in Amazon ECR or a private
20003
20389
  # Docker registry accessible from your Amazon Virtual Private Cloud
20004
20390
  # (VPC).
@@ -20413,7 +20799,7 @@ module Aws::SageMaker
20413
20799
  # @!attribute [rw] step_type
20414
20800
  # The type of the subtask.
20415
20801
  #
20416
- # `BENCHMARK`\: Evaluate the performance of your model on different
20802
+ # `BENCHMARK`: Evaluate the performance of your model on different
20417
20803
  # instance types.
20418
20804
  # @return [String]
20419
20805
  #
@@ -20499,8 +20885,8 @@ module Aws::SageMaker
20499
20885
  # trained model with a JSON dictionary form. The data inputs are
20500
20886
  # InputConfig$Framework specific.
20501
20887
  #
20502
- # * `TensorFlow`\: You must specify the name and shape (NHWC format)
20503
- # of the expected data inputs using a dictionary format for your
20888
+ # * `TensorFlow`: You must specify the name and shape (NHWC format) of
20889
+ # the expected data inputs using a dictionary format for your
20504
20890
  # trained model. The dictionary formats required for the console and
20505
20891
  # CLI are different.
20506
20892
  #
@@ -20518,7 +20904,7 @@ module Aws::SageMaker
20518
20904
  # * If using the CLI, `\{"data1": [1,28,28,1],
20519
20905
  # "data2":[1,28,28,1]\}`
20520
20906
  #
20521
- # * `KERAS`\: You must specify the name and shape (NCHW format) of
20907
+ # * `KERAS`: You must specify the name and shape (NCHW format) of
20522
20908
  # expected data inputs using a dictionary format for your trained
20523
20909
  # model. Note that while Keras model artifacts should be uploaded in
20524
20910
  # NHWC (channel-last) format, `DataInputConfig` should be specified
@@ -20539,7 +20925,7 @@ module Aws::SageMaker
20539
20925
  # * If using the CLI, `\{"input_1": [1,3,224,224],
20540
20926
  # "input_2":[1,3,224,224]\}`
20541
20927
  #
20542
- # * `MXNET/ONNX/DARKNET`\: You must specify the name and shape (NCHW
20928
+ # * `MXNET/ONNX/DARKNET`: You must specify the name and shape (NCHW
20543
20929
  # format) of the expected data inputs in order using a dictionary
20544
20930
  # format for your trained model. The dictionary formats required for
20545
20931
  # the console and CLI are different.
@@ -20558,12 +20944,12 @@ module Aws::SageMaker
20558
20944
  # * If using the CLI, `\{"var1": [1,1,28,28],
20559
20945
  # "var2":[1,1,28,28]\}`
20560
20946
  #
20561
- # * `PyTorch`\: You can either specify the name and shape (NCHW
20562
- # format) of expected data inputs in order using a dictionary format
20563
- # for your trained model or you can specify the shape only using a
20564
- # list format. The dictionary formats required for the console and
20565
- # CLI are different. The list formats for the console and CLI are
20566
- # the same.
20947
+ # * `PyTorch`: You can either specify the name and shape (NCHW format)
20948
+ # of expected data inputs in order using a dictionary format for
20949
+ # your trained model or you can specify the shape only using a list
20950
+ # format. The dictionary formats required for the console and CLI
20951
+ # are different. The list formats for the console and CLI are the
20952
+ # same.
20567
20953
  #
20568
20954
  # * Examples for one input in dictionary format:
20569
20955
  #
@@ -20584,12 +20970,12 @@ module Aws::SageMaker
20584
20970
  # * Example for two inputs in list format: `[[1,3,224,224],
20585
20971
  # [1,3,224,224]]`
20586
20972
  #
20587
- # * `XGBOOST`\: input data name and shape are not needed.
20973
+ # * `XGBOOST`: input data name and shape are not needed.
