aws-sdk-sagemaker 1.165.0 → 1.167.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 4b70d40dafbd65952b023955c4073d7133301d2632716994ccac94b5c6774f57
4
- data.tar.gz: c5a6a6bb92fb11d39a06022c95905587dab004239e8cdbec8e15bea88ff6d7ac
3
+ metadata.gz: b7569b2f029a494a06dd3cefae29b30b9daaf13f52e411b78584e5f9980090ce
4
+ data.tar.gz: abfc593407e602e5e4630ddeda4d46237277957658ecbeedc9e15e7c2fc29d21
5
5
  SHA512:
6
- metadata.gz: 4a3206ca0900cec98220787578385061f279879d614610dfa7c170b1d487772ca4c31b32f183015465cafd3be99adca5aa6ca7b73a8294c4dc80e0551d9c01a4
7
- data.tar.gz: 3960e1d52159f69f3725bc33626353757cbdd7e25809bdf3e36c9d922df12bc129087cd1e3dddd4e7d80e080845d157bf7ccac2a2b95fb42ea88aa9ac5ece76a
6
+ metadata.gz: ec3a588ca817c0203bbdc61754670e88fa94a1a59eb727cb8a47efd80bb5e44ffe999b5e039c2c9315eb4d3a66790b97c460beeb65976deb5ed6a25b679bd32d
7
+ data.tar.gz: 9da1793147e4f14562a1d6cbac9ce5d2a15af10f09d92e3680f78e39f75cb44a79154d9f686b5ac2dc24987ad31482278fb112550c081120bce679fa754f30b7
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.167.0 (2023-03-02)
5
+ ------------------
6
+
7
+ * Feature - Add a new field "EndpointMetrics" in SageMaker Inference Recommender "ListInferenceRecommendationsJobSteps" API response.
8
+
9
+ 1.166.0 (2023-02-10)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Autopilot adds support for selecting algorithms in CreateAutoMLJob API.
13
+
4
14
  1.165.0 (2023-01-31)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.165.0
1
+ 1.167.0
@@ -1185,7 +1185,7 @@ module Aws::SageMaker
1185
1185
  #
1186
1186
  # @option params [required, String] :auto_ml_job_name
1187
1187
  # Identifies an Autopilot job. The name must be unique to your account
1188
- # and is case-insensitive.
1188
+ # and is case insensitive.
1189
1189
  #
1190
1190
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1191
1191
  # An array of channel objects that describes the input data and its
@@ -1281,6 +1281,11 @@ module Aws::SageMaker
1281
1281
  # },
1282
1282
  # candidate_generation_config: {
1283
1283
  # feature_specification_s3_uri: "S3Uri",
1284
+ # algorithms_config: [
1285
+ # {
1286
+ # auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
1287
+ # },
1288
+ # ],
1284
1289
  # },
1285
1290
  # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1286
1291
  # },
@@ -1825,8 +1830,7 @@ module Aws::SageMaker
1825
1830
  # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1826
1831
  # of an associated Amazon Elastic File System (EFS) volume, a list of
1827
1832
  # authorized users, and a variety of security, application, policy, and
1828
- # Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web
1829
- # Services account is limited to one domain per region. Users within a
1833
+ # Amazon Virtual Private Cloud (VPC) configurations. Users within a
1830
1834
  # domain can share notebook files and other artifacts with each other.
1831
1835
  #
1832
1836
  # **EFS storage**
@@ -2320,12 +2324,12 @@ module Aws::SageMaker
2320
2324
  # If any of the models hosted at this endpoint get model data from an
2321
2325
  # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2322
2326
  # Service to download model artifacts from the S3 path you provided.
2323
- # Amazon Web Services STS is activated in your IAM user account by
2324
- # default. If you previously deactivated Amazon Web Services STS for a
2325
- # region, you need to reactivate Amazon Web Services STS for that
2326
- # region. For more information, see [Activating and Deactivating Amazon
2327
- # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2328
- # Web Services Identity and Access Management User Guide*.
2327
+ # Amazon Web Services STS is activated in your Amazon Web Services
2328
+ # account by default. If you previously deactivated Amazon Web Services
2329
+ # STS for a region, you need to reactivate Amazon Web Services STS for
2330
+ # that region. For more information, see [Activating and Deactivating
2331
+ # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2332
+ # *Amazon Web Services Identity and Access Management User Guide*.
2329
2333
  #
2330
2334
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2331
2335
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -3056,6 +3060,10 @@ module Aws::SageMaker
3056
3060
 
3057
3061
  # Create a hub.
3058
3062
  #
3063
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
3064
+ #
3065
+ # </note>
3066
+ #
3059
3067
  # @option params [required, String] :hub_name
3060
3068
  # The name of the hub to create.
3061
3069
  #
@@ -5128,8 +5136,14 @@ module Aws::SageMaker
5128
5136
  #
5129
5137
  # @option params [String] :sample_payload_url
5130
5138
  # The Amazon Simple Storage Service (Amazon S3) path where the sample
5131
- # payload are stored. This path must point to a single gzip compressed
5132
- # tar archive (.tar.gz suffix).
5139
+ # payload is stored. This path must point to a single gzip compressed
5140
+ # tar archive (.tar.gz suffix). This archive can hold multiple files
5141
+ # that are all equally used in the load test. Each file in the archive
5142
+ # must satisfy the size constraints of the [InvokeEndpoint][1] call.
5143
+ #
5144
+ #
5145
+ #
5146
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax
5133
5147
  #
5134
5148
  # @option params [Array<Types::AdditionalInferenceSpecificationDefinition>] :additional_inference_specifications
5135
5149
  # An array of additional Inference Specification objects. Each
@@ -5599,7 +5613,7 @@ module Aws::SageMaker
5599
5613
  end
5600
5614
 
5601
5615
  # Creates a schedule that regularly starts Amazon SageMaker Processing
5602
- # Jobs to monitor the data captured for an Amazon SageMaker Endoint.
5616
+ # Jobs to monitor the data captured for an Amazon SageMaker Endpoint.
5603
5617
  #
5604
5618
  # @option params [required, String] :monitoring_schedule_name
5605
5619
  # The name of the monitoring schedule. The name must be unique within an
@@ -8368,6 +8382,10 @@ module Aws::SageMaker
8368
8382
 
8369
8383
  # Delete a hub.
8370
8384
  #
8385
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
8386
+ #
8387
+ # </note>
8388
+ #
8371
8389
  # @option params [required, String] :hub_name
8372
8390
  # The name of the hub to delete.
8373
8391
  #
@@ -8390,6 +8408,10 @@ module Aws::SageMaker
8390
8408
 
8391
8409
  # Delete the contents of a hub.
8392
8410
  #
8411
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
8412
+ #
8413
+ # </note>
8414
+ #
8393
8415
  # @option params [required, String] :hub_name
8394
8416
  # The name of the hub that you want to delete content in.
8395
8417
  #
@@ -9584,6 +9606,9 @@ module Aws::SageMaker
9584
9606
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
9585
9607
  # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
9586
9608
  # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
9609
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config #=> Array
9610
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
9611
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
9587
9612
  # resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
9588
9613
  # resp.creation_time #=> Time
9589
9614
  # resp.end_time #=> Time
@@ -9595,6 +9620,7 @@ module Aws::SageMaker
9595
9620
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
9596
9621
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9597
9622
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
9623
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9598
9624
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
9599
9625
  # resp.best_candidate.candidate_steps #=> Array
9600
9626
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10793,6 +10819,10 @@ module Aws::SageMaker
10793
10819
 
10794
10820
  # Describe a hub.
10795
10821
  #
10822
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
10823
+ #
10824
+ # </note>
10825
+ #
10796
10826
  # @option params [required, String] :hub_name
10797
10827
  # The name of the hub to describe.
10798
10828
  #
@@ -10840,6 +10870,10 @@ module Aws::SageMaker
10840
10870
 
10841
10871
  # Describe the content of a hub.
10842
10872
  #
10873
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
10874
+ #
10875
+ # </note>
10876
+ #
10843
10877
  # @option params [required, String] :hub_name
10844
10878
  # The name of the hub that contains the content to describe.
10845
10879
  #
@@ -13935,13 +13969,13 @@ module Aws::SageMaker
13935
13969
  req.send_request(options)
13936
13970
  end
13937
13971
 
13938
- # An auto-complete API for the search functionality in the Amazon
13939
- # SageMaker console. It returns suggestions of possible matches for the
13940
- # property name to use in `Search` queries. Provides suggestions for
13972
+ # An auto-complete API for the search functionality in the SageMaker
13973
+ # console. It returns suggestions of possible matches for the property
13974
+ # name to use in `Search` queries. Provides suggestions for
13941
13975
  # `HyperParameters`, `Tags`, and `Metrics`.
13942
13976
  #
13943
13977
  # @option params [required, String] :resource
13944
- # The name of the Amazon SageMaker resource to search for.
13978
+ # The name of the SageMaker resource to search for.
13945
13979
  #
13946
13980
  # @option params [Types::SuggestionQuery] :suggestion_query
13947
13981
  # Limits the property names that are included in the response.
@@ -13977,6 +14011,10 @@ module Aws::SageMaker
13977
14011
 
13978
14012
  # Import hub content.
13979
14013
  #
14014
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
14015
+ #
14016
+ # </note>
14017
+ #
13980
14018
  # @option params [required, String] :hub_content_name
13981
14019
  # The name of the hub content to import.
13982
14020
  #
@@ -13999,7 +14037,8 @@ module Aws::SageMaker
13999
14037
  # A description of the hub content to import.
14000
14038
  #
14001
14039
  # @option params [String] :hub_content_markdown
14002
- # Markdown files associated with the hub content to import.
14040
+ # A string that provides a description of the hub content. This string
14041
+ # can include links, tables, and standard markdown formating.
14003
14042
  #
14004
14043
  # @option params [required, String] :hub_content_document
14005
14044
  # The hub content document that describes information about the hub
@@ -14693,6 +14732,7 @@ module Aws::SageMaker
14693
14732
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
14694
14733
  # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14695
14734
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
14735
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14696
14736
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
14697
14737
  # resp.candidates[0].candidate_steps #=> Array
14698
14738
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15723,6 +15763,10 @@ module Aws::SageMaker
15723
15763
 
15724
15764
  # List hub content versions.
15725
15765
  #
15766
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15767
+ #
15768
+ # </note>
15769
+ #
15726
15770
  # @option params [required, String] :hub_name
15727
15771
  # The name of the hub to list the content versions of.
15728
15772
  #
@@ -15808,6 +15852,10 @@ module Aws::SageMaker
15808
15852
 