20588
20974
  #
20589
20975
  # `DataInputConfig` supports the following parameters for `CoreML`
20590
20976
  # OutputConfig$TargetDevice (ML Model format):
20591
20977
  #
20592
- # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
20978
+ # * `shape`: Input shape, for example `\{"input_1": \{"shape":
20593
20979
  # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
20594
20980
  # converter supports Flexible input shapes:
20595
20981
  #
@@ -20603,21 +20989,21 @@ module Aws::SageMaker
20603
20989
  # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
20604
20990
  # 224, 3], [1, 160, 160, 3]]\}\}`
20605
20991
  #
20606
- # * `default_shape`\: Default input shape. You can set a default shape
20992
+ # * `default_shape`: Default input shape. You can set a default shape
20607
20993
  # during conversion for both Range Dimension and Enumerated Shapes.
20608
20994
  # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
20609
20995
  # "default_shape": [1, 224, 224, 3]\}\}`
20610
20996
  #
20611
- # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
20997
+ # * `type`: Input type. Allowed values: `Image` and `Tensor`. By
20612
20998
  # default, the converter generates an ML Model with inputs of type
20613
20999
  # Tensor (MultiArray). User can set input type to be Image. Image
20614
21000
  # input type requires additional input parameters such as `bias` and
20615
21001
  # `scale`.
20616
21002
  #
20617
- # * `bias`\: If the input type is an Image, you need to provide the
21003
+ # * `bias`: If the input type is an Image, you need to provide the
20618
21004
  # bias vector.
20619
21005
  #
20620
- # * `scale`\: If the input type is an Image, you need to provide a
21006
+ # * `scale`: If the input type is an Image, you need to provide a
20621
21007
  # scale factor.
20622
21008
  #
20623
21009
  # CoreML `ClassifierConfig` parameters can be specified using
@@ -21316,11 +21702,11 @@ module Aws::SageMaker
21316
21702
  # one of the following keys: `source-ref` or `source`. The value of
21317
21703
  # the keys are interpreted as follows:
21318
21704
  #
21319
- # * `source-ref`\: The source of the object is the Amazon S3 object
21705
+ # * `source-ref`: The source of the object is the Amazon S3 object
21320
21706
  # specified in the value. Use this value when the object is a binary
21321
21707
  # object, such as an image.
21322
21708
  #
21323
- # * `source`\: The source of the object is the value. Use this value
21709
+ # * `source`: The source of the object is the value. Use this value
21324
21710
  # when the object is a text value.
21325
21711
  #
21326
21712
  # If you are a new user of Ground Truth, it is recommended you review
@@ -23776,7 +24162,7 @@ module Aws::SageMaker
23776
24162
  # @!attribute [rw] step_type
23777
24163
  # A filter to return details about the specified type of subtask.
23778
24164
  #
23779
- # `BENCHMARK`\: Evaluate the performance of your model on different
24165
+ # `BENCHMARK`: Evaluate the performance of your model on different
23780
24166
  # instance types.
23781
24167
  # @return [String]
23782
24168
  #
@@ -26951,13 +27337,13 @@ module Aws::SageMaker
26951
27337
  # Different organizations might have different criteria for model card
26952
27338
  # review and approval.
26953
27339
  #
26954
- # * `Draft`\: The model card is a work in progress.
27340
+ # * `Draft`: The model card is a work in progress.
26955
27341
  #
26956
- # * `PendingReview`\: The model card is pending review.
27342
+ # * `PendingReview`: The model card is pending review.
26957
27343
  #
26958
- # * `Approved`\: The model card is approved.
27344
+ # * `Approved`: The model card is approved.
26959
27345
  #
26960
- # * `Archived`\: The model card is archived. No more updates should be
27346
+ # * `Archived`: The model card is archived. No more updates should be
26961
27347
  # made to the model card, but it can still be exported.
26962
27348
  # @return [String]
26963
27349
  #
@@ -27128,13 +27514,13 @@ module Aws::SageMaker
27128
27514
  # Different organizations might have different criteria for model card
27129
27515
  # review and approval.
27130
27516
  #
27131
- # * `Draft`\: The model card is a work in progress.
27517
+ # * `Draft`: The model card is a work in progress.
27132
27518
  #
27133
- # * `PendingReview`\: The model card is pending review.
27519
+ # * `PendingReview`: The model card is pending review.
27134
27520
  #
27135
- # * `Approved`\: The model card is approved.
27521
+ # * `Approved`: The model card is approved.
27136
27522
  #
27137
- # * `Archived`\: The model card is archived. No more updates should be
27523
+ # * `Archived`: The model card is archived. No more updates should be
27138
27524
  # made to the model card, but it can still be exported.
27139
27525
  # @return [String]
27140
27526
  #
@@ -27173,13 +27559,13 @@ module Aws::SageMaker
27173
27559
  # organization. Different organizations might have different criteria
27174
27560
  # for model card review and approval.
27175
27561
  #
27176
- # * `Draft`\: The model card is a work in progress.
27562
+ # * `Draft`: The model card is a work in progress.
27177
27563
  #
27178
- # * `PendingReview`\: The model card is pending review.
27564
+ # * `PendingReview`: The model card is pending review.
27179
27565
  #
27180
- # * `Approved`\: The model card is approved.
27566
+ # * `Approved`: The model card is approved.
27181
27567
  #
27182
- # * `Archived`\: The model card is archived. No more updates should be
27568
+ # * `Archived`: The model card is archived. No more updates should be
27183
27569
  # made to the model card, but it can still be exported.
27184
27570
  # @return [String]
27185
27571
  #
@@ -27650,7 +28036,7 @@ module Aws::SageMaker
27650
28036
  # The inference option to which to deploy your model. Possible values
27651
28037
  # are the following:
27652
28038
  #
27653
- # * `RealTime`\: Deploy to real-time inference.
28039
+ # * `RealTime`: Deploy to real-time inference.
27654
28040
  #
27655
28041
  # ^
27656
28042
  # @return [String]
@@ -29872,12 +30258,12 @@ module Aws::SageMaker
29872
30258
  # The security configuration for `OnlineStore`.
29873
30259
  #
29874
30260
  # @!attribute [rw] kms_key_id
29875
- # The ID of the Amazon Web Services Key Management Service (Amazon Web
29876
- # Services KMS) key that SageMaker Feature Store uses to encrypt the
29877
- # Amazon S3 objects at rest using Amazon S3 server-side encryption.
30261
+ # The Amazon Web Services Key Management Service (KMS) key ARN that
30262
+ # SageMaker Feature Store uses to encrypt the Amazon S3 objects at
30263
+ # rest using Amazon S3 server-side encryption.
29878
30264
  #
29879
- # The caller (either IAM user or IAM role) of `CreateFeatureGroup`
29880
- # must have below permissions to the `OnlineStore` `KmsKeyId`\:
30265
+ # The caller (either user or IAM role) of `CreateFeatureGroup` must
30266
+ # have below permissions to the `OnlineStore` `KmsKeyId`:
29881
30267
  #
29882
30268
  # * `"kms:Encrypt"`
29883
30269
  #
@@ -29903,7 +30289,7 @@ module Aws::SageMaker
29903
30289
  #
29904
30290
  # The caller (either user or IAM role) to all DataPlane operations
29905
30291
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29906
- # permissions to the `KmsKeyId`\:
30292
+ # permissions to the `KmsKeyId`:
29907
30293
  #
29908
30294
  # * `"kms:Decrypt"`
29909
30295
  #
@@ -29995,11 +30381,10 @@ module Aws::SageMaker
29995
30381
  # for NVIDIA accelerators and highly recommended for CPU compilations.
29996
30382
  # For any other cases, it is optional to specify `CompilerOptions.`
29997
30383
  #
29998
- # * `DTYPE`\: Specifies the data type for the input. When compiling
29999
- # for `ml_*` (except for `ml_inf`) instances using PyTorch
30000
- # framework, provide the data type (dtype) of the model's input.