15809
15853
  # List the contents of a hub.
15810
15854
  #
15855
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15856
+ #
15857
+ # </note>
15858
+ #
15811
15859
  # @option params [required, String] :hub_name
15812
15860
  # The name of the hub to list the contents of.
15813
15861
  #
@@ -15887,6 +15935,10 @@ module Aws::SageMaker
15887
15935
 
15888
15936
  # List all existing hubs.
15889
15937
  #
15938
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15939
+ #
15940
+ # </note>
15941
+ #
15890
15942
  # @option params [String] :name_contains
15891
15943
  # Only list hubs with names that contain the specified string.
15892
15944
  #
@@ -16427,6 +16479,8 @@ module Aws::SageMaker
16427
16479
  # resp.steps[0].inference_benchmark.model_configuration.environment_parameters[0].value #=> String
16428
16480
  # resp.steps[0].inference_benchmark.model_configuration.compilation_job_name #=> String
16429
16481
  # resp.steps[0].inference_benchmark.failure_reason #=> String
16482
+ # resp.steps[0].inference_benchmark.endpoint_metrics.max_invocations #=> Integer
16483
+ # resp.steps[0].inference_benchmark.endpoint_metrics.model_latency #=> Integer
16430
16484
  # resp.next_token #=> String
16431
16485
  #
16432
16486
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListInferenceRecommendationsJobSteps AWS API Documentation
@@ -19660,7 +19714,7 @@ module Aws::SageMaker
19660
19714
  req.send_request(options)
19661
19715
  end
19662
19716
 
19663
- # Finds Amazon SageMaker resources that match a search query. Matching
19717
+ # Finds SageMaker resources that match a search query. Matching
19664
19718
  # resources are returned as a list of `SearchRecord` objects in the
19665
19719
  # response. You can sort the search results by any resource property in
19666
19720
  # a ascending or descending order.
@@ -19668,8 +19722,18 @@ module Aws::SageMaker
19668
19722
  # You can query against the following value types: numeric, text,
19669
19723
  # Boolean, and timestamp.
19670
19724
  #
19725
+ # <note markdown="1"> The Search API may provide access to otherwise restricted data. See
19726
+ # [Amazon SageMaker API Permissions: Actions, Permissions, and Resources
19727
+ # Reference][1] for more information.
19728
+ #
19729
+ # </note>
19730
+ #
19731
+ #
19732
+ #
19733
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html
19734
+ #
19671
19735
  # @option params [required, String] :resource
19672
- # The name of the Amazon SageMaker resource to search for.
19736
+ # The name of the SageMaker resource to search for.
19673
19737
  #
19674
19738
  # @option params [Types::SearchExpression] :search_expression
19675
19739
  # A Boolean conditional statement. Resources must satisfy this condition
@@ -20009,7 +20073,7 @@ module Aws::SageMaker
20009
20073
  req.send_request(options)
20010
20074
  end
20011
20075
 
20012
- # A method for forcing the termination of a running job.
20076
+ # A method for forcing a running job to shut down.
20013
20077
  #
20014
20078
  # @option params [required, String] :auto_ml_job_name
20015
20079
  # The name of the object you are requesting.
@@ -21198,6 +21262,10 @@ module Aws::SageMaker
21198
21262
 
21199
21263
  # Update a hub.
21200
21264
  #
21265
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
21266
+ #
21267
+ # </note>
21268
+ #
21201
21269
  # @option params [required, String] :hub_name
21202
21270
  # The name of the hub to update.
21203
21271
  #
@@ -22351,21 +22419,27 @@ module Aws::SageMaker
22351
22419
  #
22352
22420
  # @option params [Hash<String,Types::TrialComponentParameterValue>] :parameters
22353
22421
  # Replaces all of the component's hyperparameters with the specified
22354
- # hyperparameters.
22422
+ # hyperparameters or add new hyperparameters. Existing hyperparameters
22423
+ # are replaced if the trial component is updated with an identical
22424
+ # hyperparameter key.
22355
22425
  #
22356
22426
  # @option params [Array<String>] :parameters_to_remove
22357
22427
  # The hyperparameters to remove from the component.
22358
22428
  #
22359
22429
  # @option params [Hash<String,Types::TrialComponentArtifact>] :input_artifacts
22360
22430
  # Replaces all of the component's input artifacts with the specified
22361
- # artifacts.
22431
+ # artifacts or adds new input artifacts. Existing input artifacts are
22432
+ # replaced if the trial component is updated with an identical input
22433
+ # artifact key.
22362
22434
  #
22363
22435
  # @option params [Array<String>] :input_artifacts_to_remove
22364
22436
  # The input artifacts to remove from the component.
22365
22437
  #
22366
22438
  # @option params [Hash<String,Types::TrialComponentArtifact>] :output_artifacts
22367
22439
  # Replaces all of the component's output artifacts with the specified
22368
- # artifacts.
22440
+ # artifacts or adds new output artifacts. Existing output artifacts are
22441
+ # replaced if the trial component is updated with an identical output
22442
+ # artifact key.
22369
22443
  #
22370
22444
  # @option params [Array<String>] :output_artifacts_to_remove
22371
22445
  # The output artifacts to remove from the component.
@@ -22762,7 +22836,7 @@ module Aws::SageMaker
22762
22836
  params: params,
22763
22837
  config: config)
22764
22838
  context[:gem_name] = 'aws-sdk-sagemaker'
22765
- context[:gem_version] = '1.165.0'
22839
+ context[:gem_version] = '1.167.0'
22766
22840
  Seahorse::Client::Request.new(handlers, context)
22767
22841
  end
22768
22842
 
@@ -95,6 +95,10 @@ module Aws::SageMaker
95
95
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
96
96
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
97
97
  AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
98
+ AutoMLAlgorithm = Shapes::StringShape.new(name: 'AutoMLAlgorithm')
99
+ AutoMLAlgorithmConfig = Shapes::StructureShape.new(name: 'AutoMLAlgorithmConfig')
100
+ AutoMLAlgorithms = Shapes::ListShape.new(name: 'AutoMLAlgorithms')
101
+ AutoMLAlgorithmsConfig = Shapes::ListShape.new(name: 'AutoMLAlgorithmsConfig')
98
102
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
99
103
  AutoMLCandidateGenerationConfig = Shapes::StructureShape.new(name: 'AutoMLCandidateGenerationConfig')
100
104
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
@@ -2172,6 +2176,13 @@ module Aws::SageMaker
2172
2176
 
2173
2177
  AttributeNames.member = Shapes::ShapeRef.new(shape: AttributeName)
2174
2178
 
2179
+ AutoMLAlgorithmConfig.add_member(:auto_ml_algorithms, Shapes::ShapeRef.new(shape: AutoMLAlgorithms, required: true, location_name: "AutoMLAlgorithms"))
2180
+ AutoMLAlgorithmConfig.struct_class = Types::AutoMLAlgorithmConfig
2181
+
2182
+ AutoMLAlgorithms.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithm)
2183
+
2184
+ AutoMLAlgorithmsConfig.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithmConfig)
2185
+
2175
2186
  AutoMLCandidate.add_member(:candidate_name, Shapes::ShapeRef.new(shape: CandidateName, required: true, location_name: "CandidateName"))
2176
2187
  AutoMLCandidate.add_member(:final_auto_ml_job_objective_metric, Shapes::ShapeRef.new(shape: FinalAutoMLJobObjectiveMetric, location_name: "FinalAutoMLJobObjectiveMetric"))
2177
2188
  AutoMLCandidate.add_member(:objective_status, Shapes::ShapeRef.new(shape: ObjectiveStatus, required: true, location_name: "ObjectiveStatus"))
@@ -2186,6 +2197,7 @@ module Aws::SageMaker
2186
2197
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
2187
2198
 
2188
2199
  AutoMLCandidateGenerationConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
2200
+ AutoMLCandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
2189
2201
  AutoMLCandidateGenerationConfig.struct_class = Types::AutoMLCandidateGenerationConfig
2190
2202
 
2191
2203
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -4946,6 +4958,7 @@ module Aws::SageMaker
4946
4958
  FinalAutoMLJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: AutoMLJobObjectiveType, location_name: "Type"))
4947
4959
  FinalAutoMLJobObjectiveMetric.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
4948
4960
  FinalAutoMLJobObjectiveMetric.add_member(:value, Shapes::ShapeRef.new(shape: MetricValue, required: true, location_name: "Value"))
4961
+ FinalAutoMLJobObjectiveMetric.add_member(:standard_metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, location_name: "StandardMetricName"))
4949
4962
  FinalAutoMLJobObjectiveMetric.struct_class = Types::FinalAutoMLJobObjectiveMetric
4950
4963
 
4951
4964
  FinalHyperParameterTuningJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, location_name: "Type"))
@@ -7624,6 +7637,7 @@ module Aws::SageMaker
7624
7637
  RecommendationJobInferenceBenchmark.add_member(:endpoint_configuration, Shapes::ShapeRef.new(shape: EndpointOutputConfiguration, location_name: "EndpointConfiguration"))
7625
7638
  RecommendationJobInferenceBenchmark.add_member(:model_configuration, Shapes::ShapeRef.new(shape: ModelConfiguration, required: true, location_name: "ModelConfiguration"))
7626
7639
  RecommendationJobInferenceBenchmark.add_member(:failure_reason, Shapes::ShapeRef.new(shape: RecommendationFailureReason, location_name: "FailureReason"))
7640
+ RecommendationJobInferenceBenchmark.add_member(:endpoint_metrics, Shapes::ShapeRef.new(shape: InferenceMetrics, location_name: "EndpointMetrics"))
7627
7641
  RecommendationJobInferenceBenchmark.struct_class = Types::RecommendationJobInferenceBenchmark
7628
7642
 
7629
7643
  RecommendationJobInputConfig.add_member(:model_package_version_arn, Shapes::ShapeRef.new(shape: ModelPackageArn, location_name: "ModelPackageVersionArn"))
@@ -50,9 +50,6 @@ module Aws::SageMaker
50
50
 