30001
- # `"float32"` is used if `"DTYPE"` is not specified. Options for
30002
- # data type are:
30384
+ # * `DTYPE`: Specifies the data type for the input. When compiling for
30385
+ # `ml_*` (except for `ml_inf`) instances using PyTorch framework,
30386
+ # provide the data type (dtype) of the model's input. `"float32"`
30387
+ # is used if `"DTYPE"` is not specified. Options for data type are:
30003
30388
  #
30004
30389
  # * float32: Use either `"float"` or `"float32"`.
30005
30390
  #
@@ -30007,75 +30392,74 @@ module Aws::SageMaker
30007
30392
  #
30008
30393
  # For example, `\{"dtype" : "float32"\}`.
30009
30394
  #
30010
- # * `CPU`\: Compilation for CPU supports the following compiler
30395
+ # * `CPU`: Compilation for CPU supports the following compiler
30011
30396
  # options.
30012
30397
  #
30013
- # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
30398
+ # * `mcpu`: CPU micro-architecture. For example, `\{'mcpu':
30014
30399
  # 'skylake-avx512'\}`
30015
30400
  #
30016
- # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
30401
+ # * `mattr`: CPU flags. For example, `\{'mattr': ['+neon',
30017
30402
  # '+vfpv4']\}`
30018
30403
  #
30019
- # * `ARM`\: Details of ARM CPU compilations.
30404
+ # * `ARM`: Details of ARM CPU compilations.
30020
30405
  #
30021
- # * `NEON`\: NEON is an implementation of the Advanced SIMD
30022
- # extension used in ARMv7 processors.
30406
+ # * `NEON`: NEON is an implementation of the Advanced SIMD extension
30407
+ # used in ARMv7 processors.
30023
30408
  #
30024
30409
  # For example, add `\{'mattr': ['+neon']\}` to the compiler
30025
30410
  # options if compiling for ARM 32-bit platform with the NEON
30026
30411
  # support.
30027
30412
  #
30028
- # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
30413
+ # * `NVIDIA`: Compilation for NVIDIA GPU supports the following
30029
30414
  # compiler options.
30030
30415
  #
30031
- # * `gpu_code`\: Specifies the targeted architecture.
30416
+ # * `gpu_code`: Specifies the targeted architecture.
30032
30417
  #
30033
- # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
30418
+ # * `trt-ver`: Specifies the TensorRT versions in x.y.z. format.
30034
30419
  #
30035
- # * `cuda-ver`\: Specifies the CUDA version in x.y format.
30420
+ # * `cuda-ver`: Specifies the CUDA version in x.y format.
30036
30421
  #
30037
30422
  # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
30038
30423
  # 'cuda-ver': '10.1'\}`
30039
30424
  #
30040
- # * `ANDROID`\: Compilation for the Android OS supports the following
30425
+ # * `ANDROID`: Compilation for the Android OS supports the following
30041
30426
  # compiler options:
30042
30427
  #
30043
- # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
30428
+ # * `ANDROID_PLATFORM`: Specifies the Android API levels. Available
30044
30429
  # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
30045
30430
  # 28\}`.
30046
30431
  #
30047
- # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
30432
+ # * `mattr`: Add `\{'mattr': ['+neon']\}` to compiler options if
30048
30433
  # compiling for ARM 32-bit platform with NEON support.
30049
30434
  #
30050
- # * `INFERENTIA`\: Compilation for target ml\_inf1 uses compiler
30435
+ # * `INFERENTIA`: Compilation for target ml\_inf1 uses compiler
30051
30436
  # options passed in as a JSON string. For example,
30052
30437
  # `"CompilerOptions": ""--verbose 1 --num-neuroncores 2 -O2""`.
30053
30438
  #
30054
30439
  # For information about supported compiler options, see [ Neuron
30055
30440
  # Compiler CLI][1].
30056
30441
  #
30057
- # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
30442
+ # * `CoreML`: Compilation for the CoreML OutputConfig$TargetDevice
30058
30443
  # supports the following compiler options:
30059
30444
  #
30060
- # * `class_labels`\: Specifies the classification labels file name
30445
+ # * `class_labels`: Specifies the classification labels file name
30061
30446
  # inside input tar.gz file. For example, `\{"class_labels":
30062
30447
  # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
30063
30448
  # be separated by newlines.
30064
30449
  #
30065
30450
  # ^
30066
30451
  #
30067
- # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
30452
+ # * `EIA`: Compilation for the Elastic Inference Accelerator supports
30068
30453
  # the following compiler options:
30069
30454
  #
30070
- # * `precision_mode`\: Specifies the precision of compiled
30071
- # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
30072
- # is `"FP32"`.
30455
+ # * `precision_mode`: Specifies the precision of compiled artifacts.
30456
+ # Supported values are `"FP16"` and `"FP32"`. Default is `"FP32"`.
30073
30457
  #
30074
- # * `signature_def_key`\: Specifies the signature to use for models
30458
+ # * `signature_def_key`: Specifies the signature to use for models
30075
30459
  # in SavedModel format. Defaults is TensorFlow's default
30076
30460
  # signature def key.
30077
30461
  #
30078
- # * `output_names`\: Specifies a list of output tensor names for
30462
+ # * `output_names`: Specifies a list of output tensor names for
30079
30463
  # models in FrozenGraph format. Set at most one API field, either:
30080
30464
  # `signature_def_key` or `output_names`.
30081
30465
  #
@@ -31499,7 +31883,12 @@ module Aws::SageMaker
31499
31883
  # Identifies a model that you want to host and the resources chosen to
31500
31884
  # deploy for hosting it. If you are deploying multiple models, tell
31501
31885
  # SageMaker how to distribute traffic among the models by specifying
31502
- # variant weights.
31886
+ # variant weights. For more information on production variants, check [
31887
+ # Production variants][1].
31888
+ #
31889
+ #
31890
+ #
31891
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html
31503
31892
  #
31504
31893
  # @!attribute [rw] variant_name
31505
31894
  # The name of the production variant.
@@ -31571,6 +31960,15 @@ module Aws::SageMaker
31571
31960
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests
31572
31961
  # @return [Integer]
31573
31962
  #
31963
+ # @!attribute [rw] enable_ssm_access
31964
+ # You can use this parameter to turn on native Amazon Web Services
31965
+ # Systems Manager (SSM) access for a production variant behind an
31966
+ # endpoint. By default, SSM access is disabled for all production
31967
+ # variants behind an endpoint. You can turn on or turn off SSM access
31968
+ # for a production variant behind an existing endpoint by creating a
31969
+ # new endpoint configuration and calling `UpdateEndpoint`.
31970
+ # @return [Boolean]
31971
+ #
31574
31972
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
31575
31973
  #
31576
31974
  class ProductionVariant < Struct.new(
@@ -31584,7 +31982,8 @@ module Aws::SageMaker
31584
31982
  :serverless_config,
31585
31983
  :volume_size_in_gb,
31586
31984
  :model_data_download_timeout_in_seconds,
31587
- :container_startup_health_check_timeout_in_seconds)
31985
+ :container_startup_health_check_timeout_in_seconds,
31986
+ :enable_ssm_access)
31588
31987
  SENSITIVE = []
31589
31988
  include Aws::Structure
31590
31989
  end
@@ -31678,18 +32077,18 @@ module Aws::SageMaker
31678
32077
  # The endpoint variant status which describes the current deployment
31679
32078
  # stage status or operational status.
31680
32079
  #
31681
- # * `Creating`\: Creating inference resources for the production
32080
+ # * `Creating`: Creating inference resources for the production
31682
32081
  # variant.
31683
32082
  #
31684
- # * `Deleting`\: Terminating inference resources for the production
32083
+ # * `Deleting`: Terminating inference resources for the production
31685
32084
  # variant.
31686
32085
  #
31687
- # * `Updating`\: Updating capacity for the production variant.
32086
+ # * `Updating`: Updating capacity for the production variant.
31688
32087
  #
31689
- # * `ActivatingTraffic`\: Turning on traffic for the production
32088
+ # * `ActivatingTraffic`: Turning on traffic for the production
31690
32089
  # variant.
31691
32090
  #
31692
- # * `Baking`\: Waiting period to monitor the CloudWatch alarms in the
32091
+ # * `Baking`: Waiting period to monitor the CloudWatch alarms in the
31693
32092
  # automatic rollback configuration.
31694
32093
  # @return [String]
31695
32094
  #
@@ -33371,7 +33770,8 @@ module Aws::SageMaker
33371
33770
  #
33372
33771
  # @!attribute [rw] auto_ml_job_objective
33373
33772
  # Specifies a metric to minimize or maximize as the objective of a
33374
- # job.
33773
+ # job. V2 API jobs (for example jobs created by calling
33774
+ # `CreateAutoMLJobV2`), support `Accuracy` only.