51
51
  def initialize(options = {})
52
52
  self[:region] = options[:region]
53
- if self[:region].nil?
54
- raise ArgumentError, "Missing required EndpointParameter: :region"
55
- end
56
53
  self[:use_dual_stack] = options[:use_dual_stack]
57
54
  self[:use_dual_stack] = false if self[:use_dual_stack].nil?
58
55
  if self[:use_dual_stack].nil?
@@ -14,42 +14,45 @@ module Aws::SageMaker
14
14
  use_dual_stack = parameters.use_dual_stack
15
15
  use_fips = parameters.use_fips
16
16
  endpoint = parameters.endpoint
17
- if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
18
- if Aws::Endpoints::Matchers.set?(endpoint)
19
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
20
- raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
21
- end
22
- if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
23
- raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
24
- end
25
- return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
17
+ if Aws::Endpoints::Matchers.set?(endpoint)
18
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
19
+ raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
26
20
  end
27
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
28
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
29
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
30
- end
31
- raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
21
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
22
+ raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
32
23
  end
33
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
34
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
35
- if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
36
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
24
+ return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
25
+ end
26
+ if Aws::Endpoints::Matchers.set?(region)
27
+ if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
28
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
29
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
30
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
37
31
  end
38
- if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
39
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
32
+ raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
33
+ end
34
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
35
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
36
+ if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
37
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
38
+ end
39
+ if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
40
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
41
+ end
42
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
40
43
  end
41
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
44
+ raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
42
45
  end
43
- raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
44
- end
45
- if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
46
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
47
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
46
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
47
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
48
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
49
+ end
50
+ raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
48
51
  end
49
- raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
52
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
50
53
  end
51
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
52
54
  end
55
+ raise ArgumentError, "Invalid Configuration: Missing Region"
53
56
  raise ArgumentError, 'No endpoint could be resolved'
54
57
 
55
58
  end
@@ -1642,6 +1642,54 @@ module Aws::SageMaker
1642
1642
  include Aws::Structure
1643
1643
  end
1644
1644
 
1645
+ # The collection of algorithms run on a dataset for training the model
1646
+ # candidates of an Autopilot job.
1647
+ #
1648
+ # @!attribute [rw] auto_ml_algorithms
1649
+ # The selection of algorithms run on a dataset to train the model
1650
+ # candidates of an Autopilot job.
1651
+ #
1652
+ # <note markdown="1"> Selected algorithms must belong to the list corresponding to the
1653
+ # training mode set in ` AutoMLJobConfig.Mode ` (`ENSEMBLING` or
1654
+ # `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
1655
+ #
1656
+ # </note>
1657
+ #
1658
+ # * In `ENSEMBLING` mode:
1659
+ #
1660
+ # * "catboost"
1661
+ #
1662
+ # * "extra-trees"
1663
+ #
1664
+ # * "fastai"
1665
+ #
1666
+ # * "lightgbm"
1667
+ #
1668
+ # * "linear-learner"
1669
+ #
1670
+ # * "nn-torch"
1671
+ #
1672
+ # * "randomforest"
1673
+ #
1674
+ # * "xgboost"
1675
+ #
1676
+ # * In `HYPERPARAMETER_TUNING` mode:
1677
+ #
1678
+ # * "linear-learner"
1679
+ #
1680
+ # * "mlp"
1681
+ #
1682
+ # * "xgboost"
1683
+ # @return [Array<String>]
1684
+ #
1685
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
1686
+ #
1687
+ class AutoMLAlgorithmConfig < Struct.new(
1688
+ :auto_ml_algorithms)
1689
+ SENSITIVE = []
1690
+ include Aws::Structure
1691
+ end
1692
+
1645
1693
  # Information about a candidate produced by an AutoML training job,
1646
1694
  # including its status, steps, and other properties.
1647
1695
  #
@@ -1707,7 +1755,7 @@ module Aws::SageMaker
1707
1755
  include Aws::Structure
1708
1756
  end
1709
1757
 