33375
33775
  # @return [Types::AutoMLJobObjective]
33376
33776
  #
33377
33777
  # @!attribute [rw] problem_type
@@ -33848,12 +34248,12 @@ module Aws::SageMaker
33848
34248
  # @return [String]
33849
34249
  #
33850
34250
  # @!attribute [rw] kms_key_id
33851
- # The Amazon Web Services Key Management Service (KMS) key ID of the
34251
+ # The Amazon Web Services Key Management Service (KMS) key ARN of the
33852
34252
  # key used to encrypt any objects written into the `OfflineStore` S3
33853
34253
  # location.
33854
34254
  #
33855
34255
  # The IAM `roleARN` that is passed as a parameter to
33856
- # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`\:
34256
+ # `CreateFeatureGroup` must have below permissions to the `KmsKeyId`:
33857
34257
  #
33858
34258
  # * `"kms:GenerateDataKey"`
33859
34259
  #
@@ -34892,9 +35292,9 @@ module Aws::SageMaker
34892
35292
  # The desired state of the experiment after stopping. The possible
34893
35293
  # states are the following:
34894
35294
  #
34895
- # * `Completed`\: The experiment completed successfully
35295
+ # * `Completed`: The experiment completed successfully
34896
35296
  #
34897
- # * `Cancelled`\: The experiment was canceled
35297
+ # * `Cancelled`: The experiment was canceled
34898
35298
  # @return [String]
34899
35299
  #
34900
35300
  # @!attribute [rw] reason
@@ -35239,9 +35639,9 @@ module Aws::SageMaker
35239
35639
  # @!attribute [rw] os
35240
35640
  # Specifies a target platform OS.
35241
35641
  #
35242
- # * `LINUX`\: Linux-based operating systems.
35642
+ # * `LINUX`: Linux-based operating systems.
35243
35643
  #
35244
- # * `ANDROID`\: Android operating systems. Android API level can be
35644
+ # * `ANDROID`: Android operating systems. Android API level can be
35245
35645
  # specified using the `ANDROID_PLATFORM` compiler option. For
35246
35646
  # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
35247
35647
  # @return [String]
@@ -35249,27 +35649,27 @@ module Aws::SageMaker
35249
35649
  # @!attribute [rw] arch
35250
35650
  # Specifies a target platform architecture.
35251
35651
  #
35252
- # * `X86_64`\: 64-bit version of the x86 instruction set.
35652
+ # * `X86_64`: 64-bit version of the x86 instruction set.
35253
35653
  #
35254
- # * `X86`\: 32-bit version of the x86 instruction set.
35654
+ # * `X86`: 32-bit version of the x86 instruction set.
35255
35655
  #
35256
- # * `ARM64`\: ARMv8 64-bit CPU.
35656
+ # * `ARM64`: ARMv8 64-bit CPU.
35257
35657
  #
35258
- # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
35658
+ # * `ARM_EABIHF`: ARMv7 32-bit, Hard Float.
35259
35659
  #
35260
- # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35660
+ # * `ARM_EABI`: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
35261
35661
  # platform.
35262
35662
  # @return [String]
35263
35663
  #
35264
35664
  # @!attribute [rw] accelerator
35265
35665
  # Specifies a target platform accelerator (optional).
35266
35666
  #
35267
- # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
35667
+ # * `NVIDIA`: Nvidia graphics processing unit. It also requires
35268
35668
  # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
35269
35669
  #
35270
- # * `MALI`\: ARM Mali graphics processor
35670
+ # * `MALI`: ARM Mali graphics processor
35271
35671
  #
35272
- # * `INTEL_GRAPHICS`\: Integrated Intel graphics
35672
+ # * `INTEL_GRAPHICS`: Integrated Intel graphics
35273
35673
  # @return [String]
35274
35674
  #
35275
35675
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
@@ -35318,6 +35718,34 @@ module Aws::SageMaker
35318
35718
  include Aws::Structure
35319
35719
  end
35320
35720
 
35721
+ # Stores the configuration information for the text classification
35722
+ # problem of an AutoML job using the V2 API.