1710
- # Stores the config information for how a candidate is generated
1758
+ # Stores the configuration information for how a candidate is generated
1711
1759
  # (optional).
1712
1760
  #
1713
1761
  # @!attribute [rw] feature_specification_s3_uri
@@ -1727,10 +1775,10 @@ module Aws::SageMaker
1727
1775
  #
1728
1776
  # </note>
1729
1777
  #
1730
- # In ensembling mode, Autopilot will only support the following data
1731
- # types: `numeric`, `categorical`, `text` and `datetime`. In HPO mode,
1732
- # Autopilot can support `numeric`, `categorical`, `text`, `datetime`
1733
- # and `sequence`.
1778
+ # In ensembling mode, Autopilot only supports the following data
1779
+ # types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
1780
+ # mode, Autopilot can support `numeric`, `categorical`, `text`,
1781
+ # `datetime`, and `sequence`.
1734
1782
  #
1735
1783
  # If only `FeatureDataTypes` is provided, the column keys (`col1`,
1736
1784
  # `col2`,..) should be a subset of the column names in the input data.
@@ -1740,16 +1788,48 @@ module Aws::SageMaker
1740
1788
  # in `FeatureAttributeNames`.
1741
1789
  #
1742
1790
  # The key name `FeatureAttributeNames` is fixed. The values listed in
1743
- # `["col1", "col2", ...]` is case sensitive and should be a list of
1791
+ # `["col1", "col2", ...]` are case sensitive and should be a list of
1744
1792
  # strings containing unique values that are a subset of the column
1745
1793
  # names in the input data. The list of columns provided must not
1746
1794
  # include the target column.
1747
1795
  # @return [String]
1748
1796
  #
1797
+ # @!attribute [rw] algorithms_config
1798
+ # Stores the configuration information for the selection of algorithms
1799
+ # used to train the model candidates.
1800
+ #
1801
+ # The list of available algorithms to choose from depends on the
1802
+ # training mode set in [ `AutoMLJobConfig.Mode` ][1].
1803
+ #
1804
+ # * `AlgorithmsConfig` should not be set in `AUTO` training mode.
1805
+ #
1806
+ # * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
1807
+ # attribute must be set and one only.
1808
+ #
1809
+ # If the list of algorithms provided as values for
1810
+ # `AutoMLAlgorithms` is empty, `AutoMLCandidateGenerationConfig`
1811
+ # uses the full set of algorithms for the given training mode.
1812
+ #
1813
+ # * When `AlgorithmsConfig` is not provided,
1814
+ # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1815
+ # for the given training mode.
1816
+ #
1817
+ # For the list of all algorithms per training mode, see .
1818
+ #
1819
+ # For more information on each algorithm, see the [Algorithm
1820
+ # support][2] section in Autopilot developer guide.
1821
+ #
1822
+ #
1823
+ #
1824
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
1825
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1826
+ # @return [Array<Types::AutoMLAlgorithmConfig>]
1827
+ #
1749
1828
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
1750
1829
  #
1751
1830
  class AutoMLCandidateGenerationConfig < Struct.new(
1752
- :feature_specification_s3_uri)
1831
+ :feature_specification_s3_uri,
1832
+ :algorithms_config)
1753
1833
  SENSITIVE = []
1754
1834
  include Aws::Structure
1755
1835
  end
@@ -1933,7 +2013,7 @@ module Aws::SageMaker
1933
2013
  # automatically and its processing is ended gracefully. The AutoML job
1934
2014
  # identifies the best model whose training was completed and marks it
1935
2015
  # as the best-performing model. Any unfinished steps of the job, such
1936
- # as automatic one-click Autopilot model deployment, will not be
2016
+ # as automatic one-click Autopilot model deployment, are not
1937
2017
  # completed.
1938
2018
  # @return [Integer]
1939
2019
  #
@@ -1988,11 +2068,11 @@ module Aws::SageMaker
1988
2068
  # by `ENSEMBLING` mode.
1989
2069
  #
1990
2070
  # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
1991
- # to train the best version of a model. HPO will automatically select
1992
- # an algorithm for the type of problem you want to solve. Then HPO
1993
- # finds the best hyperparameters according to your objective metric.
1994
- # See [Autopilot algorithm support][1] for a list of algorithms
1995
- # supported by `HYPERPARAMETER_TUNING` mode.
2071
+ # to train the best version of a model. HPO automatically selects an
2072
+ # algorithm for the type of problem you want to solve. Then HPO finds
2073
+ # the best hyperparameters according to your objective metric. See
2074
+ # [Autopilot algorithm support][1] for a list of algorithms supported
2075
+ # by `HYPERPARAMETER_TUNING` mode.
1996
2076
  #
1997
2077
  #
1998
2078
  #
@@ -2162,7 +2242,7 @@ module Aws::SageMaker
2162
2242
  # find all of the true positives. A false positive (FP) reflects a
2163
2243
  # positive prediction that is actually negative in the data. It is
2164
2244
  # often insufficient to measure only recall, because predicting
2165
- # every output as a true positive will yield a perfect recall score.
2245
+ # every output as a true positive yield a perfect recall score.
2166
2246
  #
2167
2247
  # RecallMacro
2168
2248
  #
@@ -2173,8 +2253,8 @@ module Aws::SageMaker
2173
2253
  # true positives (TP) in a dataset. Whereas, a true positive
2174
2254
  # reflects a positive prediction that is also an actual positive
2175
2255
  # value in the data. It is often insufficient to measure only
2176
- # recall, because predicting every output as a true positive will
2177
- # yield a perfect recall score.
2256
+ # recall, because predicting every output as a true positive yields
2257
+ # a perfect recall score.
2178
2258
  #
2179
2259
  # RMSE
2180
2260
  #
@@ -3743,12 +3823,12 @@ module Aws::SageMaker
3743
3823
  # If you provide a value for this parameter, SageMaker uses Amazon Web
3744
3824
  # Services Security Token Service to download model artifacts from the
3745
3825
  # S3 path you provide. Amazon Web Services STS is activated in your
3746
- # IAM user account by default. If you previously deactivated Amazon
3747
- # Web Services STS for a region, you need to reactivate Amazon Web
3748
- # Services STS for that region. For more information, see [Activating
3749
- # and Deactivating Amazon Web Services STS in an Amazon Web Services
3750
- # Region][2] in the *Amazon Web Services Identity and Access
3751
- # Management User Guide*.
3826
+ # Amazon Web Services account by default. If you previously
3827
+ # deactivated Amazon Web Services STS for a region, you need to
3828
+ # reactivate Amazon Web Services STS for that region. For more
3829
+ # information, see [Activating and Deactivating Amazon Web Services
3830
+ # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3831
+ # Identity and Access Management User Guide*.
3752
3832
  #
3753
3833
  # If you use a built-in algorithm to create a model, SageMaker
3754
3834
  # requires that you provide a S3 path to the model artifacts in
@@ -4272,7 +4352,7 @@ module Aws::SageMaker
4272
4352
 