35723
+ #
35724
+ # @!attribute [rw] completion_criteria
35725
+ # How long a job is allowed to run, or how many candidates a job is
35726
+ # allowed to generate.
35727
+ # @return [Types::AutoMLJobCompletionCriteria]
35728
+ #
35729
+ # @!attribute [rw] content_column
35730
+ # The name of the column used to provide the sentences to be
35731
+ # classified. It should not be the same as the target column.
35732
+ # @return [String]
35733
+ #
35734
+ # @!attribute [rw] target_label_column
35735
+ # The name of the column used to provide the class labels. It should
35736
+ # not be same as the content column.
35737
+ # @return [String]
35738
+ #
35739
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TextClassificationJobConfig AWS API Documentation
35740
+ #
35741
+ class TextClassificationJobConfig < Struct.new(
35742
+ :completion_criteria,
35743
+ :content_column,
35744
+ :target_label_column)
35745
+ SENSITIVE = []
35746
+ include Aws::Structure
35747
+ end
35748
+
35321
35749
  # Time series forecast settings for the SageMaker Canvas app.
35322
35750
  #
35323
35751
  # @!attribute [rw] status
@@ -35375,15 +35803,15 @@ module Aws::SageMaker
35375
35803
  # @!attribute [rw] type
35376
35804
  # Traffic routing strategy type.
35377
35805
  #
35378
- # * `ALL_AT_ONCE`\: Endpoint traffic shifts to the new fleet in a
35806
+ # * `ALL_AT_ONCE`: Endpoint traffic shifts to the new fleet in a
35379
35807
  # single step.
35380
35808
  #
35381
- # * `CANARY`\: Endpoint traffic shifts to the new fleet in two steps.
35809
+ # * `CANARY`: Endpoint traffic shifts to the new fleet in two steps.
35382
35810
  # The first step is the canary, which is a small portion of the
35383
35811
  # traffic. The second step is the remainder of the traffic.
35384
35812
  #
35385
- # * `LINEAR`\: Endpoint traffic shifts to the new fleet in n steps of
35386
- # a configurable size.
35813
+ # * `LINEAR`: Endpoint traffic shifts to the new fleet in n steps of a
35814
+ # configurable size.
35387
35815
  # @return [String]
35388
35816
  #
35389
35817
  # @!attribute [rw] wait_interval_in_seconds
@@ -36615,7 +37043,7 @@ module Aws::SageMaker
36615
37043
  #
36616
37044
  # `]`
36617
37045
  #
36618
- # The preceding JSON matches the following `S3Uris`\:
37046
+ # The preceding JSON matches the following `S3Uris`:
36619
37047
  #
36620
37048
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
36621
37049
  #
@@ -37973,29 +38401,29 @@ module Aws::SageMaker
37973
38401
  # @!attribute [rw] vendor_guidance
37974
38402
  # The availability of the image version specified by the maintainer.
37975
38403
  #
37976
- # * `NOT_PROVIDED`\: The maintainers did not provide a status for
37977
- # image version stability.
38404
+ # * `NOT_PROVIDED`: The maintainers did not provide a status for image
38405
+ # version stability.
37978
38406
  #
37979
- # * `STABLE`\: The image version is stable.
38407
+ # * `STABLE`: The image version is stable.
37980
38408
  #
37981
- # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
38409
+ # * `TO_BE_ARCHIVED`: The image version is set to be archived. Custom
37982
38410
  # image versions that are set to be archived are automatically
37983
38411
  # archived after three months.
37984
38412
  #
37985
- # * `ARCHIVED`\: The image version is archived. Archived image
37986
- # versions are not searchable and are no longer actively supported.
38413
+ # * `ARCHIVED`: The image version is archived. Archived image versions
38414
+ # are not searchable and are no longer actively supported.
37987
38415
  # @return [String]
37988
38416
  #
37989
38417
  # @!attribute [rw] job_type
37990
38418
  # Indicates SageMaker job type compatibility.
37991
38419
  #
37992
- # * `TRAINING`\: The image version is compatible with SageMaker
38420
+ # * `TRAINING`: The image version is compatible with SageMaker
37993
38421
  # training jobs.
37994
38422
  #
37995
- # * `INFERENCE`\: The image version is compatible with SageMaker
38423
+ # * `INFERENCE`: The image version is compatible with SageMaker
37996
38424
  # inference jobs.
37997
38425
  #
37998
- # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
38426
+ # * `NOTEBOOK_KERNEL`: The image version is compatible with SageMaker
37999
38427
  # notebook kernels.
38000
38428
  # @return [String]
38001
38429
  #
@@ -38010,9 +38438,9 @@ module Aws::SageMaker
38010
38438
  # @!attribute [rw] processor
38011
38439
  # Indicates CPU or GPU compatibility.
38012
38440
  #
38013
- # * `CPU`\: The image version is compatible with CPU.
38441
+ # * `CPU`: The image version is compatible with CPU.
38014
38442
  #
38015
- # * `GPU`\: The image version is compatible with GPU.
38443
+ # * `GPU`: The image version is compatible with GPU.
38016
38444
  # @return [String]
38017
38445
  #
38018
38446
  # @!attribute [rw] horovod
@@ -38134,13 +38562,13 @@ module Aws::SageMaker
38134
38562
  # Different organizations might have different criteria for model card
38135
38563
  # review and approval.
38136
38564
  #
38137
- # * `Draft`\: The model card is a work in progress.
38565
+ # * `Draft`: The model card is a work in progress.
38138
38566
  #
38139
- # * `PendingReview`\: The model card is pending review.
38567
+ # * `PendingReview`: The model card is pending review.
38140
38568
  #
38141
- # * `Approved`\: The model card is approved.
38569
+ # * `Approved`: The model card is approved.
38142
38570
  #
38143
- # * `Archived`\: The model card is archived. No more updates should be
38571
+ # * `Archived`: The model card is archived. No more updates should be
38144
38572
  # made to the model card, but it can still be exported.
38145
38573
  # @return [String]
38146
38574
  #
@@ -39138,15 +39566,15 @@ module Aws::SageMaker
39138
39566
  # @!attribute [rw] variant_property_type
39139
39567
  # The type of variant property. The supported values are:
39140
39568
  #
39141
- # * `DesiredInstanceCount`\: Overrides the existing variant instance
39569
+ # * `DesiredInstanceCount`: Overrides the existing variant instance
39142
39570
  # counts using the ProductionVariant$InitialInstanceCount values in
39143
39571
  # the CreateEndpointConfigInput$ProductionVariants.
39144
39572
  #
39145
- # * `DesiredWeight`\: Overrides the existing variant weights using the
39573
+ # * `DesiredWeight`: Overrides the existing variant weights using the
39146
39574
  # ProductionVariant$InitialVariantWeight values in the
39147
39575
  # CreateEndpointConfigInput$ProductionVariants.
39148
39576
  #
39149
- # * `DataCaptureConfig`\: (Not currently supported.)
39577
+ # * `DataCaptureConfig`: (Not currently supported.)
39150
39578
  # @return [String]
39151
39579
  #
39152
39580
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/VariantProperty AWS API Documentation
@@ -39224,16 +39652,16 @@ module Aws::SageMaker
39224
39652
  # @!attribute [rw] status
39225
39653
  # The status of the warm pool.
39226
39654
  #
39227
- # * `InUse`\: The warm pool is in use for the training job.
39655
+ # * `InUse`: The warm pool is in use for the training job.
39228
39656
  #
39229
- # * `Available`\: The warm pool is available to reuse for a matching
39657
+ # * `Available`: The warm pool is available to reuse for a matching
39230
39658
  # training job.
39231
39659
  #
39232
- # * `Reused`\: The warm pool moved to a matching training job for
39660
+ # * `Reused`: The warm pool moved to a matching training job for
39233
39661
  # reuse.
39234
39662
  #
39235
- # * `Terminated`\: The warm pool is no longer available. Warm pools
39236
- # are unavailable if they are terminated by a user, terminated for a
39663
+ # * `Terminated`: The warm pool is no longer available. Warm pools are
39664
+ # unavailable if they are terminated by a user, terminated for a
39237
39665
  # patch update, or terminated for exceeding the specified
39238
39666
  # `KeepAlivePeriodInSeconds`.
39239
39667
  # @return [String]