4273
4353
  # @!attribute [rw] auto_ml_job_name
4274
4354
  # Identifies an Autopilot job. The name must be unique to your account
4275
- # and is case-insensitive.
4355
+ # and is case insensitive.
4276
4356
  # @return [String]
4277
4357
  #
4278
4358
  # @!attribute [rw] input_data_config
@@ -6629,8 +6709,14 @@ module Aws::SageMaker
6629
6709
  #
6630
6710
  # @!attribute [rw] sample_payload_url
6631
6711
  # The Amazon Simple Storage Service (Amazon S3) path where the sample
6632
- # payload are stored. This path must point to a single gzip compressed
6633
- # tar archive (.tar.gz suffix).
6712
+ # payload is stored. This path must point to a single gzip compressed
6713
+ # tar archive (.tar.gz suffix). This archive can hold multiple files
6714
+ # that are all equally used in the load test. Each file in the archive
6715
+ # must satisfy the size constraints of the [InvokeEndpoint][1] call.
6716
+ #
6717
+ #
6718
+ #
6719
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax
6634
6720
  # @return [String]
6635
6721
  #
6636
6722
  # @!attribute [rw] additional_inference_specifications
@@ -10076,7 +10162,7 @@ module Aws::SageMaker
10076
10162
  # @return [String]
10077
10163
  #
10078
10164
  # @!attribute [rw] input_data_config
10079
- # Returns the input data configuration for the AutoML job..
10165
+ # Returns the input data configuration for the AutoML job.
10080
10166
  # @return [Array<Types::AutoMLChannel>]
10081
10167
  #
10082
10168
  # @!attribute [rw] output_data_config
@@ -10150,7 +10236,7 @@ module Aws::SageMaker
10150
10236
  # @return [Types::AutoMLJobArtifacts]
10151
10237
  #
10152
10238
  # @!attribute [rw] resolved_attributes
10153
- # This contains `ProblemType`, `AutoMLJobObjective`, and
10239
+ # Contains `ProblemType`, `AutoMLJobObjective`, and
10154
10240
  # `CompletionCriteria`. If you do not provide these values, they are
10155
10241
  # auto-inferred. If you do provide them, the values used are the ones
10156
10242
  # you provide.
@@ -11621,7 +11707,8 @@ module Aws::SageMaker
11621
11707
  # @return [String]
11622
11708
  #
11623
11709
  # @!attribute [rw] hub_content_markdown
11624
- # Markdown files associated with the hub content to import.
11710
+ # A string that provides a description of the hub content. This string
11711
+ # can include links, tables, and standard markdown formating.
11625
11712
  # @return [String]
11626
11713
  #
11627
11714
  # @!attribute [rw] hub_content_document
@@ -16990,8 +17077,8 @@ module Aws::SageMaker
16990
17077
  # resource property, a Boolean operator, and a value. Resources that
16991
17078
  # match the statement are returned in the results from the Search API.
16992
17079
  #
16993
- # If you specify a `Value`, but not an `Operator`, Amazon SageMaker uses
16994
- # the equals operator.
17080
+ # If you specify a `Value`, but not an `Operator`, SageMaker uses the
17081
+ # equals operator.
16995
17082
  #
16996
17083
  # In search, there are several property types:
16997
17084
  #
@@ -17157,12 +17244,22 @@ module Aws::SageMaker
17157
17244
  # The value of the metric with the best result.
17158
17245
  # @return [Float]
17159
17246
  #
17247
+ # @!attribute [rw] standard_metric_name
17248
+ # The name of the standard metric. For a description of the standard
17249
+ # metrics, see [Autopilot candidate metrics][1].
17250
+ #
17251
+ #
17252
+ #
17253
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
17254
+ # @return [String]
17255
+ #
17160
17256
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
17161
17257
  #
17162
17258
  class FinalAutoMLJobObjectiveMetric < Struct.new(
17163
17259
  :type,
17164
17260
  :metric_name,
17165
- :value)
17261
+ :value,
17262
+ :standard_metric_name)
17166
17263
  SENSITIVE = []
17167
17264
  include Aws::Structure
17168
17265
  end
@@ -17391,7 +17488,7 @@ module Aws::SageMaker
17391
17488
  end
17392
17489
 
17393
17490
  # @!attribute [rw] resource
17394
- # The name of the Amazon SageMaker resource to search for.
17491
+ # The name of the SageMaker resource to search for.
17395
17492
  # @return [String]
17396
17493
  #
17397
17494
  # @!attribute [rw] suggestion_query
@@ -17601,7 +17698,7 @@ module Aws::SageMaker
17601
17698
  # The Amazon S3 storage configuration of a hub.
17602
17699
  #
17603
17700
  # @!attribute [rw] s3_output_path
17604
- # The Amazon S3 output path for the hub.
17701
+ # The Amazon S3 bucket prefix for hosting hub content.
17605
17702
  # @return [String]
17606
17703
  #
17607
17704
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HubS3StorageConfig AWS API Documentation
@@ -19775,7 +19872,7 @@ module Aws::SageMaker
19775
19872
  # @!attribute [rw] min_resource
19776
19873
  # The minimum number of resources (such as epochs) that can be used by
19777
19874
  # a training job launched by a hyperparameter tuning job. If the value
19778
- # for `MinResource` has not been reached, the training job will not be
19875
+ # for `MinResource` has not been reached, the training job is not
19779
19876
  # stopped by `Hyperband`.
19780
19877
  # @return [Integer]
19781
19878
  #
@@ -19980,7 +20077,8 @@ module Aws::SageMaker
19980
20077
  # @return [String]
19981
20078
  #
19982
20079
  # @!attribute [rw] hub_content_markdown
19983
- # Markdown files associated with the hub content to import.
20080
+ # A string that provides a description of the hub content. This string
20081
+ # can include links, tables, and standard markdown formating.
19984
20082
  # @return [String]
19985
20083
  #
19986
20084
  # @!attribute [rw] hub_content_document
@@ -20284,7 +20382,7 @@ module Aws::SageMaker
20284
20382
  #
20285
20383
  #
20286
20384
  #
20287
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InferenceRecommendationsJobStep.html
20385
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html
20288
20386
  #
20289
20387
  # @!attribute [rw] step_type
20290
20388
  # The type of the subtask.
@@ -29777,7 +29875,7 @@ module Aws::SageMaker
29777
29875
  #
29778
29876
  # * `"kms:RevokeGrant"`
29779
29877
  #
29780
- # The caller (either IAM user or IAM role) to all DataPlane operations
29878
+ # The caller (either user or IAM role) to all DataPlane operations
29781
29879
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29782
29880
  # permissions to the `KmsKeyId`\:
29783
29881
  #
@@ -31972,7 +32070,7 @@ module Aws::SageMaker
31972
32070
  #
31973
32071
  # @!attribute [rw] property_name
31974
32072
  # A suggested property name based on what you entered in the search
31975
- # textbox in the Amazon SageMaker console.
32073
+ # textbox in the SageMaker console.
31976
32074
  # @return [String]
31977
32075
  #
31978
32076
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PropertyNameSuggestion AWS API Documentation
@@ -32730,13 +32828,19 @@ module Aws::SageMaker
32730
32828
  # The reason why a benchmark failed.
32731
32829
  # @return [String]
32732
32830
  #
32831
+ # @!attribute [rw] endpoint_metrics
32832
+ # The metrics for an existing endpoint compared in an Inference
32833
+ # Recommender job.
32834
+ # @return [Types::InferenceMetrics]
32835
+ #
32733
32836
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInferenceBenchmark AWS API Documentation
32734
32837
  #
32735
32838
  class RecommendationJobInferenceBenchmark < Struct.new(
32736
32839
  :metrics,
32737
32840
  :endpoint_configuration,
32738
32841
  :model_configuration,
32739
- :failure_reason)
32842
+ :failure_reason,
32843
+ :endpoint_metrics)
32740
32844
  SENSITIVE = []
32741
32845
  include Aws::Structure
32742
32846
  end
@@ -33451,8 +33555,8 @@ module Aws::SageMaker
33451
33555
  # @return [Integer]
33452
33556
  #
33453
33557
  # @!attribute [rw] max_runtime_in_seconds
33454
- # The maximum time in seconds that a training job launched by a
33455
- # hyperparameter tuning job can run.
33558
+ # The maximum time in seconds that a hyperparameter tuning job can
33559
+ # run.
33456
33560
  # @return [Integer]
33457
33561
  #
33458
33562
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceLimits AWS API Documentation
@@ -33940,7 +34044,7 @@ module Aws::SageMaker
33940
34044
  end
33941
34045
 
33942
34046
  # @!attribute [rw] resource
33943
- # The name of the Amazon SageMaker resource to search for.
34047
+ # The name of the SageMaker resource to search for.
33944
34048
  # @return [String]
33945
34049
  #
33946
34050
  # @!attribute [rw] search_expression
@@ -38608,7 +38712,9 @@ module Aws::SageMaker
38608
38712
  #
38609
38713
  # @!attribute [rw] parameters
38610
38714
  # Replaces all of the component's hyperparameters with the specified
38611
- # hyperparameters.
38715
+ # hyperparameters or add new hyperparameters. Existing hyperparameters
38716
+ # are replaced if the trial component is updated with an identical
38717
+ # hyperparameter key.
38612
38718
  # @return [Hash<String,Types::TrialComponentParameterValue>]
38613
38719
  #
38614
38720
  # @!attribute [rw] parameters_to_remove
@@ -38617,7 +38723,9 @@ module Aws::SageMaker
38617
38723
  #
38618
38724
  # @!attribute [rw] input_artifacts
38619
38725
  # Replaces all of the component's input artifacts with the specified
38620
- # artifacts.
38726
+ # artifacts or adds new input artifacts. Existing input artifacts are
38727
+ # replaced if the trial component is updated with an identical input
38728
+ # artifact key.
38621
38729
  # @return [Hash<String,Types::TrialComponentArtifact>]
38622
38730
  #
38623
38731
  # @!attribute [rw] input_artifacts_to_remove
@@ -38626,7 +38734,9 @@ module Aws::SageMaker
38626
38734
  #
38627
38735
  # @!attribute [rw] output_artifacts
38628
38736
  # Replaces all of the component's output artifacts with the specified
38629
- # artifacts.
38737
+ # artifacts or adds new output artifacts. Existing output artifacts
38738
+ # are replaced if the trial component is updated with an identical
38739
+ # output artifact key.
38630
38740
  # @return [Hash<String,Types::TrialComponentArtifact>]
38631
38741
  #
38632
38742
  # @!attribute [rw] output_artifacts_to_remove
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.165.0'
56
+ GEM_VERSION = '1.167.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.165.0
4
+ version: 1.167.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-31 00:00:00.000000000 Z
11
+ date: 2023-03-02 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core